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Abstract
Federated Graph Learning (FGL) combines the
privacy-preserving capabilities of federated learn-
ing (FL) with the strong graph modeling capa-
bility of Graph Neural Networks (GNNs). Cur-
rent research addresses subgraph-FL only from
the structural perspective, neglecting the propa-
gation of graph signals on spatial and spectral
domains of the structure. From a spatial per-
spective, subgraph-FL introduces edge discon-
nections between clients, leading to disruptions
in label signals and a degradation in the class
knowledge of the global GNN. From a spectral
perspective, spectral heterogeneity causes incon-
sistencies in signal frequencies across subgraphs,
which makes local GNNs overfit the local sig-
nal propagation schemes. As a result, spectral
client drifts occur, undermining global general-
izability. To tackle the challenges, we propose
a global knowledge repository to mitigate label
signal disruption and a frequency alignment to
address spectral client drifts. The combination of
Spatial and Spectral strategies forms our frame-
work S2FGL. Extensive experiments on multiple
datasets demonstrate the superiority of S2FGL.
The code is available at https://github.
com/Wonder7racer/S2FGL.git

1. Introduction
Graph Neural Networks (GNNs) have demonstrated remark-
able efficacy in modeling graph-structured data (Wan et al.,
2025a; Fang et al., 2025), thereby finding applications across
various domains, such as social networks (Fan et al., 2020;
Zhang et al., 2022b), epidemiology (Liu et al., 2024), and
fraud detection (Wang et al., 2019; Tang et al., 2022). How-
ever, in real-world scenarios, graph data is often generated

*Equal contribution 1National Engineering Research Center
for Multimedia Software, School of Computer Science, Wuhan
University, Wuhan, China. Correspondence to: Mang Ye <ye-
mang@whu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1
9

17
25

Partitions

88

92

96

100

SI
S 

(%
)

3D Panel Plot of SIS Percentage by Dataset

(a) (b)

Figure 1. (a) According to existing FGL mainstream research, the
range of 5 to 20 is the closest to real-world application scenarios.
This range is encountering the toughest label signal disruption
challenges. (b) The heat map of Kullback-Leibler divergence of
eigenvalue distributions across clients. Inconsistency in graph
signal frequency of subgraphs leads to spectral client drifts.

at the edge devices rather than in centralized systems (Zhang
et al., 2021a). To address this, Federated Graph Learning
(FGL) has emerged (Fu et al., 2022; Liu & Yu, 2022; Tan
et al., 2025; 2024; Huang et al., 2022; Wan et al., 2024b;
2025b), leveraging the data privacy-preserving capabilities
of Federated Learning (FL) (Huang et al., 2024; 2023b;c;
2022) to enable the efficient distributed training of GNNs
(Huang et al., 2024). A significant use case of FGL is
subgraph-FL, where each participant possesses a subgraph
of the same overarching graph data.

Although numerous FGL methods have attempted to provide
solutions based purely on structure, including identifying
structurally similar collaborators (Baek et al., 2023; Xie
et al., 2021; Li et al., 2024), enhancing structural knowl-
edge exchange (Tan et al., 2023; Huang et al., 2023a; Tan
et al., 2025), and retrieving generic information under struc-
tural shifts (Wan et al., 2024a; Tan et al., 2024). These
approaches overlooked the propagation of graph signals
within the structure. Signal propagation can be analyzed
from two perspectives: the spatial and the spectral domain.
Specifically, the spatial domain governs the explicit trans-
mission of signals among linked nodes, while the spectral
domain characterizes signal diffusion across varying fre-
quency spectra.

From the spatial perspective, due to edge loss, we hypoth-
esize that nodes in subgraph-FL lose label signals from
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Figure 2. Illustration of the problems. (a) From the spatial perspective, nodes in subgraph-FL lose label signals from originally nearby
labeled nodes due to edge loss, namely label signal disruption. Correspondingly, GNNs suffer from poor class knowledge, leading to a
deteriorated global GNN. (b) From the spectral perspective, spectral heterogeneity induces inconsistencies in signal frequencies across
subgraphs, leading to spectral client drifts in the signal propagation schemes of GNNs and degraded global generalizability.

originally nearby labeled nodes. This degradation hampers
the ability of GNNs to learn comprehensive semantic knowl-
edge, resulting in poor global performance and reduced gen-
eralizability. Correspondingly, we define this phenomenon
as Label Signal Disruption (LSD), which naturally ex-
ists in subgraph-FL. For verifying, inspired by graph active
learning research (Han et al., 2023), we investigate how the
Structure Inertia Score (SIS) varies in subgraph-FL. Specifi-
cally, SIS evaluates the influence and significance of labels
on graphs. In Fig. 1(a), we empirically demonstrate that
the SIS initially decreases and then increases as the number
of partitions increases. Correspondingly, existing methods
fail to address LSD and suffer from poor class knowledge.
Based on our analysis, we pose the question: I) How can
we address label signal disruption in subgraph-FL?

From the spectral perspective, inconsistencies in signal fre-
quencies across subgraphs of clients induce spectral client
drifts in the signal transmission schemes of GNNs, thereby
undermining the collaboration. To verify this phenomenon,
we examine graph spectra across clients and demonstrate the
heterogeneity in Fig. 1(b). It reveals inconsistent eigenvalue
distribution across clients. As a result, GNNs learn distinct
signal propagation schemes of subgraphs and optimize in
different spectral directions, leading to spectral client drifts
and degraded generalizability. Based on the above analysis,
we pose the question: II) How can we alleviate spectral
client drifts under spectral heterogeneity?

To address the issue of label signal disruption in Question I),
we propose Node Label Information Reinforcement (NLIR).
Specifically, we leverage structurally representative nodes
to construct a prototype-based global repository of class
knowledge. During training, NLIR calculates the similarity

distribution between all representative prototypes with node
features, which provides multidimensional class localization
of nodes. Furthermore, our strategy injects class knowledge
into the local GNN, effectively mitigating the LSD issue.

Considering the spectral client drift posed by spectral het-
erogeneity in II), we propose Frequency-aware Graph Mod-
eling Alignment (FGMA). Our method utilizes the simi-
larity relationship of the nodes to reconstruct a spectrum
that incorporates GNNs adjacency awareness. FGMA then
projects the high-frequency and low-frequency components
of the features onto this spectrum. Subsequently, by align-
ing the local projections with the global one, we encourage
the GNNs to learn a globally generic frequency processing
scheme, thereby mitigating spectral client drift.

In conclusion, our key contributions are:

• We identify and empirically reveal the issue of label
signal disruption in subgraph-FL. In addition, we re-
veal the spectral heterogeneity in subgraph scenarios.

• We design our framework S2FGL including strat-
egy Node Label Information Reinforcement and
Frequency-aware Graph Modeling Alignment, effec-
tively addressing the label signal disruption and the
challenge of spectral client drifts in subgraph-FL.

• We conduct extensive experiments on various datasets,
validating the superiority of our proposed S2FGL.

2. Related Work
Federated Graph Learning. Federated graph learning
leverages the powerful graph modeling capabilities of GNNs
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along with the privacy-preserving attributes of federated
learning, thus gaining increasing attention these days (He
et al., 2021a; Fu et al., 2022; Liu & Yu, 2022; Wan et al.,
2025b). Current FGL research can generally be catego-
rized into two types: intra-graph FGL and inter-graph FGL.
Intra-graph FGL research primarily focuses on subgraph-FL
scenarios, where each client participates in the collabora-
tion with a part of the whole graph (Zhang et al., 2021b).
Correspondingly, the training targets include missing link
prediction (Chen et al., 2021; Baek et al., 2023), node clas-
sification (Huang et al., 2023a; Li et al., 2024; Wan et al.,
2024a; Zhu et al., 2024), and so on. On the other hand,
clients in inter-graph FGL own independent local graph
data, such as multiple graphs from different domains (Tan
et al., 2023; Xie et al., 2021). In this paper, we focus on
subgraph-FL scenarios of intra-graph FGL. We are the first
to reveal and address the label signal disruption and spectral
heterogeneity challenge among subgraphs, while existing
methods inevitably fail due to the lack of targeted solutions.

Federated Learning. Federated learning (Huang et al.,
2023c; 2024; Yang et al., 2023; Wan et al., 2024a) has
gained increasing attention in recent years as it addresses
the issue of data silos while ensuring data privacy. Several
research directions have emerged from FL, including robust-
ness (Xu et al., 2022; Hong et al., 2023; Zhu et al., 2023;
Fang & Ye, 2022), fairness (Chen et al., 2024; Ezzeldin
et al., 2023; Ray Chaudhury et al., 2022), and asynchronous
federated learning (Xu et al., 2023; Zhang et al., 2023d).
Generally, FL can be categorized into two main types by
their optimization objective: traditional FL (tFL) and per-
sonalized FL (Hu et al., 2024; Shang et al., 2022; Lv et al.,
2024; Smith et al., 2017). Research of tFL aims at ag-
gregating a highly generalizable global model (McMahan
et al., 2017; Li et al., 2020; Acar et al., 2021; Zhang et al.,
2022a). For instance, FedNTD(Lee et al., 2022) preserves
the global perspective on local data for the not-true classes,
FEDGEN (Zhu et al., 2021) ensembles user information in
a data-free manner to regulate local training, SCAFFOLD
(Karimireddy et al., 2020) uses variance reduction for the
client drift phenomenon. Instead, strategies of pFL aim to
customize models that perform optimally for each client
(Wu et al., 2023; Zhou & Konukoglu, 2023; Li et al., 2021;
Zhang et al., 2023b). Specifically, FedALA (Zhang et al.,
2023c) proposed adaptive masks to achieve personalized
aggregation, DBE (Zhang et al., 2023a) stores domain bi-
ases for eliminating them, FedRoD (Chen & Chao, 2022)
leverages two heads for global and personalized tasks.

Graph Spectrum Being related closely to graph connec-
tivity, signal propagation, and structure, graph spectra have
proven essential in performing various tasks on graph-
structured data. For instance, it plays an essential role in
anatomy detection, (Gao et al., 2023; Tang et al., 2022),
graph condensation (Kreuzer et al., 2021; Liu et al., 2023),

and graph contrastive learning (Bo et al., 2023a; Liu et al.,
2022). Additionally, spectral GNNs (Wu et al., 2020) based
on spectral filters are showing powerful ability in modeling
graph data and attracting more attention. Specifically, exist-
ing research either (He et al., 2021b; Defferrard et al., 2016;
He et al., 2022; Wang & Zhang, 2023) leverages various
orthogonal polynomials to approximate arbitrary filters, or
utilizes neural networks to parameterize the filters (Liao
et al., 2019; Bo et al., 2023b). Although the potential of
graph spectrum has been explored in various scenarios and
tasks, the spectral domain in generalizable subgraph-FL has
remained unexplored. Consequently, current methods suf-
fer from optimization diverging on spectra and are trapped
in suboptimal learning. Instead, our approach remarkably
mitigates the challenge by targeted alignment on spectra.

Graph Signal Propagation: Graph signal propa-
gation describes how node signals diffuse on graph
structures. In the spatial domain, propagation occurs
through explicit signal passing along edges. In the
spectral domain, propagation is characterized by how
signals distribute across different frequency compo-
nents. Label Signal Disruption: As subgraphs experi-
ence edge loss, nodes lose critical label signals con-
taining class knowledge from their formerly adjacent
labeled neighbors. Consequently, it limits the ability of
GNNs to capture class distinctions accurately, leading
to a degraded global model. Spectral Client Drifts:
Inconsistencies in signal frequencies on graph spectra
across subgraphs lead to diverging signal propaga-
tion schemes, causing spectral drift and degrading the
generalizability of the global model.

3. Problem Statement
Notation. Let the graph data be represented as G = (V, E),
where V is the set of nodes with |V| = N vertices, and
E ⊆ V × V denotes the set of edges connecting these nodes.
The adjacency matrix is represented by A ∈ RN×N , where
Auv = 1 indicates the presence of an edge euv ∈ E , and
Auv = 0 otherwise. The Laplacian matrix is given by
L = D − A, where D is the degree matrix. The unitary
matrix U is composed of the eigenvectors of L. To distin-
guish between local and global properties, we introduce the
following additional notation: the symbol i represents local
properties or entities, whereas g denotes global properties
or entities. Additional notation includes h, which denotes
the feature vector matrix of the graph G, and h′, represent-
ing the reconstructed feature matrix that emphasizes local
structure. The cosine similarity matrix of h′ is denoted by
S′ and the projections of the feature matrix onto low- and
high-frequency eigenvectors are represented by pl and ph,
respectively.

Definition 3.1. Personalized PageRank (PPR): The PPR
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matrix quantifies the influence each node has on every other
node within the graph and is defined as:

P = α
(
I − (1− α)D−1A

)−1
. (1)

Here, α ∈ (0, 1) is the damping factor, typically set to 0.85,
representing the probability of continuing the random walk.
I is the identity matrix of size N ×N , A is the adjacency
matrix of the graph, and D is the degree matrix with Dii

denoting the degree of node i.

Definition 3.2. Structure Inertia Score (SIS): The SIS
quantifies the cumulative influence of the training nodes on
the entire graph and is defined as:

SIS(P, t) =

n∑
i=1

max
j

(Pi,j · tj) . (2)

Here, P is the PPR matrix, and t ∈ {0, 1}n is a binary
vector indicating the training nodes, where tj = 1 if node
j is part of the training set, and tj = 0 otherwise. The
SIS aggregates the maximum personalized PageRank values
from each node to any labeled node, effectively measuring
the strongest influence each node in the graph receives from
the training set. A higher SIS indicates greater structural in-
ertia, suggesting that the labels have a significant influence
over the network overall structure.

4. Methodology
4.1. Motivation

Signal propagation over graph structures fundamentally un-
derpins the signal transmission paradigm in GNNs. There-
fore, rather than focusing solely on challenges arising from
static graph structures in FGL, as prior works have done, it
is crucial to consider the dynamics of signal propagation in
FGL. Specifically, the spatial domain governs the explicit
transmission of signals between connected nodes, while the
spectral domain captures signal diffusion across different
frequency components. Accordingly, we empirically val-
idate the presence of two major challenges: label signal
disruption and spectral client drifts, from both the spatial
and spectral perspectives.

Motivation of NLIR. Graph data is fragmented across mul-
tiple clients in FGL, which inevitably disrupts these label
signals, especially as the number of partitions increases. La-
bel signal disruption severs key pathways for propagating
label information, resulting in incomplete and biased local
feature representations that ultimately degrade GNNs ability
semantically. For validation, we empirically investigate how
the Structure Inertia Score (SIS) varies in subgraph-FL and
experimentally demonstrate the relationship between the
decrease in SIS and the client scale. Specifically, the SIS
first decreases and then increases as the number of client

partitions increases, highlighting the significant role of LSD
in the observed performance decline. We aim to mitigate
the impact of label signal disruption in FGL by preserving
valuable label knowledge across fragmented data. Corre-
spondingly, Node Label Information Reinforcement (NLIR)
is introduced. By selecting nodes with both structural repre-
sentativeness and rich label information for global reposi-
tory and injecting it during local training, NLIR reduces the
information loss inherent in subgraph partitioning. Specif-
ically, throughout the training process, NLIR assesses the
similarity distributions between node features and all rep-
resentative prototypes, thereby enabling multidimensional
localization of node classes. It effectively reconstructs label
signal pathways within each client, enhancing local feature
modeling by restoring context around labeled nodes.

Motivation of FGMA. We reveal spectral client drifts in
the subgraph scenario, where GNNs across different clients
capture high and low-frequency information inconsistently
due to local adaptations. This inconsistency results from
frequency-based signal propagation variations, which am-
plify biases during collaboration and compromise the gener-
alizability of the global model. Spectral client drifts man-
ifest when models optimized for distinct local frequency
characteristics are combined, leading to a global model that
is unable to generalize well across diverse frequency profiles.
To address spectral client drifts, we propose the Frequency-
aware Graph Modeling Alignment. Specifically, FGMA
constructs the local graph spectra of the GNN adjacency
awareness after calculating node similarity matrix. By pro-
jecting features separately onto high- and low-frequency
components of the reconstructed spectra and aligh the local
and global projections, FGMA promotes the generalizabil-
ity of the global GNN graph signal propagation paradigm,
thereby reducing frequency-based discrepancies duringcol-
laboration.

4.2. Node Label Information Reinforcement

First of all, we introduce the Structure-Aware Label Central-
ity (SALC) metric. The SALC, denoted as ΛSALC

u , is defined
as the combination of the Label Influence Centrality Λl

u and
the Structural Prominence Score Λs

u:

ΛSALC
u = Λs

u + Λl
u, (3)

where Λs
u assesses the structural representativeness of node

u, while Λl
u quantifies the influence propagation of labels.

Λs
u = max

(
P̃u,v · τv

)
, Λl

u =
∑
v∈VL

P̃ (L)
v,u , (4)

where P̃u,v is the (u, v)-th element of the standard Personal-
ized PageRank (PPR) matrix P̃, and τv represents the prior
importance score of node v, typically initialized to 1 for all
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Figure 3. Framework illustration. (a) Node Label Information Reinforcement (NLIR) leverages a prototype-based structurally representa-
tive global repository of class knowledge. It provides multidimensional class localization of nodes through similarity distribution and
allows LFKD to inject the class knowledge during training. (b) Frequency-aware Graph Modeling Alignment (FGMA) aligns local high
and low spectral adjacency awareness with the global GNN for a generic signal propagation scheme, mitigating spectral client drifts.

nodes. The Structural Prominence Score captures the maxi-
mum influence exerted by any node on node u, weighted by
its importance.

As clarified, the PPR matrix used for computing Label In-
fluence Centrality is denoted as P̃(L), and defined as:

P̃(L) = α
(
I− (1− α)D−1A′)−1

.

Here, VL denotes the set of labeled nodes, and P̃
(L)
v,u rep-

resents the influence of node v on node u as captured by
P̃(L). To accurately capture the influence of labeled nodes,
the inclusion of self-loops in A′ ensures that each labeled
node’s own label contributes to its Λl

u. Compared to the intu-
itive approach of directly selecting labeled nodes, the SALC
metric ΛSALC

u considers both structural representativeness
of the nodes and diffusion of label signals, thus avoiding
biases caused by isolated labeled nodes. It is also capable of
selecting unlabeled nodes that still possess rich label signals
and structural advantages. This improves knowledge qual-
ity, enriches the repository, and mitigates the LSD problem.
After computing the SALC scores for all nodes, we rank
the nodes based on their ΛSALC

u values and select the top
K nodes, where the default value of K is 1/3 of the total
number of nodes. Subsequently, for each class c, the local
prototype Hi

c at each client is computed as the mean feature

vector of the selected nodes belonging to class c:

Hi
c =

1

|Vi
c|

∑
u∈Vi

c

hi
u, (5)

where Vi
c represents the set of nodes categorized as class c

on client i, and hi
u is the feature vector of node u on client

i. Once the local prototypes are computed, clients upload
their prototypes to the server along with the node count.
For each class c, the server aggregates the prototypes from
α percent of the clients by weighting each local prototype
according to its sample size. Four global anchor prototypes
are constructed for each class. Each global prototype Hg,k

c

is computed as:

Hg,k
c =

1∑
i∈Nk

c
|Vi

c|
∑
i∈Nk

c

|Vi
c|Hi

c, H =


Hg,1

1

Hg,2
1
...

Hg,4
C

 , (6)

where Hg,k
c represents the k-th global prototype for class c,

N k
c is the set of clients randomly selected to contribute to

the k-th global prototype for class c, and C is the number
of classes. The global repository H contains all the global
prototypes and will be broadcast back to clients. Once the
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global knowledge repository is constructed, it is distributed
to the local clients along with the model parameters. The
global features hg

u used in the following loss formulation
refer to the frozen inference features extracted locally us-
ing the distributed global model. To guide local training,
we introduce a federated knowledge distillation loss func-
tion designed to align local feature representations with the
global prototypes:

LFKD =
1

|Vi|
∑
u∈Vi

KL
(
σ
(
φ(hi

u,H)
)
, σ (φ(hg

u,H))
)
,

(7)
where KL(·, ·) represents the Kullback-Leibler divergence,
and σ(·) is the softmax function applied to similarity scores
computed by the similarity function φ(h,H), which returns
a vector of cosine similarities between the feature h and all
global prototypes.

4.3. Frequency-aware Graph Modeling Alignment

Reconstruct. As defined in Sec. 3, the feature vector matrix
of graph G is denoted as H. In order to emphasize the local
structure and more accurately capture meaningful similar-
ities between nodes, we use the original feature matrix H.
For each node u, we identify its ksim most similar neighbors
based on the cosine similarity of their feature vectors hu.
We then construct a sparse self-similarity matrix S′ as:

S′
u,v =

{
hu·hv

∥hu∥2∥hv∥2
v among the top ksim

0 otherwise
. (8)

To characterize the topological structure between nodes, we
calculate the graph Laplacian matrix L′ based on this sparse
similarity matrix S′ as:

L′ = D′ − S′, (9)

where D′ is the diagonal degree matrix of S′.

Projection. We perform eigendecomposition on the Lapla-
cians L′i and L′g. For L′i, let {ulow,i

m }keig
m=1 be the

eigenvectors corresponding to the smallest eigenvalues
(low-frequency), and {uhigh,i

m }keig
m=1 for the largest eigen-

values (high-frequency). Similarly, for L′g, we obtain
{ulow,g

m }keig
m=1 and {uhigh,g

m }keig
m=1. The feature matrix H is

then projected onto each of these eigenvectors. For instance:

Zlow
m = (ulow

m ulowT
m )H, Zhigh

m = (uhigh
m uhighT

m )H. (10)

Applying these projections for each m ∈ {1, . . . , keig}, we
obtain several sets of projected feature matrices used in the
loss computation. Specifically, local features Hi are pro-
jected onto low/high-frequency eigenvectors of the local
graph, yielding Zi,low

m and Zi,high
m , respectively. Similarly,

frozen global inference features Hg are projected onto corre-
sponding eigenvectors from L′g , yielding Zg,low

m and Zg,high
m .

Loss LFGMA is then defined as the sum of MSE over all
eigenvector-projected pairs:

LFGMA =

keig∑
m=1

(
MSE(Zi,low

m ,Zg,low
m ) + MSE(Zi,high

m ,Zg,high
m )

)
.

(11)
This loss addresses spectral heterogeneity by aligning client
and global signal characteristics in both spectral domains.

Overall Objective. Combining strategies Node Label Infor-
mation Reinforcementand Frequency-aware Graph Mod-
eling Alignment, our framework S2FGLreinforces label
knowledge during local modeling and mitigates spectral
heterogeneity. The final objective is:

L = LCE + λ1LFKD + λ2LFGMA, (12)

where LCE denotes the standard cross-entropy loss for node
classification, while λ1 and λ2 are balancing coefficients for
the proposed methods.

5. Experiments
5.1. Experimental Setup

5.1.1. DATASETS

• Cora (McCallum et al., 2000) dataset consists of 2708
scientific publications classified into one of seven classes.
There are 5429 edges in the network of citations. 1433
distinct words make up the dictionary.

• Citeseer (Giles et al., 1998) dataset consists of 3312 sci-
entific publications classified into one of six classes and
4732 edges. The dictionary contains 3703 unique words.

• Pubmed (Sen et al., 2008) dataset consists of 19717 sci-
entific papers on diabetes that have been categorized into
one of three categories in the PubMed database. The ci-
tation network has 44338 edges. A word vector from a
dictionary with 500 unique terms that is TF/IDF weighted
is used to describe each publication in the dataset.

• Texas and Wisconsin datasets are subsets of the WebKB
dataset (Craven et al., 1998). The WebKB dataset was
introduced in 1998, comprising web pages from the com-
puter science departments of various universities, includ-
ing the University of Texas and the University of Wis-
consin. The dataset is commonly used for tasks such as
webpage classification and link prediction, serving as a
benchmark for evaluating machine learning models in
graph-based learning scenarios.

• Minesweeper (Baranovskiy et al., 2023) dataset is a syn-
thetic graph dataset inspired by the Minesweeper game. In
this dataset, the graph is structured as a regular 100x100
grid, where each node represents a cell connected to its
neighboring nodes, except for edge nodes, which have
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Table 1. Comparison with the state-of-the-art methods on homophilic and heterophilic graph datasets. We report node classification
accuracies and each value difference from FedAvg with the best result in bold.

Methods Cora CiteSeer PubMed Texas Wisconsin Minesweeper

FedAvg [ASTAT17] 81.9 ± 0.7 74.3 ± 0.4 87.3 ± 0.3 72.8 ± 0.1 77.6 ± 0.2 79.6 ± 0.1

FedProx [arXiv18] 82.1 ± 0.5 ↑0.2 74.4 ± 0.3 ↑0.1 87.9 ± 0.4 ↑0.6 73.5 ± 3.7 ↑0.7 77.3 ± 3.4 ↓0.3 79.7 ± 0.1 ↑0.1

FedNova [NeurIPS20] 81.6 ± 1.2 ↓0.3 74.4 ± 0.4 ↑0.1 88.2 ± 0.5 ↑0.9 73.0 ± 4.4 ↑0.2 77.4 ± 4.2 ↓0.2 79.9 ± 0.4 ↑0.3

FedFa [ICLR23] 82.7 ± 0.5 ↑0.8 74.9 ± 0.6 ↑0.6 87.8 ± 0.5 ↑0.5 73.9 ± 3.6 ↑1.1 78.1 ± 4.6 ↑0.5 80.1 ± 0.3 ↑0.5

FedSage+ [NeurIPS19] 82.3 ± 0.7 ↑0.4 75.2 ± 0.3 ↑0.9 88.2 ± 0.7 ↑0.9 73.7 ± 4.0 ↑0.9 79.0 ± 3.3 ↑1.4 79.9 ± 0.2 ↑0.3

FedStar [AAAI23] 82.6 ± 0.5 ↑0.7 74.5 ± 0.3 ↑0.2 88.1 ± 0.6 ↑0.8 74.3 ± 2.7 ↑1.5 78.3 ± 4.7 ↑0.7 79.8 ± 0.1 ↑0.2

FedPub [ICML23] 82.3 ± 0.8 ↑0.4 74.8 ± 0.7 ↑0.5 88.0 ± 0.4 ↑0.7 73.4 ± 3.5 ↑0.6 77.8 ± 3.1 ↑0.2 79.9 ± 0.2 ↑0.3

FGSSL [IJCAI23] 82.6 ± 0.4 ↑0.7 74.9 ± 0.2 ↑0.6 87.6 ± 0.7 ↑0.3 73.6 ± 4.6 ↑0.8 77.8 ± 3.8 ↑0.2 79.9 ± 0.2 ↑0.3

FedGTA [VLDB24] 82.4 ± 0.8 ↑0.5 75.1 ± 0.5 ↑0.8 87.7 ± 0.9 ↑0.4 72.6 ± 4.2 ↓0.2 77.8 ± 4.1 ↑0.2 80.2 ± 0.3 ↑0.6

FGGP [AAAI24] 82.5 ± 0.4 ↑0.6 74.7 ± 0.5 ↑0.4 87.5 ± 0.4 ↑0.2 73.6 ± 2.8 ↑0.8 78.2 ± 3.4 ↑0.6 80.4 ± 0.3 ↑0.8

S2FGL (ours) 83.4 ± 0.5 ↑1.5 76.0 ± 0.3 ↑1.7 88.6 ± 0.1 ↑1.3 74.7 ± 0.1 ↑1.9 78.4 ± 0.1 ↑0.8 80.5 ± 0.3 ↑0.9

fewer neighbors. The primary task is to predict which
nodes contain mines. This dataset is commonly used to
evaluate the performance of GNNs under heterophily.

5.1.2. BASELINES

We compare S2FGL with several state-of-the-art ap-
proaches, including traditional federated learning methods
such as FedAvg (McMahan et al., 2017), FedProx (Li
et al., 2020), and FedNova (Wang et al., 2020); person-
alized federated learning algorithms like FedFa (Zhou &
Konukoglu, 2023); federated graph learning approaches in-
cluding FGSSL (Huang et al., 2023a) and FGGP (Wan
et al., 2024a); as well as personalized federated graph learn-
ing methods such as FedSage+ (Zhang et al., 2021b), Fed-
Star (Tan et al., 2023), FedPub (Baek et al., 2023), and
FedGTA (Li et al., 2024). This comprehensive set of base-
line methods spans various federated and graph learning
paradigms, allowing us to evaluate the performance and ad-
vantages of our proposed S2FGL across diverse scenarios.

5.1.3. IMPLEMENT DETAILS

Following prevalent methodologies in FGL research, we
employ the Louvain community detection algorithm to par-
tition the graph into subgraphs assigned to different clients.
For each dataset, we divide the nodes into training, vali-
dation, and testing sets with ratios of 60%, 20% and 20%
respectively. Additionally, we simulate various collabora-
tive scenarios by configuring the number of clients to 10 for
Cora, Citeseer, Pubmed, and Minesweeper datasets, and 3
for Texas and Wisconsin datasets. The primary evaluation
metric is the node classification accuracy on the clients’ test
sets. We conduct each experiment five times and report the
average accuracy from the last five communication epochs
as the final performance. We conduct experiments with the

ACM-GCN (Luan et al., 2022), which achieves a strong
ability on both homophilic and heterophilic graph datasets.

5.2. Experiment Results

In this section, we comprehensively evaluate the proposed
S2FGL by addressing the following questions:

• Q1: How does S2FGL perform compared to exist-
ing methods in subgraph-FL?

• Q2: What is the impact of each component of
S2FGL on its performance?

• Q3: Does S2FGL exhibit good stability?

• Q4: Does the effectiveness of NLIR help alleviate
the impact of SIS decline in subgraph-FL?

Q1:How does S2FGL perform compared to existing
methods in subgraph-FL?

We present the results of node classification tasks across var-
ious FGL scenarios using multiple graph datasets, and we
summarize the final average test accuracy in Tab. 1. Our pro-
posed method, S2FGL, demonstrates superior performance
by outperforming all other baseline approaches in five out
of the six datasets. This consistent superiority highlights the
effectiveness of S2FGL in handling diverse graph structures
and data distributions inherent to different datasets.

Q2:What is the impact of each component of S2FGL on
its performance?

To evaluate the individual contributions of the proposed
NLIR and FGMA strategies within the S2FGL framework,
we conducted ablation experiments on the Cora and Cite-
seer datasets. In this study, we systematically removed each
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(a) Cora (b) Citeseer

Figure 4. Analysis of the performance growth between S2FGL and
FedAvg under varying scaling factors of NLIR and FGMA

component to assess its impact on model performance. The
results of the ablation study are presented in Tab. 2 which
demonstrate that both NLIR and FGMA independently
contribute to the overall performance.

Dataset
NLIR FGMA

Cora Citeseer

✗ ✗ 81.9 74.3

✓ ✗ 83.2 75.6

✗ ✓ 82.6 75.0

✓ ✓ 83.4 76.0

Table 2. Ablation study of key components (NLIR, FGMA) of
S2FGL on Cora and Citeseer datasets.

Q3: Does S2FGL exhibit good stability?

We evaluated the stability and adaptability of our approach
on the Cora and Citeseer datasets through separate hyperpa-
rameter tuning and client partitioning experiments. Specif-
ically, we varied the scaling factors of NLIR and FGMA
to investigate how different parameter settings influence
the model performance and robustness. Additionally, we
conducted experiments with varying client scales

Varying Scaling Factors of NLIR and FGMA. For the
NLIR method, we test scaling factors set to 100, 50, 10, and
1. For the FGMA method, the settings were 0.01, 0.05, 0.5,
and 1. The results, shown in Fig. 4, indicate that our method
maintains consistent performance across these varying hy-
perparameter configurations.

Varying Client Scales. We assessed performance with dif-
ferent numbers of client partitions: 5, 10 and 20 clients. We
compared S2FGL with other methods, including FedAvg ,
FedProx , and FGSSL. The outcomes, presented in Fig. 5,
demonstrate that S2FGL consistently delivers reliable re-
sults regardless of the number of partitions.

Overall, S2FGL exhibits strong stability and adaptability
across varying hyperparameter settings and client partition
configurations on both the Cora and Citeseer datasets. These
findings confirm that S2FGL not only sustains its effective-

(a) Cora (b) Citeseer

Figure 5. Analysis of performance under different client numbers.

ness under diverse conditions but also adapts seamlessly
to varying client scales, demonstrating its suitability for
real-world subgraph-FL scenarios.

Q4: Does the effectiveness of NLIR help alleviate the
impact of SIS decline in subgraph-FL? Through experi-
ments, we observe that as the number of clients increases,
the Subgraph Information Similarity (SIS) consistently de-
creases, indicating greater structural divergence across local
graphs. Notably, the performance gains brought by NLIR be-
come more pronounced under these conditions. This trend,
illustrated in Fig. 6, highlights the targeted effectiveness of
NLIR in mitigating the adverse effects of reduced SIS in
subgraph-FL settings.

Figure 6. Performance improvement of global GNN using the
NLIR method in relation to the variation of the Structure Iner-
tia Score (SIS) across different numbers of client partitions.

6. Conclusion
In this paper, we identify two critical challenges in subgraph-
FL from the perspective of graph signal propagation: label
signal disruption and spectral client drifts. To overcome
these obstacles, we propose two key strategies: NLIR and
FGMA. NLIR constructs a global repository of structurally
representative nodes with rich label influence to deal with
the LSD issue, while FGMA promotes a generic signal
propagation paradigm, mitigating spectral client drift. By
integrating these strategies, S2FGL effectively addresses
both the spatial and spectral challenges in FGL. Extensive
experiments on various datasets validate that S2FGL signif-
icantly boosts global generalizability.
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