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ABSTRACT

Interpretability has long influenced the selection of machine learning models, yet
the role of data representations remains relatively underexplored. Although model
choice is known to influence performance, the interpretability of embedding mod-
els can also be equally critical. In this study, we present a comparative analy-
sis of various black-box and interpretable embedding models within multiple do-
mains, including natural language processing and computer vision. We introduce a
domain-agnostic quantitative score called Embedding Interpretability Score (EIS)
to measure the interpretability of embedding models based on three fundamental
properties: dimensionality, which reflects representational compactness; sparsity,
which highlights feature selectivity; and clusterability, which measures semantic
organization. Our results indicate that, in general, the choice of the embedding
technique exerts a significant influence on downstream performance in compari-
son to classifier selection. Interestingly, the relationship between interpretability
and performance differs across modalities: in NLP tasks, higher-performing em-
beddings tend to have lower interpretability, whereas in CV tasks, embeddings
with higher interpretability often achieve better downstream performance.

1 INTRODUCTION

Machine learning models have become integral to society, shaping critical aspects of daily life such
as employment, credit, education, and legal decision-making (Dixon et al., 2020; Nietzel, 2022;
Barocas & Selbst, 2016; Habehh & Gohel, 2021). While black-box models have gained significant
popularity for their ability to uncover complex patterns in data, their lack of transparency raises
concerns regarding trust, accountability, and responsible decision-making (Rudin, 2019; Lipton,
2018; Lakkaraju et al., 2016; Mishra et al., 2021). Consequently, there has been considerable debate
regarding the use of black-box versus inherently interpretable models (Rudin, 2019; Liao et al.,
2024; Ghasemi et al., 2023; Atrey et al., 2025). Yet, comparatively little attention has been paid to
the interpretability of data representations in machine learning.

Modern machine learning systems often rely on state-of-the-art embedding models to encode data
into informative representations (Devlin et al., 2019; Caron et al., 2021; Liu et al., 2019; Mikolov
et al., 2013). These embeddings transform raw inputs into vector representations that capture se-
mantic or structural information, enabling downstream tasks such as classification, retrieval, and
generation. However, while the choice of model is known to impact performance, the interpretabil-
ity of these embeddings themselves remains underexplored. Less complex embedding models, such
as Word2Vec (Mikolov et al., 2013) or GloVe (Pennington et al., 2014), are often more interpretable,
as their representations are simpler and easier for humans to relate to semantic meaning. In contrast,
more complex embeddings, such as those produced by BERT (Devlin et al., 2019), typically achieve
higher task performance but are less transparent, making it challenging to understand how they
encode and organize information. Understanding which embeddings are more interpretable can pro-
vide insights into the transparency and trustworthiness of the overall system, guiding both model
selection and deployment.

Main Contributions: Towards addressing this challenge, in this work, we propose a domain-agnostic
methodology to measure the interpretability of embedding models. Our proposed interpretability
score — which we call the Embedding Interpretability Score (EIS) — takes into account three
fundamental properties: dimensionality, sparsity, and clusterability. We demonstrate the use of the
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interpretability score on a diverse range of embedding models across classification tasks within mul-
tiple domains, including natural language processing (NLP) and computer vision (CV). Additionally,
we analyze the trade-off between embedding interpretability and performance, showing that while
less interpretable embeddings often achieve higher accuracy, interpretable embeddings can remain
competitive and provide greater transparency. Our results highlight that embedding model choice
can even have a greater impact on downstream performance than classifier selection, underscoring
the importance of considering interpretability in representation learning. Importantly, we reveal a
striking domain-specific trend: in NLP tasks, embeddings with higher predictive accuracy tend to
be less interpretable, whereas in CV tasks, embeddings that are more interpretable often achieve
superior performance. To summarize, our main contributions are:

• We propose a domain-agnostic score to quantify embedding interpretability – that we call Em-
bedding Interpretability Score (EIS) – relying on dimensionality, sparsity, and clusterability.

• We evaluate EIS across a diverse set of embedding models in multiple domains, including NLP
and CV, demonstrating its practical utility for comparing embeddings.

• We reveal an interesting domain-specific trend: in NLP, embeddings with higher predictive
accuracy tend to be less interpretable, whereas in CV, embeddings that are more interpretable
often achieve superior performance.

Our results underscore that embedding choice can have a larger impact on downstream performance
than classifier selection, emphasizing the importance of interpretability in representation learning.
Furthermore, our approach enables pairwise comparisons and ordering among different embedding
models based on their relative degree of interpretability, rather than just placing them in the tradi-
tional glass-box or black-box categories.

2 RELATED WORK

Prior work has aimed to design embeddings with dimensions that are directly interpretable. For in-
stance, Trifonov et al. (2018) introduced sparse sentence embeddings and a novel automated metric
based on topic coherence to quantify interpretability, showing that sparsity can improve seman-
tic transparency without sacrificing performance. Similarly, Senel et al. (2018) analyzed semantic
structure in word embeddings and also leveraged word category datasets to quantitatively assess
interpretability, highlighting the potential for dataset-driven evaluation methods. Chandrahas et al.
(2020) extended these ideas to knowledge graph embeddings by designing knowledge graph em-
beddings and quantitatively evaluating their semantic coherence. These works focus on designing
embeddings that are interpretable by construction, whereas our approach provides a model-agnostic,
quantitative framework to evaluate interpretability across multiple embedding types and domains.
These works emphasize designing embeddings that are interpretable by construction.

Beyond construction, several studies have focused on systematically assessing interpretability. Fang
et al. (2022) examined the construct validity of text embeddings in survey contexts, while Santis et al.
(2025) proposed linearly-interpretable concept embeddings that explicitly link dimensions to seman-
tic categories. Sun et al. (2025) introduced CQG-MBQA, a framework for producing interpretable
semantic text embeddings, in which each dimension corresponds to answers to low-cognitive-load
binary questions, making the embedding space inherently human-interpretable. Moreover, Opitz
et al. (2025) outlined principles for designing and evaluating interpretable embeddings, emphasiz-
ing sparsity, semantic alignment, and the explainability of similarity relationships. Together, these
works underscore the value of quantitative evaluation.

In addition to embedding interpretability, previous studies have examined the general trade-off be-
tween model interpretability and accuracy. Rudin (2019) argues that black-box models often lead
to unreliable outcomes in high-stakes decisions, advocating for inherently interpretable models that
improve transparency and trust. Atrey et al. (2025) conducted a comparative study of black-box and
interpretable models in the task of predicting product ratings from reviews. They introduced a Com-
posite Interpretability (CI) score that incorporates expert assessments of simplicity, transparency,
and explainability to systematically rank models by interpretability.

While prior work has focused on designing embeddings with interpretable dimensions or optimiz-
ing individual properties such as sparsity or clusterability, our approach stands out in several ways.
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It combines multiple interpretability properties into a single score, providing a holistic assessment
rather than evaluating each property in isolation. The method is domain-agnostic, implying that is
applicable across multiple domains such as NLP and CV. Additionally, the method can be validated
empirically through measurable embedding properties and downstream task performance, demon-
strating its meaningfulness without relying on expert assessments. Importantly, our methodology
provides a pathway for ranking embedding models by their degree of interpretability, going beyond
the traditional dichotomy of glass-box versus black-box models.

3 PROPOSED INTERPRETABILITY SCORE

We propose a domain-agnostic methodology for quantifying the interpretability of embedding mod-
els, independent of the downstream classifier. Our approach integrates three fundamental crite-
ria—Dimensionality, Sparsity, and Clusterability—each normalized to a fixed reference scale and
aggregated into an embedding interpretability score. By deriving sparsity and clusterability from a
pooled set combining all test examples across the datasets within each domain, the methodology
ensures reproducible, dataset-aware comparisons without biasing toward a single benchmark. In
contrast, dimensionality is an intrinsic property of the embedding architecture and does not depend
on the data. Taken together, the proposed score balances these criteria without prioritizing any sin-
gle one, enabling consistent evaluation of embedding models within diverse domains (e.g., NLP, CV,
and multi-modal tasks).

Dimensionality. Embedding dimensionality refers to the size of the vector representing each data
point in the embedding space. Lower-dimensional embeddings are generally easier to visualize and
reason about, whereas higher-dimensional embeddings can encode more complex patterns at the
cost of interpretability. To quantify this effect, we compute the log-scaled dimensionality of each
embedding and normalize it to a fixed reference range (e.g., 64 to 2048), as shown in Equation 1.
This normalization ensures comparability across models with widely varying representational sizes.

De =
log10(dmax)− log10(de)

log10(dmax)− log10(dmin)
, with De ∈ [0.05, 1] (1)

where: De is the normalized dimensionality for embedding e; de is the dimensionality of embedding
e; and dmin and dmax represent the fixed reference range dimensionality (e.g., 64-2048). The range
of the fixed reference range has been selected to cover the dimensionalities of nearly all popular
embedding models used in prior work, ensuring a consistent comparison across models.

Sparsity. We define sparsity using the Hoyer measure (Hoyer, 2004), a threshold-free metric that
quantifies the concentration of values in the embedding space. Sparse embeddings are often more
interpretable because individual dimensions correspond to fewer, more distinct features. The Hoyer
sparsity (originally ranging from −1 to 1) is normalized to the [0.05, 1] range, ensuring compara-
bility across embeddings of different dimensionalities. A score of 0.05 corresponds to a maximally
dense embedding, while a score of 1 indicates maximal sparsity. To reduce the skewness of the
raw Hoyer measure and ensure that differences in sparsity are more evenly reflected across the full
range, we apply a square-root transformation. This makes the score more balanced and sensitive
across both low and high sparsity values while keeping it normalized to [0.05, 1]. The normalized
sparsity score for an embedding e is defined as:

Se =

√
de − ∥x∥1

∥x∥2√
de − 1


1
2

, with Se ∈ [0.05, 1] (2)

where: Se is the Hoyer sparsity score for embedding e; de is the dimensionality of the embedding
e; x is the embedding vector; ∥x∥1 is the L1 norm; and ∥x∥2 is the L2 norm.

Clusterability. Embedding clusterability reflects how effectively embeddings capture discrete se-
mantic or visual concepts. We approximate this property using the silhouette coefficient, which
quantifies both cohesion (within-cluster compactness) and separation (between-cluster distance)
(Rousseeuw, 1987). Values closer to 1 indicate well-separated, coherent clusters, suggesting the
embedding organizes concepts in a human-aligned manner. Distances are measured using cosine
similarity, and we apply k-means clustering with the number of clusters equal to the number of tar-
get classes in the dataset (e.g., five clusters for a five-class task). To ensure comparability with other
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criteria, we normalize the silhouette score into the [0, 1] range, as shown in Equation 3.

SS =
1

N

N∑
i=1

b(i)− a(i)

max(a(i), b(i))
, Ce =

SS + 1

2
∈ [0.05, 1] (3)

where: SS is the silhouette score; N is the number of points in the reference dataset; a(i) is the
average distance between i and all other points in its cluster; b(i) is the minimum average distance
from i to points in other clusters; and Ce is the normalized clusterability score for embedding e. To
ensure alignment with the downstream task, the number of clusters used in the silhouette score is
set equal to the number of target classes in the dataset. For example, in our classification setting
with five rating levels, we use five clusters. This choice grounds the clusterability score in the task-
specific structure while still reflecting general representational properties of the embeddings.

The final EIS is defined as the simple geometric mean of the three normalized components: dimen-
sionality, sparsity, and clusterability, as shown in Equation 4.

EIe = (De · Se · Ce)
1
3 , (4)

where De, Se, and Ce denote the normalized dimensionality, sparsity, and clusterability scores,
respectively. The geometric mean ensures that each aspect meaningfully influences the overall score:
low values strongly reduce it, while high values contribute proportionally, producing a balanced,
transparent, and reproducible measure of embedding interpretability. While we have demonstrated
the use of EIS on NLP and CV in this study, the framework is broadly applicable to other modalities
such as speech and even multi-modal domains.

4 EXPERIMENTAL SETUP

4.1 DATASETS

To evaluate the proposed interpretability score across diverse representation learning settings, we
employ datasets from both NLP and CV. This enables us to examine whether the interpretability
framework yields consistent and meaningful results within each domain, while avoiding direct com-
parisons across modalities.

Our NLP datasets are retrieved from a larger database consisting of a large crawl of product reviews
from Amazon (Ni et al., 2019). The database contains 82.83 million unique reviews from approx-
imately 20 million users. The reviews are in text format while the ratings are in numerical format
ranging from 1 to 5. To analyze product reviews and ratings, 15,000 product reviews and ratings
have been extracted from the following three product categories leading to three datasets: (i) Cell
Phones and Accessories (CPA); (ii) Electronics (ET); and (iii) Video Games (VG). To ensure a bal-
anced dataset, each category consists of 1,000 reviews and ratings grouped by each rating star (1-5),
consisting of a total of 5,000 reviews. Considering three product categories enables us to assess the
robustness and generalizability of results across varied product contexts.

Our CV datasets are retrieved from three publicly available sources: CIFAR-10, STL-10, and
Fashion-MNIST. CIFAR-10 consists of 60,000 color images of size 32 × 32 across ten object
classes, with 50,000 training and 10,000 test examples (Krizhevsky, 2009). STL-10 contains 5,000
labeled training images and 8,000 test images at a higher resolution of 96×96, also spanning ten ob-
ject categories (Coates et al., 2011). Fashion-MNIST is a modern drop-in replacement for MNIST,
comprising 70,000 grayscale images of size 28 × 28 depicting clothing items from ten categories,
split into 60,000 training and 10,000 test examples (Xiao et al., 2017). To maintain consistency in
evaluation, we use a stratified subset of 5,000 images per dataset, ensuring an equal number of sam-
ples across all classes. Using these datasets allows us to test embedding and classifier performance
across both simple and complex visual tasks, demonstrating the generalizability of our approach in
computer vision contexts.

4.2 EMBEDDING MODELS

We evaluate a diverse set of NLP and CV embedding models to study their interpretability and
downstream classification performance. The NLP embeddings include Word2Vec (W2Vec), which
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produces static word embeddings using co-occurrence statistics (Mikolov et al., 2013); MiniLM, a
compact transformer model designed for efficient contextualized representations (Wang et al., 2020);
MiniLM-100d, a lower-dimensional variant of MiniLM reduced to 100 dimensions using principal
component analysis; Para-MiniLM, a MiniLM model fine-tuned for semantic textual similarity
tasks; MPNet, a transformer that incorporates masked and permuted language modeling (Song et al.,
2020); BERT, a large transformer pre-trained on masked language modeling (Devlin et al., 2019);
DistilRoBERTa, a distilled version of RoBERTa with reduced size; RoBERTa, a large transformer
pre-trained on extensive textual corpora (Liu et al., 2019); and SetFit-DU, a fine-tuned embedding
trained on Amazon product reviews and ratings to improve task-specific representations.

The computer vision (CV) embeddings include CLIP-ViT-B32, a vision transformer trained with
contrastive language-image pretraining to produce aligned multimodal embeddings (Radford et al.,
2021); DINO-ViT-B16, a self-distillation approach for learning vision transformer embeddings
without labels (Caron et al., 2021); ViT-B16, a standard vision transformer pre-trained on Ima-
geNet for image classification (Dosovitskiy et al., 2021); DenseNet-121, a convolutional neural
network (CNN) with dense connectivity to improve feature reuse (Huang et al., 2017); EffNet-
B0, an efficient CNN model optimized for parameter efficiency and accuracy (Tan & Le, 2019);
and ResNet-50, a residual CNN architecture that enables very deep networks through skip connec-
tions (He et al., 2016). We evaluate both transformer-based and CNN-based embeddings to explore
effects of model architecture and training methodology on interpretability and task performance.
Further details about the models are provided in the Appendix.

4.3 CLASSIFICATION MODELS

To evaluate embedding quality in downstream tasks, we consider a diverse set of classification mod-
els spanning linear, ensemble tree, and neural approaches. Linear models include Logistic Regres-
sion (LR) and Linear Support Vector Machines (SVMs), which provide strong baseline performance
and are highly interpretable (Pedregosa et al., 2011). Ensemble models include Random Forest
(RF) (Breiman, 2001), XGBoost (XGB) (Chen & Guestrin, 2016), and LightGBM (LGBM) (Ke
et al., 2017), which leverage multiple weak learners to improve predictive performance and capture
non-linear interactions. Finally, neural classifiers include a Multi-Layer Perceptron (MLP) and a
Keras-based Deep Neural Network (DNN) (Pedregosa et al., 2011; Chollet, 2015), which can model
complex patterns in high-dimensional embedding spaces. The MLP consists of two hidden layers
with 256 and 128 neurons, ReLU activation, and is trained using the Adam optimizer. The DNN con-
sists of two fully connected hidden layers with 256 and 128 neurons respectively, each followed by
a dropout layer with a rate of 0.3, and a final output layer with softmax activation for classification.
It is compiled with the Adam optimizer and sparse categorical cross-entropy loss, and trained for 10
epochs with a batch size of 64. All models are trained and evaluated on a 70/30 stratified train/test
split for each dataset. These classification models are applied to both NLP and computer vision
embeddings, providing a consistent framework to assess embedding quality within each modality.

5 RESULTS

5.1 COMPUTING EMBEDDING INTERPRETABILITY SCORE ACROSS DOMAINS

Embedding Interpretability Scores (EIS): We compare the interpretability of various NLP and CV
embedding models using our proposed EIS, as shown in Table 1. For NLP embeddings, W2Vec and
MiniLM achieve the highest EIS, reflecting the benefits of lower-dimensional, compact represen-
tations that balance sparsity and clusterability. In contrast, DistilRoBERTa and RoBERTa achieve
the lowest EIS, reflecting the hindrance caused by their high dimensionality and dense activations,
irrespective of the rich contextual information they capture. Compared to MiniLM, MiniLM-100d
achieves a lower EIS; while it benefits from a higher dimensionality score, its inability to capture
sparse representations is reflected in the sparsity score, resulting in a lower overall interpretabil-
ity. Additionally, SetFit-DU exhibits a significantly higher clusterability score compared to other
embeddings in the study, which can be attributed to its training on Amazon product reviews and
ratings, closely aligning with the review-based datasets used in our evaluation. This demonstrates
that task-specific fine-tuning can, in some cases, improve interpretability by producing embeddings
that better capture semantically meaningful groupings aligned with the evaluation data. Among
CV embeddings, DINO-ViT-B16 and ViT-B16 exhibit the highest EIS, while ResNet-50 scores the
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Embedding Actual Dim Dimensionality Sparsity Clusterability EIS

N
L

P

W2Vec 300 0.554 0.925 0.533 0.649
MiniLM 384 0.483 0.921 0.563 0.630

Para-MiniLM 384 0.483 0.922 0.562 0.630
SetFit-DU 512 0.400 0.908 0.707 0.636

MiniLM-100 100 0.871 0.417 0.544 0.583
MPNet 768 0.283 0.931 0.573 0.532
BERT 768 0.283 0.936 0.564 0.531

DistilRoBERTa 768 0.283 0.946 0.560 0.531
RoBERTa 1024 0.200 0.953 0.555 0.473

C
V

DINO-ViT-B16 768 0.283 0.890 0.564 0.522
ViT-B16 768 0.283 0.799 0.563 0.503

CLIP-ViT-B32 512 0.400 0.407 0.596 0.459
DenseNet-121 1024 0.200 0.774 0.562 0.443

EffNet-B0 1280 0.136 0.722 0.545 0.376
ResNet-50 2048 0.050 0.876 0.564 0.291

Table 1: Dimensionality, clusterability and sparsity scores, along with EIS, for NLP and CV embed-
dings. Higher EIS values indicate embeddings that are more interpretable, reflecting a balance of
compactness, sparsity, and cluster structure.

lowest, primarily due to its high dimensionality. Transformer-based embeddings (e.g., ViT-B16,
CLIP-ViT-B32, and DINO-ViT-B16) consistently outperform CNN-based embeddings (e.g., ResNet
and DenseNet) in interpretability, suggesting that self-attention architectures yield more structured
and clusterable representations. Overall, the results demonstrate how embedding characteristics can
influence interpretability within multiple modalities.

Visualization of Embedding Properties: Figure 1 presents the dimensionality, sparsity, clusterabil-
ity, and overall EIS for the NLP and CV embeddings. For each embedding, the three fundamental
properties are shown as bars, while the EIS is overlaid as a line to highlight the combined inter-
pretability. While the ranges of the sparsity and clusterability scores are relatively similar across
embeddings, the EIS helps distinguish their overall interpretability by combining these properties
using the geometric mean. The geometric mean ensures that no single property dominates the score
and that proportional differences are captured, rather than absolute ones. The figure demonstrates
how each property contributes to overall interpretability and emphasizes the trade-offs among di-
mensionality, sparsity, and clusterability across different embedding models.

Figure 1: Comparison of embedding interpretability properties (dimensionality, sparsity, and clus-
terability) across NLP (left) and CV (right) embeddings. The black line with markers shows the
overall EIS for each embedding. The figure highlights how each property contributes differently
across embeddings, revealing trade-offs between dimensionality, sparsity, and clusterability.
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Linear Models Ensemble Tree Models Neural Classifiers

Dataset Embedding LR SVM RF XGB LGBM MLP DNN

C
PA

W2Vec 38.73% 39.73% 36.00% 38.60% 39.13% 40.07% 39.53%
MiniLM 40.13% 38.53% 38.53% 39.33% 37.67% 40.00% 41.40%
Para-MiniLM 40.27% 38.67% 39.73% 41.93% 41.00% 39.93% 42.67%
SetFit-DU 40.20% 43.20% 38.87% 39.47% 39.60% 41.07% 38.47%
MiniLM-100 37.73% 38.87% 36.53% 35.73% 35.73% 39.67% 39.87%
MPNet 46.87% 46.07% 40.67% 43.80% 45.47% 45.47% 47.60%
BERT 45.00% 41.93% 47.67% 45.27% 45.60% 43.60% 45.93%
DistilRoBERTa 46.07% 46.87% 44.27% 45.80% 45.53% 46.13% 47.13%
RoBERTa 50.27% 51.53% 46.53% 47.13% 47.53% 50.07% 50.73%

E
T

W2Vec 44.20% 46.53% 40.93% 42.53% 42.53% 44.33% 45.13%
MiniLM 46.40% 45.53% 46.13% 45.40% 47.00% 48.47% 49.00%
Para-MiniLM 46.00% 45.47% 44.67% 46.20% 46.33% 44.67% 45.67%
SetFit-DU 37.00% 40.53% 37.13% 39.73% 39.53% 39.13% 37.67%
MiniLM-100 46.87% 46.27% 43.20% 44.87% 45.13% 46.80% 47.53%
MPNet 51.00% 50.87% 47.73% 50.07% 50.20% 50.60% 53.93%
BERT 47.00% 45.33% 48.33% 49.07% 49.27% 47.27% 48.73%
DistilRoBERTa 51.53% 51.40% 47.73% 51.93% 50.80% 49.93% 53.33%
RoBERTa 54.13% 53.93% 51.60% 52.40% 53.47% 54.07% 54.47%

V
G

W2Vec 41.53% 41.93% 39.13% 41.67% 41.53% 43.07% 42.07%
MiniLM 49.33% 48.40% 44.47% 46.20% 47.60% 50.80% 49.53%
Para-MiniLM 46.13% 45.60% 42.47% 45.93% 44.60% 45.20% 47.27%
SetFit-DU 37.00% 41.53% 39.40% 40.67% 40.87% 39.00% 37.67%
MiniLM-100 48.13% 49.07% 42.73% 46.73% 45.67% 50.13% 48.80%
MPNet 52.47% 53.33% 49.07% 50.20% 51.47% 51.53% 52.73%
BERT 47.73% 45.53% 47.13% 48.20% 48.73% 47.07% 47.40%
DistilRoBERTa 51.60% 50.27% 48.60% 50.27% 50.87% 49.40% 51.53%
RoBERTa 53.47% 51.20% 50.80% 53.27% 53.07% 50.13% 51.93%

C
IF

A
R

-1
0

DINO-ViT-B16 93.73% 92.60% 89.93% 90.87% 91.47% 93.40% 93.47%
ViT-B16 93.80% 93.47% 91.13% 91.07% 91.40% 93.67% 93.80%
CLIP-ViT-B32 91.93% 90.67% 89.67% 90.47% 90.87% 91.13% 92.33%
DenseNet-121 86.00% 82.40% 80.00% 84.20% 84.67% 86.67% 86.47%
EffNet-B0 87.80% 86.80% 84.67% 85.20% 85.47% 88.60% 88.00%
ResNet-50 85.33% 84.93% 84.13% 84.47% 85.27% 85.80% 86.80%

ST
L

-1
0

DINO-ViT-B16 99.40% 99.13% 98.60% 97.53% 98.13% 99.07% 98.93%
ViT-B16 99.20% 98.93% 98.27% 97.60% 98.40% 99.07% 98.93%
CLIP-ViT-B32 98.80% 98.60% 98.73% 97.73% 98.20% 98.87% 98.40%
DenseNet-121 97.40% 96.80% 96.07% 95.13% 95.87% 97.13% 97.20%
EffNet-B0 97.80% 97.93% 96.87% 96.40% 97.13% 97.67% 97.53%
ResNet-50 97.53% 97.27% 97.40% 96.40% 96.33% 97.53% 97.73%

Fa
sh

io
n-

M
N

IS
T DINO-ViT-B16 86.27% 85.60% 83.87% 86.00% 86.47% 87.93% 88.13%

ViT-B16 84.07% 83.20% 82.80% 84.93% 84.73% 85.00% 85.60%
CLIP-ViT-B32 86.93% 85.53% 83.33% 85.00% 85.47% 87.40% 85.80%
DenseNet-121 84.27% 82.13% 84.40% 86.00% 87.20% 85.20% 85.67%
EffNet-B0 87.13% 85.13% 84.87% 85.93% 86.40% 87.80% 87.00%
ResNet-50 84.40% 84.73% 83.27% 85.00% 84.60% 85.00% 84.20%

Table 2: Classification accuracy (%) across embeddings and datasets. While neural classifiers (MLP,
DNN) usually achieve the strongest performance, linear classifiers at times outperform them, and
ensemble tree models generally underperform. Across both NLP and CV tasks, downstream perfor-
mance is primarily driven by embedding quality, with less interpretable embeddings often yielding
higher accuracy in NLP, whereas more interpretable embeddings tend to perform better in CV.

5.2 ACCURACY-INTERPRETABILITY TRADE-OFF

To assess the accuracy–interpretability trade-off, we evaluate a range of embedding models using
multiple classifiers on multiple NLP and CV datasets. Table 2 summarizes classification perfor-
mance across the datasets. Accuracies typically range between 37–54% for the NLP datasets and
82–99% for the CV datasets. Several consistent trends emerge, providing insights into how inter-
pretability relates to predictive accuracy.

NLP Datasets: Across all three NLP datasets, traditional embeddings such as Word2Vec consis-
tently underperform transformer-based embeddings. For instance, across the three NLP datasets,
RoBERTa achieves accuracies that are on average about 10 percentage points higher than Word2Vec,
highlighting the substantial improvement provided by transformer-based representations. Distil-
RoBERTa and MPNet also achieve strong performance, typically reaching 51–53% across ET and
VG, indicating their robustness across datasets. In contrast, SetFit-DU performs substantially worse,
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particularly on ET and VG (37–41%), suggesting that its representations do not generalize well un-
der this evaluation protocol. The spread in accuracy across embeddings is notable, with a gap of
nearly 17 percentage points between the weakest and strongest representations. Classifier choice
exerts only a modest effect: while MLP and DNN yield small gains (1–2%) over linear baselines,
ensemble tree models consistently underperform relative to linear and neural approaches, implying
that the embeddings are largely linearly separable. Notably, the embeddings with the highest accu-
racies, such as RoBERTa and MPNet, also have higher dimensionality and lower sparsity, resulting
in lower EIS scores. This pattern illustrates a clear accuracy–interpretability trade-off, where per-
formance gains come at the expense of interpretability. Taken together, these results highlight that
downstream performance in NLP tasks is driven far more by embedding choice than classifier ca-
pacity, with the most accurate embeddings often being the least interpretable due to their higher
dimensionality and density.

CV Datasets: Across all CV datasets, transformer and CNN-based embeddings exhibit substan-
tial variation in performance. ViT-B16 and DINO-ViT-B16 consistently perform well within each
dataset, while embeddings with higher dimensionality and lower sparsity, such as ResNet-50 or
EffNet-B0, generally underperform relative to more compact representations. CLIP-B32 performs
well overall but shows slightly lower accuracy on MNIST (85–87%), suggesting some sensitivity to
dataset characteristics. Similar to NLP, classifier choice has a limited effect: While neural classifiers
generally achieve the highest accuracies, there are instances where linear and ensemble tree models
outperform them. Importantly, these observations reveal a striking domain-specific trend: in CV,
higher interpretability often aligns with better predictive performance.

Visualization of Performance Trends: To visualize these trends more clearly, Figure 2 presents
heatmaps of classifier performance across embeddings for each dataset, ordered by decreasing EIS.
The heatmaps reveal that classifier choice has minimal effect: no model consistently outperforms
others across embeddings, and differences are generally modest. Meanwhile, the relationship be-
tween interpretability and accuracy is domain-specific: in NLP datasets, embeddings with lower EIS
tend to achieve higher accuracy, whereas in CV datasets, embeddings with higher EIS often perform
better. This figure provides a concise visual summary of these patterns and highlights the central
role of embedding quality in downstream performance.

Figure 2: Classification accuracy heatmaps for NLP (top row) and CV (bottom row) embeddings
across classifiers, with embeddings ordered by decreasing EIS. For NLP, performance generally
improves as interpretability decreases, while in CV, more interpretable embeddings tend to yield
higher accuracy. No consistent trend is observed across different classifiers, indicating that embed-
ding choice drives downstream performance more than classifier selection.
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Correlation Analysis: Table 3 summarizes the Pearson’s correlations (Pearson, 1896) between
downstream classification accuracy and various embedding interpretability measures, including the
overall EIS score, dimensionality, sparsity, and clusterability. Pearson’s correlation ranges from -1
to 1, where 1 indicates a perfect positive correlation, 0 denotes no correlation, and -1 represents a
perfect negative correlation. For NLP datasets (CPA, ET, VG), there is a strong negative correla-
tion between EIS and accuracy, indicating that embeddings with higher interpretability tend to have
slightly lower predictive performance. In particular, dimensionality is strongly negatively correlated
with accuracy, while sparsity shows a moderate positive correlation and clusterability is weakly
or negatively correlated. Conversely, for CV datasets (CIFAR-10, STL-10, Fashion-MNIST), the
trends are different: higher EIS and dimensionality often correspond to higher accuracy, highlight-
ing a domain-specific pattern where more interpretable embeddings can also be more predictive.
Sparsity and clusterability correlations remain relatively weak and inconsistent across CV datasets.
Notably, Fashion-MNIST shows a weak correlation, implying no clear trend between interpretability
and accuracy for this dataset. Overall, these results highlight that the relationship between embed-
ding interpretability and downstream performance is domain-dependent.

Dataset Pearson (EIS) Dimensionality Sparsity Clusterability
CPA -0.904 -0.855 0.498 -0.101
ET -0.808 -0.380 0.091 -0.684
VG -0.771 -0.328 0.018 -0.614
CIFAR-10 0.841 0.791 -0.171 0.344
STL-10 0.797 0.741 -0.097 0.353
Fashion-MNIST 0.093 0.331 -0.530 0.158

Table 3: Pearson correlations between embedding interpretability measures and downstream classi-
fication accuracy for NLP and CV datasets. Negative correlations in NLP datasets indicate that less
interpretable embeddings often achieve higher accuracy, while positive correlations in CV datasets
suggest that more interpretable embeddings tend to perform better.

6 CONCLUSION

In this work, we systematically investigate the trade-offs between interpretability and predictive
performance across a wide range of NLP and CV embeddings. By introducing the embedding
interpretability score (EIS) and evaluating multiple classifiers on multiple datasets, we provide a
unified framework to quantify the relationship between embedding interpretability and accuracy.
Our results reveal distinct domain-specific trends: for NLP datasets, higher interpretability generally
comes at the cost of predictive performance, consistent with the classical accuracy–interpretability
trade-off. In contrast, for CV datasets, more interpretable embeddings often achieve comparable or
even higher accuracy, highlighting a favorable alignment between interpretability and performance
in vision tasks. Classifier choice has a limited effect in both domains, emphasizing that embedding
design is the primary driver of downstream performance.

Beyond technical insights, this framework has broader societal implications. By quantifying em-
bedding interpretability, we enable more transparency, accountability, and trust in machine learning
systems, particularly in high-stakes applications such as medical imaging, automated hiring, and
financial decision-making. This work encourages the development of models that are not only ac-
curate but also more explainable, supporting the responsible and equitable adoption of machine
learning technologies across diverse domains.

Future Work: While this study focuses on evaluating the interpretability of embeddings within
specific domains, we aim to extend this methodology to quantify and assess the interpretability
of the classification models themselves using classification-dependent properties. Cross-domain
comparisons introduce additional challenges, as they require incorporating a broader set of metrics
capturing model complexity, decision boundaries, and robustness. Furthermore, we plan to expand
our framework to support cross-modal analyses, enabling systematic comparisons of interpretability
and accuracy between NLP, CV, and potentially other modalities (e.g., speech, multi-modal).
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A APPENDIX

A.1 EMBEDDING MODELS

Further details about the embedding models employed in this study are provided in Table 4. We
include both NLP and CV embeddings, spanning classical word-level models, transformer-based
sentence embeddings, and state-of-the-art vision models.

Acronym Model Name Type Description
W2Vec Word2Vec NLP Classic word embedding model using skip-

gram or continuous bag of words to cap-
ture semantic and syntactic relationships
at the word level. Provides dense, low-
dimensional vector representations for vo-
cabulary terms.

MiniLM all-MiniLM-L6-v2 NLP Lightweight transformer producing high-
quality sentence embeddings efficiently.
Captures contextualized semantic meaning
with minimal computational overhead.

MiniLM-100d all-MiniLM-L6-v2-
100d

NLP Compact 100-dimensional (using PCA)
MiniLM variant; trades off embedding
richness for lower computational cost.

Para-MiniLM paraphrase-MiniLM-
L6-v2

NLP MiniLM fine-tuned on paraphrase de-
tection datasets, producing embeddings
that cluster semantically similar sentences
tightly.

MPNet all-mpnet-base-v2 NLP Transformer combining masked and per-
muted language modeling for more robust
contextual embeddings. Excels at captur-
ing sentence-level semantics.

BERT bert-base-nli-mean-
tokens

NLP Bidirectional transformer pre-trained on
large corpora; generates rich contextual
sentence embeddings suitable for many
downstream NLP tasks.

RoBERTa all-roberta-large-v1 NLP Enhanced BERT variant trained with larger
datasets and dynamic masking, offer-
ing deeper contextual representations and
stronger generalization.

SetFit-DU setfit-distiluse-
base-multilingual-
cased-v2-finetuned-
amazon-reviews-
multi-binary

NLP Domain-specific sentence embeddings
based on a distilled multilingual trans-
former. Fine-tuned on Amazon product
reviews across multiple languages with a
multi-binary classification objective and
optimized to cluster semantically similar
reviews together.

CLIP-ViT-B32 CLIP Vision Trans-
former B32

CV Multi-modal transformer aligning image
and text embeddings; produces image em-
beddings that capture semantic content
aligned with natural language.

DINO-ViT-B16 DINO Vision Trans-
former B16

CV Self-supervised vision transformer learn-
ing robust and clusterable image embed-
dings without labels; captures structural
and semantic patterns in visual data.

ViT-B16 Vision Transformer
B16

CV Transformer-based image model splitting
images into 16x16 patches; captures long-
range dependencies and global image
structure efficiently.

Continued on next page
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Table 4 continued from previous page
Acronym Model Name Type Description
DenseNet-121 DenseNet-121 CV Convolutional neural network with dense

connectivity; produces expressive feature
embeddings but can be less interpretable
due to high redundancy.

EffNet-B0 EfficientNet-B0 CV Lightweight CNN balancing accuracy, pa-
rameter efficiency, and interpretability;
scales depth, width, and resolution to op-
timize embeddings.

ResNet-50 ResNet-50 CV Residual network with 50 layers producing
high-dimensional embeddings; strong pre-
dictive accuracy, but higher dimensionality
may reduce interpretability.

Table 4: Details of the embedding models used in this study.

A.2 USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were employed in this study to support multiple aspects of the re-
search. Specifically, they were used to (i) explore, identify, and retrieve relevant prior work, and
(ii) assist in polishing and refining the manuscript text. While LLMs guided in language gener-
ation and editing, all technical content, analyses, and interpretations presented in this paper were
independently developed and verified by the authors.
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