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Abstract

We consider the two-sample testing problem for networks, where the goal is to
determine whether two sets of networks originated from the same stochastic model.
Assuming no vertex correspondence and allowing for different numbers of nodes,
we address a fundamental network testing problem that goes beyond simple adja-
cency matrix comparisons. We adopt the stochastic block model (SBM) for network
distributions, due to their interpretability and the potential to approximate more
general models. The lack of meaningful node labels and vertex correspondence
translate to a graph matching challenge when developing a test for SBMs. We
introduce an efficient algorithm to match estimated network parameters, allow-
ing us to properly combine and contrast information within and across samples,
leading to a powerful test. We show that the matching algorithm, and the overall
test are consistent, under mild conditions on the sparsity of the networks and the
sample sizes, and derive a chi-squared asymptotic null distribution for the test.
Through a mixture of theoretical insights and empirical validations, including
experiments with both synthetic and real-world data, this study advances robust
statistical inference for complex network data.

1 Introduction

Network data is pervasive across various fields, including transportation [7], trading [5], social
networks [11, 41], neuroscience [32, 31, 6, 30], ecology [35], and politics [4], among others. To
address the diverse needs of these applications, recent statistical methods have emerged to handle
scenarios where multiple networks are observed [22, 28, 19, 3]. In this paper, we consider the
problem of testing whether two sets of networks have been generated from the same probability model.
Specifically, in network two-sample testing, we are given two collections of graphs {G11, . . . , G1N1}
and {G21, . . . , G2N2} generated as Grt ∼ Fr for r ∈ {1, 2}, t ∈ [Nr] := {1, . . . , Nr}, and would
like to test

H0 : F1 = F2 against H1 : F1 ̸= F2. (1)
We approach the two-sample testing problem in (1) without requiring the existence of vertex corre-
spondence. This means that the nodes in different networks are unlabeled, and as a consequence, the
ith node in the tth network of the rth sample has no direct correspondence or meaning in any of the
other networks. Additionally, it is possible for the number of nodes, denoted as nrt, to vary across
different networks. As such, the problem we are studying is truly a network testing problem, and not
immediately reducible to testing the distributions of a collection of adjacency matrices.

To further elaborate on the subtlety of graph versus matrix testing, consider the adjacency matrices
Art ∈ {0, 1}nrt×nrt associated with each graph Grt for r ∈ {1, 2} and t ∈ [Nr], by fixing a
particular node labeling for each graph. Then, graph-level distribution F1 induces distributions on the
adjacency matrices A1t, t ∈ [N1]. However, these distributions are not directly comparable since the
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dimensions of {A1t} could be different. Even if the dimensions are the same (i.e., graphs {G1t} all
have the same number of nodes), the distributions of {A1t} depend on the particular labelings chosen
for each graph. Changing the labelings, will change the distributions of {A1t}, although we want to
treat all such distributions as the same. In other words, when testing the equality of distributions of
the adjacency matrices, the formulation must account for equality up to relabeling of the nodes, and
disregard the potential size mismatches, to truly test at the level of graph distributions.

The absence of vertex correspondence introduces a fundamental challenge that elevates this problem
beyond simple matrix comparisons. In fact, the unlabeled two-sample testing problem subsumes the
classic graph isomorphism problem as a special case. If we consider samples of size N1 = N2 = 1
where the generating distributions are point masses on two fixed graphs, G1 and G2, the two-sample
test reduces to deciding if G1 is isomorphic to G2. Our problem can thus be seen as a “noisy” or
statistical version of graph isomorphism, where we must determine if two distributions on graphs are
equivalent up to a permutation.

To model the distribution of the adjacency matrices, we adopt the stochastic block model (SBM)
framework [17] as a foundational structure. The SBM is one of the most commonly used models in
the literature, valued not only for its simplicity and interpretability but also for its role as a universal
approximator. It is effectively the network equivalent of a histogram [29]; an SBM with a sufficiently
large number of communities, K, can form a step-function approximation to an arbitrary graphon in
the L2 sense [2, 14].

This capability positions our method as a “bin-then-test” strategy, which is analogous to classic
non-parametric approaches like Pearson’s chi-squared test, where continuous data is binned to form
contingency tables. This perspective makes the SBM a natural and powerful starting point, providing
a flexible, non-parametric framework for the two-sample testing of networks.

In this work, we assume that the adjacency matrices are generated from SBM distributions. In
particular, an adjacency matrix Art ∈ {0, 1}nrt×nrt is generated as follows. First, we draw a vector
of random community labels zrt = (zrt1, . . . , zrtn)

⊤ ∈ [K]n with entries that are independent draws
from a categorical distribution with parameter πr = (πr1, . . . , πrK), where πrl > 0 for all l and∑K

l=1 πrl = 1. Here, K is the number of communities. Then, given the labels zrt, the entries of Art,
below the diagonal, are independently drawn as

(Art)ij | zrt ∼ Ber((Br)zrti zrtj ), i < j,

where Br ∈ [0, 1]K×K is a symmetric matrix of probabilities. We assume the networks to be
undirected, with no self-loops, hence Art is extended to a symmetric matrix with zero diagonal
entries. Throughout, we write Art ∼ SBMnrt

(Br, πr) for Art generated as described above. We
often suppress the dependence on nrt and simply write Art ∼ SBM(Br, πr).

Given Art ∼ SBM(Br, πr), the network testing problem (1) is equivalent to the following{
H0 : ∃P ∈ ΠK , B1 = PB2P

⊤ and π1 = Pπ2

H1 : ∀P ∈ ΠK , B1 ̸= PB2P
⊤ or π1 ̸= Pπ2

(2)

where ΠK is the set of K ×K permutation matrices. The inclusion of permutation matrices P in (2)
is related to the subtlety of testing unlabeled network models. The fact that there is no pre-defined
node label or vertex correspondence across networks leads to the meaninglessness of community
labels in SBM. Consequently, demanding that B1 = B2 under the null hypothesis is not meaningful.
Put another way, SBM parameters (Br, πr) are only identifiable up a permutation; see (4).

Before proceeding, we generalize the problem slightly. In (2), the null hypothesis is rejected
if the class proportions πr differ modulo permutation. Given the SBM labels, this scenario is
straightforward to test by estimating and sorting class proportions to remove permutation ambiguity.
To avoid this relatively trivial case, we treat the class proportions as nuisance parameters. This choice
is also practical, as communities are typically defined by connectivity patterns rather than relative
sizes. Additionally, differences in class proportions πr can sometimes be transferred to connectivity
matrices Br via community refinement (see Appendix C.1 in the supplementary material). With these
considerations in mind, we focus on the following formulation for the remainder of the paper: Given
Art ∼ SBM(Br, πrt), we test{

H0 : ∃P ∈ ΠK , B1 = PB2P
⊤

H1 : ∀P ∈ ΠK , B1 ̸= PB2P
⊤.

(3)
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Note that here, the class proportions πrt are allowed to vary across networks without violating the
null hypothesis.

To develop a test for (3), it is essential to address the significant challenge posed by the fact that
matrices Br are only identifiable up to permutations. A potential approach to constructing a test
statistic is to estimate the community labels for each network, using any of the many existing
approaches (for instance [4]). Subsequently, one can proceed to estimate Br by computing block
averages of the adjacency matrices, based on these labels. However, the challenge lies in how to
effectively combine, and compare, the estimates from different networks when vertex correspondence
is not assumed. This becomes particularly daunting, as matching estimated labels across different
networks boils down to searching over the space of permutations ΠK , which has K! elements, a
non-trivial task even for moderate values of K. It is worth noting that this matching challenge exists
even if we observe a single network for each of the two samples, since one has to properly match the
communities of the two networks to be able to compare the connectivity matrices B1 and B2.

1.1 Summary of results

In this paper, we tackle the core challenges of unlabeled network comparison by developing a practical
and theoretically-grounded two-sample test. Our main contributions are:

• An Efficient and Consistent Matching Algorithm. We introduce a computationally efficient spec-
tral matching algorithm to solve the fundamental problem of aligning estimated SBM parameters.
We prove that this algorithm consistently recovers the correct alignment under standard spectral
conditions on the underlying connectivity matrices (formally, the (η, θ)-friendly property).

• A Rigorous Characterization of the Test Statistic. We establish the key theoretical properties
of our test. Under the null hypothesis, we prove that our statistic converges to a χ2

K(K+1)/2

distribution under mild conditions on network sparsity (average degree νn = Ω(logn)) and sample
size. This provides a practical foundation for accurate p-value calculation.

• Proof of Consistency and Power. Under the alternative hypothesis, we show that the test is
consistent and powerful. The test statistic grows at a rate of Ω(Nν2n), demonstrating that its power
increases with both the number of networks (N ) and their average degree (νn).

• A Scalable and Empirically Validated Test. We provide a practical, computationally efficient
algorithm for the two-sample test, whose scalability stands in contrast to computationally prohibitive
methods like subgraph counting. We demonstrate its superior performance and robustness on a
wide range of synthetic data, real-world networks, and non-SBM models, including graphons and
RDPGs.

1.2 Related work

Two-sample testing for labeled networks with known vertex correspondence has been well studied
in the literature. Notable efforts in the labeled case include the following: [16], where the authors
develop a test based on the geometric characterization of the space of the graph Laplacians. [15]
consider the problem from a minimax testing perspective, focusing on the theoretical characterization
of the minimax separation with respect to the number of networks and the number of nodes. [25]
develop a test based on an omnibus embedding of multiple networks into a single space. [8, 9]
develop a spectral-based test statistic that has an asymptotic Tracy–Widom law under null. [18]
introduce a novel approach to testing degree corrected stochastic block models based on interlacing
balance measure.

Existing literature on testing (1) with unlabeled networks with no vertex correspondence is limited,
but there have been notable efforts. For instance, [22] develop a geometric and statistical framework
for making inferences about populations of unlabeled networks. [37] introduce a two-sample test
for random dot product graphs based on estimating the maximum mean discrepancy between the
latent positions. [27] develop a two-sample test, based on subgraph counts, and characterize the null
distribution under a graphon model. While not designed for testing, two algorithms described in [28]
solve a closely related problem of clustering network-value data.

As discussed earlier, the construction of our test relies on the subroutine that matches the estimated
connectivity matrices of two networks. This type of problem is known as weighted graph matching
and can be formulated as a quadratic assignment problem (QAP) which is NP-hard. One of the
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standard techniques is to relax the constraint set of permutation matrices to its convex hull [26, 39, 1]
or the set of orthogonal matrices [13], and then “round" the solution to the set of permutation matrices.
[38] proposes to solve the weighted matching by solving a linear assignment problem on a matrix
derived from eigenvectors of the adjacency matrices of the two graphs. [12] show exact recovery of
the permutation with high probability for the Gaussian Wigner model. The idea of our main matching
algorithm is mentioned in passing in [36, Section 39.4] in the context of testing isomorphism of two
graphs, and is attributed to [24].

2 Matching Methodology

In this section, we begin by describing the challenges associated with the matching problem, specifi-
cally the task of aligning two matrices, B1 and B2, by relabeling the communities. Subsequently, we
introduce our proposed matching algorithm, which is at the heart of our test construction.

2.1 Matching challenge

From a statistical perspective, the challenge in testing samples from SBM(B, π) is that the parameters
(B, π) are identifiable only up to permutations. That is, for any permutation matrix

SBM(B, π) = SBM(PBP⊤, Pπ) (4)
as distributions. To illustrate the challenge more clearly, consider observing the two-sample problem
with only two adjacency matrices

A1 ∼ SBM(B1, π1), A2 ∼ SBM(B2, π2).

Assume that the null hypothesis holds, where we can assume B2 = B1. To devise a test, a natural
first step is to fit an SBM to Ar, using any consistent community detection algorithm, to obtain the
labels, from which we can construct an estimate B̂r = B(Ar) of Br, for r = 1, 2. The operator B
is a shorthand for the procedure that produces such estimate, the details of which are discussed in
Section 3. Even though B1 = B2, in general, we will have

B̂2 ≈ P ∗B̂1P
∗⊤,

for some permuation matrix P ∗ ∈ ΠK , since in each case the communities will be estimated in
an unknown (arbitrary) order. There is no way a priori to guarantee the same order of estimated
communities in the two cases. This is a manifestation of the permutation ambiguity in (4). To simplify
future discussions, let us introduce the following notation for exact matching:

B1
P∗

−−→ B2 ⇐⇒ B2 = P ∗B1P
∗T . (5)

The above discussion shows that two-sample testing for SBMs requires solving the following
subproblem:

Problem 1. Assume that B1
P∗

−−→ B2 for B1, B2 ∈ [0, 1]K×K . The noisy graph isomorphism (or
graph matching) problem is to recover a matching permutation P ∗ ∈ ΠK between B1 and B2, using
only noisy observations B̂r ≈ Br for r = 1, 2.

As alluded to in Section 1.2, this problem is in general hard. In particular, finding an optimal matching
in Frobenius norm reduces to solving a quadratic assignment problem (QAP), which is NP-hard in
general.

2.2 Spectral matching

For a large class of weighted networks, we can avoid solving a QAP to recover a matching. The core
idea is that if a connectivity matrix has a unique spectral signature, its eigenvalue decomposition
(EVD) contains the information needed to recover any permutation. The following lemma makes this
precise.
Lemma 2.1. Consider two K × K symmetric matrices B1 and B2 with EVDs given by Br =
QrΛrQ

⊤
r for r = 1, 2. If the eigenvalues of B1 are distinct, then a permutation matrix P ∗ satisfies

B2 = P ∗B1P
∗⊤ if and only if there exists a diagonal sign matrix S∗ such that:

Λ2 = Λ1, (6)
Q2 = P ∗Q1S

∗. (7)
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Algorithm 1 Spectral Matching: M(B̂1 → B̂2)

Input: Estimated connectivity matrices B̂1, B̂2

Output: Estimated sign matrix Ŝ, estimated permutation matrix P̃
1: for r = 1, 2 do
2: Perform EVD on B̂r to obtain B̂r = Q̂rΛrQ̂

⊤
r .

3: end for
4: Recover the diagonal signs Ŝii = sign

(
[Q̂⊤

2 1]i/[Q̂
⊤
1 1]i

)
and set Ŝ = diag(Ŝii).

5: Recover the permutation matrix as P̃ = LAP(Q̂1ŜQ̂
⊤
2 ).

6: return Ŝ, P̃ .

This result provides a direct algebraic path to finding P ∗. To ensure this process is robust against the
noise present in estimates B̂r, we require a slightly stronger condition that the eigenvalues are not
just distinct, but well-separated. This, along with a technical condition ensuring that no eigenvector is
orthogonal to the all-ones vector, guarantees that the matching permutation P ∗ is unique and that
our spectral approach is stable. We formalize these combined requirements as the “(η, θ)-friendly”
property in Appendix A.1.

Our proposed spectral matching algorithm, based on Lemma 2.1, is outlined in Algorithm 1. It relies
on solving the linear assignment problem (LAP), defined for a K ×K matrix Q as:

LAP(Q) := argmax
P∈ΠK

tr(PQ). (8)

The LAP can be solved efficiently, for example, by the Hungarian algorithm [23].

The intuition behind Algorithm 1 follows directly from Lemma 2.1. From (7), we can left-multiply by
1⊤ to get 1⊤Q2 = 1⊤P ∗Q1S

∗. Since 1⊤P ∗ = 1⊤, this simplifies to Q⊤
2 1 = S∗Q⊤

1 1. This gives
us a way to recover the unknown signs: S∗

ii = [Q⊤
2 1]i/[Q

⊤
1 1]i. The aforementioned condition that

eigenvectors are not orthogonal to the all-ones vector ensures the denominator [Q⊤
1 1]i is non-zero,

making this step well-defined. For robustness in the noisy case, we only take the sign of this ratio,
which is exactly Step 3 of the algorithm.

Once the sign matrix Ŝ ≈ S∗ is known, we can rearrange (7) to isolate the permutation matrix:
P ∗ = Q2S

∗Q⊤
1 . In the noisy setting with estimates Q̂r, the product Q̂2ŜQ̂

⊤
1 will be a noisy version

of P ∗. We find the closest valid permutation matrix by projecting it onto the set ΠK , which can be
done by solving the LAP:

argmin
P∈ΠK

|||Q̂2 − PQ̂1Ŝ|||2F = argmax
P∈ΠK

tr(Q̂⊤
2 PQ̂1Ŝ) = LAP(Q̂1ŜQ̂

⊤
2 ).

This is precisely Step 4 of the algorithm. In the sequel, we write M(B̂1 → B̂2) to denote the
permutation matrix P̃ returned.
Remark 2.1 (Computational Complexity). A key advantage of our spectral matching approach is
its computational efficiency. The complexity of Algorithm 1 is dominated by the EVD and the LAP
solution. The LAP on a K ×K matrix can be solved in O(K3) time using the Hungarian algorithm.
This cost depends only on the number of communities K, not the number of nodes n. In practice, the
matching step is extremely fast, making our overall test scalable to very large networks.

3 Test construction

We are now ready to describe our main algorithm for constructing an SBM two-sample test. The
first step is to estimate the connectivity matrix B for each observed network. Given an adjacency
matrix A and a vector of estimated community labels ẑ ∈ [K]n (obtained from an algorithm like
spectral clustering [4] or Bayesian community detection [35]), we define the block-sum operator S
and block-count operator C:

[S(A, z)]kℓ =
∑
i,j

Aij1{zi = k, zj = ℓ}, (9)

[C(z)]kℓ = nk(z)
(
nℓ(z)− 1{k = ℓ}

)
, (10)
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Algorithm 2 SBM Two-Sample Test (SBM-TS)

Input: Adjacency matrices Art and initial label estimates ẑ(0)rt , for t ∈ [Nr] and r = 1, 2.
Output: Two-sample test statistic T̂n.

Match to the first network within each sample r:
1: for t = 1, 2, . . . , Nr and r = 1, 2 do
2: Set ẑrt = σrt ◦ ẑ(0)rt for independent random permutation σrt.
3: Set Ŝrt = S(Art, ẑrt) and m̂rt = C(ẑrt).
4: Set B̂rt = Ŝrt ⊘ m̂rt.
5: Set P̂rt = M(B̂rt → B̂r1).
6: end for

Find the global matching permutation:
7: Set B̂r = 1

Nr

∑Nr

t=1 P̂rtB̂rtP̂
⊤
rt for r = 1, 2.

8: Set P̂ = M(B̂2 → B̂1).
Align the sums and counts, across all samples, and form aggregate estimates:

9: Set Ŝr =
∑Nr

t=1 P̂rtŜrtP̂
⊤
rt and m̂r =

∑Nr

t=1 P̂rt m̂rt P̂
⊤
rt for r = 1, 2.

10: Set Ŝ′
2 = P̂ Ŝ2P̂

⊤ and m̂′
2 = P̂ m̂2P̂

⊤.

11: Let B̂ = (B̂kℓ) where B̂kℓ =
Ŝ1kℓ + Ŝ′

2kℓ

m̂1kℓ + m̂′
2kℓ

and set σ̂2
kℓ = B̂kℓ(1− B̂kℓ).

12: Let B̂(1) = Ŝ1 ⊘ m̂1 and B̂(2) := Ŝ′
2 ⊘ m̂′

2. (Stronger estimates)
13: Let ĥkℓ be the harmonic mean of m̂1kℓ and m̂′

2kℓ and form the test statistic:

T̂n :=
∑
k≤ℓ

ĥkℓ

2σ̂2
kℓ

(
B̂

(1)
kℓ − B̂

(2)
kℓ

)2
. (11)

where nk(z) =
∑n

i=1 1{zi = k}. Both operators produce a K × K matrix. The estimate of
the connectivity matrix is then B(A, z) = S(A, z) ⊘ C(z), where ⊘ is elementwise division. For
diagonal blocks (k = ℓ) a double-counting occurs in both the numerator and denominator which can
be avoided, for computational efficiency, by restricting the sums to i < j.

3.1 Main algorithm

Our testing procedure, detailed in Algorithm 2, unfolds in three main stages. First, to enable
aggregation, we align all networks within each sample to a common reference (e.g., the first network).
Second, with the intra-sample alignments complete, we compute an average connectivity matrix for
each sample and perform a single global match between the two samples. Finally, with all networks
aligned to a common orientation, we aggregate the block-level edge counts across all networks to
form powerful, low-variance estimates of the connectivity matrices and construct the final chi-squared
test statistic.

To understand the form of the final statistic, consider an idealized scenario where all matchings
are perfect and the community labels are known. Under the null hypothesis (B1 = B2 = B), the
aggregate edge counts Ŝrkℓ would follow Binomial distributions, and by the CLT, the estimates B̂(1)

kℓ

and B̂
(2)
kℓ are approximately independent normal variables: B̂(r)

kℓ

d
≈ N(Bkℓ, σ

2
kℓ/mrkℓ) for r = 1, 2,

where σ2
kℓ = Bkℓ(1 − Bkℓ) is the common Bernoulli variance and mrkℓ are the total block pair

counts for each sample. The standardized difference of these two estimates is√
hkℓ/(2σ2

kℓ)(B̂
(1)
kℓ − B̂

(2)
kℓ )

d
≈ N(0, 1)

where hkℓ is the harmonic mean of m1kℓ and m2kℓ. Squaring this quantity, we see that each term in
our test statistic (11) is an estimate of this squared standard normal variable. This provides the core
intuition why T̂n will converge to χ2

K(K+1)/2 distribution, a result we formalize in Section 4.
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Remark 3.1 (Algorithmic Refinements). Two details in Algorithm 2 warrant mention. First, the final
estimates B̂(r) (Step 12) are constructed by pooling edge counts before dividing. This produces a
lower-variance estimate than averaging the individual B̂rt’s. Second, the randomization of labels in
Step 2 is a technical device to ensure the estimated matchings are statistically independent of the data,
which simplifies the theoretical analysis (see Lemma E.3 in the appendix).

4 Theory

In this section, we present the main theoretical guarantees for our proposed test. For clarity and
accessibility, we state our key results—the asymptotic null distribution and the consistency of the
test—under a simplified set of assumptions. These assumptions presume the use of a community
detection algorithm with a near-optimal misclassification rate, which is achievable in the sparse
regimes we consider (e.g., [42]). This allows us to express the conditions directly in terms of
fundamental network parameters like the average expected degree νn. We provide the more general,
finite-sample versions of these theorems, which hold for any community detection algorithm via its
misclassification rate, in Appendix A.

4.1 Matching Consistency

Our test relies on the ability of the spectral matching algorithm to correctly align the estimated SBM
parameters. The following result provides an informal guarantee, with the formal statement deferred
to Theorem A.1 in the appendix.
Theorem 4.1 (Matching Consistency, Informal). If the underlying connectivity matrices Br have
distinct eigenvalues and their eigenvectors are not orthogonal to the all-ones vector (i.e., they
are “friendly” per Definition A.1 in the appendix), our spectral matching algorithm (Algorithm 1)
consistently recovers the correct permutation between them from noisy estimates B̂r, provided the
estimation error is sufficiently small.

4.2 Asymptotic Guarantees for the Test

We now present the main results for our two-sample test statistic, T̂n. We begin with its limiting
distribution under the null hypothesis.
Theorem 4.2 (Null Distribution). Assume that Algorithm 2 is applied to two SBM samples with the
same connectivity matrix B = (νn/n)B

0 for a fixed K ×K matrix B0. Assume that:

(i) B0 has distinct eigenvalues, and no eigenvector of it sums to zero.

(ii) The number of networks in each sample grows at most polynomially in the number of nodes
n, i.e., N := max{N1, N2} = O(na) for some a ≥ 0.

(iii) The average expected degree grows at least logarithmically with the network size, i.e.,
νn = Ω(logn).

Then, the test statistic T̂n converges in distribution to a chi-squared distribution:

T̂n ⇒ χ2
K(K+1)/2.

Next, we show that the test is consistent under the alternative hypothesis, meaning its power ap-
proaches one as the network size grows.
Theorem 4.3 (Consistency). Assume that Algorithm 2 is applied to two SBM samples with different
connectivity matrices Br = (νn/n)B

0
r for r = 1, 2, such that B0

1 is not a permutation of B0
2 . Under

the same conditions on the eigenvalues/eigenvectors of B0
r and the growth of Nr as in Theorem 4.2,

and assuming the average expected degree νn → ∞, the test is consistent. Specifically, with
probability approaching 1,

T̂n = Ω(Nν2n),

where N = max{N1, N2}. This ensures that for any fixed significance level, the power of the test
approaches 1 as n → ∞.
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Remark 4.4 (On the Sparsity Condition). One might intuitively expect that aggregating N networks
could weaken the sparsity requirement of νn = Ω(logn). However, this fundamental dependence on
log n persists even for large N . To see why, consider a sample of N networks of size n. This can be
viewed as a single, large, block-diagonal adjacency matrix of size nN × nN , where the off-diagonal
blocks corresponding to inter-network connections are unobserved. For a single, fully observed
network of size nN , established results for tasks like community detection require the average degree
to scale as Ω(log(nN)) = Ω(log n + logN). Since our problem has less information (due to the
missing off-diagonal blocks), the requirement on the log n term cannot be removed by increasing N .

Remark 4.5 (Practicality of the Sparsity Condition). It is important to note that the condition
νn = Ω(log n) still describes a very sparse graph regime. For instance, if the average degree
grows as log n, adding one million nodes to a network would only increase the average degree by
approximately log(106) ≈ 14. As we demonstrate empirically in Appendix C.2, the average degree
in many real-world networks grows even faster than logarithmically with network size, suggesting
this assumption is mild in practice.

5 Experimental results

In this section, we provide experimental results on real and simulated networks and compare our
proposed test to two existing approaches. The code for reproducing all experiments in this section is
publicly available at https://github.com/aaamini/sbm-ts.

5.1 On Model Misspecification and the Choice of K

A key motivation for our SBM-based test is its applicability beyond the strict SBM setting. Because
SBMs can approximate general smooth graphons with arbitrary precision by increasing the number
of communities K, our test provides a robust method for non-parametric network comparison. Our
experiments on data from graphon and RDPG models (Subsections 5.5 and 5.4) provide strong
empirical evidence for this robustness.

Theoretical Guidance on the Range of K for Graphons. While a full theoretical analysis under a
general graphon model is beyond our scope, we can construct a semi-rigorous argument by combining
our test statistic’s structure with recent oracle inequalities for graphon estimation [21]. This analysis,
detailed in Appendix C.3, shows that the power of the test depends on balancing three competing
factors: (i) the model approximation error (bias), which decreases as K grows; (ii) two sources of
statistical estimation error (variance), which increase with K. For the test to be consistent, all three
error terms must vanish relative to the signal strength. This leads to a sufficient set of conditions on
the growth of K:

K → ∞, while K2 = o(nνn) and logK = o(νn).

These conditions provide valuable theoretical guidance: K should grow with the network size to
ensure the SBM is a good approximation, but this growth is limited by the network’s size and sparsity.
This leaves a wide and practical range for choosing K.

Practical Selection of K. In practice, where the optimal K is unknown, we propose a data-driven
procedure akin to a parametric bootstrap to select a value that maximizes test power for a given
problem scale:

(i) For a candidate K0 (e.g., K0 = 10), fit a K0-SBM to one sample, yielding estimates (B̂, π̂).
(ii) Create a synthetic alternative by perturbing the estimate: B̂alt = B̂ + Noise.

(iii) For a range of values K ∈ [2,Kmax], generate many synthetic datasets under H0 : (B̂, B̂)

and H1 : (B̂, B̂alt).
(iv) For each K, calculate the Area Under the ROC Curve (AUC) of our test in distinguishing

these synthetic samples.
(v) Select the K that yields the highest AUC.

In our experiments, this procedure proved effective. For instance, in the graphon experiment of
Section 5.5, it correctly suggested a small value of K = 2.
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Table 1: Mean AUC-ROC for various methods for the general SBM experiment.

K 2 3 15 20

SBM-TS 0.95 0.91 0.83 0.81
ASE 0.62 0.54 0.49 0.48

NCLM 0.70 0.64 0.50 0.50

5.2 Competing methods

We benchmark our method by comparing it against the two test from the literature: (1) Network
Clustering based on Log Moments (NCLM) [28] and (2) the Maximum Mean Discrepancy of the
Adjacency Spectral Embeddings (ASE-MMD) [37]. Whilst these two methods were not originally
designed for two-sample testing (NCLM is a clustering algorithm for networks and ASE-MMD is
designed for sample size 1), there is a natural way to extend them into this setting. See section D.1 of
supplementary material for a more detailed discussion.

5.3 General SBM with random B

We generate 50 instances of the testing problem B1 = B2 = ρB(i) versus (B1, B2) = (ρB(i), ρB
(i)
ε ),

where B(i) is a symmetric matrix whose entries are drawn from U(0.2, 0.7) and B
(i)
ε = B(i) +M

(i)
ε

such that M (i)
ε has entries N(0, ε2) subject to symmetry. We set the sample sizes to Nr = 100, the

number of vertices to nrt = 10000, the noise level to ε = 0.05, and sparsity factor to ρ = 0.1.

From Table 1, we can see that SBM-TS exhibits superior performance over the competitors, but its
performance somewhat deteriorates as K increases. The primary reason is that significantly increasing
K makes it more challenging to satisfy the approximate matching condition (14). Nonetheless, the
median area under the ROC curve (AUC) for K ∈ {15, 20} is 0.89 and 0.87 respectively, which
shows the strong performance of our proposed test in the cases where (14) holds.

5.4 Random dot product graphs

We consider two experiments around the two sample testing problem

H0 : A,A′ ∼ RDPGn(F, ρ), against H1 : A ∼ RDPGn(F, ρ), A′ ∼ RDPGn(F′, ρ)

We set the number of vertices to n = 10000 and the sparsity parameter ρ = 0.15. For Experiment 1,

we take F = F1 := N(0,Σ) and F′ = N(0, I2) where Σ =

[
3 2
2 3

]
. For Experiment 2, F = F2 :=

1
2N(0,Σ) + 1

2N(0, OΣO⊤) while F′ = N(0, I2) as in Experiment 1. Here, F2 is a mixture of
two Gaussian distributions and O =

(
0 1
−1 0

)
. Due to the invariance of the RDPG to an orthogonal

transformation, the two experiments are equivalent.

Figure 1c summarizes the results, comparing the performance of SBM-TS to ASE-MMD. While
SBM-TS essentially exhibits the ROC of the perfect test, ASE-MMD shows poor performance. The
reason is that, as proposed in [37], ASE-MMD does not have a matching mechanism to account for
the potential orthogonal transformation mismatch between the estimated latent positions for A and
A′ under null. This defect is present in the original paper [37] as can be seen from the presence of the
orthogonal matrix Wn,m in the asymptotic null limit of the statistic in Theorem 5 of [37].

5.5 Graphon

Consider the two-sample testing problem

H0 : A,A′ ∼ Graphon(ρW ), against H1 : A ∼ Graphon(ρW ), A′ ∼ Graphon(ρWε,δ)

where ρ is a sparsity factor. We take W (v1, v2) =
1
4 (v

2
1 + v22 +

√
v1 +

√
v2), the graphon from [2],

and let Wε,δ be the following perturbation of W ,

Wε,δ(vi, vj) = W (vi, vj) + ε · 1
{
vi, vj ∈ [0.5− δ; 0.5 + δ]

}
.
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In this experiment, we let ε = 0.05, δ = 0.2. For a general graphon, spectral clustering does
not provide a good SBM fit. To fit a proper K-SBM, we use a Bayesian community detection
algorithm [35]. The algorithm of Section 5.1 suggests K = 2 as the optimal choice and we set d = K
for ASE-MMD. Figure 1f illustrates the resulting ROCs for two cases of (n, ρ), namely, (103, 0.5)
and (104, 0.05), showing a clear advantage for SBM-TS against the ASE-MMD.

(a) F = F1 (b) F = F2

(c) RDPG experiments

(d) n = 1000, ρ = 0.5 (e) n = 10000, ρ = 0.05

(f) Graphon experiments

Figure 1: ROC curves for the RDPG and Graphon experiments

5.6 COLLAB dataset

The COLLAB dataset is a scientific collaboration dataset first introduced in [40]. This dataset
contains 5000 networks derived from public collaboration data in three scientific fields: C1) High
energy Physics, C2) Condensed Matter Physics, and C3) Astrophysics. Each graph corresponds
to an ego-network of a researcher and is labeled by their primary field of research. We consider
two-sample testing problems of the form (1) with N1 = N2 = m; the two samples under null will be
drawn at random (without replacement) both from class Ci, and under the alternative from classes
Ci and Cj for i ̸= j. Two choices of m ∈ {5, 10} and several choices of (i, j) are considered, as
detained in Figure 2 where the resulting ROCs are plotted. One observes that SBM-TS has superior
or comparable performance to the competing methods in distinguishing the two classes in each case.

6 Discussion

We have introduced a practical and theoretically-grounded framework for the two-sample testing of
unlabeled networks, addressing the core challenge of permutation invariance with a scalable spectral
matching algorithm.

Our approach is inherently modular, separating the problem into a matching stage and a testing stage.
This structure opens several avenues for future work. For instance, while our current method solves
the matching problem in two sequential steps, one could explore alternative optimization strategies,
such as alternating minimization over permutations and signs. Low-rank approaches that match only
the most informative eigenvectors instead of full matrices are another option.

The choice of the stochastic block model was motivated by its ability to approximate more general
network models. Our experiments successfully demonstrated that our test is a robust and practical
option for non-SBMs, such as those from graphon distributions. A key theoretical next step is to
extend our analysis to provide formal guarantees for the test under this broader class of models,
solidifying the connection between SBM-based testing and non-parametric network analysis.

(a) m = 5, C1 vs. C3. (b) m = 5, C2 vs C3. (c) m = 10, C1 vs C3. (d) m = 10, C2 vs C3.

Figure 2: ROC curves for the COLLAB dataset.
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A Full Theoretical Statements

This section provides the formal definitions and the complete versions of the theoretical results
presented in Section 4. We follow a top-down approach, beginning with the general theorems
expressed via the misclassification rate (Tier 2), then presenting the full finite-sample bounds from
which they are derived (Tier 3), and finally providing the complete proofs.

A.1 Formal Definition and Matching Guarantee

We begin with the formal definition of an (η, θ)-friendly matrix, which is a key condition for our
spectral matching algorithm.
Definition A.1 ((η, θ)-friendly). Let B ∈ [0, 1]K×K be a symmetric matrix with eigenvalue decom-
position B =

∑K
k=1 λkqkq

⊤
k . We call B (η, θ)-friendly if:

min
1≤k ̸=ℓ≤K

|λk − λℓ| > η, (Eigenvalue Separation) (12)

min
k∈[K]

|q⊤k 1| > θ. (Eigenvector Condition) (13)

We consider connectivity matrices B1 and B2 that are (θ, η)-friendly. Recall our shorthand notation
for an exact matching, introduced in (47). Similarly, it is helpful to introduce the following graphical
mnemonic for approximate matching:

B1
P

B2 ⇐⇒ |||B2 − PB1P
⊤|||F ≤ θη

2
√
2K

. (14)

Then, we have following guarantee for the matching algorithm:
Theorem A.1 (Matching Consistency). Suppose that B1 and B2 are K ×K connectivity matrices
that are (θ, η)-friendly with θ < 1

4
√
K

, and with EVDs given by Br = QrΛQ
⊤
r , r = 1, 2. Moreover,

assume B1
P∗

−−→ B2 for some permutation matrix P ∗. For r = 1, 2, let B̂r be an estimate of Br

satisfying

B̂r
Pr

Br (15)

for some permutation matrices Pr. Let Q̂1, Q̂2, Ŝ and P̃ be as defined in Algorithm 1, and let

Sr = argmin
S∈ΨK

|||Qr − PrQ̂rS|||F , r = 1, 2, (16)

where ΨK is the set of K ×K diagonal sign matrices. Then, the following holds:

(a) Sign recovery: Ŝ = S̃ := S1S
∗S2 with S∗ as in Lemma 2.1.

(b) Permutation recovery: LAP(Q̂1S̃Q̂
⊤
2 ) = {P̃} where P̃ := P⊤

2 P ∗P1, and

|||B̂2 − P̃ B̂1P̃
⊤|||F ≤

2∑
r=1

|||Br − PrB̂rP
⊤
r |||F . (17)

Remark A.2. One can also ask whether our matching algorithm is self-consistent? That is, if we
reverse the order of the B̂1 and B̂2, do we get permutations that are transposes of each other? The

13

https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1145/2783258.2783417


B̂1 B1

B̂2 B2

P1

P̃ P∗

P2

Figure 3: Schematic diagram of permutation recovery in Theorem A.1. The solid and dashed straight arrows
correspond to exact and approximate match. The bent arrow represents an application of the matching algorithm
M.

answer is yes. Notice that if we reverse the order of B̂1 and B̂2, the sign matrix Ŝ does not change.
Moreover,

B1
P∗

−−→ B2 implies B2
(P∗)⊤−−−−→ B1.

Hence, LAP(Q̂2S̃Q̂
⊤
1 ) = {P ′} where P ′ = P⊤

1 (P ∗)⊤P2 = (P⊤
2 P ∗P1)

⊤ = P̃⊤.

Intuituon behind Theorem A.1 To gain a deeper understanding of why our target permutation
matrix is P⊤

2 P ∗P1, let us analyze Figure 3. Within this illustration, each edge symbolizes a matching
between matrices based on both the direction of the edge and the permutation matrix associated with
it. To clarify the nature of these matchings, we use different types of arrows:

1. Dashed straight arrows represent approximate matching. For instance, the top edge corre-

sponds to B̂1
P1

B1, following the notation from Equation (14).

2. In contrast, the solid straight solid arrow signifies exact matching corresponding to B1
P∗

−−→
B2, with the notation from (5).

Considering that the inverse of a permutation matrix is its transpose, we can trace the path from B̂1

to B̂2 in Figure 3. We start from B̂1, progress through B1, then B2, and finally arrive at B̂2. The
permutation matrices associated with this path are P1, P ∗ and P⊤

2 (the inverse of P2). By multiplying
these matrices together, we obtain the desired permutation matrix, which is P⊤

2 P ∗P1.

A.2 General Results via Misclassification Rate (Tier 2)

The simplified theorems in the main paper (Theorems 4.2 and 4.3) are direct consequences of the
more general results presented here. These theorems are applicable to any community detection
algorithm, with their conditions expressed in terms of the algorithm’s misclassification rate, ε̃ :=
maxr,t Mis(zrt, ẑrt). In what follows, N = max{N1, N2}.

Theorem A.3 (Null Distribution, Tier 2). Assume Algorithm 2 is applied to two SBM samples
generated from B = (νn/n)B

0 for a fixed B0. The null distribution T̂n ⇒ χ2
K(K+1)/2 holds if:

(i) B0 has distinct eigenvalues and no eigenvector of it sums to zero.

(ii) The number of networks grows at most polynomially: N = o(nα) for some α > 0.

(iii) The misclassification rate ε̃ satisfies both:√
νnn1+α · ε̃ = op(1),

ε̃ ≤ CK−3/2 for some constant C = C(B0).

Theorem A.4 (Consistency, Tier 2). Assume Algorithm 2 is applied to two SBM samples from
B1 = (νn/n)B

0
1 and B2 = (νn/n)B

0
2 . The test is consistent, with T̂n = Ω(Nν2n), if:

(i) B0
1 and PB0

2P
⊤ are different for any permutation matrix P .
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(ii) The misclassification rate ε̃ satisfies both:

ε̃ = op(1),

ε̃ ≤ CK−3/2 for some constant C = C(B0
1 , B

0
2).

Remark A.5 (Connecting Tiers). The Tier 1 results in the main paper follow from the theorems
above. Near-optimal community detection algorithms [42] can achieve ε̃ = O(N exp(−cνn/K)).
Taking νn = C logn for a sufficiently large C, this rate is small enough to satisfy all conditions on ε̃
in Theorems A.3 and A.4 for sufficiently large n (assuming K is fixed). Note that in the main paper,
we stated N = O(na) while here N = o(nα), noting that the former implies the latter by taking say
a ≤ α/2 for any α > 0. The next section details how these Tier 2 conditions are, in turn, derived
from our full finite-sample analysis.

A.3 Complete Finite-Sample Bounds (Tier 3)

The Tier 2 results presented above are convenient simplifications of our full, non-asymptotic technical
bounds (Tier 3). We state these full bounds below and explain how the Tier 2 conditions arise from
them.

We make the following “sparsity” and “size” assumptions

νn
n

≤ Bkℓ ≤ C1νn
n

, (18)

n ≤ nrt ≤ C2n (19)

for all k, ℓ ∈ [K] and t ∈ [Nr], r = 1, 2. We also write πk = P(zrti = k), recalling that we are
under the null, and set πmin = mink πk.

Let us fix some κ ∈ (0, 1) and α > 0 and let β = 1/(κ̄πmin) where κ̄ = 1− κ. For any N , let

δ(N)
n :=

√
3β2α log n

Nnνn
. (20)

For convenience, we assume that (n is large enough so that)

δ(1)n ≤ 1,
log n

n
≤ κ2πmin

3α
. (21)

Moreover, define

γn = C1

(
56β3 · ε̃+ δ(1)n

)
, where ε̃ := max

t∈ [Nr]
r=1,2

Mis(zrt, ẑrt).

Theorem A.6 (Null distribution, Tier 3). Fix K and assume that Algorithm 2 is applied to two
SBM samples, with sizes satisfying (19), and the same connectivity matrix B satisfying (18) and
∥B∥max ≤ 0.99. Moreover, suppose that B is (η, θ)-friendly and with probability 1− o(1),

νn
n
γn ≤ min

(
θ,

1

5
√
K

)
· η

2
√
2K

. (22)

Let N = max{N1, N2} and assume that for some κ ∈ (0, 1) and α > 0 and c > 0, we have

γn = op(1),
√
Nνnn ε̃ = op(1), Nνnn → ∞, N = o(nα),

and min{N1, N2} ≥ cN . Then, for T̂n, the output of Algorithm 2, we have

T̂n ⇒ χ2
K(K+1)/2.

Derivation of Tier 2 from Tier 3 (Null): The conditions in Theorem A.3 ensure that the premises
of Theorem A.6 hold. Specifically, since we always have δ

(1)
n = o(1), the condition γn = op(1)

is satisfied if ε̃ = op(1). Assuming B = (νn/n)B
0, and B0 has distinct eigenvalues, with no

eigenvector that is orthogonal to the all-ones vector, B will be ((νn/n)η0, θ0)-friendly for some
constants θ0 > 0 and η0 > 0. As a result condition (22) holds if γn ≤ min(θ0,

1
5
√
K
) · η0

2
√
2K

,
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and since γn ≍ ε̃, the condition holds if ε̃ ≲ K−3/2. The condition
√
νnn1+α · ε̃ = op(1) is a

slightly stronger restatement of the
√
Nνnn · ε̃ = op(1) requirement, using N = o(nα). Condition

Nνnn → ∞ trivially holds given νn = Ω(logn).

Next, we show that the test is consistent, in the sense that T̂n → ∞ under the alternative hypothesis
that the two SBMs are different. For two K ×K matrices B1, B2, consider the pseudometric

dma
F (B1, B2) := min

P∈ΠK

|||B2 − PB1P
⊤|||F , (23)

where ΠK is the set of K ×K permutation matrices.
Theorem A.7 (Consistency, Tier 3). Assume that Algorithm 2 is applied to two SBM samples, with
sizes satisfying (19), and connectivity matrices B1 and B2 satisfying (18). For r = 1, 2, let

ξr := C1

(
40β3ε̃+ δ(Nr)

n

)
and assume that

√
12K max

r=1,2
ξr ≤ dma

F (B1, B2)

νn/n
. (24)

Moreover, let let G be the event that (22) holds. and assume that 48C2β
4ε̃ ≤ 1. Here, C1 and C2 are

the same constants as in (18). Then, with probability at least 1− 19N+K
2n−α − P (Gc),

T̂n ≥ Nn2

12β2
· dma

F (B1, B2)
2.

Derivation of Tier 2 from Tier 3 (Consistency): The premise of Theorem A.7 is dominated by the
misclassification rate ε̃ through the term ξr. If we assume ε̃ = op(1) as in Theorem A.4, then ξr → 0.
Since dma

F (B1, B2)/(νn/n) = dma
F (B0

1 , B
0
2) > 0 is a constant under the alternative, the condition

holds for large n, guaranteeing consistency. It follows that T̂n ≥ Nν2
n

12β2 d
ma
F (B0

1 , B
0
2)

2 = Ω(Nν2n).

B Proofs of the main results

B.1 Notation

We often consider a one-to-one correspondence between permutations matrices P ∈ RK×K and
permutations σ on the set [K] := {1, . . . ,K}. The correspondence σ 7→ Pσ is defined by the
following identity: (Pσv)i = vσ(i) for all v ∈ RK . It follows that (P⊤

σ v)i = vσ−1(i). It is
also helpful to note that [Pσ]i∗ = e⊤σ(i) and [P⊤

σ ]∗j = [Pσ]
⊤
j∗ = eσ(j). This implies that if B is

a K × K matrix, [PσBP⊤
σ ]ij = Bσ(i),σ(j). The linear assignment problem is often written as

maxσ
∑K

i=1 Bi,σ(i). The cost function in this case is equivalent to tr(BP⊤
σ ). This follows by noting

[BP⊤
σ ]ij = Bi∗ eσ(j) = Bi,σ(j).

Let P and Q be matrices with associated permutations σ and τ respectively. Notice that σ ◦ τ is the
permutation associated with QP , since (QPv)i = (Pv)τ(i) = vσ(τ(i))).

For p ∈ [1,∞) and a n × m matrix A, the ℓp → ℓp operator norm of a matrix A = (aij) is
|||A|||p := supx̸=0∥Ax∥p/∥x∥p. In the special cases p = 1,∞, we have |||A|||1 = maxj

∑
i |aij | and

|||A|||∞ = maxi
∑

j |aij |. We also write ∥A∥max = maxi,j |Aij |.

For label vectors z, ẑ ∈ [K]n, we write dH(z, ẑ) =
∑n

i=1 1{zi ̸= ẑi} for their Hamming dis-
tance, dNH(z, ẑ) = dH(z, ẑ)/n for their the normalized Hamming distance, and Mis(z, ẑ) =
minσ∈ΠK

dNH(z, ẑ ◦ σ) for the corresponding misclassification rate.

B.2 Proof of Theorem A.1 (Matching Consistency)

Recall that ∥∆∥∞ = maxi,j |∆ij |. We need the following lemma on the perturbation of the LAP
problem:
Lemma B.1. We have LAP(I +∆) = {I} as long as ∥∆∥∞ < 1/2.
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Since B1 and B2 are similar matrices, they have the same eigenvalues. If the EVD of B1 is
B1 = Q1ΛQ

⊤
1 , then the EVD of B2 can written as B2 = Q2ΛQ

⊤
2 . By Lemma 2.1,

Q2 = P ∗Q1S
∗ (25)

for some sign matrix S∗.

First, we show assertion (a). Let ∆̂r := PrQ̂rSr −Qr, so that Q̂r = P⊤
r (Qr + ∆̂r)Sr and

Q̂⊤
r 1 = Sr(Qr + ∆̂r)

⊤1

using Pr1 = 1. Then, [Q̂⊤
r 1]k = Sr,kk(Q

⊤
r,∗k1 + ∆̂⊤

r,∗k1) where Qr,∗k and ∆r,∗k are the k-th
columns of Qr and ∆r. From the definition of Ŝkk,

Ŝkk = sign

(
[Q̂⊤

1 1]k

[Q̂⊤
2 1]k

)
= sign

(
Q⊤

1,∗k1+ ∆̂⊤
1,∗k1

Q⊤
2,∗k1+ ∆̂⊤

2,∗k1

)
S1,kkS2,kk. (26)

From (25), it follows that S∗
kk = sign

(
[Q⊤

2 1]k/[Q
⊤
1 1]k

)
. Then, to show Ŝkk = S1,kkS

∗
kkS2,kk, it

suffices to show that

|Q⊤
r,∗k1| =

∣∣∣ K∑
j=1

Qr,jk

∣∣∣ > ∣∣∣ K∑
j=1

∆̂r,jk

∣∣∣ = |∆̂⊤
r,∗k1| (27)

for r = 1, 2. Since Br are (θ, η)-friendly, we have |
∑K

j=1 Qr,jk| ≥ θ and so it is enough to show

that |
∑K

j=1 ∆̂r,jk| ≤ ∥∆̂r,∗k∥1 < θ.

The noise matrices ∆̂r are controlled by the Davis–Kahan theorem,

∥∆̂r,∗k∥2 = ∥Qr,∗k − PrQ̂r,∗kSr,kk∥2

≤ 2
√
2

η
|||Br − PrB̂rP

⊤
r |||F .

Then, using assumption (15),

∥∆̂r,∗k∥1 ≤
√
K∥∆̂r,∗k∥2 ≤ 2

√
2K

η

θη

2
√
2K

≤ θ, (28)

proving assertion (a). Note also that we have shown

|||∆̂r|||1 = max
k

∥∆̂r,∗k∥1 ≤ θ. (29)

Next, we prove LAP(Q̂1S̃Q̂
⊤
2 ) = {P̃}. Using (25), and the definitions of ∆̂r, we have

Q̂2 = P⊤
2 (Q2 + ∆̂2)S2

= P⊤
2 (P ∗Q1S

∗ + ∆̂2)S2

= P⊤
2 (P ∗(P1Q̂1S1 − ∆̂1)S

∗ + ∆̂2)S2

= P⊤
2 P ∗P1Q̂1S1S

∗S2 − P⊤
2 P ∗∆̂1S

∗S2 + P⊤
2 ∆̂2S2

= P̃ Q̂1S̃ +∆

where we let ∆ = −P⊤
2 P ∗∆̂1S

∗S2 + P⊤
2 ∆̂2S2. We can then write

Q̂1S̃Q̂
⊤
2 = Q̂1S̃(P̃ Q̂1S̃ +∆)⊤ = P̃⊤(I +∆0). (30)

where ∆0 = P̃ Q̂1S̃∆
⊤. It is then enough to study

LAP
(
P̃⊤(I +∆0)

)
= LAP(I +∆0) · P̃

where the equality follows by a change-of-variable argument. The result follows from Lemma B.1 if
we show ∥∆0∥∞ ≤ 1/2.
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We note that for permutation and sign matrices, both ||| · |||∞ and ||| · |||1 are equal to 1. Using the
submultiplicative property of ||| · |||p for p = 1, 2, we have

|||∆⊤|||∞ = |||∆|||1 ≤ |||∆̂1|||1 + |||∆̂2|||1 < 2θ

where we have used (29). Then,

|||∆0|||∞ ≤ |||Q̂1|||∞|||∆⊤|||∞ ≤ 2θ|||Q̂1|||∞.

Since Q̂1 has unit-norm rows, that is, ∥Q̂1,k∗∥2 = 1 for all k, we obtain

|||Q̂1|||∞ = max
k

∥Q̂1,k∗∥1 ≤
√
K.

Putting the pieces together

∥∆0∥∞ ≤ |||∆0|||∞ ≤ 2θ
√
K < 1/2

where the last inequality is by assumption. This proves LAP(Q̂1S̃Q̂
⊤
2 ) = {P̃}.

To prove the inequality in part (b), let Dr := Br − PrB̂rP
⊤
r . Then, some algebra, using B2 =

P ∗B1P
∗T , gives

P̃ B̂1P̃
⊤ = P⊤

2 P ∗P1B̂1P
⊤
1 P ∗TP2

= P⊤
2 P ∗(B1 −D1)P

∗TP2

= P2P
∗B1P

∗TP2 − P⊤
2 P ∗D1P

∗TP2

= P⊤
2 B2P2 − P⊤

2 P ∗D1P
∗TP2

= P⊤
2 D2P2 + B̂2 − P⊤

2 P ∗D1P
∗TP2,

and so

|||P̃ B̂1P̃
⊤ − B̂2|||F ≤ |||P⊤

2 D2P2 − P⊤
2 P ∗D1P

∗TP2|||F
≤ |||D1|||F + |||D2|||F .

The proof is complete.

B.3 Proof of Theorem A.6 (Null distribution, Tier 3)

If B is (η, θ)-friendly, then it is (η, θ′)-friendly with θ′ = min(θ, 1
5
√
K
). For simplicity, let us

redefine θ to be θ′, so that B is (η, θ)-friendly with θ < 1
4
√
K

. Let D be the event that (22) holds.
After redefinition, D is equivalent to

νn
n
γn ≤ θη

2
√
2K

, (31)

and by assumption, we have P (D) = 1 − o(1). Let B∗
r be some (a priori) fixed version of the

connectivity matrix for each of the two groups r = 1, 2. By Proposition F.3 and the union bound,
there is an event A with

P (Ac) ≤ 3N+K
2n−α +KN+e

−κ2nπmin/3

and permutation matrices P̃rt ∈ ΠK such that on A ∩D:

∥P̃rtB̂rtP̃
⊤
rt −B∗

r∥max ≤ C1
νn
n

(
56β2 · ε̃rt + δ(1)n

)
≤ νn

n
γn ≤ θη

2
√
2K

for all t ∈ [Nr] and r = 1, 2, where ε̃rt = Mis(zrt, ẑrt). This implies that

A ∩D ⊂ E2 :=
{
B̂rt

P̃rt
B∗

r for all t = 1, . . . , Nr, r = 1, 2
}
.

According to Lemma E.3, we can assume that, in the above, P̃rt is independent of everything else.
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B̂r1 B∗
r

B̂rt B∗
r

P̃r1

IK

P̃rt

P̂rt

(a) Step 5

Br

B̂r1 B∗
r

B̂rt B∗
r

P̃r1

IK

IK

P̃⊤
r1

P̃rt

P̂rt

(b) Simplification by introducing Br .

B̂r1 Br

B̂rt Br

IK

IK

P̃rt

P̂rt

(c) After conditioning on Br

Figure 4: Matching to first network in group r. Here, t > 1 in the bottom level. Bent arrow is an application
of the matching algorithm M. The edges can be reversed in which case the permutation matrix should be
replaced with its transpose. Left-side quantities are random, while right-side quantities are deterministic. Dashed
and solid arrows correspond to approximate and exact matching, respectively. See the discussion at the end of
Section 4.1 for more details on the nature of these diagrams.

Figure 4a illustrates the “matching-to-first” in step 5 of the algorithm. As this diagram shows, by
Theorem A.1, on event E2, we have P̂⊤

rt = P̃⊤
rtIK P̃r1 that is,

E2 ⊂ E1 :=
{
P̂rt = P̃⊤

r1P̃rt

}
.

To simplify, let us define Br := P̃⊤
r1B

∗
r P̃r1, that is,

B∗
r

P̃⊤
r1−−→ Br.

Note that Br is random version of the true B∗
r , due to the randomness of P̃r1, although, it is

independent of everything else. Then, a little algebra shows that on E1 ∩ E2,

B̂rt
P̂rt

Br

for all t ∈ [Nr] and r = 1, 2. Figure 4b illustrates the above inequality (the red path). Now, since
Br, r = 1, 2 are independent of everything else, we can condition on them and continue with the
argument as if they were deterministic. The resulting diagram is shown in Figure 4c; the effect is as
if we assumed P̃r1 = IK and Br = B∗

r . The above conditioning argument shows that we can do this
without loss of generality.

From now on, we work on (A ∩D) ∩ E1 ∩ E2 = A ∩D (by the above argument), on which we have
P̂rt = P̃rt as discussed above. Then, from the definition of B̂r in step 7, we note

B̂r −Br =
1

Nr

Nr∑
t=1

(P̃rtB̂rtP̃
⊤
rt −Br).

On E2 the ||| · |||F of each term on the RHS is bounded by θη/(2
√
2K), and since a norm is a convex

function, the same holds for the LHS. That is,

B̂r
IK

Br (32)

for r = 1, 2. Since we are under the null, there is a permutation P ∗ such that B2
P∗

−−→ B1. Combining
with (32), we can applyTheorem A.1—with P1 = P2 = IK and the roles of B1 and B2 switched—to
conclude that P̂ = P ∗ in step 8.
Remark B.1. We could have assumed B∗

1 = B∗
2 in the above argument, since we are under the

null. However, when passing to Br, r = 1, 2 we could lose the equality among B1 and B2 (due to
P̃r1, r = 1, 2 potentially being different). Hence, we do not gain anything by making the assumption
B∗

1 = B∗
2 .
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Remark B.2. Everything up to and including (32) holds under the alternative B1 ̸= B2 as well. This
will be used in the proof of Theorem A.7.

The following arguments are all on A. Let Srt = S(Art, zrt), mrt = C(Art, zrt) and

B̃r :=
Sr

mr
, Sr :=

∑
t Srt, mr :=

∑
t mrt

Since P̂rt = P̃rt, we have

Ŝr

m̂r
=

∑
t P̃rtŜrtP̃

⊤
rt∑

t P̃rtm̂rtP̃⊤
rt

where Ŝr and m̂r are as defined in step 9. Let N = max{N1, N2}. Then, from Proposition F.4 and
union bound on r = 1, 2, there is an event B1 with

P (Bc
1) ≤ 2(C2N + 2K2)n−α + 2NKe−κ2nπmin/3 (33)

such that on B1, we have

∥(Ŝr/m̂r)− B̃r∥max ≤ 40C1β
3 νn
n
ε̃ (34)

where ε̃ = maxr,t ε̃rt. Also, since P̂ = P ∗, we have Ŝ′
2 = P ∗Ŝ2P

∗T and m̂′
2 = P ∗m̂2P

∗T .
Moreover, from Proposition F.4, on B1,

∥B̃r −Br∥max ≤ C1
νn
n
δ(Nr)
n ≤ C1

νn
n

(35)

since δ
(Nr)
n ≤ δ

(1)
n ≤ 1. Using ∥Br∥max ≤ C1νn/n and triangle inequality, we have

∥B̃r∥max ≲
νn
n
, ∥Ŝr/m̂r∥max ≲

νn
n

(36)

where we have treated C1, C2 and β3 as constants and absorbed them into ≲ symbol; this will do
from time to time in the rest of the proof.

Next, we have ∥mrt − P̃rtm̂rtP̃
⊤
rt∥max ≤ 6β n2

rt ε̃rt. It follows that

∥mr − m̂r∥max ≤ 6β
∑
t

n2
rt ε̃rt ≤ 6C2

2β
2Nrn

2ε̃ (37)

where mr =
∑

t mrt. Let m′
2 = P ∗m2P

∗T . Then, the same bound as above holds for ∥m′
2 −

m̂′
2∥max. Let h be the elementwise harmonic mean of m1 and m′

2. Since ĥ is the elementwise
harmonic mean of m̂1 and m̂′

2, we have

∥h− ĥ∥max ≤ 12C2β
2Nn2ε̃ (38)

where N = max{N1, N2}. Since h is elementwise the harmonic mean of mr, r = 1, 2, we have

min
k,ℓ

hkℓ ≥ min
k,ℓ,r

[mr]kℓ ≥ cNn2/(2β2). (39)

The factor 2 is for handling the case k = ℓ.

Controlling σ̂. Note that

B̂ =
Ŝ1 + P ∗Ŝ2P

∗

m̂1 + P ∗m̂2P ∗T .

Since B1 = P ∗B2P
∗T , this is essentially an estimator like B̂ in Proposition F.4 based on an

independent sample of size N+ := N1 +N2 from SBM(B1, π). It follows from Proposition F.4 that
there is an event B2 with

P (Bc
2) ≤ (C2N+ + 2K2)n−α +N+Ke−κ2nπmin/3 (40)
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such that on B2, we have

∥B̂ −B1∥max ≤ C1
νn
n

(
40β3ε̃+ δ(N+)

n

)
≤ νn

n
γn

where the second inequality is by δ
(N+)
n ≤ δ

(1)
n .

Let σ2 = (σ2
kℓ) where σ2

kℓ = B1kℓ(1−B1kℓ). The function f(x) = x(1−x) has derivative satisfying
|f ′(x)| ≤ 1 for x ∈ [0, 1], hence f is 1-Lipschitz there implying

∥σ̂2 − σ2∥max ≤ ∥B̂ −B1∥max.

Since νn/n ≤ B1kℓ ≤ 0.99, we have σ2
kℓ ≥ 0.01νn/n. Ignoring constants, we have shown

∥B̂ −B1∥max ≤ νn
n
γn, ∥σ̂2 − σ2∥max ≤ νn

n
γn, min

k,ℓ
σ̂2
kℓ ≳

νn
n
.

High probability event. Let B = B1 ∩ B2. Then, the event A ∩ B has high probability. Indeed, we
have

P (Ac) ≤ 3N+K
2n−α +KN+e

−κ2nπmin/3

P (Bc) ≤ 3(C2N+ + 2K2)n−α + 3N+Ke−κ2nπmin/3.

Using union bound and further bounding C2N+ + 2K2 ≤ 4C2N+K
2 and e−κ2nπmin/3 ≤ n−α (by

assumption (21)), we obtain

P (Ac ∪ Bc) ≤ 19N+K
2n−α (41)

which goes to zero under the assumption N+K
2n−α = o(1).

Controlling T̂n. Define

D :=
S1

m1
− S′

2

m′
2

, D̂ :=
Ŝ1

m̂1
− Ŝ′

2

m̂′
2

,

Ê :=

√
ĥ√
2σ̂

D̂, E :=

√
h√
2σ

D

where S′
2 = P ∗S2P

∗T and m′
2 = P ∗m2P

∗T . Note also that Sr/mr = B̃r. Let d = K(K + 1)/2.
For the rest of the proof, we treat the above matrices as vectors in Rd by considering only the elements
on and above the diagonal, in a particular order (say rowwise).

We have T̂n = |||Ê|||2F on A ∩ B and since P (A ∩ B) = 1 − o(1), it is enough to establish
Ê ⇒ (N(0, 1))⊗d; see [20, Theorem 9.15]. Clearly,

Ê =

√
ĥ√
h

· σ
σ̂
· E +

√
ĥ√
h

· σ
σ̂
·
√
h√
2σ

(D̂ −D). (42)

From (34), with high probability, we have that

∥
√
h√
2σ

(D̂ −D)∥max ≲

√
Nn2

(νn/n)1/2
νnε̃

n
=
√
Nnνnε̃. (43)

Next we have ∥∥∥σ2

σ̂2
− 1d

∥∥∥
max

≤ ∥σ2 − σ̂2∥max

mink,ℓ σ̂2
k,ℓ

≲
(νn/n)γn
νn/n

≤ γn

hence
σ/σ̂ = 1d + op(1). (44)

Similarly, ∥∥∥ ĥ
h
− 1d

∥∥∥
max

≤ ∥ĥ− h∥max

mink,ℓ hkℓ
≲

Nn2ε̃

Nn2
≤ ε̃

and hence √
ĥ/

√
h = 1d + op(1). (45)
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Lemma B.2. E := (
√
h/(

√
2σ))D ⇒ (N(0, 1))⊗d, under the assumptions of Theorem A.6.

Proof. See Section E.1.

Therefore, from (42)–(45), Lemma B.2, and Slutsky’s theorem, we obtain that Ê ⇒ (N(0, 1))⊗d,
provided that

√
Nνnn ε̃ = o(1). The proof is complete.

B.4 Proof of Theorem A.7 (Consistency, Tier 3)

We will follow the notation and argument in the proof of Theorem A.6. On event A ∩D ∩ B defined
there, we have correct matching P̂rt = P̃rt—where P̃rt is as defined in the proof of Theorem A.6—
and (34) and (35) hold. Since G ⊂ D, all the above also holds on A ∩ G ∩ B. This is the event we
will work on.

The two inequalities (34) and (35) give

∥(Ŝr/m̂r)−Br∥max ≤ C1
νn
n

(
40β3ε̃+ δ(Nr)

n

)
= ξr

νn
n
, r = 1, 2.

Since, Ŝ′
2/m̂

′
2 = P̂ (Ŝ2/m̂2)P̂

⊤, we also have

∥(Ŝ′
2/m̂

′
2)− P̂B2P̂

⊤∥max ≤ ξ2
νn
n
.

Using (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

|||(Ŝ1/m̂1)− (Ŝ′
2/m̂

′
2)|||2F ≥ 1

3
|||B1 − P̂B2P̂

⊤|||2F

− |||(Ŝ1/m̂1)−B1|||2F − |||(Ŝ′
2/m̂

′
2)− P̂B2P̂

⊤|||2F

≥ 1

3
min
P

|||B1 − PB2P
⊤|||2F − 2K2

(νn
n

)2
max
r=1,2

ξ2r

≥ 1

6
min
P

|||B1 − PB2P
⊤|||2F

by assumption (24). Next, we note that (37) holds in this case. Let m′
2 = P̂m2P̂

⊤ and let h be
the elementwise harmonic mean of m1 and m′

2. Then, both (38) and (39) hold, irrespective of the
specific P̂ . On G, we have 48C2β

4ε̃ ≤ 1 which, combined with the latter two inequalities, yields

min
kℓ

ĥkℓ ≥ Nn2/(4β2).

Also σ̂2
kℓ = B̂kℓ(1− B̂kℓ) ≤ 1/4. Then,

T̂n ≥ Nn2/(4β2)

2 · 1
4

|||(Ŝ1/m̂1)− (Ŝ′
2/m̂

′
2)|||2F . (46)

Putting the pieces together, we have the desired inequality on (A ∩ B) ∩ G. Combined with the
probability bound (41) for (A ∩ B)c, the proof is complete.

B.5 Proof of Lemma 2.1

We restate the lemma here with the extra uniqueness clause added.
Lemma B.3. Consider two K×K matrices B1 and B2 with EVDs given by Br = QrΛQ

⊤
r , r = 1, 2,

for some diagonal matrix Λ with distinct diagonal entries. Then, a permutation matrix P ∗ satisfies

B1
P∗

−−→ B2 (47)

if and only if there exists a diagonal sign matrix S∗, such that

Q2 = P ∗Q1S
∗. (48)

Moreover if B1 is (θ, η) friendly, then there is at most one P ∗ satisfying (47).
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Proof. Since P ∗Q1 is an orthogonal matrix, by absorbing P ∗ into Q1 and redefining Q1, we can
assume P ∗ = I , without loss of generality. The problem reduces to showing that (*) Q2ΛQ

T
2 =

Q1ΛQ
T
1 iff there is a sign matrix S∗ such that Q2 = Q1S

∗. Let Q = QT
2 Q1 and note that Q is

an orthogonal matrix. Multiplying (*) on the left and right by QT
2 and Q2, the problem reduces to

showing that (**) Λ = QΛQT for an orthogonal matrix Q and diagonal matrix Λ iff Q is a diagonal
sign matrix (i.e., Q = S∗).

Assume (**) holds, the other direction being trivial. Note that changing Λ to Λ+αI does not change
(**), hence we can shift the diagonal entries of Λ arbitrarily. Let Λ = diag(λk). Since (λk) are
distinct, we can shift them so that λ1 < 0 and λk > 0 for k ≥ 2. From (**), looking at the first
entries of the two sides, λ1 =

∑
k≥1 Q

2
ikλk, hence

0 = −(1−Q2
11)λ1 +

∑
k≥2

Q2
1kλk.

Every term on the RHS is non-negative. It follows that every term has to be zero, implying Q2
11 = 1

and Q1k = 0 for k ≥ 2. This proves the assertion for the first row of Q. Repeating the argument for
the other rows, the result follows.

Next, we prove the uniqueness. Suppose that there exist permutation matrices P and P̃ such that
PB1P

T = B2 = P̃B1P̃
T . By the argument above, there exist sign matrices S and S̃ such that

PQ1S = Q2,= P̃Q1S̃. Hence,
Q1 = PT P̃Q1S̃S.

The problem then reduces to showing that if Q = PQS where Q is an orthogonal matrix, P a
permutation matrix and S a sign matrix, then P = I . If S = I (the trivial sign matrix), then
P = QQT = I . So assume S ̸= I and P ̸= I . Then, there is j such that PQ.,j = −Q.,j , hence,

1TQ.,j = 1TPQ.,j = −1TQ.,j

where 1 is the all-ones vector. This gives 1TQ.,j = 0, contradicting friendliness of B1. The proof is
complete.

C Additional Discussion

C.1 Class proportions and community refinements

Consider the following example to illustrate how class-proportion differences can be absorbed into
refined community structures. Suppose we start with two SBMs with equal connectivity matrices but
differing class proportions:

π1 = (0.5, 0.5), π2 = (0.4, 0.6), B1 = B2 =

(
0.4 0.1
0.1 0.3

)
.

To eliminate the discrepancy in proportions, we refine each community into two sub-communities,
effectively doubling the number of communities. Specifically, for π1, we split its first community
into sub-communities of proportions (0.4, 0.1) and its second community into (0.1, 0.4), so that the
total proportions of the four new sub-communities become (0.4, 0.1, 0.1, 0.4). For π2, we retain
its original first community (proportion 0.4), and split its second community (proportion 0.6) into
three sub-communities of sizes 0.1, 0.1, 0.4. These four new sub-communities also have overall
proportions (0.4, 0.1, 0.1, 0.4). Hence the refined SBMs now have the same class proportions:

π̃1 = π̃2 = (0.4, 0.1, 0.1, 0.4).

However, the connectivity matrices enlarge to reflect the finer partition:

B̃1 =

0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.1
0.1 0.1 0.3 0.3
0.1 0.1 0.3 0.3

 , B̃2 =

0.4 0.1 0.1 0.1
0.1 0.3 0.3 0.3
0.1 0.3 0.3 0.3
0.1 0.3 0.3 0.3

 .

Note that class-proportion differences vanish (since π̃1 = π̃2), but the matrices B̃1 and B̃2 now differ
explicitly. This clarifies that proportion differences can equivalently be represented as connectivity
differences through community refinement, motivating our focus on testing differences in Br modulo
permutations while treating class proportions as nuisance parameters.
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C.2 Empirical Analysis of Average Degree Growth

To support the claim in Remark 4.5 that the νn = Ω(logn) condition is mild in practice, we analyzed
the average degree growth in several real-world network datasets from the PyTorch Geometric library.
We sampled subgraphs of increasing size from each dataset and computed the ratio of the average
degree to log n. As shown in Table 2, this ratio tends to grow with n, indicating that the average
degree in these networks grows faster than log n. Qualitatively similar behavior is observed across
other datasets (amazon-photo, wikics, corafull, coauthor-cs, and planetoid-cora).

Table 2: Average degree vs. size for subsets of the Amazon Computers dataset. The final column shows that the
average degree grows faster than logn.

Dataset n n/ntotal avg_degree avg_degree / logn
amazon-computers 138 0.01 0.435 0.088
amazon-computers 276 0.02 0.623 0.111
amazon-computers 688 0.05 1.674 0.256
amazon-computers 1376 0.1 3.078 0.426
amazon-computers 2751 0.2 6.057 0.765
amazon-computers 6876 0.5 17.121 1.938
amazon-computers 13752 1.0 35.756 3.752

Implementation. The experiment was implemented in a lightweight PyTorch Geometric script
(avg_degree_tables_min.py, provided in the supplementary material for reproducibility.), which
randomly subsamples nodes, constructs the induced subgraph, and computes the mean degree via
torch_geometric.utils.degree. We fix a random seed for reproducibility and report average
values over multiple fractions n/ntotal ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}.

C.3 Derivation of the Permissible Range of K for Graphons

This section provides the semi-rigorous derivation for the permissible range of K when applying our
test to general graphon models, as summarized in Section 5.1.

We aim to find conditions on K that ensure our test has power when the underlying data comes from
two different β-smooth graphons, f1 and f2. The argument combines oracle inequalities from [21]
with the structure of our test statistic. We apply their results with ρn = νn/n and n0 = n/K.

Let Θ = (Θij) ∈ [0, 1]n×n be the matrix of connection probabilities, or "discrete graphon," where
Θij = E[Aij ]. Let Θ̂ be its K-block estimate based on the observed adjacency matrix A, and let Θ̌
be the best K-block approximation of Θ. By Proposition 2.1 of [21], the expected squared Frobenius
error of the estimate is bounded:

E|||Θ̂−Θ|||2F ≲ |||Θ− Θ̌|||2F + (n logK +K2)
(νn
n

+
K logK

n

)
.

Furthermore, for a β-smooth graphon, Proposition 2.5 of [21] bounds the approximation error:

|||Θ− Θ̌|||2F ≲ n2
(νn
n

)2
K−2β = ν2nK

−2β .

Assuming νn ≳ K logK, the estimation error bound simplifies to:

E|||Θ̂−Θ|||2F ≲ ν2nK
−2β + (n logK +K2)

νn
n

= ν2nK
−2β + νn logK +

νnK
2

n
=: ∆n,K .

Now, consider the alternative hypothesis where we have two discrete graphons, Θ1 and Θ2. Ignoring
the permutation matching step for simplicity (i.e., assuming identity permutation), our test statistic
T̂n is proportional to the squared difference of the estimated block models. This is, in turn, related to
the squared difference of the estimated discrete graphons:

T̂n

N
≳
( n

K

)2
|||B̂1 − B̂2|||2F = |||Θ̂1 − Θ̂2|||2F .
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Using a triangle inequality, we can bound this difference:

|||Θ̂1 − Θ̂2|||2F ≥ 1

3
|||Θ1 −Θ2|||2F − |||Θ̂1 −Θ1|||2F − |||Θ̂2 −Θ2|||2F .

The true difference is |||Θ1−Θ2|||2F ≍ n2(νn/n)
2∥f1−f2∥2L2 = ν2n∥f1−f2∥2L2 . The two estimation

error terms are of order ∆n,K . For the test to have power, the signal term must dominate the error
terms. This leads to the condition:

ν2n∥f1 − f2∥2L2 ≫ ∆n,K .

Dividing by ν2n, we require ∆n,K

ν2
n

= o(1). This yields the final condition:

K−2β +
logK

νn
+

K2

nνn
= o(1),

A sufficient set of conditions for this to hold is K → ∞ (to handle the first term), while logK = o(νn)
(for the second term) and K2 = o(nνn) (for the third term). These also ensure the earlier assumption
νn ≳ K logK. This provides the justification for the claims made in the main text.

D Additional experiments

Here, we provide more details of the experimental setup and report on more experiments. All
experiments were conducted on an internal computing cluster with Intel(R) Xeon(R) Platinum 8160
CPUs (48 cores, 2.10GHz).

D.1 Competing methods

In this section, we describe the competing methods used in the experiments in the main text and
below. Some of them were not originally designed for two-sampling testing, but have a natural
extension to this setting which we outline below. Throughout this section, we use the terms “network”
and “adjacency matrix” interchangeably, since the resulting distance measures between adjacency
matrices will be invariant to node permutations.

To measure a distance between two adjacency matrices, NCLM constructs a feature vector for each
graph based on its so-called log-moments. To be more precise, [28] considers the k-th graph moment
of a matrix A, mk(A) = tr[(A/n)k], which is the normalized count of closed walks of length k. The
feature vector for an adjacency matrix A is then defined as

gJ(A) :=
(
logmj(A), j ∈ [J ]

)
where J is some positive integer. The test statistic for comparing two adjacency matrices A1 and A2

is naturally given as the ℓ2-distance between the feature vectors of the two graphs:

dNCLM(A1, A2) := ∥gJ(A1)− gJ(A2)∥2.
Our experiments, reported in Appendix D.6, suggest that a larger value of J improves performance.
However, increasing J quickly increases the computation cost. In the results to follow, we have
chosen J = 20 which provides a reasonable balance between performance and cost.

To form a distance between two adjacency matrices, ASE-MMD first computes the so-called adjacency
spectral embedding (ASE) for each matrix. For an adjacency matrix A, consider |A| = (A⊤A)1/2

and let |A| =
∑n

i=1 λiuiu
⊤
i be its eigen-decomposition where λ1 ≥ · · · ≥ λn ≥ 0 are the

eigenvalues and {ui} the corresponding orthonormal basis of eigenvectors. Then, the adjacency
spectral embedding of A ∈ {0, 1}n×n into Rd is

X̂(A) = UA

√
SA ∈ Rn×d (49)

where SA = diag(λ1, λ2, . . . , λd) and UA is n× d matrix whose columns are u1, u2, . . . , ud. The
rows of X̂(A) define an empirical distribution PX̂(A) :=

1
n

∑n
i=1 δX̂i∗(A) where δx is the point mass

as x. ASE-MDD then measures the distance between two adjacency matrices A1 and A2 as the
maximum mean discrepancy of the corresponding empirical distributions:

dASE-MMD(A1, A2) = MMD(PX̂(A1)
, PX̂(A2)

).
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The MMD relies on a positive definite kernel function κ : Rd × Rd → R. Letting X̂ = X̂(A1) and
Ŷ = X̂(A2), one has

MMD(PX̂ , PŶ ) =

1

n(n− 1)

∑
i̸=j

κ(X̂i∗, X̂j∗)−
2

mn

∑
i̸=j

κ(X̂i∗, Ŷj∗) +
1

n(n− 1)

∑
i̸=j

κ(Ŷi∗, Ŷj∗).

In experiments reported here, we consider a Gaussian kernel and use random Fourier features to
approximate the MMD. The bandwidth is set to be σ2 = 1. Additional experiments, reported in
Appendix D.5, show that the results are not sensitive to the choice of bandwidth.

Adapting to multiple samples. Next, we describe how we adapt the test statistics to the cases where
the sample size is greater than 1. Any measure of dissimilarity, d(·, ·), between two networks, can
be generalized to the two-sample case, by averaging the dissimilarity of pairs of networks from
different samples. More specifically, given the two samples Art, t ∈ [Nr] for r = 1, 2, we have the
two-sample test statistic 1

N1N2

∑N1

t=1

∑N2

s=1 d(A1t, A2s).

A note on network generation. Throughout the experiments, we replace Bernoulli variables with
a clipped version. In particular, write X ∼ Ber(p) for p ∈ R to denote X = 1{U < p} for some
U ∼ [0, 1]. When p ∈ [0, 1], Ber(p) = Ber(p), but otherwise Ber(p) is naturally clipped to either 0
or 1. When we write SBM(B, π) in experiments, it is based on Ber(p) generation.

D.2 Simple 2-SBM

Our first simulation reproduces the experiment from [37] on a 2-SBM. In particular, we consider
testing H0 : A,A′ ∼ SBM(B0, π) versus H1 : A ∼ SBM(B0, π), A

′ ∼ SBM(Bε, π), where

Bε =

[
0.5 + ε 0.2
0.2 0.5 + ε

]
, (50)

and π = (0.4, 0.6). Note that each sample contains a single adjacency matrix. We consider vertex
sizes n ∈ {100, 200, 500, 1000} and noise levels ε ∈ {0.01, 0.02, 0.05, 0.1} and evaluate the power
of the our SBMTS using 1000 Monte-Carlo replications. Table 3 summarizes the results alongside the
power estimates for ASE-MMD reported in [37]. The results clearly show the superior performance
of SBMTS along both dimensions (n, ε).

Table 3: Power estimates for ASE and SBM-TS for a simple 2-block SBM experiment.

ε = 0.01 ε = 0.02 ε = 0.05 ε = 0.1
n SBM-TS ASE SBM-TS ASE SBM-TS ASE SBM-TS ASE

100 0.047 - 0.161 0.06 0.776 0.09 1 0.27
200 0.15 - 0.599 0.09 1 0.17 1 0.83
500 0.785 - 1 0.01 1 0.43 1 1
1000 1 0.14 1 1 1 1 1 1

D.3 SW–GOT dataset

The Star Wars (SW)–Game of Thrones (GOT) dataset [34] is derived from popular films and television
series. We consider 13 networks: six from the original and sequel SW trilogies, and seven from each
of the GOT series. In each graph, vertices correspond to characters and edges indicate whether two
characters share a scene. Let us denote the SW and GOT networks as class C1 and C2, respectively.
The set of characters for both classes overlap across multiple networks, but no vertex correspondence
is utilized because network vertices are unlabeled and each network has different number of vertices.
Sample graphs from this dataset are shown in Figure 10 in Appendix D.7.

Similar to the COLLAB dataset, we consider a two sample testing problem for distinguishing a
null of (C1, C1) vs. an alternative of (C1, C2). The resulting ROCs are shown in Figure 5 showing a
significant advantage for SBM-TS compared to the competitors.

26



Figure 5: ROC curves for the SW-GOT dataset.

D.4 ROC plots for general SBM with random B

Figure 6 shows the mean ROC curves for the experiment in Section 5.3. The different plots correspond
to different values of K. We refer to Section 5.3 for the detailed description of the experiments,
where a summary of these curves via their “area under the curve (AUC)” was provided in Table 1.

(a) K = 2, mean AUC = 0.95. (b) K = 3, mean AUC = 0.91.

(c) K = 15, mean AUC = 0.83. (d) K = 20, mean AUC = 0.81.

Figure 6: ROC curves for the three methods (SBM-TS, MMD of ASE, and test statistic based on NCLM)
averaged over 50 different experiments.

D.5 Bandwidth of ASE-MMD

We have conducted additional experiments in the same setting of Section 5.3, that is, general SBM
with random B to determine the effect of bandwidth on the performance of ASE-MMD. The results
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are summarized in Figure 7. One observes that the bandwidth does not have a significant bearing
on the power of the ASE-MMD test, with ROCs remaining almost the same across the range of
σ2 ∈ {0.01, 0.1, 1, 10, 100}.

(a) K = 2 (b) K = 3

(c) K = 15 (d) K = 20

Figure 7: ROC curves for different choices of the bandwidth σ2 in the experiment with a general B.

D.6 Number of Log Moments for NCLM

We have performed additional experiments in the same setting of Section 5.3, that is, general SBM
with random B to determine the effect of the number J of log-moments on the performance of NCLM.
The results are summarized in Figure 8. The general trend is that higher J improves performance
with J = 20 (the maximum we considered) producing the best results. We also note that this is
mainly for small values of K, while for larger K ∈ {15, 20} the test is powerless regradless of the
value of J .

D.7 Sample graphs for real-world data

Example of graphs from the COLLAB dataset are shown in Figure 9.

D.8 Empirical runtime of Algorithm 1 With Respect To K

We investigate the mean runtime of Algorithm 1 as a function of the block dimension K. For
varying values of K, we generate a random K ×K symmetric matrix B1 and its random permutation
B2 = PBP⊤ and apply Algorithm 1. The results are summarized in Table 4.
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(a) K = 2 (b) K = 3

(c) K = 15 (d) K = 20

Figure 8: ROC curves for different choices of the number of log-moments in the experiment with a general B.

Figure 9: Sample graphs from the COLLAB dataset: High Energy Physics (left), Condensed Matter Physics
(middle) and Astrophysics (right).

E Proofs auxiliary results

E.1 Proof of Lemma B.2

Recall that the L1 Wasserstein distance between the distributions of two random variables Y and Z
can be expressed as

dW1
(Y, Z) = sup

h: ∥h∥Lip≤1

|E[h(Y )]− E[h(Z)]|

Table 4: Mean runtimes (ms) of matching(B1, B2) for selected values of K.

K = 2 K = 10 K = 20 K = 50 K = 100

Mean runtime (ms) 0.6836 1.0366 1.3055 3.0415 8.3679
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Figure 10: Sample graphs from the movie/television dataset: Class 1 (left) and Class 2 (right)

where h ranges over all 1-Lipschitz functions h : R → R, that is, h that satisfy |h(x)−h(y)| ≤ |x−y|
for all x, y ∈ R. See [10, Chapter 4] or [33].

Lemma B.2 follows form the following results:

Proposition E.1. Let S ∼ Bin(n, p) with p ≤ 1/2 and let W =
√
n
σ (Sn − p) where σ =

√
pq and

q = 1− p. Let C ≤ 0.4785 be the constant in the Berry-Esseen bound. Then,

sup
x∈R

|P (W ≤ x)− Φ(x)| ≤ C√
np/2

(51)

sup
h:∥h∥Lip≤1

∣∣E[h(W )]− E[h(Z)]
∣∣ ≤ 1√

np/2
(52)

where Z ∼ N(0, 1).

Proof. We can write S =
∑n

i=1 Bi where Bi are i.i.d. Bernoulli(p) variables. Let Xi = (Bi − p)/σ
be the standardized versions and note that W = 1√

n

∑n
i=1 Xi. Berry-Esseen bound gives

sup
x∈R

|P (W ≤ x)− Φ(x)| ≤ C
E[|X1|3]√

n

and Corollary 4.1 of [10, page 67] gives dW1(W,Z) ≤ E[|X1|3]√
n

. We have

E[|X1|3] =
1

σ3
· E[|B1 − p|3] = p3q + q3p

(pq)3/2
=

p2 + q2
√
pq

≤ (p+ q)2√
p/2

which gives the desired inequalities.

Lemma E.1. Suppose that for r ∈ {1, 2} and t ∈ [Nr] the symmetric matrices Art ∈
{0, 1}nrt×nrt are independent with independent entries on and above diagonal that satisfy (Art)ij ∼
Ber(B(zrt)i,(zrt)j ) where zrt ∈ [K]nrt is deterministic. Let

Sr =

Nr∑
t=1

S(Art, zrt), mr =

Nr∑
t=1

C(Art, zrt),

and for all k, ℓ ∈ [K], let σkℓ =
√

Bkℓ(1−Bkℓ) and set

ξkℓ =

√
m̄kℓ√
2σkℓ

( (S1)kℓ
m1kℓ

− (S2)kℓ
m2kℓ

)
(53)

where m̄kℓ is the harmonic mean of (m1)kℓ and (m2)kℓ. Assume that m2kℓ ≤ c1m1kℓ for some
c1 > 0. Then

sup
x∈R

∣∣P (ξkℓ ≤ x)− P (Z ≤ x)
∣∣ ≤ C

√
n

νn

( 1
√
m1kℓ

+
1

√
m2kℓ

)
.

where C > 0 is a constant dependent on c1 and Z ∼ N(0, 1).
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Proof. Let σkl =
√
Bkl(1−Bkl). First, notice that by Proposition E.1, it holds that

sup
x∈R

∣∣∣∣P (√
mrkl

σkl

(
Srkl

mrkl
−Bkl

)
≤ x

)
− Φ(x)

∣∣∣∣ ≤ C√
mrklνn/n

for some constant C > 0, and for r = 1, 2. Hence,

sup
x∈R

∣∣∣∣P ( √
m̄kℓ√
2σkl

· Srkl

mrkl
≤ x

)
− Φ

(√2mrkl

m̄kℓ

(
x−

√
m̄kℓBkl√
2σkl

))∣∣∣∣ ≤ C√
mrklνn/n

. (54)

Define the random variables

Xr =

√
m̄kℓ√
2σkl

· Srkl

mrkl
, r = 1, 2,

and consider two independent random variable Y1 and Y2 with

Yr ∼ N

(√
m̄kℓBkℓ√
2σkℓ

,
m̄kℓ

2mrkℓ

)
.

Notice that Y1 − Y2 ∼ N(0, 1). Let FZ denote the CDF of a random variable Z. Then, we can
rewrite (54) as

sup
x∈R

|FX1
(x)− FY1

(x)| ≤ C√
mrklνn/n

. (55)

For any x, x2 ∈ R, we have

P (X1 −X2 ≤ x |X2 = x2) = P (X1 ≤ x+ x2) = FX1
(x+ x2),

by independence of X1 and X2. Fix x ∈ R. Since P (X1 −X2 ≤ x) = E[P (X1 −X2 ≤ x |X2)],
it follows that

|P (X1 −X2 ≤ x)− P (Y1 − Y2 ≤ x)|
=
∣∣E[FX1

(x+X2)]− E[FY1
(x+ Y2)]

∣∣
=
∣∣E[FX1(x+X2)]− E[FY1(x+X2) + E[FY1(x+X2)− E[FY1(x+ Y2)]

∣∣
≤ E[

∣∣FX1
(x+X2)− FY1

(x+X2)
∣∣] + ∣∣E[FY1

(x+X2)− E[FY1
(x+ Y2)]

∣∣
≤ C√

m1klνn/n
+ |E[h(X2)]− E[h(Y2)]|

where we have defined h(z) = FY1(x+ z). Since

∥h∥Lip ≤ ∥h′∥∞ =

√
2m2kl

m̄kℓ
· ∥Φ′∥∞

=

√
1 +

m2kl

m1kl
· 1√

2π
≤

√
1 + c1 ·

1√
2π

=: c2

by assumption. Then, from Proposition E.1, |E[h(X2)]− E[h(Y2)]| ≤ c2/
√
m2klνn/n

|P (X1 −X2 ≤ x)− P (Y1 − Y2 ≤ x)| ≤ C√
m1klνn/n

+
c2√

m2klνn/n

which gives the desired result.

Let I(R) be the set of indicator functions of half-intervals, that is,

I(R) =
{
t 7→ 1{t ≤ x} : x ∈ R

}
.

Lemma E.2. Consider random variables Xni, i ∈ [K] and Yn and assume that {Xni, i ∈ [K]} are
independent conditional on Yn. In addition, we have

sup
h∈I(R)

|E[h(Xni) |Yn]− E[h(z)]| · 1{Yn ∈ An} ≤ εn, i ∈ [K]

for some sequence of events An and a deterministic sequence of εn > 0, and some random variable
Z ∼ µ. Assume that εn → 0 and P (Yn ∈ Ac

n) → 0 as n → ∞. Then

(Xn1, . . . , XnK) ⇒ µ⊗K .
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Proof. Let Zi, i ∈ [K] be i.i.d. draws from µ. It is enough to show that

E
[ K∏
i=1

fi(Xni)
]
→ E

[ K∏
i=1

fi(Zi)
]
=
∏
i

E[fi(Zi)] (56)

for any collection of f1, . . . , fK ∈ I(R).
Let us fix one such collection and, for simplicity, write Wn =

∏
i fi(Xni) and C =

∏
i E[fi(Zi)].

We want to show E[Wn] → C. From the assumption, it follows that∣∣E[fi(Xni) |Yn]− E[fi(Zi)]
∣∣ ≤ εn + 2 · 1{Yn ∈ Ac

n}.

By conditional independence, E[Wn |Yn] =
∏

i E[fi(Xni) |Yn]. Then, using |
∏K

i=1 ai −∏K
i=1 bi| ≤ Kmaxi |ai − bi|, which holds if ai, bi ∈ [−1, 1] for all i, we have∣∣E[Wn |Yn]− C

∣∣ ≤ Kεn + 2K · 1{Yn ∈ Ac
n}.

Then, we have

|E[Wn]− C| = |E[E[Wn |Yn]]− C|
≤ E

{∣∣E[Wn |Yn]
}
− C

∣∣ ≤ Kεn + 2KP (Yn ∈ Ac).

Letting n → ∞, the desired result follows from the assumptions.

Proof of Lemma B.2. Let z = (zrt, t ∈ [Nr], r = 1, 2). Let M(c1) = {z : m2kℓ ≤ c1m1kℓ}. By
Lemma E.1, we have

sup
h∈I(R)

∣∣E[h(ξkℓ) | z]− E[h(z)]
∣∣ · 1{z ∈ M(c1)} ≤ C(c1)

√
n

νn

( 1
√
m1kℓ

+
1

√
m2kℓ

)
(57)

where ξkℓ as defined in (53), Z ∼ N(0, 1) and C(c1) is some constant dependent on c1. Let
nrtk :=

∑nt

i=1 1{(zrt)i = k}, and consider the event

An :=
{
min
r,k

nrtk ≥ nt/β, ∀t ∈ [N ]
}
.

Then on An, we have mrkℓ ≥ cNn2/β2; see also (39). We also have P (Ac
n) = o(1) under the

assumptions of Theorem A.6, by the same argument that controls E1 in Proposition F.4. Moreover,
assuming N2 ≤ N1—without loss of generality—on An, we have

m2kℓ

m1kℓ
≤ N2(C2n)

2

N1n2/β2
≤ β2C2

2

where we have used the size assumption (19). That is, An ⊂ {z ∈ M(β2C2)}. Taking c1 = β2C2
2

in (57) and multiplying both sides of the inequality by 1An , we obtain

sup
h∈I(R)

∣∣E[h(ξkℓ) | z]− E[h(z)]
∣∣ · 1An

≤ 2β C(β2C2)√
c

1√
Nnνn

.

Since {ξkℓ} are independent given z, the result now follows from Lemma E.2 given Nnνn → ∞.

E.2 Proof of Lemma B.1

For P ∈ ΠK , let

J1(P ) = {i : Pii ̸= 0},
J2(P ) = {(i, j) : Pij ̸= 0, i ̸= j},

and note that |J1(P )|+ |J2(P )| = K for any P ∈ ΠK . By assumption ∥∆∥∞ < 1/2, and hence

1 + ∆ii > 1/2 for i ∈ J1(P )

∆ij < 1/2 for (i, j) ∈ J2(P ).
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We also have

tr
(
PT (I +∆)

)
=
∑
i,j

(1{i=j} +∆ij)Pij

=
∑

i∈J1(P )

(1 + ∆ii) +
∑

(i,j)∈J2(P )

∆ij .

Let P ̸= I , so that both J2(P ) and [K] \ J1(P ) are nonempty. Then,

tr(I +∆)− tr
(
PT (I +∆)

)
=

∑
i∈[K]\J1(P )

(1 + ∆ii) −
∑

(i,j)∈J2(P )

∆ij

>
1

2
(K − |J1(P )|)− 1

2
|J2(P )| = 0,

showing that identity is the unique optimal solution.

E.3 Randomization

Let U(ΠK) denote the uniform distribution on the set of permutation matrices ΠK .
Lemma E.3 (Randomization). Assume that there is a permutation matrix Crt = Crt(Art) potentially
dependent on the adjacency matrix Art such that

B̃rt
Crt

Brt

where B̃rt = S(Art, ẑ
(0)
rt )⊘ C(ẑ(0)rt ). Let B̂rt be constructed as in step step 4. Then,

B̂rt
Prt

Brt (58)

where Prt ∼ U(ΠK) independent of Art (and hence B̂rt).

Proof. Notice that by construction B̂rt = UrtB̃rtU
⊤
rt with Urt ∼ U(ΠK). Let Prt = CrtU

⊤
rt ∈ ΠK .

Then, Crt B̃rt C
⊤
rt = Prt B̂rt P

⊤
rt and (58) follows. It remains to show independence of Prt and its

uniform distribution. Indeed, let P0 ∈ ΠK and A0 ∈ {0, 1}n×n. We have (showing the dependence
of Crt on Art explicitly)

P (Prt = P0, Art = A0) = P (Urt = P⊤
0 Crt(Art), Art = A0)

= P (Urt = P⊤
0 Crt(A0), Art = A0)

= P (Urt = P⊤
0 Crt(A0)) · P (Art = A0)

=
1

|ΠK |
· P (Art = A0)

where the third line is by the independence of Urt and Art and the fourth line since Urt ∼ U(ΠK).
The above shows that the joint distribution factorizes as uniform distribution for Prt and original
(marginal) distribution for Art, which proves the claim.

F Consistency of connectivity matrix estimation

Given an n × n adjacency matrix A, we apply a community detection algorithm to obtain label
vector ẑ = (ẑ1, . . . , ẑn) ∈ [K]n. Let dNH be the normalized Hamming distance, that is, dNH(z, ẑ) =
dH(z, ẑ)/n where dH(z, ẑ) =

∑n
i=1 1{zi ̸= ẑi} is the Hamming distance.

Remark F.1. In the proof of consistency below, our results are given in terms of ∥E∥max where
E here is a K × K matrix placeholder for different matrices as given in Propositions F.3 and
F.4. However, to simplify the proofs below, when computing upper bounds for ∥E∥max =
maxk,ℓ∈{1,...,K} |Ekℓ|, we focus on the case k ̸= ℓ and omit the case k = ℓ as it is similar. The only
difference in dealing with k = ℓ is that the constants would need to be inflated.

We repeated use the following result, which follows for example from Bernstein’s inequality:
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Proposition F.2. Suppose that S =
∑n

i=1 Xi where Xi ∼ Ber(pi) independently for i ∈ [n].
Assume that maxi pi ≤ p. Then, for all δ ∈ [0, 1],

P
(
p̂− p ≥ δp

)
≤ e−δ2np/3,

and the same inequality holds for P (p− p̂ ≥ δp).

Proof. By Bernstein inequality, using |Xi − pi| ≤ 1, for any u > 0, we have

P (S − E[S] ≥ nu) ≤ exp
(
− nu2

2σ̄2 + 2u/3

)
where σ̄2 = 1

n

∑n
i=1 var(Xi). We have σ̄2 ≤ p and E[S] ≤ np. Setting u = δp, we have

P (S − np ≥ δnp) ≤ exp
(
− nδ2p2

2p+ 2δp/3

)
= exp

(
− δ2

2 + 2δ/3
np
)
≤ exp(−3δ2np/8)

where the last inequality uses δ ≤ 1. Replacing 3/8 with 1/3 gives a further upper bound.

Let us write (A, z) ∼ SBMn(B, π) for an n-node draw from a Bayesian SBM, with connectivity B
and class prior π.

Proposition F.3. Assume that (A, z) ∼ SBMn(B, π) with B satisfying (18). Let S = S(A, z), Ŝ =
S(A, ẑ) and m = C(z), m̂ = C(ẑ). Set

B̂ = B(A, ẑ) = Ŝ/m̂, B̃ = B(A, z) = S/m.

Fix κ ∈ (0, 1) and α > 0, and let β = 1/(κ̄πmin) with κ̄ = 1− κ, and define

δn :=

√
3β2α log n

nνn
.

Assume that δn ≤ 1 and νn ≥ 3(1 + α) logn. For σ ∈ ΠK , let ε(σ) = dNH(z, σ ◦ ẑ). Then, with
probability at least 1− 3K2n−α −Ke−κ2nπmin/3, for all σ ∈ ΠK such that 12β2ε(σ) ≤ 1,

∥PσB̂PT
σ − B̃∥max ≤ 56C1β

2 · νn
n
ε(σ), (59)

∥B̃ −B∥max ≤ C1
νn
n
δn, (60)

∥S − PσŜP
T
σ ∥max ≤ 8C1β · nνnε(σ), (61)

∥m− Pσm̂PT
σ ∥max ≤ 6β · n2ε(σ), (62)

min
k,ℓ

mkℓ ≥ n2/β2. (63)

of Proposition F.3. By redefining ẑ to be σ ◦ ẑ, one gets PσB̂PT
σ in place of B̂. Thus, without loss

of generality, we can assume σ to be the identity permutation. Let

dk(z, ẑ) =
∑
i

∣∣1{zi = k} − 1{ẑi = k}
∣∣, dH(z, ẑ) =

∑
i

1{zi ̸= ẑi}

so that
∑

k dk(z, ẑ) = 2dH(z, ẑ). This can verified by writing∣∣1{zi = k} − 1{ẑi = k}
∣∣ = 1{zi = k, ẑi ̸= k}+ 1{zi ̸= k, ẑi = k}.

Let nk =
∑n

i=1 1{zi = k} and n̂k =
∑n

i=1 1{ẑi = k} and note that |nk − n̂k| ≤ dk(z, ẑ). Let us
also write

ρ := max
k

dk(z, ẑ)

nk
(64)
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and note that |(n̂k/nk)− 1| ≤ ρ.

Let us consider some events. First, consider event

E0 :=
{
max

j

∑
i

Aij ≤ 2C1νn

}
. (65)

Applying Proposition F.2 conditioned on z, with p = C1νn/n, and then taking expectation of both
sides to remove the conditioning, we have

P
(∑

i

Aij ≥ C1νn(1 + u)
)
≤ e−u2C1νn/3.

Take u = 1/
√
C1. Then, P (Ec

0) ≤ n−α by union bound and assumption νn/3 ≥ (1 + α) log n.

Next, note that P (nk ≤ (1−κ)nπk) ≤ exp(−κ2nπk/3) for κ ∈ (0, 1), by Proposition F.2. Consider
the event

E1 :=
{

min
k=1,...K

nk ≥ n/β
}
,

where 1/β = (1− κ)πmin. Then, by union bound P (Ec
1) ≤ K exp(−κ2nπmin/3). On E1,

ρ := max
k

dk(z, ẑ)

nk
≤ 2dH(z, ẑ)

κ̄πminn
= 2βdNH(z, ẑ). (66)

Next, we apply Proposition F.2 conditioned on z, to get

P
(
|Bkℓ − B̃kℓ| ≥ δnBkℓ | z

)
· 1E1

≤ 2e−δ2nnknℓBkℓ/3 · 1E1

≤ 2e−δ2n(n
2/β2)(νn/n)/3

where we have used the lower bound in (18). Take δ2n = 3β2α log n/(nνn) and let

E2 =
{
|Bkℓ − B̃kℓ| ≤ δnBkℓ for all k, ℓ ∈ [K]

}
. (67)

Then, by union bound, P (E1 ∩ Ec
2) ≤ P (Ec

2 | E1) ≤ 2K2n−α. We will work on E0 ∩ E1 ∩ E2 and
note that

P (E0 ∩ E1 ∩ E2) ≥ 1− P (Ec
0)− P (Ec

1)− P (E1 ∩ Ec
2).

Note that on E2,

max
k,ℓ

|Bkℓ − B̃kℓ| ≤ δn · C1νn/n, (68)

max
k,ℓ

B̃kℓ ≤ 2C1νn/n (69)

using the upper bound in (18) and assumption δn ≤ 1. This proves (60).

Now, let us establish (61). We have

|Skℓ − Ŝkℓ| ≤
∑
i,j

Aij |1{zi = k, zj = ℓ} − 1{ẑi = k, ẑj = ℓ}|.

Adding and subtracting 1{ẑi = k, zj = ℓ} and expanding by triangle inequality, we get |Skℓ− Ŝkℓ| ≤
T21 + T22 where

T21 :=
∑
i,j

Aij |1{zi = k, zj = ℓ} − 1{ẑi = k, zj = ℓ}|,

T22 :=
∑
i,j

Aij |1{ẑi = k, ẑj = ℓ} − 1{ẑi = k, zj = ℓ}|.

Consider T22 first. We have

T22 =
∑
j

(∑
i

Aij1{ẑi = k} · |1{ẑj = ℓ} − 1{zj = ℓ}|
)

≤
∑
j

(∑
i

Aij · |1{ẑj = ℓ} − 1{zj = ℓ}|
)

≤ 2C1νn · dℓ(z, ẑ)
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on E0. Similarly, T21 ≤ 2C1νn · dk(z, ẑ) on E0. Then,

|Skℓ − Ŝkℓ| ≤ 2C1νn · (nℓ + nk)ρ ≤ 4C1nνnρ (70)
using nk ≤ n for all k. Combined with (66), this proves (61).

Let us define B̃′ = Ŝ/m. For k ̸= ℓ, we have mkℓ = nknℓ. Then, on E1,

|B̃kℓ − B̃′
kℓ| =

|Skℓ − Ŝkℓ|
nknℓ

≤ 2C1νn · (n−1
k + n−1

ℓ )ρ ≤ 4C1β
νn
n
ρ

using nk ≥ n/β for all k. By (69), on E2, we also have

B̃′
kℓ ≤ 2C1

νn
n
(1 + 2βρ) ≤ 4C1

νn
n
.

assuming 2βρ ≤ 1. Next we note that∣∣∣m̂kℓ

mkℓ
− 1
∣∣∣ = ∣∣∣ n̂kn̂ℓ

nknℓ
− 1
∣∣∣ ≤ 3ρ.

Assuming that 3ρ ≤ 1/2, letting x = m̂kℓ/mkℓ, we have |1−x| ≤ 3ρ ≤ 1/2, hence |1−x−1|| ≤ 6ρ.
It follows that on E2

|B̃′
kℓ − B̂kℓ| =

Ŝkℓ

mkℓ

∣∣∣1− mkℓ

m̂kℓ

∣∣∣ ≤ B̃′
kℓ · 6ρ ≤ 24C1

νn
n
ρ.

By triangle inequality

∥B̂ − B̃∥max ≤ ∥B̂ − B̃′∥max + ∥B̃′ − B̃∥max

≤ 24C1
νn
n
ρ+ 4C1β

νn
n
ρ

≤ 28C1
νn
n
βρ

using β ≥ 1 (we are weakening the constants in favor of a simpler expression).

For (62), we have |[m − m̂]kℓ| ≤ nknℓ| n̂kn̂ℓ

nknℓ
− 1| ≤ n23ρ. Putting the pieces together combined

with (66) proves the claim.

F.1 Multi-network extension

Proposition F.4. Assume that (At, zt) ∼ SBMnt(B, πt) for t ∈ [N ], where B satisfies (18) and nt

satisfy
n ≤ nt ≤ C2n. (71)

Let St = S(At, zt), Ŝt = S(At, ẑt) and mt = C(zt), m̂t = C(ẑt). For σ = (σt) ∈ Π⊗N
K , set

B̂(σ) :=

∑
t Pσt

ŜtP
T
σt∑

t Pσt
m̂tPT

σt

, B̃ :=

∑
t St∑
t mt

, εt(σ) := dNH(zt, σt ◦ ẑt)

where we interpret the division of matrices as elementwise.

Fix κ ∈ (0, 1) and α > 0, let β = 1/(κ̄πmin) with κ̄ = 1− κ, and define

δn :=

√
3β2α log n

Nnνn
.

Assume that δn ≤ 1 and νn ≥ 3(1+α) logn. Then, with probability at least 1−(C2N+2K2)n−α−
NKe−κ2nπmin/3, we have, for all σ = (σt) ∈ Π⊗N

K for which maxt εt(σ) ≤ 1/(2β3),

∥B̂(σ)− B̃∥max ≤ 40C1β
3 νn
n
ε, (72)

∥B̃ −B∥max ≤ C1
νn
n
δn, (73)

∥St − Pσt
ŜtP

T
σt
∥max ≤ 8C1β · νnnt εt(σ), (74)

∥mt − Pσt
m̂tP

T
σt
∥max ≤ 6β · n2

t εt(σ), (75)

min
k,ℓ

[mt]kℓ ≥ n2
t/β

2, for all t ∈ [N ] (76)
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where β = 1/(κ̄πmin) with κ̄ = 1− κ.

Note that nt here is deterministic (size of the t-th network) and different from nk in the proof of
Proposition F.3.

Proof. By redefining ẑt to be σt(ẑt), we can assume, without loss of generality, that σt is the identity
permutation (and hence Pσt

= IK) for all t. Note that none of the events we consider below depend
on σ, hence the result indeed holds for all σ simultaneously.

First, consider event

E0 :=
{

max
t∈[N ], j∈[nt]

nt∑
i=1

[At]ij ≤ 2C1C2νn

}
. (77)

Applying Proposition F.2 conditioned on zt, with p = C1νn/n and ntp ≤ C1C2νn, and then taking
expectation of both sides to remove the conditioning, we have

P
( nt∑
i=1

[At]ij ≥ C1C2νn(1 + u)
)
≤ e−u2C1C2νn/3.

Take u = 1/
√
C1C2 ≤ 1. Then, by union bound and assumption νn/3 ≥ (1 + α) log n, we have

P (Ec
0) ≤ C2Nn−α.

Next, let ntk :=
∑nt

i=1 1{(zt)i = k}, the (true) number of nodes in community k in network t. By
Proposition F.2, we have P (ntk ≤ κ̄ntπtk) ≤ exp(−κ2ntπtk/3) for κ ∈ (0, 1). Consider the event
defined as

E1 :=
{

min
k=1,...K

ntk ≥ nt/β, ∀t ∈ [N ]
}
,

where β = 1/(κ̄πmin) with κ̄ = 1− κ. Then, by union bound and using nt ≥ n,

P (Ec
1) ≤ NK exp(−κ2nπmin/3).

By the same argument as in the proof of Proposition F.3,and letting εt = dNH(zt, ẑt), we have on
E0 ∩ E1,

∥St − Ŝt∥max ≤ 8C1βνnntεt, ∥mt − m̂t∥max ≤ 6βn2
t εt, [mt]kℓ ≥ n2

t/β
2. (78)

Let us now control B̃ = (
∑

t St)/(
∑

t mt). Conditioned on zt, we have

[
∑

t St]kℓ ∼ Bin
(
[x
∑

t mt]kℓ, Bkℓ

)
.

Also note that, for k ̸= ℓ, we have [
∑

t mt]kℓ =
∑

t ntkntℓ ≥
∑

t n
2
t/β

2 ≥ Nn2/β2 on E1. Then,
applying Proposition F.2 conditioned on zt, we get

P
(
|Bkℓ − B̃kℓ| ≥ δnBkℓ | zt

)
· 1E1 ≤ 2e−δ2n[

∑
t mt]kℓBkℓ/3 · 1E1

≤ 2e−δ2n(Nn2/β2)(νn/n)/3

where we have used the lower bound in (18). Take δ2n = 3β2α log n/(Nnνn) and let

E2 =
{
|Bkℓ − B̃kℓ| ≤ δnBkℓ for all k, ℓ ∈ [K]

}
. (79)

Then, by union bound, P (E1 ∩ Ec
2) ≤ P (Ec

2 | E1) ≤ 2K2n−α. We will work on E0 ∩ E1 ∩ E2 and
note that

P (E0 ∩ E1 ∩ E2) ≥ 1− P (Ec
0)− P (Ec

1)− P (E1 ∩ Ec
2).

Note that on E2,

max
k,ℓ

|Bkℓ − B̃kℓ| ≤ δn · C1νn/n, (80)

max
k,ℓ

B̃kℓ ≤ 2C1νn/n (81)
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using the upper bound in (18) and assumption δn ≤ 1. This proves (60).

Next we control the deviation B̂ − B̃. Treating division (and taking absolute values) of matrices as
element-wise, ∑

t Ŝt∑
t m̂t

=

∑
t St +

∑
t(Ŝt − St)∑

t mt +
∑

t(m̂t −mt)
=:

a+ b

c+ d
.

We then have∣∣∣a+ b

c+ d
− a

c

∣∣∣ = ∣∣∣ (a/c) + (b/c)

1 + (d/c)
− (a/c)

∣∣∣ = ∣∣∣ (b/c)− (a/c)(d/c)

1 + (d/c)

∣∣∣ ≤ |(b/c)− (a/c)(d/c)|
1− |d/c|

.

Let ε = maxt εt. Then, we have

|[b/c]kℓ| ≤
∑

t |[Ŝt − St]kℓ|∑
t[mt]kℓ

(a)

≤ 8C1β
3νn

∑
t ntεt∑
t n

2
t

(b)

≤ 8C1β
3 νn
n

∑
t ntεt∑
t nt

≤ 8C1β
3 νn
n
ε

where (a) is by (78) and (b) uses assumption nt ≥ n. Similarly, we have |[d/c]kℓ| ≤ 6β3ε. Note that
a/c = B̃ hence elementwise in [0, 2C1νn/n] on E2. Assuming that β3ε ≤ 1/2, we have,

|(b/c)− (a/c)(d/c)|
1− |d/c|

≤ |b/c|+ (a/c)|d/c|
1− 1

2

≤ 40C1β
3 νn
n
ε.

(where the final inequality means every element of the LHS is ≤ RHS) . That is, we have shown∣∣∣ ∑t Ŝt∑
t m̂t

−
∑

t St∑
t mt

∣∣∣ ≤ 40C1β
3 νn
n
ε.

This proves (72) and finishes the proof.
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The discussion of the strength of the assumptions for the main results is
included in the remarks in the supplementary materials.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

39



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main results and auxiliary lemmas have complete proofs that are provided
in the supplementary materials. We also provide meaningful discussion on the underlying
set of assumptions.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experiments section and the corresponding sections of supplementary
material provide a clear description of the setup.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper provides open access to both the code and data, along with
sufficient instructions to enable faithful reproduction of the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments in section 5 as well as in the supplementary material are
provided with complete details sufficient to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experiment section gives clear description of the factors of variability as
well as the methods of calculation of the statistical significance of the tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper indicates the characteristic of the technical cluster used for the
experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in this paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]
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Justification: No, the paper does not explicitly discuss potential positive or negative societal
impacts of the work. The focus is on methodological and theoretical contributions to network
inference, without specific commentary on how the techniques might influence or be applied
in societal contexts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets are both credited in the reference section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the paper introduces a new algorithm for two-sample testing on networks,
and the accompanying implementation is given in the supplementary material. The attached
files include implementations for all the tests ensuring reproducibility.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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