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ABSTRACT

Robustness against adversarial attacks and distribution shifts is a long-standing
goal of Reinforcement Learning (RL). To this end, Robust Adversarial Reinforce-
ment Learning (RARL) trains a protagonist against destabilizing forces exercised
by an adversary in a competitive zero-sum Markov game, whose optimal solution,
i.e., rational strategy, corresponds to a Nash equilibrium. However, finding Nash
equilibria requires facing complex saddle point optimization problems, which can
be prohibitive to solve, especially for high-dimensional control. In this paper, we
propose a novel approach for adversarial RL based on entropy regularization to
ease the complexity of the saddle point optimization problem. We show that the
solution of this entropy-regularized problem corresponds to a Quantal Response
Equilibrium (QRE), a generalization of Nash equilibria that accounts for bounded
rationality, i.e., agents sometimes play random actions instead of optimal ones.
Crucially, the connection between the entropy-regularized objective and QRE en-
ables free modulation of the rationality of the agents by simply tuning the temper-
ature coefficient. We leverage this insight to propose our novel algorithm, Quantal
Adversarial RL (QARL), which gradually increases the rationality of the adver-
sary in a curriculum fashion until it is fully rational, easing the complexity of the
optimization problem while retaining robustness. We provide extensive evidence
of QARL outperforming RARL and recent baselines across several MuJoCo lo-
comotion and navigation problems in overall performance and robustness.

1 INTRODUCTION

The glaring success of deep reinforcement learning (RL) has been largely obtained in controlled
simulated problems under no or negligible disturbances (Haarnoja et al., 2018a; Mnih et al., 2015;
Barth-Maron et al., 2018; Schulman et al., 2017; Fujimoto et al., 2018). However, deep RL methods
are widely known to be prone to overfit the observed tasks, such that distribution shifts, or even
adversarial attacks, can dramatically undermine their performance (Gleave et al., 2019; Zhang et al.,
2018). For the ultimate deployment of deep RL in realistic high-dimensional problems, it is of
pivotal importance to endow agents with robustness w.r.t. unmodeled perturbations. Robust Adver-
sarial Reinforcement Learning (RARL) is an appealing approach to obtain robust policies in RL by
training a protagonist agent against destabilizing actions applied by an adversarial agent (Pinto et al.,
2017). RARL solves a two-player zero-sum Markov game (Littman, 1994), where the protagonist
can execute actions in the environment to maximize a measure of performance, and the adversary
is trained to perform adversarial actions to minimize the same measure. By learning tasks under
destabilizing perturbations, the protagonist obtains robust skills counteracting distribution shifts and
adversarial attacks when deployed.
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The zero-sum Markov game solved by RARL is a saddle point optimization problem whose solution
is the minimax or Nash equilibrium, which can be prohibitive to find in case of strongly non-convex
non-concave objective functions typical when dealing with deep RL control problems (Ostrovskii
et al., 2021). RARL tackles these issues by adopting an alternating approach where one agent is
trained while the other is stationary. This iterative approach is inspired by the fictitious-play heuris-
tic of game theory (Brown, 1951; Heinrich & Silver, 2016) that, despite not ensuring convergence,
performs well in practice (Hofbauer & Sandholm, 2002; Brandt et al., 2010). Nevertheless, several
works have shown that RARL can fail to converge to good solutions, being unstable even in basic
linear quadratic regulation (Zhang et al., 2020a). Attempts have been made to tackle the tendency of
RARL to stick to suboptimal solutions, e.g., perturbing the gradient with Langevin dynamics (Ka-
malaruban et al., 2020) or using extragradient optimization (Cen et al., 2021).

In this paper, we propose a new approach based on entropy regularization to ease the complexity of
the adversarial RL optimization problem. We formulate an entropy-regularized zero-sum Markov
game where two agents can compete while maximizing the entropy of their respective policies. We
show that the solution to this problem is a Quantal Response Equilibrium (QRE), a generalization of
the Nash equilibrium that accounts for bounded rationality of the agents (Samuelson, 1995; McK-
elvey & Palfrey, 1995; Goeree et al., 2016). We note that, in a setting where the protagonist and
the adversary are completely rational, i.e., they execute their policies without noise, the solution is
a saddle point corresponding to a Nash equilibrium. This solution ensures the most robust behav-
ior (Pinto et al., 2017), but it is typically difficult to find due to the strongly non-convex non-concave
optimization problem (Kamalaruban et al., 2020; Zhang et al., 2020a). Conversely, in a setting
where the protagonist is completely rational and the rationality of the adversary is minimal, i.e., the
adversary plays only random actions, the optimization problem reduces to a regular maximization
problem for the protagonist at the cost of lower robustness of the obtained policy. This entails that
there is a trade-off between the complexity of the optimization problem and the robustness of the ob-
tained policy, and we posit that an effective balance can be found by properly tuning the rationality
of the adversary.

It can be shown that the temperature parameter of the entropy-regularized problem corresponds to
the rationality parameter of the respective QRE (Savas et al., 2019; Cen et al., 2021), which affects
the complexity of the optimization problem and the robustness of the optimal solution. Based on
this, our main contribution is a novel algorithm for adversarial RL, that we call Quantal Adversar-
ial RL (QARL), that actively modulates the rationality of the adversary to ease the complexity of
the optimization problem while retaining the robustness of the obtained solution. QARL initially
solves an adversarial problem with a completely random adversary, thus solely focusing on the per-
formance improvement of the protagonist, neglecting robustness. Then, it gradually increases the
rationality of the adversary until it reaches complete rationality and, hence, maximal robustness.
While an arbitrary method can be chosen for changing the rationality of the adversary, we provide
a curriculum-like approach that automatically tunes it while keeping track of the learning progress
of the protagonist. This way, we can maintain a steady performance improvement together with the
increase in robustness. We demonstrate that our approach facilitates the learning of the protagonist,
and we show that QARL outperforms RARL and related baselines in terms of performance and ro-
bustness across several high-dimensional MuJoCo problems, such as navigation and locomotion, of
the DeepMind Control Suite (Todorov et al., 2012; Tunyasuvunakool et al., 2020).

2 RELATED WORKS

Over the last decades, unwavering effort has been put into endowing learning agents with robust
behavior in RL (Moos et al., 2022). Some recent attempts are based on a zero-sum game problem
formulation, also known as robust adversarial RL (RARL), where an adversary agent is trained to ex-
ert destabilizing actions on a protagonist agent trying to accomplish a given task (Pinto et al., 2017;
Oikarinen et al., 2021). This way, the protagonist learns to solve a task while counteracting external
disturbances, thus being more robust when deployed. The quest initiated by RARL for achieving ro-
bustness with adversarial RL has been pursued by several subsequent works that attempt to overcome
the limitations of RARL. For example, Pan et al. (2019) proposes to model risk explicitly to avoid
catastrophic behavior, while Zhang et al. (2020a) shows that RARL is affected by instability and
convergence issues even in simple linear quadratic regulation problems. Furthermore, Kamalaruban
et al. (2020) proposes the use of Langevin dynamics for optimizing the challenging non-convex

2



Published as a conference paper at ICLR 2024

non-concave objective of the zero-sum game of RARL, while Zhai et al. (2022) studies the benefit
of imposing dissipation-inequation-constraints on the adversary. Similarly to this paper, some works
investigate the potential of curricula in adversarial RL, e.g., motivated by H∞-control, they build
a sequence of increasingly complex subtasks (Song & Schneider, 2022; Ao et al., 2022). Sheng
et al. (2022) proposes to generate curricula over the strength of an adversary that exerts adversar-
ial attacks on the protagonist by acting on its action space. Of these, we consider Kamalaruban
et al. (2020) and Sheng et al. (2022), as they both aim to improve the robustness and stability of
the robust adversarial RL scheme, which is the primary aim of this work. Pan et al. (2019) aims to
avoid catastrophic policy collapse, while Zhai et al. (2022) uses model-based disturbance bounding
which requires more system knowledge than we assume. Song & Schneider (2022) and Ao et al.
(2022) encourage task robustness through adversarial subtask generation as opposed to adversarial
disturbance modeling, which goes beyond the scope of the non-hierarchical perspective we adopt,
but could nonetheless be interesting for future work.

3 PRELIMINARIES

We consider two-player zero-sum Markov games (Littman, 1994; Perolat et al., 2015) formulated as
a Markov decision process (Puterman, 1990)M = ⟨S,A1,A2,R,P, γ, ι⟩, where S is the contin-
uous state space observed by both players, A1 and A2 are the continuous action spaces of the two
agents, and P : S×A1×A2×S → R is a transition probability density,R : S×A1×A2×S → R
is a reward function, γ ∈ [0, 1) is a discount factor, and ι a probability density function over initial
states. For given policies µ and ν of the two players, the discounted return is defined as

Jµ,ν(s) = Ea1∼µ(·|s),a2∼ν(·|s)

[
H−1∑
t=0

γtR(st, a1t , a2t , st+1)
∣∣∣s0 = s,P

]
, ∀s ∈ S. (1)

In a two-player zero-sum Markov game, one agent has to obtain a policy µ that maximizes the
discounted return J , while the other aims at obtaining a policy ν that minimizes it. The optimal
policies µ∗ and ν∗ are the ones inducing the return

Jµ∗,ν∗ = max
µ

min
ν
Jµ,ν = min

ν
max
µ

Jµ,ν , (2)

which corresponds to a minimax or Nash equilibrium for the Markov game (Perolat et al., 2015). It is
well-known that obtaining Nash equilibria in Markov games is a challenging problem that requires
solving minimax equilibria at every state (Littman, 1994; Pérolat et al., 2017; Song et al., 2023).
Most methods to compute optimal policies suffer from exponential complexity in the number of
actions for discrete Markov games; hence, they are impractical for problems with many actions and
unfeasible for high-dimensional control problems.

Quantal response equilibrium and bounded rationality Finding a Nash equilibrium requires
solving a saddle point optimization problem, for which the corresponding knife-edge best-response
function can be challenging to optimize due to strong non-convexity non-concavity. The Quan-
tal Response Equilibrium (QRE) is a generalization of the Nash equilibrium, which can arbitrarily
smoothen best-response functions, thus easing the optimization (McKelvey & Palfrey, 1995; Goeree
et al., 2016). In practice, smoothing best-response functions results in modeling games where play-
ers do not always select their best strategy, sometimes selecting suboptimal actions. This behavior
is known as bounded rationality, in contrast to full rationality typical of knife-edge best-response
strategies, i.e., Nash equilibria. Consider a two-agent Markov game with a given payoff X , a pa-
rameter τ ∈ R+, and two available actions per agent. Denote the strategies as σij where i and j
indicate the agent and the action, respectively. A particular form of QRE, known as logit QRE and
used across our work, is

σ∗
11 =

exp(Xσ∗
21/τ)

exp(Xσ∗
21/τ) + exp(Xσ∗

22/τ)
, σ∗

21 =
exp(Xσ∗

12/τ)

exp(Xσ∗
11/τ) + exp(Xσ∗

12/τ)
, (3)

with σ∗
12 = 1−σ∗

11 and σ∗
22 = 1−σ∗

21. By adopting a logistic function shape, the logit QRE models
strategies with bounded rationality depending on the expected payoff X and a belief σ∗ about the
strategy of the other agent, where τ modulates the rationality level of the agents. For τ → ∞,
the agents play completely random actions; on the contrary, when τ → 0, the strategies become
completely rational, thus becoming a Nash equilibrium.
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Robust adversarial reinforcement learning A special case of a two-player zero-sum Markov
game is one where an adversary agent is trained to execute destabilizing actions on a protagonist
trained to accomplish a given task (Kamalaruban et al., 2020; Pinto et al., 2017; Zhang et al., 2020a).
By learning to deal with external disturbances while solving its task, the protagonist develops skills
robust to adversarial attacks and distribution shifts when deployed. RARL (Pinto et al., 2017) is
an algorithmic solution for solving such two-player Markov games that obtains robust behavior in
high-dimensional control problems, e.g., MuJoCo (Todorov et al., 2012). RARL consists of a loop of
separate training phases for the protagonist and the adversary, i.e., the protagonist performs rollouts
and training steps while the adversary is stationary and vice versa. At each timestep t, both agents
observe the same state st ∈ S, perform actions a1t ∈ A1 and a2t ∈ A2, and reach state st+1, while
the protagonist obtains reward r1t = R(st, a1t , a2t , st+1) and the adversary gets r2t = −r1t .

4 BOUNDED RATIONALITY IN ADVERSARIAL REINFORCEMENT LEARNING

A prerequisite for our approach is the ability to model and control the rationality of agents in an
adversarial RL setting. Crucially, entropy regularization provides a theoretical framework to model
Markov games under bounded rationality (Cen et al., 2021; Savas et al., 2019). Consider the follow-
ing maximum entropy formulation of the adversarial RL objective (2)

Jµ∗,ν∗ = max
µ

min
ν
Jµ,ν + βH(µ)− αH(ν), (4)

where H is the Shannon entropy of a distribution and α, β ∈ R+ are two temperature coefficients.
The solution to this problem is known as Quantal Response Equilibrium (QRE) (McKelvey & Pal-
frey, 1995; Goeree et al., 2016), a generalization of the Nash equilibrium that extends it to games
where agents do not play with complete rationality1.

Definition 4.1 For any entropy-regularized zero-sum Markov game, the QRE is
µ∗(a1|s) = exp (Jν∗ (s,a1)/β)∫

b
exp (Jν∗ (s,b)/β)

∝ exp (Jν∗(s, a1)/β), ∀s ∈ S, a1 ∈ A1

ν∗(a2|s) = exp (−Jµ∗ (s,a2)/α)∫
b
exp (−Jµ∗ (s,b)/α)

∝ exp (−Jµ∗(s, a2)/α), ∀s ∈ S, a2 ∈ A2,

(5)

where Jµ(s, a) (or Jν(s, a)) indicates the performance obtained when the adversary (or protagonist)
executes action a in state s while the protagonist (or adversary) follows its policy µ (or ν).

The solution (5) to the entropy-regularized objective (4) can be considered as the adversarial RL
counterpart of the well-known solution for maximum entropy RL (Haarnoja et al., 2018a; 2017;
Asadi & Littman, 2017). Key to our analysis is that the temperature coefficients α and β can ef-
fectively modulate the rationality of the agents under a game-theoretical lens (McKelvey & Palfrey,
1995; Goeree et al., 2016). For example, for α→∞, the entropy of the adversary is maximized, and
its rationality is minimized. Conversely, if α → 0, the entropy-regularized objective (4) accounts
only for the performance term, and the adversary is fully rational.

4.1 TEMPERATURE-CONDITIONED VALUE FUNCTIONS AND POLICIES

QRE are shown to exist in finite Markov games with bounded rationality (McKelvey & Palfrey,
1995; Goeree et al., 2016). However, in Markov games with large state-action spaces, solving the
QRE in closed-form becomes computationally unfeasible and RL becomes more suitable at solving
the two-player optimisation. We point out that QRE closely resembles the solution of the maximum
entropy RL problem. For example, the well-known soft-actor critic (SAC) algorithm (Haarnoja
et al., 2018a;b) approximates policies of the form π(·|s) ≈ exp (Q(s,·)/τ)

Z(s,τ) , where Z(·) is a partition
function and τ ∈ R+ is the temperature. Thus, we introduce the use of SAC in adversarial RL to
obtain a practical method for approximating QRE in the case of continuous actions.
For our purpose of controlling the rationality of the adversary, we propose to condition its policy
on the temperature coefficient. To do this, we define what we call temperature-conditioned value

1QRE are homogeneous for α = β. Here, we use heterogeneous QRE, i.e., α ̸= β (Goeree et al., 2016;
Rogers et al., 2009).
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functions and policies, whose definition follows directly from the one for soft action-value function
in Theorem 1 of Schaul et al. (2015) and Haarnoja et al. (2017).

Corollary 4.2 For any policy π and temperature τ ∈ R+, let the temperature-conditioned optimal
soft action-value function and value function be defined as

Q∗(st, at, τ) = rt + E

[ ∞∑
i=1

γi (rt+i + τH(π∗(·|st+i, τ)))
∣∣∣P] , (6)

V ∗(st, τ) = τ log

∫
A
exp

(
Q∗(st, a

′, τ)

τ

)
da′. (7)

Then, the optimal policy conditioned on temperature τ is

π∗(at|st, τ) = exp

(
Q∗(st, at, τ)− V ∗(st, τ)

τ

)
. (8)

The temperature-conditioned policy π∗ (Equation (8)) can be straightforwardly rewritten as
π∗(at|st, τ) = exp (Q∗(st,at,τ)/τ)∫

A exp (Q∗(st,a′,τ)/τ)da′ . Using the action-value function Q∗ as an estimate of Jπ∗ ,
the resemblance of π∗ with QRE (Equation (5)) is clear, which enables us to derive the following.

Proposition 4.3 For any entropy-regularized zero-sum Markov gameM as defined in Equation (4),
given the temperature-conditioned optimal action-value function Q∗ and value function V ∗, the
temperature-conditioned policies are

µ∗(a1|s, β) = exp (Q∗
ν(s,a

1,β)/β)∫
b
exp (Q∗

ν(s,b,β)/β)
∝ exp (Q∗

ν(s, a
1, β)/β), ∀s ∈ S, a1 ∈ A1

ν∗(a2|s, α) = exp (−Q∗
µ(s,a

2,α)/α)∫
b
exp (−Q∗

µ(s,b,α)/α)
∝ exp (−Q∗

µ(s, a
2, α)/α), ∀s ∈ S, a2 ∈ A2,

(9)

whereQ∗
π(s, a, τ) indicates the performance conditioned on temperature τ obtained when one agent

executes action a in state s while the other agent follows its policy π. We have that ⟨µ∗, ν∗⟩ is a
QRE for the Markov gameM.

This result establishes a connection between QRE and optimal policies in two-player Markov games,
which enables modeling adversarial RL problems with bounded rationality.

4.2 AUTOMATIC GENERATION OF BOUNDED RATIONALITY CURRICULA

So far, we have a generalization of adversarial RL to bounded rationality through entropy regular-
ization and a simple way to tune rationality by acting on the temperature coefficient. Crucially,
we are now able to shape the saddle point optimization problem of adversarial RL by modulating
the rationality of the adversary through its temperature α. We recall that our goal is to ease the
complexity of potentially strongly non-convex non-concave optimization problems, typical in high-
dimensional control while retaining the robustness of the obtained policies. We propose to initially
solve an adversarial problem with a completely random adversary, i.e., α → ∞, which results in
a simpler plain maximization of the performance of the protagonist, neglecting robustness. Then,
we gradually increase the rationality of the agent and thus the complexity of the optimization prob-
lem by consciously decreasing the temperature α, hence improving the robustness of the obtained
policy. Eventually, we have α → 0, retrieving the regular adversarial RL problem with a com-
pletely rational adversary and, consequently, maximal robustness of the obtained policy. The benefit
of our approach is that, instead of attempting to solve a complex saddle point optimization from
the beginning, it starts from a simpler one and makes it gradually more complex in a curriculum
fashion (Zhang et al., 2020b; Svetlik et al., 2017; Klink et al., 2020; 2021).

We are left with the decision of how to tune the temperature of the adversary during training. While
a viable solution would be to gradually anneal the temperature during training, it is prohibitive to
manually select a proper decay speed that ensures a good balance between the complexity of the
problem and its feasibility. Ideally, the temperature should be gradually decreased to increase ra-
tionality while avoiding a negative impact on the performance of the protagonist. Therefore, we
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Algorithm 1 Quantal Adversarial Reinforcement Learning (QARL)

1: Input: Initial critic parameters ψ1
1 , ψ

1
2 , ψ̄

1
1 , ψ̄

1
2 , ψ

2
1 , ψ

2
2 , ψ̄

2
1 , ψ̄

2
2 ; initial actor parameters ϕ1, ϕ2;

D1 = ∅, D2 = ∅; initial temperature distribution parameters ω; performance lower bound ξ;
#sampled temperatures N ; #Monte-Carlo rollouts M ; initial temperatures α, β; #steps T .

2: for each iteration do
3: ψ̄1

1 ← ψ1
1 , ψ̄1

2 ← ψ1
2 , ψ̄2

1 ← ψ2
1 , ψ̄2

2 ← ψ2
2 ▷ Target networks update

4: α1,...N ∼ pω(α) ▷ Sampling of temperatures of the adversary
5: for i = 1, . . . , N do
6: for t = 1, . . . , T do ▷ Transitions collection for the adversary
7: a1t ∼ µϕ1(a1t |st, αi)
8: a2t ∼ νϕ2(a2t |st, αi)
9: st+1 ∼ P(st+1|st, a1t , a2t )

10: D2 = D2 ∪ {⟨st, a2t , rt, st+1, αi⟩}
11: ψ2

1 , ψ
2
2 , ϕ

2 ← ADVERSARY UPDATE(ψ2
1 , ψ

2
2 , ϕ

2,D2)
12: end for
13: end for
14: for i = 1, . . . , N do
15: for t = 1, . . . , T do ▷ Transitions collection for the protagonist
16: a1t ∼ µϕ1(a1t |st, αi)
17: a2t ∼ νϕ2(a2t |st, αi)
18: st+1 ∼ P(st+1|st, a1t , a2t )
19: D1 = D1 ∪ {⟨st, a1t , rt, st+1, αi⟩}
20: ψ1

1 , ψ
1
2 , ϕ

1, β ← PROTAGONIST UPDATE(ψ1
1 , ψ

1
2 , ϕ

1, β,D1)
21: end for
22: end for
23: Update ω optimizing (10), estimating Epω(α) [Jµ,ν(ω)] with M rollouts
24: end for
25: Return: Trained actor parameters ϕ1, ϕ2

provide a way that automatically tunes the temperature while keeping track of the learning progress
of the protagonist. We define a probability distribution pω(α), parameterized by ω, over the temper-
ature coefficient α of the adversary in Objective (4). Given that α ∈ R+, it is convenient to model
the probability distribution pω as a gamma distribution Γ(k, θ), where ω = ⟨k, θ⟩. The parameters
of the distribution are gradually updated to reach a target distribution µ(α), under the constraint that
the update does not result in decreasing the performance Jµ,ν below a certain threshold ξ. Since we
want the adversary to converge to complete rationality (i.e., α → 0), as in RARL, we set the tar-
get distribution to a sharp gamma distribution µ = Γ(1, 10−3), approximating a Dirac distribution
centered in α = 0. Formally, we solve the following constrained optimization problem

min
ω

DKL (pω(α)||µ(α))

s.t. Epω(α) [Jµ,ν(α)] ≥ ξ
DKL (pω(α)||pω′(α)) ≤ ϵ, (10)

where ω′ is the parameter vector before the update. By minimizing the KL-divergence between the
current distribution pω and µ, we progressively sample lower α, thus increasing the rationality of
the adversary. While the second constraint avoids abrupt changes in the distribution pω , the first
constraint crucially ensures that the update of the distribution pω does not make the overall perfor-
mance drop below a certain threshold ξ. This way, QARL progressively increases the rationality
of the adversary while preventing catastrophic performance drops, eventually reaching an adversary
with full rationality, and thus maximal robustness, as in RARL (Pinto et al., 2017).

4.3 QUANTAL ADVERSARIAL REINFORCEMENT LEARNING

The constrained optimization problem (10) can be solved by minimizing its Lagrangian

L(ω, λ, η) = DKL (pω(α)||µ(α))+λ
(
ξ − Epω(α) [Jµ,ν(ω)]

)
+η (DKL(pω(α)||pω′(α))−ϵ), (11)
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Figure 1: Performance of QARL and baselines on MuJoCo control problems (see title of boxplots),
evaluated at the end of training against an adversary trained against the frozen trained protagonist.
The number next to the name of each algorithm is the average performance across 10 seeds.

with λ, η ≥ 0. While the KL-divergences can be computed exactly using the closed-form formula of
the gamma distribution, the expected performance Epω(α) [Jµ,ν(ω)] needs to be approximated with
an importance-sampled Monte-Carlo estimate

Epω(α) [Jµ,ν(ω)] ≈ 1

M

M∑
i=1

pω(αi)

pω′(αi)
Ṽ (s0,i, αi), (12)

where Ṽ (s0,i, αi) is an estimated value function obtained by collecting trajectories starting from M
initial states s0,i, with the protagonist and the adversary following their policies µ and ν both con-
ditioned on the temperature αi of the adversary. Algorithm 1 summarizes our Quantal Adversarial
RL (QARL) algorithm. Although not strictly necessary, we condition the policy of the protago-
nist on the temperature of the adversary (line 7 and 16) for better adaptation. We also clarify that
while the temperature of the adversary follows our automatic curriculum generation scheme, the
protagonist follows the temperature scheduling proposed by SAC (Haarnoja et al., 2018b) (line 20).

5 EXPERIMENTAL RESULTS2

MuJoCo control We consider a broad set of MuJoCo control problems (Todorov et al., 2012)
from the DeepMind Control Suite (Tunyasuvunakool et al., 2020), and compare our method to
RARL (Pinto et al., 2017) and recently proposed enhancements that address the complexity of the
saddle point optimization problem of RARL. Namely, we consider an extension of RARL that uses
Langevin dynamics (MixedNE-LD) to escape local optima (Kamalaruban et al., 2020), and Curricu-
lum Adversarial Training (CAT) (Sheng et al., 2022) that applies a hand-crafted curriculum scheme
on the strength of the adversary. Additionally, we introduce and evaluate a method, that we denote as
Force-Curriculum, that applies our automatic curriculum scheme over the maximum strength of the
adversary instead of its rationality (details in Appendix A). In contrast with the theoretical formula-
tion for QARL, Force-Curriculum has the limit of having a heuristic nature and hinges on the ability
to change the action boundaries of the adversary during training. Nevertheless, given its simplic-
ity and intuitive motivation, we find Force-Curriculum an interesting additional baseline. Finally,
we compare to regular SAC trained against no adversary as a reference (Haarnoja et al., 2018b).

2Code available at https://github.com/AryamanReddi99/quantal-adversarial-rl
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Figure 2: Robustness analysis of QARL and related baselines on MuJoCo swingup and locomotion
problems (see title of heatmaps). Each heatmap shows the performance obtained for varying proper-
ties of the environment, described in the x− y axes. The number next to the name of each algorithm
is the average performance across 10 seeds.

Algorithm Performance Robustness
SAC MixedNE-LD −16.6± 0.2% +20.0± 1.1%

RARL −5.7± 0.3% +10.1± 0.6%

Force-Curriculum −14.7± 0.3% −3.3± 0.6%

CAT −18.0± 0.2% +11.7± 0.8%

QARL (ours) +4.2± 0.5% +48.7± 1.2%

Table 1: Performance and robustness per-
centage improvement w.r.t. SAC for
QARL and baselines in 15 MuJoCo con-
trol problems.

In each environment, the adversary exerts forces on
the protagonist to disrupt its performance. As done
in Pinto et al. (2017); Kamalaruban et al. (2020), we
consider environment-specific disruptions with high
strength to test the reliability of considered adversarial
algorithms under intense destabilization (details in Ap-
pendix B). To adequately assess the performance of the
protagonist in a minimax sense, we fix the protagonist
obtained at the end of training and subsequently train
an adversary against it, which is then used at test time.
Moreover, we evaluate the robustness of the trained
protagonists to varying test conditions, such as mass
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Figure 3: Robustness analysis over different curricula for QARL on two locomotion problems.
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Figure 4: Trajectories of the quadruped agents trained using RARL (top) and QARL (bottom) in the
maze environment. The adversary can blow wind from right to left in the area highlighted in yellow.
The goal position is marked as a green sphere. The leg that the Quadruped uses to anchor when
using the policy obtained with QARL is highlighted in red.

and friction, against no adversary. We conduct this evaluation on 15 MuJoCo control problems –
a selection of them is shown in Figures 1 and 2, while an overall assessment is shown in Table 1
(details in Appendix C). QARL outperforms the baselines in average performance and robustness,
thus evincing a superior ability to counteract the adversary. While more robust across test conditions
than SAC, the other baselines suffer in nominal performance due to the highly destabilizing adver-
sarial forces that hinder learning. The non-curriculum methods (RARL and MixedNE-LD) perform
notably poorly for the environment ‘Cartpole - Swingup Sparse’, in which the sparse reward setting
enables the adversary to easily hinder the protagonist. In Figure 3, we also study the effectiveness
of our automatic curriculum generation method in terms of robustness compared to other simpler
curriculum schemes. Linear Curriculum refers to a basic linear annealing of α. Point Curriculum
consists of a variant of the optimization problem (10) where α is a scalar value instead of being sam-
pled from a distribution. Finally, Reduced Sampling applies our automatic curriculum generation
method, sampling only a single value at each iteration.
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Figure 5: Robustness analysis for wind
forces in the maze environment. Rela-
tive force is w.r.t. the one in training.

Maze navigation We further analyze QARL in a navi-
gation problem with a MuJoCo quadruped agent (Tunya-
suvunakool et al., 2020) that requires learning locomotion
skills to reach a goal while contrasting an adversary blow-
ing wind. Figure 4 shows the environment and behavior
of QARL against RARL, evincing that RARL collapses
to a suboptimal policy while QARL is able to solve the
problem by learning a gait where one leg is used to anchor
to the ground while using the others to move towards the
goal. Moreover, we study the robustness of the obtained
policy for QARL and baselines against forces obtained by
multiplying the one in training by a relative force ranging
from 0 to 4. (Figure 5). We observe that QARL can re-
sist forces 4 times stronger than the nominal one, while
RARL and the other baselines are not able to, with the ex-
ception of Force-Curriculum which sometimes succeeds.

6 CONCLUSION

We introduced Quantal Adversarial Reinforcement Learning (QARL), a method leveraging the con-
nection between maximum entropy RL and bounded rationality, to facilitate the optimization of the
complex saddle point optimization problem tackled by adversarial RL. Our method is backed up by
a solid theoretical foundation and extensive empirical validation on a broad set of MuJoCO control
problems. By combining the benefits of curriculum and adversarial learning, QARL reduces the
amount of time and energy to robustify agents, which is particularly desirable for achieving adaptive
behavior in real-world applications, ranging from autonomous vehicles to assistive robotics.
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Figure 6: Progression of the (a) adversary temperature (α) and protagonist temperature (β) of
QARL, and (b) adversary force budget of the Force-Curriculum algorithm during training compared
to average return against a trained adversary in the “Hopper - Hop” environment. The performance
threshold ξ = 5 is also indicated. Results are shown over 10 seeds.

A FORCE-CURRICULA FOR ADVERSARIAL REINFORCEMENT LEARNING

In addition to the adversarial RL baselines implemented, we also find it worthwhile to com-
pare QARL to a conceptually similar curriculum algorithm over the maximum strength of
the adversary, which we refer to as “Force-Curriculum” (Algorithm 2). We follow a simi-
lar curriculum scheme to QARL, whereby force budgets are sampled from a gamma distri-
bution which is updated according to the performance of the protagonist agent. The cur-
riculum is enforced by clipping the magnitude of the adversary’s actions in each dimen-
sion according to the sampled force budget f (Line 9 and 19 in Algorithm 2). Figure 7
shows the evolution of the gamma distribution of the force budget f of the adversary pω(f).
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Figure 7: Evolution of adversary force
budget f distribution.

The force budget distribution has an initial mean near 0,
preventing the adversary from creating large disturbances
during early training. As training progresses, this force
budget distribution shifts to higher values to enable the
adversary to use its full nominal strength against the now-
trained protagonist agent. The idea of gradually raising
the strength of the adversary is also implemented in Cur-
riculum Adversarial Training (CAT) (Sheng et al., 2022),
which, however, uses a linear curriculum as opposed to
our automatic curriculum generation scheme. Figure 6
compares the training progression of QARL to that of
Force-Curriculum in the “Hopper - Hop” environment.
Figure 6a shows the progression of the adversary temperature in QARL overlaid with the perfor-
mance of the protagonist agent against the adversary. Similarly, Figure 6b shows the progression
of the adversary force budget in the Force-Curriculum algorithm overlaid with the performance of
the protagonist agent against the adversary. Both plots indicate the performance threshold ξ above
which the curriculum would progress to a more difficult adversary. We set ξ = 5 for the “Hopper
- Hop” environment, as performance below this value indicates a catastrophically poor protagonist
policy. It is observed in Figure 6a that the temperature of the adversary in QARL is decreased when
the performance of the protagonist is above ξ, and increased or maintained when the performance
of the protagonist is below ξ (note that the precise crossing points of the performance with the per-
formance threshold cannot be matched 1 : 1 with the curriculum temperature behavior due to some
variance in the plots). Likewise, it can be seen in Figure 6b that the adversary force budget f in
the Force-Curriculum algorithm is increased when the performance of the protagonist is above ξ
and decreased or maintained when the performance of the protagonist is below ξ. We remark that
“Hopper - Hop” is chosen for this comparison as it is prone to instability, being a perfect candidate
to evince the benefit of QARL.
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Algorithm 2 Force-based curriculum adversarial reinforcement learning (Force-Curriculum)

1: Input: Initial critic parameters ψ1
1 , ψ

1
2 , ψ̄

1
1 , ψ̄

1
2 , ψ

2
1 , ψ

2
2 , ψ̄

2
1 , ψ̄

2
2 ; initial actor parameters ϕ1, ϕ2;

D1 = ∅, D2 = ∅; initial force distribution parameters ω; performance lower bound ξ; #sampled
forces N ; #Monte-Carlo rollouts M ; initial temperatures α, β; initial force budget f ; #steps T .

2: for each iteration do
3: ψ̄1

1 ← ψ1
1 , ψ̄1

2 ← ψ1
2 , ψ̄2

1 ← ψ2
1 , ψ̄2

2 ← ψ2
2 ▷ Target networks update

4: f1,...N ∼ pω(f)) ▷ Sampling of force budgets of the adversary
5: for i = 1, . . . , N do
6: for t = 1, . . . , T do ▷ Transitions collection for the adversary
7: a1t ∼ µϕ1(a1t |st, fi)
8: a2t ∼ νϕ2(a2t |st, fi)
9: a2t = CLIP (a2t ,−fi, fi)

10: st+1 ∼ P(st+1|st, a1t , a2t )
11: D2 = D2 ∪ {⟨st, a2t , rt, st+1, fi⟩}
12: ψ2

1 , ψ
2
2 , ϕ

2, α← ADVERSARY UPDATE(ψ2
1 , ψ

2
2 , ϕ

2, α,D2)
13: end for
14: end for
15: for i = 1, . . . , N do
16: for t = 1, . . . , T do ▷ Transitions collection for the protagonist
17: a1t ∼ µϕ1(a1t |st, αi)
18: a2t ∼ νϕ2(a2t |st, αi)
19: a2t = CLIP (a2t ,−fi, fi)
20: st+1 ∼ P(st+1|st, a1t , a2t )
21: D1 = D1 ∪ {⟨st, a1t , rt, st+1, fi⟩}
22: ψ1

1 , ψ
1
2 , ϕ

1, β ← PROTAGONIST UPDATE(ψ1
1 , ψ

1
2 , ϕ

1, β,D1)
23: end for
24: end for
25: Update ω optimizing (10), estimating Epω(f) [Jµ,ν(ω)] with M rollouts
26: end for
27: Return: Trained actor parameters ϕ1, ϕ2

B EXPERIMENTAL DETAILS

B.1 AGENTS

The majority of agents deployed in the experiments (except the adversary policy in CAT) are SAC
agents and variations thereupon, allowing us to leverage the temperature parameter of SAC for the
bounded rationality curriculum of QARL; SAC has been then chosen similarly for the other algo-
rithms to enable a fair comparison. The hyperparameters of the adversarial agents across all environ-
ments are shown in Table 2. Note that the temperature-related hyperparameters (initial temperature,
temperature learning rate, target entropy) do not apply to the adversary used in QARL as they are
dictated by the automatically generated curriculum. For the SAC MixedNE-LD agent, additional
hyperparameters are chosen based on tuning and prior knowledge from Kamalaruban et al. (2020).
The adversary used in CAT (Sheng et al., 2022) has separate hyperparameters as it does not use a
neural network implementation, but rather performs a simple gradient descent in the action space.

B.2 ENVIRONMENTS

The MuJoCo environments (Todorov et al., 2012) discussed in Section 5 are standard implementa-
tions from the DeepMind Control Suite (Tunyasuvunakool et al., 2020) modified for an adversarial
setting. The standard environment states are used as inputs to both agents. In each environment,
adversarial actions and force magnitudes are chosen to elicit robust agent behavior. The adversarial
action spaces are specifically chosen to be different from those of the protagonist agent in order to
exploit domain knowledge, as done in RARL (Pinto et al., 2017). Generally, a smaller adversary
maximum force is used in environments that are highly sensitive to adversarial disturbances such as
“Acrobot”, as higher forces cause a total collapse of the protagonist policy. For each environment,
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Table 2: Agent hyperparameters

Hyperparameter Value

Shared (SAC and SAC MixedNE-LD)
# hidden layers (all networks) 3

# hidden units per layer (all networks) 256

nonlinearity ReLU
critic optimiser Adam
critic learning rate 3 · 10−4

actor learning rate 1 · 10−4

initial replay memory size 3 · 103
max replay memory size 1 · 106
warmup transitions 5 · 103
batch size 256
target smoothing coefficient (τ ) 5 · 10−3

target update interval 1

policy log std bounds [−20, 2]
initial temperature 5 · 10−3

temperature learning rate 3 · 10−4

target entropy -dim(A)

SAC
actor optimiser Adam

SAC MixedNE-LD
adversary influence δ 0.1

actor optimiser SGLD
thermal noise (σt) 10−3 × (1− 5× 10−5)t

RMSProp parameter α 0.999

RMSProp parameter ϵ 10−8

CAT MAS Adversary
gradient descent learning rate 3

gradient descent step limit 25

gradient descent convergence threshold ϵ 10−3

disturbance Lp-norm 2
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Table 3: Environment-specific parameters

Environment Adversary max force ξ Adversary action space (size)

Acrobot 0.0005 1 2D forces on each arm (4)

Ball in Cup 0.1 10 2D force on ball (2)
Cartpole 0.005 10 2D force on pole (2)

Cheetah 1.0 40 2D force on feet & torso (6)

Hopper 1.0 5 2D force on foot & torso (4)

Pendulum 0.005 10 2D force on pole (2)

Quadruped - Run 10 50 3D force on torso (1)

Quadruped - Maze 600 2000 1D force on all bodies (1)
Reacher 0.1 10 2D force on arm (2)

Walker 1.0 10 2D forces on feet (4)

the adversary forces are chosen carefully so as to be large enough to beget agent robustness and gen-
eralisation while posing a challenge to the protagonist. These environment-specific parameters are
shown in Table 3, while the discount factor and horizon are set respectively to 0.99 and 500 for all
environments. Apart from this, the MuJoCo environments are left unmodified, with two exceptions:
(a) the pole of the “Pendulum” environment is given a default mass of 0.1 instead of 0 in order to
test the robustness of the protagonist to changing pole mass, and (b) the quadruped agent is trained
in a maze environment where the wind force of the adversary is distributed evenly across all of its
body when its torso enters the effective zone of the adversary (the yellow area in Figure 4). Note
that ξ (performance threshold) values shown in Table 3 apply to both QARL and Force-Curriculum.
Note also that the adversary action spaces in Table 3 do not apply to CAT (Sheng et al., 2022) and
MixedNE-LD (Kamalaruban et al., 2020), as these algorithms use a shared action space for the
protagonist and adversary.

B.2.1 QUADRUPED

The quadruped maze environment discussed in Section 5 is a modified version of the default
quadruped provided in the DeepMind Control Suite (Tunyasuvunakool et al., 2020). The state
s ∈ R80 contains the default quadruped observations (egocentric state, torso velocity, torso up-
right state, IMU measurements, and body force torques) as well as the 2D displacement vector in
the X − Z plane between the torso of the quadruped and the goal. The reward function for the
quadruped is:

r(s, a) = ⟨ztorso , zglobal⟩ × 5× e−0.2||xzgoal−xztorso||. (13)

The term ⟨ztorso, zglobal⟩ is the inner product of the quadruped’s torso’s z-axis and the global z-
axis, acting as a measure of how upright the quadruped is, which improved locomotion stability in
practice. The exponential term ||xzgoal − xztorso|| is the Euclidian distance between the goal and
the torso of the quadruped in theX−Z plane, encouraging the quadruped to move towards the goal.
Finally, the scale factors 5 and 0.2 are used to shape the exponential reward characteristic in order
to sufficiently encourage the quadruped to move forward from its starting position. If the quadruped
is flipped over during training (indicated by ⟨ztorso, zglobal⟩ < 0), the episode is terminated in order
to avoid collecting junk transitions as it is hard for the quadruped to recover from this state.

B.3 ALGORITHMS

The details of the algorithms investigated are shown in Table 4. Note that the gamma distribution
parameters shown apply to both QARL and Force-Curriculum. The algorithm parameters for Cur-
riculum Adversarial Training (CAT) in Table 4 denote the iterations between which the gradient
of the linear force budget curriculum would be constant and non-zero, i.e., over the course of 200
total iterations, the force budget in CAT would simply be 0 before 40 iterations, full force after
160 iterations, and linearly interpolated for all iterations in between. These values are found to be
heuristically effective and are based in part on previous experiments using manual curricula.
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Table 4: Algorithm hyperparameters

Hyperparameter Value

Shared
# iterations 200

# episodes per agent per iteration 5

# evaluation rollouts per iteration 10

QARL & Force-Curriculum
initial gamma distribution concentration kinitial 50

target gamma distribution concentration ktarget 1

fixed gamma distribution rate θ 1000

DKL constraint (ϵ) 0.5
# rollouts needed for update 30

CAT
curriculum start iteration 0.2× # iterations
curriculum end iteration 0.8× # iterations

B.4 HARDWARE AND SOFTWARE

The experiments are carried out on a computational cluster with 64GB of RAM and an AMD
Ryzen 9 16-Core processor. The algorithms investigated are implemented using the Mush-
roomRL (D’Eramo et al., 2021) library, which is also used for the implementation of all agents
and adversarial environment wrappers.

C ADDITIONAL RESULTS

C.1 QARL AND BASELINES PERFORMANCE AND ROBUSTNESS

QARL
(487) RARL

(475)
SAC MixedNE-LD

(476)
CAT
(481)

Force Curriculum

(476)
SAC
(485)

455
460
465
470
475
480
485
490
495

Re
tu

rn
 v

s W
or

st
 A

dv
er

sa
ry

Ball in Cup - Catch

QARL
(483) RARL

(485)
SAC MixedNE-LD

(480)
CAT
(483)

Force Curriculum

(63)
SAC
(478)

0

100

200

300

400

500

Re
tu

rn

Ball in Cup - Catch

QARL
(477) RARL

(476)
SAC MixedNE-LD

(475)
CAT
(474)

Force Curriculum

(475)
SAC
(476)

465

470

475

480

485

Re
tu

rn
 v

s W
or

st
 A

dv
er

sa
ry

Reacher - Hard

QARL
(471) RARL

(472)
SAC MixedNE-LD

(471)
CAT
(473)

Force Curriculum

(477)
SAC
(471)

430

440

450

460

470

480

490

Re
tu

rn

Reacher - Hard

Figure 8: Performance of QARL and baselines on Ball-in-cup and Reacher (see the title of each
boxplot), evaluated at the end of training against an adversary trained against the frozen trained
protagonist (left column) and without an adversary (right column). The number next to the name of
each algorithm is the average performance across 10 seeds.
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Figure 9: Performance of QARL and baselines on balancing and swing-up control problems (see the
title of each boxplot), evaluated at the end of training against an adversary trained against the frozen
trained protagonist (left column) and without an adversary (right column). The number next to the
name of each algorithm is the average performance across 10 seeds.
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Figure 10: Performance of QARL and baselines on swing-up and locomotion problems, i.e., Cheetah
and Walker (see the title of each boxplot), evaluated at the end of training against an adversary
trained against the frozen trained protagonist (left column) and without an adversary (right column).
The number next to the name of each algorithm is the average performance across 10 seeds.

19



Published as a conference paper at ICLR 2024

QARL
(359) RARL

(283) CAT
(110)

SAC MixedNE-LD

(242) Force Curriculum

(300)
SAC
(341)

100

200

300

400

500

Re
tu

rn
 v

s A
dv

er
sa

ry

Quadruped - Run

QARL
(327) RARL

(293) CAT
(158)

SAC MixedNE-LD

(83) Force Curriculum

(302)
SAC
(371)

100

200

300

400

500

Re
tu

rn

Quadruped - Run

QARL
(289) RARL

(168)
SAC MixedNE-LD

(162)
CAT
(177)

Force Curriculum

(178)
SAC
(248)

0

100

200

300

400

Re
tu

rn
 v

s W
or

st
 A

dv
er

sa
ry

Hopper - Stand

QARL
(16) RARL

(8)
SAC MixedNE-LD

(9)
CAT
(5)

Force Curriculum

(6)
SAC

(8)

0

10

20

30

40

Re
tu

rn

Hopper - Stand

QARL
(46) RARL

(40)
SAC MixedNE-LD

(28)
CAT
(26)

Force Curriculum

(14)
SAC
(42)

0

20

40

60

80

100

120

Re
tu

rn
 v

s W
or

st
 A

dv
er

sa
ry

Hopper - Hop

QARL
(57) RARL

(34)
SAC MixedNE-LD

(32)
CAT
(30)

Force Curriculum

(21)
SAC
(42)

0

20

40

60

80

100

120

Re
tu

rn

Hopper - Hop

Figure 11: Performance of QARL on locomotion problems, i.e., Quadruped and Hopper (see the
title of each boxplot), evaluated at the end of training against an adversary trained against the frozen
trained protagonist (left column) and without an adversary (right column). The number next to the
name of each algorithm is the average performance across 10 seeds.
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Figure 12: Robustness analysis on Ball-in-cup and Reacher (see the title of each heatmap set). Each
heatmap shows the performance obtained for varying properties of the environment, described in the
x − y axes. The number next to the name of each algorithm is the average performance across 10
seeds.
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Figure 13: Robustness analysis of QARL and baselines on balancing and locomotion problems, i.e.,
Cartpole, Cheetah, Walker, and Hopper (see the title of each heatmap set). Each heatmap shows the
performance obtained for varying properties of the environment, described in the x − y axes. The
number next to the name of each algorithm is the average performance across 10 seeds.
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Figure 14: Robustness analysis of QARL and baselines on locomotion problems, i.e., Quadruped,
Cheetah, Walker, and Hopper (see the title of each heatmap set). Each heatmap shows the perfor-
mance obtained for varying properties of the environment, described in the x− y axes. The number
next to the name of each algorithm is the average performance across 10 seeds.
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Figure 15: Robustness analysis of QARL trained with several values of DKL constraint (ϵ) on three
selected MuJoCo control problems. Each heatmap shows the performance obtained for varying
properties of the environment, described in the x− y axes. Each heatmap is titled with the value of
ϵ used during training followed by the average performance across 10 seeds in brackets.
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Figure 16: (a) Mean temperature of QARL adversary during training in the ‘Cartpole - Swingup’
environment across several values of DKL constraint (ϵ). (b) Evolution of adversary temperature
distribution from high (light) to low (dark) as the curriculum progresses.

C.2 QARL PROGRESSION AND ABLATION

Figure 15 compares the robustness of agents trained with QARL across several values of the DKL

constraint (ϵ) in Equation (10). It is seen that too-high and too-low values of ϵ result in suboptimal
robustness, indicating that an intermediate value is generally preferable. Figure 16a also suggests
that an intermediate value for ϵ allows the temperature curriculum to progress at an appropriate pace.
Lower values of ϵ cause the automatic curriculum to progress too slowly to obtain a rational adver-
sary at the end of training. Meanwhile, higher values of ϵ result in large jumps of the temperature
distribution between iterations, causing changes in adversary behavior that are too drastic for the
protagonist to adapt to, curtailing agent performance, and preventing the curriculum from progress-
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Figure 17: Robustness analysis of QARL trained with several values of performance threshold ξ in
the Cheetah MuJoCo environment. Each heatmap shows the performance obtained after training for
varying properties of the environment, described in the x - y axes. Each heatmap is titled with the
value of ξ used during training followed by the average performance across 10 seeds in brackets.

ing. In practice, some initial tuning of the DKL constraint hyperparameter is sufficient to obtain a
single value for ϵ that enables robust behavior across all environments.

Figure 16b shows the evolution of the gamma distribution of the temperature α of the adversary
pω(α). We start from a gamma distribution with a high mean to sample high temperatures. The ini-
tial low rationality of the adversary enables high protagonist agent performance due to the relative
simplicity of the maximum entropy minimax optimisation. Progressively, the mean of the distribu-
tion approaches 0, and the variance decreases. The resulting protagonist agent is endowed with high
robustness and performance despite the relative complexity of the saddle point Nash equilibrium
optimisation.

Figure 17 ablates the value of the performance threshold ξ in the MuJoCo Cheetah environment. It
is generally found that low (but not extremely low) values of ξ result in stable convergence of the
curriculum, e.g. ξ = 20 and ξ = 30 in Figure 17, as these values allow the curriculum to progress as
long as the protagonist is not catastrophically failing at the task. Too low values (e.g. ξ = 5) result
in the curriculum dropping too fast, whereas too high values (e.g. ξ = 50, ξ = 100) result in the
curriculum failing to progress since the agent is required to reach an unreasonable threshold.

Figure 18 tests the importance of distinct temperatures for the protagonist and adversary agents. As
the aim of QARL is to robustify the protagonist agent, it attempts to solve a heterogeneous QRE as
discussed in Chapter 4 of Goeree et al. (2016). We choose not to excessively bound the rationality
of the protagonist so that it can reasonably solve the task at each iteration and efficiently progress to
the end of the curriculum, where the robustness benefits are maximised.
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Figure 18: Ablation comparing heterogeneous QARL (ours) to homogeneous QARL over the Chee-
tah and Hopper environments across 10 seeds. (a) and (b) show heatmaps of performance for varying
properties of the environment described in the x− y axes. Each heatmap is titled with the algorithm
and the average performance in brackets. (c) and (d) show the performance during training against
an entropy-regularised adversary. The dashed lines indicate the performance threshold ξ for each
environment. (e) and (f) show the curriculum temperature during training. Note that in the ho-
mogeneous case, both agents follow the temperature as dictated by the curriculum, whereas in the
heterogeneous case, the protagonist agent follows the default temperature schedule of SAC (not
shown here), like that shown in Figure 6a.
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