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ABSTRACT

Semantic watermarking methods embed information into generated images by
modifying the initial latent noise, subtly modifying the output images. How-
ever, the widespread use of layout control techniques, such as ControlNets, raises
questions about the applicability of semantic watermarking with layout control.
After all, if semantic watermarks are really realized as meaningful changes in im-
ages (such as its layout), external layout specifications (e.g. through edge maps),
could destroy the watermark information during denoising. This work empirically
evaluates two semantic watermarking approaches—Tree-Ring Watermarking and
Gaussian Shading—under various ControlNet-guided generation settings. Our re-
sults show that while ControlNets can slightly degrade watermark strength, both
watermarking approaches remain largely detectable, demonstrating the potential
viability of semantic watermarks even under strong layout constraints.

1 INTRODUCTION

The rapid advancement of generative models for image synthesis has revolutionized creative work-
flows and content production. Latent diffusion models (LDMs) like Stable Diffusion (Rom-
bach et al., 2022) and FLUX.1 can generate high-quality images from textual prompts. Control-
Nets (Zhang et al., 2023; Zhao et al., 2024a) and similar works (Mou et al., 2024) enhance this
capability by providing more control over the layout of the generated images. They are a class
of neural network architectures designed to impose fine-grained control over generative models by
conditioning outputs on auxiliary inputs (e.g., edge maps, depth maps, or poses). This enables users
to guide image generation with high precision.

However, as generative models proliferate, concerns about intellectual property, content authentic-
ity, and misuse have intensified. This has spurred interest in watermarking methods. They enable
a service provider—offering an API to a (private) generative model—to hide information into each
generated image without affecting its overall quality. The embedded information can indicate that
the image is AI-generated, or can identify the user or service provider that generated the image.
Technically, this can be achieved in various ways for LDMs, such as classic post-hoc watermark-
ing (Cox et al., 2002) or LDM decoder fine-tuning (Fernandez et al., 2023). In this work, we focus
on recently proposed semantic watermarks that rely on the inversion of the denoising process in the
diffusion model (Wen et al., 2023; Yang et al., 2024; Ci et al., 2024; Gunn et al., 2024). They mod-
ify the initial latent noise to incorporate a watermark pattern during generation, which can be then
retrieved through the inversion of the denoising process. Hence, semantic watermarks are diffused
across the image and realized, for example, in object details and their arrangements (see Figure 5
in the Supplementary Material). These watermarks thus leverage the fact that there are numerous
ways to generate an image that conforms to user specifications, in contrast to earlier watermarking
methods that add imperceptible noise patterns on top of the image.

In this work, we examine whether semantic watermarks are compatible with layout control (in par-
ticular, ControlNets), which is important for the practical deployment of watermarking. At first
glance, they should not be compatible. Semantic watermarks are assumed to be realized as part of
the image layout and edges (Ci et al., 2024; Saberi et al., 2024). As ControlNets provide users with
fine-grained control over image layout, watermarking information might be therefore erased during
the denoising process when it is guided by a ControlNet. We present an extensive empirical study
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Figure 1: Illustration of inversion-based seman-
tic watermarking in the text-to-image setting.
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Figure 2: Illustration of how ControlNets work.

that examines two representative inversion-based semantic watermarks, Tree-Ring watermarking
(TRW) (Wen et al., 2023) and Gaussian Shading (GS) (Yang et al., 2024), and studies their effec-
tiveness for different types of control signals, under different common perturbations.

2 BACKGROUND

2.1 SEMANTIC WATERMARKING

Semantic watermarking methods modify the distribution of the generator, such that the watermark
is not encoded as an imperceptible noise pattern applied on a clean image, but rather the generation
process is influenced such that the generated images implement the watermark through more mean-
ingful patterns. Compared to imperceptible watermarks, semantic watermarks are more resilient
to certain adversarial attacks such as regeneration using autoencoders and diffusion models (Zhao
et al., 2024b; An et al., 2024), as well as a range of common image transformations.

Figure 1 illustrates the technical concept. The core idea is to sample initial latents zT not from
N (O, I), but from a modified distribution. The different watermarking approaches differ in how
they change the initial latent. For example, Tree-Ring (Wen et al., 2023) modifies zT such that
its frequency spectrum carries visible concentric tree-ring patterns. Gaussian Shading (Yang et al.,
2024) employs cryptography to generate pseudorandom ciphertext that drives the sampling of zT .
Given the watermarked zT , the image generation then simply follows the standard diffusion model
process. Finally, verification is done by running inverse sampling to recover an approximation of zT
and verifying the presence of the watermarking pattern in the approximated z′T .

2.2 CONTROLNET

ControlNets (Zhang et al., 2023) are an extension of diffusion models that allow for fine-grained
control over the generation process by conditioning on structured guidance inputs, such as edge
maps, depth maps, or segmentation masks. Figure 2 illustrates the process. A ControlNet consists
of an auxiliary neural network that is trained to process an external control signal, presented as an
image. The control signals can be derived from various sources, such as edges extracted from an
image, human pose estimation, or depth information, allowing for greater flexibility in controlling
the generated images. In Figure 2, for instance, the control signal is an edge map of the bus.

In general, a ControlNet is initialized from a (partial) copy of the backbone diffusion model.
The ControlNet’s latent features from different layers are injected into the backbone using zero-
convolutions. During training, the backbone parameters are frozen and the ControlNet is fine-tuned
to steer the denoising process towards a solution that adheres to the given control signal. During
generation, the control signal has an effect on the backbone’s internal features throughout the entire
denoising process. It is unclear if this interferes with the expression of the semantic watermark that
is injected into the initial latent zT .

3 SEMANTIC WATERMARKING AND LAYOUT CONTROL

In this work, we aim to investigate how inversion-based semantic watermarks behave in combination
with layout control throughout the denoising process. Intuitively, we might expect that layout con-
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Tree-Ring Watermarking Gaussian Shading

None Canny HED Dpth Nrml None Canny HED Dpth Nrml

Clean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
JPEG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G.N. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP.N. 0.992 0.996 1.000 0.996 0.992 1.000 1.000 1.000 1.000 0.996
G.N.+JPEG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Watermark detection ratio for Tree-Ring Watermarking and Gaussian Shading with differ-
ent ControlNets (columns) and different perturbations applied after generation (rows).

trol should interfere with semantic watermarking. First, it is unclear to what degree the watermarks
are expressed in terms of details in the image layout or edges. When comparing non-watermarked
images with watermarked ones using Tree-Ring watermarking, it appears that the layout of the im-
age is affected, suggesting that the watermarks are realized (at least partly) through image layout and
edges, which is also assumed by some prior work (Ci et al., 2024). If the watermarks are entirely
dictated by edge information, then an edge-conditioned ControlNet could completely destroy the
watermark information. Second, during watermark verification, an inversion of the image sampling
process is required. However, the inversion needs to be performed without any conditioning infor-
mation that has guided the denoising process, such as prompt or control signal. This is because in
a real watermarking scenario, the service provider cannot track all conditioning information of all
ever generated images. Thus, the inversion must proceed with incomplete information and only with
the backbone model. If the composition of the backbone and a ControlNet is sufficiently different to
the original backbone, inversion using just the backbone can lead to a different trajectory and may
not recover the watermark. In the experiments reported below, we extract control signals (e.g., edge
maps) from unwatermarked real images and use a watermarked zT to start the generation process.

In addition to ControlNets, we also investigate a more extreme form of image control that tries to
regenerate the original image using a conditioned diffusion model. Where a normal diffusion model
takes zt as input, inpainting versions of models have been developed that in addition to the generated
zt also take a reference image’s latent representation z

(ref)
0 as well as an inpainting mask m. When

an empty mask is specified (indicating that nothing has to be inpainted), these models can be used
for creating a close copy of the original image that has the same layout, edges and color but may
differ slightly in insignificant details. In our experiments, we use an unwatermarked real image as
reference image to be copied, while starting decoding from a watermarked initial latent zT 1.

4 EXPERIMENTS

In the following, we empirically test if semantic watermarks are usable with layout control. To this
end, we perform a series of experiments to see if the watermark is detectable, remains robust under
perturbations, and preserves the quality of the generated images.

4.1 EXPERIMENTAL SETUP

We use the following control methods: Canny edge, HED, depth map, and normal map2. Throughout
the evaluation, we use a subset of 500 images of a resolution of at least 512×512 and corresponding
captions from the MS-COCO 2017 Lin et al. (2014) training dataset. We then use the captions to
generate images of size 512× 512 using Stable Diffusion 1.53 with the respective ControlNets. For
the image regeneration experiments, we used SD2’s inpainting variant. During generation, to create
unwatermarked images (clean), we use randomly sampled latents zt. To get watermarked images,
we apply one of the semantic watermarking methods, Tree-Ring Watermarking (TRW) (Wen et al.,

1This is somewhat similar to the watermark removal approach presented in Liu et al. (2024), with the key
difference that we investigate opposite phenomena and look at resilience of watermarked zT ’s whereas they
started from clean zT and used regeneration with specially trained components for watermark removal.

2Huggingface ControlNet Model cards: Canny, HED Boundary, Depth, Normal Map
3Stable Diffusion 1.5 Huggingface model card

3
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https://huggingface.co/lllyasviel/sd-controlnet-normal
https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5


Published at the ICLR 2025 Workshop on GenAI Watermarking (WMARK)

Canny HED Depth Normal No Control

Clean
TRW (mean) 8.36× 10−14 6.79× 10−15 1.43× 10−13 2.79× 10−15 3.34× 10−18

TRW (median) 3.19× 10−24 1.15× 10−24 5.85× 10−27 3.77× 10−30 4.57× 10−33

GS (mean) 1.000 1.000 1.000 1.000 1.000

JPEG
TRW (mean) 1.23× 10−8 8.12× 10−10 1.55× 10−8 2.36× 10−9 4.51× 10−10

TRW (median) 7.02× 10−18 3.27× 10−19 1.25× 10−19 1.65× 10−18 3.49× 10−23

GS (mean) 1.000 1.000 1.000 1.000 1.000

G.N.
TRW (mean) 1.95× 10−6 8.18× 10−7 4.42× 10−6 2.17× 10−5 9.56× 10−6

TRW (median) 1.59× 10−11 1.86× 10−12 1.00× 10−11 2.21× 10−10 6.64× 10−12

GS (mean) 0.997 0.997 0.996 0.991 0.996

SP.N.
TRW (mean) 6.28× 10−4 2.33× 10−4 3.78× 10−4 7.91× 10−4 6.76× 10−4

TRW (median) 3.70× 10−6 3.50× 10−7 2.22× 10−6 6.31× 10−6 1.87× 10−6

GS (mean) 0.935 0.949 0.940 0.906 0.933

G.N.
+ JPEG

TRW (mean) 2.57× 10−5 1.71× 10−6 7.29× 10−6 1.88× 10−5 1.24× 10−5

TRW (median) 5.30× 10−11 5.88× 10−12 4.54× 10−11 5.62× 10−10 1.36× 10−11

GS (mean) 0.995 0.996 0.994 0.989 0.995

Table 2: Watermarking performance for different ControlNets. For Tree-Ring Watermarking
(TRW), the average p-values are reported and for Gaussian Shading (GS), the average bit accu-
racies. Note that when computing the averages, the two most extreme values were discarded.

2023) and Gaussian Shading (GS) (Yang et al., 2024). For TRW, we insert a ring pattern into the
same latents by using the provided implementation with default parameters and the Rings option4.
For GS, each image is generated from a novel latent zT which is drawn by performing a specific
sampling from an encrypted bit string that varies for each image. We choose default options, i.e., a
message capacity of 256 bits and ×64 message replication5.

TRW is evaluated in a detection setup, while the threshold for GS is set for an identification scenario
with 100k users (each having a distinct random watermark message). As metrics, we measure
the watermark detection ratio, and also measure the p-values for TRW and bit accuracies for GS,
as reported in their respective publications. The p-value indicates how likely it is to observe the
tree-ring pattern by random chance. Bit accuracy indicates how much of the original message is
reconstructed correctly. Put simply, we strive for a smaller p-value in Tree-Ring and higher bit
accuracy in Gaussian Shading. Finally, we also report AUROC and TPR against images generated
under the same conditions but from unwatermarked zT .

In line with previous work, we also test various common image perturbations. These perturbations
include JPEG compression with quality factor 82 (“JPEG” in tables), Gaussian Noise with σ =
0.1 (“G.N.”), Salt-and-Pepper noise with 5% probability (“SP.N.”), as well as the combination of
Gaussian Noise with σ = 0.1 and JPEG compression with quality factor 82 (“G.N.+JPEG”). In
preliminary experiments, we saw that even small rotation and crop-and-scale transformations can
make watermarks undetectable and for this reason do not include this in our evaluation. This is
consistent with earlier work (Müller et al. (2025); An et al. (2024)).

4.2 RESULTS

Table 1 shows the detection success for Tree-Ring and Gaussian Shading for various ControlNets.
The detection is still successful under all tested ControlNets, even with more challenging perturba-
tions, such as Salt-and-Pepper noise.

Table 2 presents the p-values and bit accuracies for TRW and GS, respectively. As averaged p-
values can suffer from extreme outliers, we also provide the median p-values. When comparing
the different ControlNets to the baseline case without control (last column of Table 2), it is visible
that the use of ControlNets negatively affects the p-values for TRW (as visible in the first rows of
Table 2). Still, the values remain well below the detection threshold (∼ 0.02). For GS, the bit
accuracies are on average 100% or close, and remain similar to the case without using ControlNets.

4Tree-Ring Github repository
5Gaussian Shading Github repository
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Mean (median) p-val./bit acc. Det. Acc. AUROC TPR

TRW 6.24× 10−2 (1.59× 10−2) 0.587 0.940 0.535
GS 0.826 0.985 1.00 1.00

Table 3: Evaluation results for image regeneration using an inpainting model (SD2).

Edge Map Clean TRW GSReal

Figure 3: Example of images with semantic watermarks generated with canny edge control. The
caption used as prompt is ”A living room with a cream colored couch”. The clean image is generated
from a randomly drawn zT . The TRW image is generated from the same zT with the Tree-Ring
pattern inserted. The TRW image is verified as watermarked with a p-value of 4.3 × 10−42. The
GS image is verified as watermarked with a bit accuracy of 1.0.

Tables 4 and 5 in the Supplementary Material provide further results by reporting the AUROC and
TPR for TRW and GS with different control signals. The AUROC and TPR is 100% or close to
100% in all settings for both watermarks, indicating a very high degree of separability between the
watermarked and non-watermarked images, with otherwise exactly the same generation conditions.

Finally, in Table 3, we report the results for the experiments using an inpainting model for regener-
ating an image. The most surprising finding is that the Gaussian Shading watermark is still largely
recoverable with near-100% detection accuracy even though the generated images are very close
copies of unwatermarked real images. Even though Tree-Ring watermarks are harder to recover,
and detection accuracy is relatively low (only 50% of generated images are recognized as water-
marked), the high AUROC still indicates a high degree of separability.

4.3 VISUAL COMPARISON

Figure 3 shows examples of images with semantic watermarks generated with canny edge control.
More results for all control methods are shown in Section A in the Supplementary Material. The
image examples demonstrate that the image layouts are essentially the same between the clean and
watermarked cases. In the case of TRW, where a given zT is changed to include the watermark,
we observe only minor changes to the image. GS, in turn, samples zT from scratch so that any
connection to the clean image’s initial latent zT is lost. Still, the layout of the images is precisely
controlled with GS while achieving 100% bit accuracy.

5 DISCUSSION AND CONCLUSION

In this work, we discover a rather surprising finding that may put in question how inversion-based
semantic watermarks are really realized in an image. Previously, it has been observed that water-
marked images have subtle changes in layout compared to denoised images from a clean, unwater-
marked zT . In this work, however, we find that tight layout control still results in high detectability
for both Tree-Ring and Gaussian Shading. This leads us to believe that the role of image layout
in realizing semantic watermarks is overestimated. Most surprisingly, however, we find that even
when unwatermarked images are copied using an inpainting model6, the watermarks are still largely
detectable, albeit with severely degraded p-values and bit accuracies.

6Note that also in this scenario, the inpainting denoising starts from watermarked zT .
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A VISUAL EXAMPLES

Figure 4 shows examples of images with semantic watermarks generated with layout control.

Control Clean

TRW

(p-value)
C
a
n
n
y

GS

(bit acc.)

“A horse and carriage parked beside a building”

H
E
D

D
ep
th

N
o
rm
a
l

(~1e-45) (1.0)

(~1e-44) (1.0)

(~1e-46) (1.0)

(~1e-54) (1.0)

Figure 4: Examples of images with semantic watermarks generated with layout control. The clean
images are generated from a randomly drawn zT . The TRW image are generated from the same zT
with the Tree-Ring pattern inserted.
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B ADDITIONAL FIGURES

Clean Tree-Ring Gauss.Shading

Figure 5: Comparison between clean and watermarked images. Note that Tree-Ring modifies the
existing zT while Gaussian Shading samples a new one. As a consequence, the rough composition of
Tree-Ring watermarked image and clean image is similar, but differs significantly in the arrangement
of the details. Gaussian Shading, on the other hand, has no relation to the original image apart from
that specified by the prompt.

Source Inpaint-Regen Inpaint-Regen Inpaint-Regen

Clean Tree-Ring Gaussian Shading

p-value = 9.52× 10−3 bit acc = 0.809

Figure 6: An example of regeneration using inpainting. Left is the real source image from MS-
COCO 2017. Second column shows regeneration done by inpainting with an empty mask using
SD2’s inpainting variant, starting from unwatermarked zT . Third column shows regeneration but
starting from a zT that has been watermarked using Tree-Ring. Last column shows the result of
regeneration starting from a zT watermarked using Gaussian Shading. P-values and bit accuracies
are reported as well, both are above the detection threshold. The second row shows the differ-
ence between source and clean inpaint-regenerated (second column), the difference between clean
inpaint-regenerated and Tree-Ring-based inpaint-regenerated (third column) and the difference be-
tween clean inpaint-regenerated and GS-based inpaint-regenerated (fourth column). All difference
are multiplied by 10 for better presentation.
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C AUROC AND TPR

Tables 4 and 5 provide further intuition by showing the AUROC and TPR for TRW and GS with
different control signals.

AUROC TPR@1%FPR

None Canny HED Depth Normal None Canny HED Depth Normal

Clean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
JPG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G.N. 1.000 1.000 1.000 1.000 1.000 0.998 0.998 0.998 0.996 0.998
SP.N. 0.999 1.000 1.000 1.000 1.000 0.942 0.976 0.990 0.992 0.984
G.N.+JPG 1.000 1.000 1.000 1.000 1.000 0.998 1.000 0.998 0.998 0.998

Table 4: Tree-Ring Watermarking: AUROC (AUC) and TPR@1%FPR (TPR) for different control
types and different perturbation settings.

AUROC TPR@10−6FPR

None Canny HED Depth Normal None Canny HED Depth Normal

Clean 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
JPG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G.N. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SP.N. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
G.N.+JPG 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 5: Gaussian Shading: AUROC and TPR@10−6FPR for different control types and different
perturbation settings.
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