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Abstract

Direct Preference Optimization (DPO) is a001
widely adopted offline algorithm for preference-002
based reinforcement learning from human feed-003
back (RLHF), designed to improve training004
simplicity and stability by redefining reward005
functions. However, DPO is hindered by sev-006
eral limitations, including length bias, memory007
inefficiency, and probability degradation. To008
address these challenges, we propose Length-009
Controlled Margin-Based Preference Optimiza-010
tion (LMPO), a more efficient and robust alter-011
native. LMPO introduces a uniform reference012
model as an upper bound for the DPO loss, en-013
abling a more accurate approximation of the014
original optimization objective. Additionally,015
an average log-probability optimization strat-016
egy is employed to minimize discrepancies be-017
tween training and inference phases. A key in-018
novation of LMPO lies in its Length-Controlled019
Margin-Based loss function, integrated within020
the Bradley-Terry framework. This loss func-021
tion regulates response length while simultane-022
ously widening the margin between preferred023
and rejected outputs. By doing so, it mitigates024
probability degradation for both accepted and025
discarded responses, addressing a significant026
limitation of existing methods. We evaluate027
LMPO against state-of-the-art preference opti-028
mization techniques on two open-ended large029
language models, Mistral and LLaMA3, across030
six conditional benchmarks. Our experimental031
results demonstrate that LMPO effectively con-032
trols response length, reduces probability degra-033
dation, and outperforms existing approaches.034

1 Introduction035

Human feedback is essential for aligning large lan-036

guage models (LLMs) with human values and ob-037

jectives (Jiang et al., 2024; Chang et al., 2024),038

ensuring that these models act in ways that are039

helpful, reliable, and safe. A common strategy for040

achieving this alignment is reinforcement learn-041

ing from human feedback (RLHF) (Ziegler et al.,042

Figure 1: Comparison with DPO and SimPO under
the Mistral-Instruct and Llama3-Instruct models in the
Arena-Hard benchmark. Our proposed method, LMPO,
achieves the highest win rate while utilizing an excep-
tionally low average token count across both models.

2019; Stiennon et al., 2020; Ouyang et al., 2022), 043

which fine-tunes language models using human 044

evaluations. While RLHF has shown substantial 045

success (Schulman et al., 2017), it also introduces 046

notable challenges in optimization due to its multi- 047

step design. This process first involves training a 048

reward model to evaluate outputs based on human 049

preferences, and then optimizing a policy model to 050

maximize the assigned rewards. The complexity of 051

these sequential steps often complicates the imple- 052

mentation and reduces efficiency (Chaudhari et al., 053

2024). 054
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In response to these challenges, researchers have055

started exploring simpler alternatives that avoid056

the intricate, multi-stage nature of RLHF. One057

promising method is Direct Preference Optimiza-058

tion (DPO) (Rafailov et al., 2024), which stream-059

lines the process by reformulating the reward func-060

tion. This approach enables direct learning of a061

policy model from preference data, eliminating the062

need for a separate reward model. As a result, DPO063

offers greater stability and is more practical to im-064

plement.065

DPO estimates implicit rewards using the log-066

probability ratio between a policy model’s response067

and that of a supervised fine-tuned (SFT) model,068

enabling preference learning without an explicit re-069

ward function. However, this implicit reward may070

misalign with the log-probability metric during in-071

ference. Moreover, DPO’s reliance on both policy072

and SFT models significantly increases GPU us-073

age, especially for LLMs. The DPO loss, derived074

from the Bradley-Terry model, can create train-075

ing imbalances, as it does not ensure an increase076

in the probability of positive samples—potentially077

reducing both positive and negative probability si-078

multaneously. Unlike IPO (Azar et al., 2024),079

which constrains probability variation but weakens080

response distinction, DPO also exhibits length bias,081

favoring longer responses due to preference label082

distribution inconsistencies (Lu et al., 2024). This083

issue, common in multi-stage RLHF methods, al-084

lows models to exploit verbosity for higher rewards085

without improving output quality, often generating086

responses nearly twice as long as labeled data.087

To address these challenges, we introduce a088

novel approach incorporating a length-controlled089

margin-based loss function to mitigate both length090

bias and probability reduction. Our method con-091

sists of two key components: (1) a reference-free092

loss function that reduces memory inefficiency and093

aligns generation metrics via average log proba-094

bility, and (2) a Length-Controlled Margin-Based095

term with two kinds of normalization methods,096

which minimizes probability reduction while al-097

leviating length bias and preserving model perfor-098

mance. In summary, our method offers the follow-099

ing advantages:100

• Memory efficiency: Our method does not rely101

on an extra reference model, making it more102

lightweight and easier to implement compared to103

DPO and other reference-dependent methods.104

• Reduction of length bias and probability105

decrement: By incorporating a specially de- 106

signed margin-based term, our method effec- 107

tively reduces both positive and negative prob- 108

ability decrements, similar to traditional NLL 109

loss, while also addressing length bias without 110

impairing model performance. 111

• Competitive performance: Despite being 112

reference-free, our method demonstrates compet- 113

itive performance when compared to DPO and 114

its variants (Hong et al., 2024a; Ethayarajh et al., 115

2024). This performance advantage is consistent 116

across a variety of training setups and comprehen- 117

sive instruction-following benchmarks, including 118

AlpacaEval 2 (Li et al., 2023) and Arena-Hard 119

v0.1 (Li et al., 2024). 120

2 Related Work 121

Alignment with Reinforcement Learning Rein- 122

forcement learning with human feedback (RLHF) 123

often utilizes the Bradley-Terry model (Bradley 124

and Terry, 1952) to estimate the probability of suc- 125

cess in pairwise comparisons between two indepen- 126

dently evaluated instances. Additionally, a reward 127

model is trained to assign scores to these instances. 128

Reinforcement learning algorithms, such as prox- 129

imal policy optimization (PPO) (Schulman et al., 130

2017), are used to train models to maximize the 131

reward model’s score for the selected response, ul- 132

timately enabling LLMs to align with human pref- 133

erences (Stiennon et al., 2020; Ziegler et al., 2019). 134

A notable example is InstructGPT (Ouyang et al., 135

2022), which showcased the scalability and adapt- 136

ability of RLHF in training instruction-following 137

language models. Alternative approaches, such as 138

reinforcement learning with language model feed- 139

back (RLAIF (Lee et al., 2023)), may also serve 140

as feasible substitutes for human feedback (Bai 141

et al., 2022; Sun et al., 2023). Nevertheless, RLHF 142

encounters challenges, including the need for ex- 143

tensive hyperparameter tuning due to the instability 144

of PPO (Rafailov et al., 2024) and the sensitivity 145

of the reward models (Wang et al., 2024). Conse- 146

quently, there is a pressing demand for more stable 147

preference alignment algorithms. 148

Alignment Without Reward Models Several 149

techniques for preference alignment reduce the re- 150

liance on reinforcement learning. Direct Policy Op- 151

timization (DPO) (Rafailov et al., 2024) is a method 152

that integrates reward modeling with preference 153

learning. And Identity Preference Optimization 154
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(IPO) (Azar et al., 2024) is introduced to mitigate155

potential overfitting issues in DPO. In contrast to156

RLHF and DPO, an alternative approach called157

Kahneman-Tversky Optimization (KTO) (Etha-158

yarajh et al., 2024) is proposed, which does not159

require pairwise preference datasets. Additionally,160

Preference Ranking Optimization (PRO) (Song161

et al., 2024) introduces the incorporation of the162

softmax values from the reference response set into163

the negative log-probability (NLL) loss, allowing164

for a unified approach to supervised fine-tuning and165

preference alignment.166

Alignment Without Reference Models Due to167

the reliance of DPO and DPO-like methods on168

both the policy model and the SFT model dur-169

ing the alignment process, they impose greater170

demands on GPU resources. Several techniques171

have been developed to alleviate this GPU re-172

quirement by eliminating the need for a reference173

model. CPO (Xu et al., 2024) demonstrates that174

the ideal loss function without a reference model175

can serve as the upper bound of the DPO loss,176

with the SFT loss acting as a replacement for the177

KL divergence. ORPO (Hong et al., 2024a) mod-178

els the optimal reward as a log-odds function, re-179

moving the need for an additional fixed reference180

model. MaPO (Hong et al., 2024b) builds on the181

ORPO approach by introducing a margin-aware182

term for aligning diffusion models without a ref-183

erence model. SimPO (Meng et al., 2024) adopts184

a similar reference-free preference learning frame-185

work as CPO but with improved stability due to186

its specific length normalization and target reward187

margin, leading to superior performance in various188

benchmarks.189

3 Method190

In this section, we begin by briefly introducing191

the main concept of DPO. We then propose a uni-192

form, reference-free model based on average log-193

probability to address the memory and speed inef-194

ficiencies of DPO. Next, we incorporate a margin195

term with two kind of normalization and design196

a length-controlled margin-based loss function to197

fully leverage its benefits. Finally, we provide a198

detailed explanation of the margin term, illustrat-199

ing how it reduces length bias and mitigates the200

probability decrement.201

3.1 Direct Preference Optimization (DPO) 202

We derive our method by first examining DPO 203

(Rafailov et al., 2024), which provides a more 204

straightforward optimization goal within the frame- 205

work of RLHF (Ziegler et al., 2019; Stiennon et al., 206

2020). DPO operates on a dataset of source sen- 207

tences, x, paired with both preferred translations, 208

yw, and less preferred ones, yl. This dataset, 209

containing comparison examples, is denoted as 210

D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1
. The loss function for 211

DPO is formulated as a maximum likelihood esti- 212

mation for a policy model parameterized by πθ: 213

L(πθ;πref) =− E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
(1) 214

where πref refers to a SFT model, σ represents 215

the sigmoid function, and β is a scaling hyperpa- 216

rameter. The formulation of the DPO loss is based 217

on a reparameterization of the true reward signal 218

and the corresponding optimal policy, borrowing 219

from the PPO framework (Schulman et al., 2017). 220

This loss allows DPO to be trained in a supervised 221

fine-tuning manner, as it makes exclusive use of 222

labeled preference data without requiring any in- 223

teraction between the agent and its environment 224

which is a shortcoming for PPO. 225

3.2 Revisiting Bradley-Terry Model 226

DPO in Section 3.1 uses a statistical model com- 227

monly used for sporting events called Bradley- 228

Terry. The Bradley-Terry model stipulates that the 229

human preference distribution p∗ can be written as: 230

p∗(yw ≻ yl | x) = exp(r∗(x,yw))
exp(r∗(x,yw))+exp(r∗(x,yl))

.
(2) 231

The BT model used in DPO is the original form. 232

There are some variants that make some improve- 233

ments on the BT model. Rao-Kupper model (Rao 234

and Kupper, 1967) considers model human pref- 235

erence with ties: p∗(yw = yl | x), which means 236

two responses (yw, yl) are considered equal with 237

respect to the prompt x. 238

So in order to better distinguish the two re- 239

sponses, we define the loss response as a home- 240

filed team in the BT model. And we may incor- 241

porate a home-court advantage by including an 242

intercept term h: 243
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p∗(yw ≻ yl | x) =
exp (r∗(x, yw))

exp (r∗(x, yw)) + h exp (r∗(x, yl))

=
1

1 + h exp (−d(x, yw, yl))
.

(3)244

For DPO, d(x, yw, yl) means the term in func-245

tion σ, which is outlined in Section 3.1. DPO miti-246

gates several issues inherent in conventional RLHF247

techniques and has found widespread application in248

modern models, including Meta’s recently released249

Llama 3.1 model (Dubey et al., 2024). Despite250

these advantages, DPO presents notable drawbacks251

when compared to standard supervised fine-tuning.252

One major limitation is its inefficiency in mem-253

ory usage, as it requires doubling the memory to254

accommodate both the trained policy and the refer-255

ence policy concurrently. Additionally, DPO suf-256

fers from reduced computational efficiency, as the257

model must be executed separately for each pol-258

icy, effectively doubling the processing time. So259

it is of vital importance to investigate a reference260

model-free RLHF method.261

A recent method called CPO(Xu et al., 2024) has262

proved that when πref is defined as πw, an ideal pol-263

icy that precisely aligns with the true data distribu-264

tion of preferred data, the DPO loss L(πθ;πw)+C265

is upper bounded by L(πθ;U), where C is a con-266

stant. So following this proof, we use a uniform267

reference model to approximate d(x, yw, yl):268

d(x, yw, yl) = log πθ(yw|x)− log πθ(yl|x). (4)269

Next, in DPO, the implicit reward is formulated270

using the log ratio of the probability of a response271

between the current policy model and the SFT272

model. However, this reward formulation is not273

directly aligned with the metric used to guide gen-274

eration, which is approximately the average log275

probability of a response generated by the policy276

model. So there is an assumption that this discrep-277

ancy between training and inference phases may278

lead to bad performance. In order to eliminate this279

discrepancy, we replace the log probability with280

the average log probability in Eq. 4:281

d(x, yw, yl) =
β

|yw| log πθ(yw|x)−
β
|yl| log πθ(yl|x).

(5)282

3.3 Length-Controlled Margin-Based Loss283

To ensure a more pronounced separation in re-284

ward scores for responses with greater quality dif-285

ferences, we incorporate a margin term into the 286

Bradley-Terry framework. The modified objective 287

is as follows: 288

d(x, yw, yl) = r∗(x, yw)− r∗(x, yl)− λm(yw, yl, x).

(6) 289

Here, m(yw, yl, x) represents a margin that 290

quantifies the preference strength between the win- 291

ning response yw and the losing response yl for a 292

given input x, while λ is a scaling factor. The func- 293

tion r∗(x, y) provides the reward score for response 294

y conditioned on input prompt x. By including this 295

margin, the model is better able to differentiate 296

reward scores, especially when the quality gap be- 297

tween responses is substantial. 298

Recent approaches have adopted this formula- 299

tion to enhance model performance. For example, 300

the reward models in Llama-2-Chat (Touvron et al., 301

2023) and UltraRM (Cui et al., 2023) use discrete 302

preference scores as margin terms. SimPO (Meng 303

et al., 2024) employs a fixed margin to guarantee 304

that the reward for the preferred response always 305

exceeds that of the less favored one. Despite these 306

advances, issues such as length bias persist. 307

In response to this issue, we introduce the 308

Length-Controlled Margin-Based Loss, which is 309

designed to address several key limitations. First, 310

it explicitly controls the length of generated re- 311

sponses, thereby mitigating the bias towards longer 312

outputs often seen in LLMs. Additionally, the 313

loss function regulates the probability decrease for 314

both selected and rejected responses, further en- 315

suring that the model can more clearly distinguish 316

between correct and incorrect responses. Impor- 317

tantly, this framework also aims to increase the 318

margin between the probabilities of chosen and 319

rejected responses, thus amplifying the model’s 320

capacity to discriminate between high- and low- 321

quality responses. The full formulation of the 322

Length-Controlled Margin-Based Loss is presented 323

below. 324

m(x, yw, yl) = (1− pθ(yw|x)) ·
(
1− (pθ(yw|x)− pθ(yl|x))5

)
.

(7) 325

Normalization: To enhance training stability and 326

regulate the length of model outputs, we employ 327

two distinct normalization techniques: average 328

length normalization and Z-score normalization 329

(Patro, 2015). 330

(1) average length normalization: To mitigate 331

length bias in LLM-generated outputs, we intro- 332
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duce a dynamic scaling factor, defined as |yw|+|yl|
2∗|y|333

to adjust the rewards for both chosen and rejected334

outputs. This factor is incorporated into Eq. 7, mod-335

ifying the probability formulation as follows:336

pθ(y|x) = exp

(
1

|y|
log πθ(y|x) ∗

|yw|+ |yl|
2 ∗ |y|

)
(8)337

(2) Z-score normalization: To stabilize training338

and prevent the loss from being dominated by scale339

variations in m(yw, yl, x), we apply Z-score nor-340

malization to m, yielding:341

m(x, yw, yl) =
m(x, yw, yl)− am

bm
, (9)342

where am and bm denote the mean and standard343

deviation of m computed over the entire training344

process.345

Objective. Finally, we obtain the LMPO finall loss346

function by incorporating the above considerations:347

LLMPO(πθ) = −E(x,yw,yl)∼D

[
log

(
1

1+h exp(−d(x,yw,yl))

)]
.

(10)348

where349

d(x, yw, yl) =
β

|yw|
log πθ(yw|x)−

β

|yl|
log πθ(yl|x)

− λm(x, yw, yl).
(11)350

In summary, LMPO employs an implicit reward351

formulation that directly aligns with the generation352

metric, eliminating the need for a reference model.353

Next, it introduces a margin term m(x,yw,yl)354

with two kinds of normalization methods to help355

separate the winning and losing responses, alle-356

viate length bias and wining response probability357

decrement problems.358

4 Experiment359

4.1 Experimental Setup360

Models and training settings. We perform pref-361

erence optimization with two families of models,362

Llama3-8B(AI@Meta, 2024) and Mistral-7B(Jiang363

et al., 2023) under two setups: Base and Instruct.364

For the Base experimental setup, following365

SimPO, we utilize pre-trained models (alignment-366

handbook/zephyr-7b-sft-full) (Tunstall et al., 2023)367

and (princeton-nlp/Llama-3-Base-8B-SFT) as SFT368

models. These SFT models are then used as the369

foundation for preference optimization on the Ul- 370

traFeedback dataset (Cui et al., 2023), which col- 371

lects feedback (yw and yl) from LLMs of different 372

quality levels. 373

For the Instruct experimental setup, we 374

utilize pre-trained instruction-tuned mod- 375

els (mistralai/Mistral-7B-Instruct-v0.2) and 376

(meta-llama/Meta-Llama-3-8B-Instruct) as 377

SFT models. For a fair comparison, we 378

use the same training data as SimPO: 379

(princeton-nlp/llama3-ultrafeedback) and 380

(https://huggingface.co/datasets/princeton- 381

nlp/mistral-instruct-ultrafeedback) for Llama3-8B 382

and Mistral-7B, respectively. 383

These configurations embody the latest advance- 384

ments, securing our models a place among the top 385

contenders on various leaderboards. 386

Evaluation Benchmarks. We evaluate our mod- 387

els using two widely recognized open-ended 388

instruction-following benchmarks: AlpacaEval 2 389

(Li et al., 2023) and Arena-Hard v0.1 (Li et al., 390

2024). These benchmarks evaluate the models’ con- 391

versational abilities across a wide range of queries 392

and are widely used by the research community 393

(Chang et al., 2024). For AlpacaEval 2, we re- 394

port both the raw win rate (WR) and the length- 395

controlled win rate (LC) (Dubois et al., 2024), with 396

the LC metric designed to mitigate the effects of 397

model verbosity. For Arena-Hard, we report the 398

win rate (WR) against a baseline model. 399

Additionally, we evaluate the models on six 400

downstream tasks in the Huggingface Open Leader- 401

board V1, following SimPO (Meng et al., 2024). 402

These downstream tasks include the AI2 Reasoning 403

Challenge (25-shot) (Clark et al., 2018), HellaSwag 404

(10-shot) (Zellers et al., 2019), MMLU (5-shot) 405

(Hendrycks et al., 2020), TruthfulQA (0-shot) (Lin 406

et al., 2021), Winogrande (5-shot) (Sakaguchi et al., 407

2021), and GSM8K (5-shot) (Cobbe et al., 2021). 408

We report the match accuracy for these conditional 409

benchmarks. Additional details are provided in 410

Appendix A. 411

Baselines We perform a comparative analysis of 412

our method against several state-of-the-art offline 413

preference optimization techniques, including DPO 414

(Rafailov et al., 2024), IPO (Azar et al., 2024), 415

CPO (Xu et al., 2024), KTO (Ethayarajh et al., 416

2024), ORPO (Hong et al., 2024a), R-DPO (Park 417

et al., 2024), and SimPO (Meng et al., 2024). For 418

SimPO, we use the model provided for the Llama3- 419

8B family and replicate the SimPO methodology 420

for the Mistral-7B family in our environment. For 421
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Table 1: AlpacaEval 2 and Arena-Hard results under the four settings. LC and WR denote length-controlled and raw
win rate, respectively. Length denotes the length of the generated prompt. We train SFT models for Base settings on
the UltraChat dataset. For Instruct settings, we follow the training process of SimPO.

Method
Mistral-Base (7B) Mistral-Instruct (7B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) Length WR (%) Length LC (%) WR (%) Length WR (%) Length

SFT 6.2 4.6 1082 3.3 437 17.1 14.7 1676 12.6 486

DPO 15.1 12.5 1477 10.4 628 26.8 24.9 1808 16.3 518
IPO 11.8 9.4 1380 7.5 674 20.3 20.3 2024 16.2 740
CPO 9.8 8.9 1827 5.8 823 23.8 28.8 3245 22.6 812
KTO 13.1 9.1 1144 5.6 475 24.5 23.6 1901 17.9 496
ORPO 14.7 12.2 1475 7.0 764 24.5 24.9 2022 20.8 527
R-DPO 17.4 12.8 1335 9.9 528 27.3 24.5 1784 16.1 495
SimPO 17.7 16.5 1803 14.3 709 29.7 31.7 2350 22.3 572

LMPO 20.9 14.9 1351 13.8 458 29.8 28.0 1881 23.5 485

Method
Llama-3-Base (8B) Llama-3-Instruct (8B)

AlpacaEval 2 Arena-Hard AlpacaEval 2 Arena-Hard

LC (%) WR (%) Length WR (%) Length LC (%) WR (%) Length WR (%) Length

SFT 8.4 6.2 914 1.3 521 26.0 25.3 1920 22.3 596

DPO 18.2 15.5 1585 15.9 563 40.3 37.9 1883 32.6 528
IPO 14.4 14.2 1856 17.8 608 35.6 35.6 1983 30.5 554
CPO 12.3 13.7 2495 11.6 800 28.9 32.2 2166 28.8 624
KTO 14.2 12.4 1646 12.5 519 33.1 31.8 1909 26.4 536
ORPO 12.2 10.6 1628 10.8 639 28.5 27.4 1888 25.8 535
R-DPO 17.6 14.4 1529 17.2 527 41.1 37.8 1854 33.1 522
SimPO 21.6 20.0 1818 26.9 877 43.9 39.0 1788 33.8 502

LMPO 21.3 17.7 1601 30.1 1114 43.7 39.0 1791 34.3 477

the other methods, we report the results provided422

by SimPO. We also tune the hyperparameters for423

SimPO and report the best performance achieved.424

4.2 Main Results425

LMPO achieves competitive performance com-426

pared to existing preference optimization meth-427

ods with controlled length. As shown in Table 1,428

while all preference optimization algorithms im-429

prove over the SFT baseline, LMPO achieves com-430

petitive performance compared to existing methods431

specifically on AlpacaEval 2 and Arena-Hard with432

controlled length.433

AlpacaEval 2: The prompt lengths of LMPO are434

significantly shorter than those of SimPO in three435

of the evaluated settings. Notably, in the case of436

Mistral-Base (7B), LMPO outperforms SimPO by437

3.2% in the LC metric, despite utilizing markedly438

shorter prompt lengths. These results suggest that439

while LMPO may not lead in terms of LC and WR,440

its capacity to achieve competitive performance441

with more efficient prompt lengths positions it as a442

well-rounded model. It strikes a favorable balance443

between performance and efficiency, making it par- 444

ticularly suitable for practical applications where 445

both speed and quality are crucial. 446

Arena-Hard: LMPO achieves the highest win 447

rate while maintaining a shorter prompt length com- 448

pared to many competitors, making it the most ef- 449

ficient in terms of both performance and prompt 450

length. Its ability to excel in competitive tasks 451

while preserving prompt efficiency positions it as a 452

top choice for complex environments. It is worth 453

noting that the prompt length in the Llama-3-Base 454

(8B) setting is unusually longer than that of other 455

methods. This may be due to the updated Llama-3 456

tokenizer occasionally introducing two BOS to- 457

kens, which can influence the evaluation results. 458

Overall, LMPO offers a best-in-class combina- 459

tion of strong performance and prompt efficiency, 460

particularly in Arena-Hard, while remaining highly 461

competitive in AlpacaEval 2. Its ability to balance 462

concise outputs with high-quality performance 463

makes it one of the most practical and effective 464

models across these benchmarks. 465

The importance of the design on the loss term. 466
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Table 2: Ablation studies under Llama-3-Base (8B)
settings. We report the win rate and 95% confidence
interval for Arena-Hard.

Method Arena-Hard

WR (%) 95 CI high (%) 95 CI low (%) Length

SimPO 26.9 28.7 25.1 877

LMPO 30.1 32.4 27.7 1114

w/o Z-score normalization 22.5 25.0 20.0 630
w/o avg-length normalization 27.9 29.6 26.2 843
log function 27.9 30.1 25.9 770
cube function 29.3 31.7 27.4 903
sigmoid function 25.2 27.3 22.5 649

As the core contribution of LMPO is to propose a467

novel loss term m(x, yw, yl) = (1 − pθ(yw|x)) ·468 (
1− (pθ(yw|x)− pθ(yl|x))5

)
, we also evaluate469

other variants of the reference model. Specifically,470

we compare LMPO with three variants:471

• log function: m(x, yw, yl) = (1 − pθ(yw|x)) ·472 (
1
α log(

1−(pθ(yw|x)−pθ(yl|x))
1+(pθ(yw|x)−pθ(yl|x))) + 0.5

)
473

• cube function: m(x, yw, yl) = (1− pθ(yw|x)) ·474 (
1− (pθ(yw|x)− pθ(yl|x))3

)
475

• sigmoid function: m(x, yw, yl) = (1 −476

pθ(yw|x)) ·
(

1

1+exp(
pθ(yw|x)−pθ(yl|x)

β
)

)
477

where α is a hyperparamater for log function and478

β is a hyperparamater for sigmoid function.479

As shown in Table 2, most of the variants out-480

perform SimPO, highlighting the significance of481

the loss term. Furthermore, our proposed refer-482

ence model consistently exceeds the performance483

of other variants, demonstrating the effectiveness484

of the proposed design. However, the prompt485

length of our loss term is the longest among the486

options, which may affect performance. The log487

function achieves better performance with a shorter488

length compared to SimPO. Therefore, exploring489

improved loss functions will be a key direction for490

future experiments in LMPO.491

All key designs in LMPO are crucial. To further492

assess the impact of various components in LMPO,493

we conduct ablation studies by removing key el-494

ements. As shown in Table 2, removing Z-score495

normalization and average-length normalization496

leads to significant performance drops, underscor-497

ing the importance of these components in LMPO.498

However, removing these two terms reduces the499

prompt length, suggesting a need to balance model500

performance with prompt length. Additionally, due501

to resource limitations, certain aspects of LMPO,502

Figure 2: The curves of the chosen (top) and rejected
(bottom) log-probabilities during the training process
in the Llama-3-Base (8B) setting. The red and green
curves represent LMPO and SimPO, respectively.

such as the home-court advantage, were not re- 503

moved, which presents an opportunity for future 504

research. 505

5 Discussion 506

5.1 Reduction of probability decrement 507

First we introduce the loss function SimPO, the loss 508

function for SimPO is formulated as a maximum 509

likelihood estimation for a policy model parameter- 510

ized by πθ: 511

LSimPO(πθ) =− E(x,yw,yl)∼D

[
log σ

(
β

|yw|
log πθ(yw|x)

− β

|yl|
log πθ(yl|x)− γ

)]
.

(12) 512

where γ is a hyperparameter call target reward 513

margin, which is a constant with no gradient. 514

The primary optimization objective in Eq. 12 is 515

to maximize the margin between the chosen and 516

rejected probabilities, without directly controlling 517

either of them. This lack of control may result in 518

a reduction in both probabilities during training. 519

Furthermore, a decrease in the chosen probability 520

contradicts the goal of aligning the language model 521

with human preferences. 522

In LMPO, we introduce a constraint term, 523

1 − pθ(yw|x). By minimizing the loss function, 524

LMPO effectively maximizes the exponentiated 525

7



Table 3: AlpacaEval 2 results for Hyperparameter Se-
lection under Mistral-Base (7B) settings. LC and WR
denote length-controlled and raw win rate, Length de-
notes the length of the generated prompt, STD means
standard deviation of win rate.

Method AlpacaEval 2

Lc (%) WR (%) STD (%) Length

λ=0.05 16.1 14.6 1.1 1751
λ=0.2 16.6 15.0 1.0 1726
λ=1.0 20.9 14.9 1.1 1351

log-probability, implicitly imposing a constraint526

on the log-probability. It is worth noting that the527

constraint term we use is similar to the SFT loss528

employed in CPO (Xu et al., 2024). However, rely-529

ing solely on the SFT loss can impose an excessive530

constraint, which may negatively impact the per-531

formance of the method. Therefore, we combine532

the latent constraint term with a margin term to bal-533

ance the reduction of probability decrement while534

maximizing the margin.535

As shown in Figure 2, it is evident that LMPO536

imposes a constraint on the log-probabilities of537

both chosen and rejected responses, in contrast to538

SimPO. Despite this constraint, LMPO is still able539

to maximize the margin between these two proba-540

bilities, with the margins being similar to those of541

SimPO. By reducing the probability decrement and542

maximizing the margin, LMPO can achieve com-543

petitive performance when compared to SimPO.544

5.2 Hyperparameter Selection545

As shown in Eq. 11, LMPO employs a hyperparam-546

eter λ to control the margin loss term. Additionally,547

since Z-score normalization is applied to compute548

the overall margin loss during the training process,549

adjusting λ can significantly affect m(x, yw, yl),550

thereby influencing the model’s preferences.551

We selected three values for the hyperparame-552

ter λ: 0.05, 0.2, and 1.0, and applied them to the553

LMPO algorithm under the Mistral-Base (7B) set-554

ting. The results of AlpacaEval 2 are presented in555

Table 3. It is evident that as λ increases, the WR re-556

mains relatively stable, while the LC increases with557

λ, and the length of the generated prompt decreases.558

These findings suggest that LMPO has a notable559

impact on prompt length control and performs well560

in scenarios requiring length regulation.561

To demonstrate the effect of hyperparameter se-562

lection on the reduction of probability decrement,563

we present the training curves for these three train-564

Figure 3: The curves of the chosen log-probabilities
during the training process in the Mistral-Base (7B)
setting. The red, green and blue curves represent λ=0.05,
λ=0.2 and λ=1.0, respectively.

ing processes. The results are shown in Figure 3. 565

It is clear that as λ increases, the log-probabilities 566

of the selected prompts decrease significantly, and 567

the corresponding curves decline rapidly. These 568

findings indicate that increasing λ may adversely 569

affect the latent constraint mechanism in LMPO, 570

which is undesirable for its intended performance. 571

Therefore, selecting an appropriate hyperparam- 572

eter for LMPO is crucial, as it depends on the spe- 573

cific scenario. Choosing an optimal hyperparam- 574

eter can strike a balance between achieving better 575

performance in a length-controlled setting and min- 576

imizing the reduction in probability decrement. 577

6 Conclusion 578

In this paper, we introduce LMPO, which uses 579

a length-controlled margin-based loss function to 580

mitigate length bias and probability reduction. It 581

features a reference-free loss for memory efficiency 582

and a margin-based term with two normalization 583

methods to balance probability control and model 584

performance. Without requiring a reference model, 585

it remains lightweight while effectively reducing 586

length bias and probability decrement. Despite its 587

simplicity, the method achieves competitive results 588

compared to DPO and its variants across multi- 589

ple benchmarks, including two open-ended bench- 590

marks: AlpacaEval 2, Arena-Hard v0.1 and six 591

conditional benchmarks used in Huggingface open 592

leaderboard V1. 593

Limitations 594

The constraints of LMPO are outlined as follows: 595

Settings. The settings we use in our paper are 596

based on those from the early version of SimPO. In 597

later versions, SimPO adopts other configurations, 598

8



such as Llama-3-Instruct v0.2 and Gemma. For599

a more in-depth analysis, updating the settings is600

necessary.601

Performance. LMPO does not outperform602

SimPO in AlpacaEval 2 and struggles with down-603

stream tasks, particularly underperforming in math-604

ematical settings like GSM8K. To improve its per-605

formance, further updates are needed, such as se-606

lecting a better loss function and employing more607

effective normalization methods. Additionally, the608

updated Llama3 tokenizer occasionally introduces609

two BOS tokens, which can impact evaluation re-610

sults. For example, this causes an unusually long611

generated prompt for LMPO in AlpacaEval 2 un-612

der the Llama-3-Base setting. Therefore, it may be613

necessary to use the pre-update Llama3 tokenizer.614
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A Evaluation Details 815

We outline the specifics of our evaluation frame- 816

work as follows: 817

• AI2 Reasoning Challenge: A benchmark for 818

evaluating AI scientific reasoning, consist- 819

ing of 2,590 multiple-choice questions (Clark 820

et al., 2018). Each question tests science 821

knowledge and reasoning, with highly chal- 822

lenging distractors designed to confuse non- 823

expert models. 824

• HellaSwag: A benchmark for testing AI com- 825

monsense reasoning, consisting of 70,000 826

multiple-choice questions (Zellers et al., 827

2019). Each question has a context and four 828

endings, with one correct answer. Adversarial 829

distractors make it highly challenging. 830

• MMLU: A benchmark for evaluating AI 831

across several diverse tasks, including reason- 832

ing, knowledge, and language understanding 833

(Hendrycks et al., 2020). It consists of over 834

12,000 multiple-choice questions, testing mod- 835

els’ performance on tasks ranging from gen- 836

eral knowledge to specialized domains. 837

• TruthfulQA: a benchmark for evaluating AI’s 838

ability to generate truthful and factual an- 839

swers, consisting of 818 multiple-choice ques- 840

tions (Lin et al., 2021). It tests models’ ca- 841

pacity to provide accurate information across 842

various domains, with distractors designed to 843

confuse models into providing false answers. 844

• Winogrande: A benchmark for evaluating 845

AI commonsense reasoning, consisting of 846

44,000 sentence-pair questions (Sakaguchi 847

et al., 2021). Each question requires select- 848

ing the correct word to resolve an ambiguity, 849

with challenging distractors that test subtle 850

reasoning abilities. 851

• GSM8K: A benchmark for evaluating AI’s 852

performance on arithmetic problem solving, 853

consisting of 8,000 high-school-level math 854

word problems (Cobbe et al., 2021). It tests 855

models’ ability to reason through multi-step 856

calculations and select the correct solution 857

from multiple choices. 858

• AlpacaEval2: An open-ended, AI-driven 859

generation benchmark designed to compare 860

model performance (Li et al., 2023). The 861
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dataset comprises 805 diverse questions and862

evaluates model responses against GPT-4,863

with GPT-4 serving as the judge (Achiam864

et al., 2023). Additionally, we include a865

length-debiased win rate to minimize poten-866

tial biases favoring longer responses (Dubois867

et al., 2024).868

• Arena-Hard v0.1: Arena-Hard is an enhanced869

version of MT-Bench, consisting of 500 high-870

quality prompts sourced from real user queries871

(Li et al., 2024). GPT-4(0613) is used as the872

baseline model, while GPT-4-Turbo serves as873

the evaluator. We measure the win rate against874

the baseline model.875

We categorize the first six datasets as conditional876

benchmarks, and the last two as open-ended bench-877

marks. Conditional benchmarks require the model878

to produce answers in a specific format, enabling879

the calculation of exact match scores or accuracy.880

Open-ended benchmarks, on the other hand, allow881

for free-form responses, providing more flexibility882

in evaluating the model’s performance.883

For all conditional benchmarks, we employ884

the well-established evaluation tool lm-evaluation-885

harness (Gao et al., 2021).And in order to follow886

Huggingface open leaderboard V1, we use the887

same version of lm-eval repository. 1888

B Downstream Result Analysis889

To demonstrate the effectiveness of our method, we890

first adhere to established evaluation protocols and891

report the results of downstream tasks on the Hug-892

ging Face Open Leaderboard V1 for all models,893

as shown in Table 4. Overall, our findings indi-894

cate that the impact of our method varies across895

different tasks.896

Minimal degradation in knowledge and reason-897

ing abilities. Compared to the SFT model and898

other preference optimization methods, our ap-899

proach largely maintains MMLU performance with900

only a slight decline. This suggests that our method901

is effective in preserving both knowledge and rea-902

soning capabilities.903

Enhancement of Scientific and Commonsense904

Reasoning. For ARC and HellaSwag bench-905

1lm-eval repository of Huggingface open
leaderboard V1: https://github.com/
EleutherAI/lm-evaluation-harness/tree/
b281b0921b636bc36ad05c0b0b0763bd6dd43463

marks, our method generally improves perfor- 906

mance compared to the SFT model and demon- 907

strates competitive effectiveness relative to other 908

preference optimization methods. This improve- 909

ment can be attributed to the preference optimiza- 910

tion dataset we used, which contains prompts re- 911

lated to scientific reasoning and commonsense 912

reasoning—domains that closely align with these 913

tasks. Consequently, our method enhances the SFT 914

model’s capabilities in these areas. 915

Enhancement of Truthfulness. For truthfulqa 916

task, we find that our method improves Truth- 917

fulQA performance compared to the SFT model 918

and nearly all other preference optimization meth- 919

ods. This improvement can be attributed to the 920

preference optimization dataset, which includes in- 921

stances that emphasize truthfulness. As a result, 922

the model gains a better understanding of context 923

and generates more truthful responses. 924

Decline in Mathematical Performance. For the 925

GSM8K task, our method leads to a decline in per- 926

formance compared to the SFT model and other 927

preference optimization methods. Notably, differ- 928

ent preference optimization methods exhibit vary- 929

ing levels of success on this benchmark. We hy- 930

pothesize that the removal of the reference model in 931

our approach may result in a loss of capability for 932

solving complex arithmetic problems. Given the 933

difficulty of the GSM8K benchmark, several meth- 934

ods have been proposed to address this challenge. 935

For instance, Step-DPO (Lai et al., 2024) treats 936

individual reasoning steps as units for preference 937

optimization rather than evaluating answers holisti- 938

cally, thereby enhancing the long-chain reasoning 939

ability of LLMs. 940

In general, our method demonstrates a balanced 941

trade-off in downstream performance. It effectively 942

maintains general knowledge and reasoning abili- 943

ties while enhancing scientific and commonsense 944

reasoning, as well as truthfulness. However, it 945

comes at the cost of reduced mathematical per- 946

formance. These results suggest that the choice 947

of preference optimization dataset plays a crucial 948

role in shaping model capabilities. A deeper and 949

more systematic investigation is necessary to fully 950

understand the broader implications of preference 951

optimization. 952

12

https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463
https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463
https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463


Table 4: Downstream task evaluation results of tasks on the Huggingface open leaderboard V1.

MMLU (5) ARC (25) HellaSwag (10) TruthfulQA (0) Winograd (5) GSM8K (5) Average

Mistral-Base

SFT 60.10 58.28 80.76 40.35 76.40 28.13 57.34
DPO 58.48 61.26 83.59 53.06 76.80 21.76 59.16
IPO 60.23 60.84 83.30 45.44 77.58 27.14 59.09
CPO 59.39 57.00 80.75 47.07 76.48 33.06 58.96
KTO 60.90 62.37 84.88 56.60 77.27 38.51 63.42
ORPO 63.20 61.01 84.09 47.91 78.61 42.15 62.83
R-DPO 59.58 61.35 84.29 46.12 76.56 18.12 57.67
SimPO 59.30 61.86 83.42 46.48 77.19 20.92 58.20
LMPO 58.48 61.43 83.61 50.67 76.87 21.91 58.83

Mistral-Instruct

SFT 60.40 63.57 84.79 66.81 76.64 40.49 65.45
DPO 60.53 65.36 85.86 66.71 76.80 40.33 65.93
IPO 60.20 63.31 84.88 67.36 75.85 39.42 65.17
CPO 60.36 63.23 84.47 67.38 76.80 38.74 65.16
KTO 60.52 65.78 85.49 68.45 75.93 38.82 65.83
ORPO 60.43 61.43 84.32 66.33 76.80 36.85 64.36
R-DPO 60.71 66.30 86.01 68.22 76.72 37.00 65.82
SimPO 59.42 65.53 86.07 70.56 76.01 34.87 65.41
LMPO 59.53 65.27 86.12 70.30 76.16 30.63 64.67

Llama3-Base

SFT 64.88 60.15 81.37 45.33 75.77 46.32 62.30
DPO 64.31 64.42 83.87 53.48 76.32 38.67 63.51
IPO 64.40 62.88 80.46 54.20 72.22 22.67 59.47
CPO 64.98 61.69 82.03 54.29 76.16 46.93 64.35
KTO 64.42 63.14 83.55 55.76 76.09 38.97 63.65
ORPO 64.44 61.69 82.24 56.11 77.51 50.04 65.34
R-DPO 64.19 64.59 83.90 53.41 75.93 39.27 63.55
SimPO 63.94 65.02 83.09 59.44 77.42 31.54 63.41
LMPO 63.94 64.68 83.03 57.98 77.90 36.01 63.92

Llama3-Instruct

SFT 67.06 61.01 78.57 51.66 74.35 68.69 66.89
DPO 66.88 63.99 80.78 59.01 74.66 49.81 65.86
IPO 66.52 61.95 77.90 54.64 73.09 58.23 65.39
CPO 67.05 62.29 78.73 54.01 73.72 67.40 67.20
KTO 66.38 63.57 79.51 58.15 73.40 57.01 66.34
ORPO 66.41 61.01 79.38 54.37 75.77 64.59 66.92
R-DPO 66.74 64.33 80.97 60.32 74.82 43.90 65.18
SimPO 65.72 62.88 78.30 60.74 73.01 50.19 65.14
LMPO 66.08 61.77 76.81 60.06 72.85 43.14 63.45

C Implementation Details953

Training hyperparameters. For LMPO, we954

maintained a consistent batch size of 128 across955

all four experimental settings. The learning rates 956

were configured as follows: 3e-7 for Mistral-Base 957

(7B), 5e-7 for Mistral-Instruct (7B), 6e-7 for Llama- 958

3-Base (8B), and 1e-6 for Llama-3-Instruct (8B). 959
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Table 5: The hyperparameter values in LMPO used for
each training setting.

Setting β h λ Learning rate

Mistral-Base 2.0 e1.6 1.0 3.0e-7
Mistral-Instruct 2.5 e0.25 0.2 5.0e-7
Llama-3-Base 2.0 e1.0 0.2 6.0e-7
Llama-3-Instruct 2.5 e1.4 0.2 1.0e-6

All models were trained for a single epoch us-960

ing a cosine learning rate schedule with a 10%961

warmup phase. Optimization was performed using962

Adam (Kingma, 2014). Furthermore, the maximum963

sequence length was set to 1024 for Mistral-Base964

(7B) and 2048 for all other configurations. We use965

42 as training random seed.966

Hyperparameter in LMPO. Table 5 outlines the967

hyperparameters used for LMPO across four dif-968

ferent settings. For the parameter β, we follow the969

configuration from SimPO. Among these parame-970

ters, h, which represents the home-court advantage,971

typically requires more careful tuning. For λ, we972

set it to 1.0 for Mistral-Base and 0.2 for the other973

settings. As mentioned in the main article, select-974

ing the appropriate value for λ is crucial for LMPO975

performance.976

Evaluation Hyperparameters. The hyperparam-977

eters utilized for evaluation in this study align with978

those adopted in SimPO.2 We sincerely appreciate979

the SimPO team for their generous contributions980

and invaluable insights.981

Computational Environment. All training ex-982

periments reported in this study were performed983

on a system equipped with four A100 GPUs, fol-984

lowing the procedures outlined in the alignment-985

handbook repository.3986

2https://github.com/princeton-nlp/SimPO/tree/
main/eval

3https://github.com/huggingface/
alignment-handbook
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