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Abstract—Word embeddings and language models have trans-
formed natural language processing (NLP) by facilitating the
representation of linguistic elements in continuous vector spaces.
This review visits foundational concepts such as the distributional
hypothesis and contextual similarity, tracing the evolution from
sparse representations like one-hot encoding to dense embeddings
including Word2Vec, GloVe, and fastText. We examine both static
and contextualized embeddings, underscoring advancements in
models such as ELMo, BERT, and GPT and their adaptations
for cross-lingual and personalized applications. The discussion
extends to sentence and document embeddings, covering aggre-
gation methods and generative topic models, along with the
application of embeddings in multimodal domains, including
vision, robotics, and cognitive science. Advanced topics such
as model compression, interpretability, numerical encoding, and
bias mitigation are analyzed, addressing both technical challenges
and ethical implications. Additionally, we identify future research
directions, emphasizing the need for scalable training techniques,
enhanced interpretability, and robust grounding in non-textual
modalities. By synthesizing current methodologies and emerging
trends, this survey offers researchers and practitioners an in-
depth resource to push the boundaries of embedding-based
language models.

I. INTRODUCTION

Large Language Models (LLMs) have transformed natural

language processing (NLP) by providing advanced tools for

understanding and generating human language. At the core of

these models are word embeddings—dense, continuous vector

representations that capture semantic and syntactic relation-

ships among words. By mapping words into high-dimensional

spaces where semantically related words are situated near

each other, embeddings support nuanced language interpre-

tation and have become essential to NLP applications such

as machine translation, sentiment analysis, and information

retrieval. The progression from early one-hot encodings to

more sophisticated embeddings like Word2Vec, GloVe, and

fastText has markedly improved the accuracy and scalability

of language models, enabling them to handle large volumes

of textual data with high precision [1]–[3].

Architectures like ELMo, BERT, and GPT employ deep

neural networks to generate embeddings that reflect context-

dependent meanings, addressing complexities such as pol-

ysemy and capturing long-range dependencies in language.

These contextual representations not only enhance the ac-

curacy and robustness of NLP systems but also support

the integration of language with other modalities, including

vision and robotics, enabling more sophisticated, interactive

applications. However, despite these advancements, challenges

persist concerning efficiency, interpretability, and ethical con-

cerns within embedding models. High computational costs,

the opaque nature of embedding spaces, and the risk of

propagating biases from training data highlight areas for

continued research [4]–[6]. This review examines the evolution

of word embeddings, exploring foundational principles, varied

methodologies, cross-modal applications, and key challenges.

II. WORD EMBEDDINGS AND LANGUAGE MODELS

A. Foundational Concepts

1) Distributional Hypothesis: The distributional hypothe-

sis, a cornerstone of numerous word embedding techniques,
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posits that words appearing in similar contexts tend to have

similar meanings [7]. This hypothesis allows for representing

words as vectors in a continuous space, where semantic

similarity is reflected by vector proximity [8]. This shift

from symbolic to distributed representations has revolution-

ized NLP, enabling advancements in tasks like information

retrieval, machine translation, and sentiment analysis [9]. The

distributional hypothesis has limitations, however. It often

struggles to capture the nuances of word meaning in different

contexts, particularly for polysemous words, leading to a

need for context-dependent representations [34]. Additionally,

while effective at capturing broad semantic and syntactic

relations, traditional word embeddings based on the distri-

butional hypothesis can be computationally expensive and

struggle with issues like the curse of dimensionality, out-of-

vocabulary words, and overfitting to specific domains [15].

Moreover, focusing primarily on word properties rather than

morphology can lead to inconsistent performance across dif-

ferent evaluation metrics [13]. This has motivated research into

alternative word embedding models that incorporate subword

information, particularly for morphologically rich languages

[27].

2) Contextual Similarity: Context plays a critical role in

disambiguating word meanings and improving the perfor-

mance of language models. Different definitions of context

offer unique approaches to capture semantic relationships.

Local context, often defined as a sliding window of neigh-

boring words, is utilized by models like Word2Vec to learn

word embeddings through the prediction of nearby words

[10]. Although efficient, this approach can be limited in

its ability to capture long-range dependencies. Sentence-level

context, which considers the entire sentence, allows models

like LSTM-RNNs to integrate more comprehensive informa-

tion, resulting in more nuanced sentence embeddings [11].

Document-level context further expands the scope, encompass-

ing the entire document, which proves advantageous for tasks

such as document classification and in representing temporal

relationships between documents in sequential data streams

[12].

Contextualized word embeddings, generated by models such

as ELMo and BERT, incorporate contextual information di-

rectly into word representations and enable the same word

to have distinct embeddings based on its context [35]. This

contextualization is crucial for addressing polysemy and en-

hancing performance in tasks like word sense disambigua-

tion (WSD) [16]. For instance, contextual string embeddings,

which represent words as character sequences and integrate

surrounding text, have proven especially effective for WSD,

notably in named entity recognition tasks [36]. Additionally,

the type and extent of context used can substantially influence



language model performance. For example, while adding

socio-situational information offers slight improvements to

character-based models, it may adversely affect models using

word embeddings, underscoring the need to carefully assess

the interplay between context and embedding type [37]. This

has driven research into refined context selection strategies

and data augmentation techniques aimed at further enhancing

language model capabilities [38].

B. From Sparse Representations to Dense Representations

1) One-Hot Encoding: One-hot encoding represents words

as sparse, high-dimensional vectors. Each word in the vo-

cabulary is assigned a unique vector in which only one

element is set to one, while all others remain zero. Despite its

simplicity, this representation has several critical limitations.

The dimensionality of these vectors scales linearly with the

vocabulary size, leading to extremely high dimensions for

large vocabularies [13]. This results in significant sparsity, with

most elements being zero, making computations inefficient and

resource-intensive [10]. Additionally, one-hot encoding lacks

the ability to capture semantic relationships between words.

Each word is represented independently, with no intrinsic way

to reflect similarities or relationships between words. This is a

substantial limitation because capturing semantic and syntactic

relationships is crucial for many natural language processing

(NLP) tasks [39]. For instance, as discussed in [14], in an n-

gram language model, predicting the next word in a sequence

relies on word co-occurrence. If certain words never co-occur,

the model cannot infer any relationship between them. Thus,

one-hot encoding fails to capture the contextual similarity

needed for effective language modeling and other NLP tasks,

such as semantic search, knowledge base question answering,

and machine translation [23], [40].

2) Word Embeddings: Word embeddings address the limita-

tions of one-hot encoding by representing words as dense, low-

dimensional vectors learned from large corpora [10]. These

vectors capture semantic and syntactic relationships, mapping

words into a continuous vector space where similar words are

positioned closer together [8]. This arrangement is consistent

with the distributional hypothesis, which states that words

occurring in similar contexts tend to have similar meanings

[41]. This contextual information is valuable for a range

of NLP tasks, including word similarity measurement [13],

analogy solving [42], document retrieval [11], and machine

translation [30].

The continuous vector space representation also allows

algebraic operations on word embeddings. This property is

particularly useful in tasks such as analogy solving, where

relationships between words can be expressed as vector op-

erations [43]. By embedding words into a latent space, these

models capture the underlying semantic and syntactic struc-

ture of language [15]. This latent representation is especially

advantageous for downstream tasks like question answering,

named entity recognition, and neural machine translation, as it

enables models to generalize beyond specific word occurrences

and recognize broader semantic relationships. Unlike one-hot

encoding, word embeddings mitigate the problems of high di-

mensionality, sparsity, and the lack of semantic representation

[34], [39]. The dense vectors allow more efficient compu-

tations and enable the model to learn complex relationships

based on the distributional properties of large text corpora [26].

Word embeddings extend beyond individual words to rep-

resent phrases and even entire documents, as shown in [44]

and [45]. This versatility makes word embeddings a powerful

and flexible tool for a wide range of NLP applications.

C. Contextualized Word Embeddings

1) ELMo: ELMo [16] employs bidirectional LSTMs

trained on a language modeling objective to generate contex-

tualized word representations. Unlike static word embeddings

(e.g., Word2Vec, GloVe) that assign a single vector per word

regardless of context, ELMo produces dynamic embeddings

that vary based on the word’s surrounding text. This contextual

sensitivity allows ELMo to capture nuanced meanings and

disambiguate polysemous words. The architecture consists

of two LSTM layers stacked on top of each other, each

processing the input sequence in both forward and backward

directions. The internal states of these LSTMs at each time

step are combined, often through a weighted average, to form

the contextualized word representation. Different layers of

the bidirectional LSTM capture different aspects of linguis-

tic information. The lower layers tend to encode syntactic

information, while higher layers focus on semantic aspects.

Alternative weighting schemes for combining these layers can

be learned during downstream task training, optimizing the

contribution of each layer for specific tasks.

2) BERT and Variants: BERT [17] and other transformer-

based bidirectional encoders use a Transformer encoder ar-

chitecture and are pre-trained on two objectives: Masked

Language Modeling (MLM) and Next Sentence Prediction

(NSP). MLM randomly masks tokens in the input sequence

and trains the model to predict the masked words based on

the surrounding context. NSP trains the model to determine

whether two given sentences are consecutive in the original

text. These objectives enable BERT to capture bidirectional

context effectively, addressing limitations of previous models

that relied on unidirectional or shallow bidirectional repre-

sentations. Fine-tuning BERT for specific downstream tasks

involves adding task-specific layers on top of the pre-trained

encoder and training the entire model on labeled data for the

target task.

RoBERTa [18] modifies the BERT pre-training procedure

by removing NSP, training with larger batch sizes and more

data, and dynamically changing the masking pattern during

training. ALBERT [19] introduces parameter reduction tech-

niques, such as factorized embedding parameterization and

cross-layer parameter sharing, to reduce the model size and

improve training efficiency while maintaining performance.

These variants address some of the computational challenges

associated with BERT and offer improved performance on

various downstream tasks. BERT and its variants handle

polysemy by generating distinct embeddings for a word based



on its context. The MLM objective helps capture the meaning

of rare words by leveraging the surrounding context. However,

long sequences can still pose challenges due to the quadratic

complexity of the self-attention mechanism in the Transformer

architecture. The tying of word vectors and word classifiers as

a loss framework for language modeling [46] has also been

explored as a way to improve language modeling performance.

3) Other Contextualized Embeddings: GPT, XLNet, and

XLM: GPT [20] utilizes a Transformer decoder architecture

and is trained using a language modeling objective, predicting

the next word in a sequence. This autoregressive approach

captures dependencies in one direction, limiting its ability

to capture full bidirectional context. XLNet [21] addresses

this limitation by using a permutation language modeling

objective, which considers all possible orderings of the input

sequence during training, allowing it to capture bidirectional

context while maintaining the autoregressive formulation.

XLM [22] extends BERT to support cross-lingual training,

utilizing a translation language modeling objective to learn

representations that capture relationships between words in

different languages. The input embeddings of these models

typically represent word-level information, while the output

embeddings encode contextualized representations. Tying in-

put and output embeddings [46] can be used to reduce the

number of parameters and potentially improve performance.

Using the output embedding to improve language models has

been explored in various contexts, often by incorporating it

into downstream tasks or as a way to refine the language model

itself.

D. Subword-Level Word Embeddings and Generalization

1) Subword Information for Handling Rare and Unseen

Words: Standard word embedding techniques often struggle

with rare and unseen words, resulting in out-of-vocabulary

(OOV) issues that hinder generalization to new vocabulary.

Subword-level information, such as character n-grams and

morphemes, offers a solution to this limitation by representing

words as compositions of subword units. With this approach,

subword embedding models can create meaningful represen-

tations even for words not encountered during training.

[23] examined word embeddings to expand queries with

semantically related terms, enhancing the accuracy and ro-

bustness of query language models in handling vocabulary

mismatches. Building on this, [24] proposed a generalized lan-

guage model utilizing word embeddings to address vocabulary

mismatch in information retrieval. This model conceptualizes

query term observation as a two-step process: generating

an intermediate term from the document or collection and

transforming it into the observed query term, thus effectively

capturing term relationships and mitigating vocabulary mis-

matches.

In a similar vein, [25] introduced a subword-level vector

model that treats words as bags of character n-grams, allowing

it to generate effective embeddings for rare or unseen words.

This model is computationally efficient, easy to train, and

demonstrates state-of-the-art performance on word similarity

and morphosyntactic tasks across multiple languages. Com-

plementing this approach, [10] presented a simplified method

for training word embeddings on rare or unseen words,

using noise-contrastive estimation for log-bilinear models.

This method is faster and more efficient than prior models,

producing better results in terms of embedding quality and

generalization. Additionally, [26] offers an extensive review of

word embedding models, including subword-level approaches,

and their applications across various NLP tasks.

2) Cross-Lingual Word Embeddings and Low-Resource

Languages: Subword information is instrumental in advancing

cross-lingual word embeddings, particularly for low-resource

languages with limited training data. By capturing morpho-

logical similarities across languages, subword-level models

can learn shared representations for morphologically related

words, even when they exhibit different surface forms. [27] ex-

plored universal and language-specific properties within word

embeddings, revealing that word form features are particularly

beneficial for inflectional languages. Similarly, [28] examined

cross-lingual word embeddings derived from bilingual lexi-

cons to enhance language models for low-resource languages.

Applying this approach to Yongning Na, they highlighted

challenges and potential solutions for low-resource settings.

Furthermore, [29] developed a language-agnostic BERT

model, LaBSE, which supports over 100 languages and sets

a new benchmark for cross-lingual tasks. LaBSE leverages

both multilingual and monolingual data, using techniques

like MLM and TLM to learn effective cross-lingual sen-

tence embeddings. Finally, [30] introduced bilingual word

embeddings based on a large, unlabeled corpus and machine

translation word alignments, showing notable improvements in

machine translation by capturing semantic equivalence across

languages.

E. Personalized Word Embeddings

1) Modeling Individual Linguistic Variation: Personalized

word embeddings aim to capture individual differences in

word usage and linguistic preferences, advancing beyond stan-

dard generic representations. These embeddings can enhance

language model performance in tasks customized to specific

users. [31] investigated the value of personalized word embed-

dings in language modeling, finding that combining generic

and personalized embeddings led to a 4.7% relative reduction

in perplexity, thus improving model performance. They also

observed that words associated with specific psycholinguistic

categories showed greater variation across users, indicating

that personalized models are particularly advantageous for

predicting such words. Additionally, [32] examined properties

encoded within sentence embeddings, providing insights into

the influence of factors such as word frequency and positional

distance on a model’s encoding of content and word order.

Their findings on individual linguistic variation at the sentence

level offer valuable guidance for developing more user-specific

word embeddings and NLP systems.

2) Applications of Personalized Embeddings: Personalized

word embeddings have proven beneficial across various NLP



tasks. [31] demonstrated the potential of personalized embed-

dings in authorship attribution, showing that they can effec-

tively capture unique writing styles. [11] introduced LSTM-

RNN models for sentence embedding trained on user click-

through data, underscoring the application of personalized

embeddings in user-specific document retrieval systems that

provide more relevant search results and tailored recommenda-

tions. Personalized embeddings can also leverage user history

data: [33] proposed a User Embedding Module (UEM) that

compresses user histories into embeddings to serve as prompts

in language models. This approach yielded improvements

in personalized language tasks, suggesting that personalized

embeddings effectively capture user preferences and interests

for customized recommendations and user profiling.

Fig 1 presents a taxonomy of word embeddings discussed

in this section. It categorizes embeddings based on their un-

derlying techniques and applications, ranging from traditional

one-hot encoding and dense word embeddings to advanced

contextualized and personalized embeddings.

III. SENTENCE AND DOCUMENT EMBEDDINGS

A. Sentence Embeddings

Sentence embeddings capture the semantic meaning of

entire sentences as fixed-length vectors, which are fundamental

for many natural language processing (NLP) tasks, including

semantic search, text classification, and question answering.

Various approaches have been developed to generate sentence

embeddings, ranging from simple averaging methods to more

complex neural architectures.

1) Simple Averaging and Pooling of Word Embeddings: A

straightforward approach to generating sentence embeddings

involves combining the word embeddings of individual words

within a sentence through simple averaging or pooling tech-

niques. These methods take advantage of pre-trained word

embeddings, which are widely available across different lan-

guages.

• Methods: Common methods include averaging the word

embeddings, or using element-wise maximum (max-

pooling), minimum (min-pooling), or sum operations. These

approaches have been explored in various contexts, such as

in a comparative study of word embedding models for hate

speech detection [47].

• Strengths: The main advantage of these methods is their

simplicity and computational efficiency. They are easy to

implement and require minimal computational resources,

making them ideal for large-scale applications. For example,

a study comparing bag-of-words approaches with sentence

encoders found that simple averaging can be unexpectedly

effective for certain tasks [48].

• Limitations: However, these methods have notable limi-

tations. Averaging or pooling word embeddings typically

results in a loss of word order information, which limits

their effectiveness in tasks where word order is significant.

Additionally, they can be sensitive to outliers, as an uncom-

mon word may disproportionately influence the resulting

sentence embedding. To mitigate these issues, researchers

have proposed more advanced techniques, such as using

linear combinations of word embeddings to capture higher-

level linguistic structures [49].

2) Recurrent Neural Network (RNN) based Approaches:

Recurrent Neural Networks (RNNs) provide a more advanced

approach to sentence embedding by sequentially processing

words and capturing dependencies across them. RNN variants,

such as Long Short-Term Memory (LSTM) cells and Gated

Recurrent Units (GRUs), are especially effective for generating

contextual embeddings.

• Architectures: LSTM-RNNs and GRUs are commonly used

for sentence embedding as they effectively capture long-

range dependencies within sentences. These architectures

surpass simple averaging methods in tasks that require

deeper contextual understanding. For instance, a study on

deep sentence embedding with LSTM networks demon-

strated their capacity to detect keywords and allocate topics

autonomously [11].

• Training: RNN-based models can be trained using vari-

ous approaches, including weakly supervised methods. One

example involves training LSTM-RNNs with user click-

through data from web search engines, which helps models

learn effective representations for document retrieval [11].

• Applications: RNN-generated sentence embeddings have

been applied to numerous NLP tasks, such as document

retrieval and semantic similarity measurement. For in-

stance, using LSTM-RNN embeddings for document re-

trieval yielded notable performance improvements over tra-

ditional methods [11].

3) Transformer-based Sentence Encoders:

a) Architecture: Sentence-BERT (SBERT) has become

a leading architecture for generating sentence embeddings, as

highlighted by [50]. SBERT leverages pre-trained transformer

models like BERT, fine-tuning them specifically for sentence-

level tasks to generate efficient and effective sentence em-

beddings. Another notable model, SBERT-WK [51], refines

BERT-based word models to produce high-quality sentence

representations. This model focuses on analyzing word rep-

resentation evolution across BERT layers, applying geometric

analysis to enhance sentence embeddings.

b) Fine-tuning Strategies: Fine-tuning strategies are es-

sential for adapting pre-trained language models to sentence

embedding tasks. A common method is supervised fine-tuning

on Natural Language Inference (NLI) and Semantic Textual

Similarity (STS) datasets, as discussed in [29]. This approach

uses labeled sentence pairs with semantic relationship anno-

tations (e.g., entailment, contradiction, similarity) to refine

model performance. Knowledge distillation also proves effec-

tive; [52] demonstrates how a student model can be trained to

mimic a teacher model, effectively transferring insights from

a high-resource language to multiple target languages.

c) Performance: Transformer-based sentence encoders

achieve state-of-the-art results in various Semantic Textual

Similarity (STS) tasks [53]. These models excel at capturing



semantic relationships, making them highly effective for tasks

requiring understanding of sentence meaning and similarity.

Specifically, SBERT-WK demonstrates superior performance

on STS benchmarks, further validating its robustness in sen-

tence embedding applications [51].

d) Word Representation Evolution Across Layers: Ana-

lyzing the evolution of word representations across transformer

layers provides insights into how these models capture and

process contextual information. Studies such as [54] introduce

methods to quantify and visualize contextualization across

layers, often analyzing changes in word embeddings and

examining the unique information captured by each layer.

Additionally, [55] investigates word representations at both

input and output stages, offering deeper insights into layer-

wise contextual processing.

e) Incorporating Backward Dependencies for Enhanced

Semantic Similarity (BeLLM): The BeLLM model [56] ad-

dresses the limitations of unidirectional attention in autore-

gressive large language models by introducing backward de-

pendencies. By transforming specific attention layers to be

bidirectional, BeLLM enhances semantic similarity tasks by

considering both preceding and following context, thereby

providing a more comprehensive contextual understanding.

4) Multilingual and Cross-lingual Sentence Embeddings:

a) Knowledge Distillation: Knowledge distillation is an

effective technique for aligning vector spaces across lan-

guages, facilitating cross-lingual understanding [52]. By train-

ing a student model to replicate the vector space of a monolin-

gual teacher model, semantic knowledge from a high-resource

language can be transferred to other languages, including those

with limited resources.

b) Translation Ranking and Bi-text Mining: Dual en-

coder architectures and negative sampling are core techniques

in translation ranking and bi-text mining tasks, as explored

by [29]. In these architectures, source and target sentences

are encoded separately, with training focused on ranking

true translation pairs higher than negative samples, thereby

improving translation accuracy and relevance.

c) Language-agnostic BERT Sentence Embedding

(LaBSE): The Language-agnostic BERT Sentence Embedding

(LaBSE) model [29] has demonstrated high performance

in multilingual applications. LaBSE utilizes a combination

of pre-training and dual-encoder fine-tuning to optimize

translation ranking and produce language-agnostic sentence

embeddings that excel across languages.

d) Addressing Language Bias in Multilingual Embed-

dings: Addressing language bias is essential to ensure fair

and effective multilingual embeddings. [52] notes that some

models may exhibit biases, favoring specific language com-

binations over others, which can impair performance in mul-

tilingual tasks. Techniques such as knowledge distillation are

valuable for mitigating this bias and achieving more balanced

cross-lingual representations.

e) Challenges in Low-Resource Languages: Handling

low-resource languages remains challenging in multilingual

NLP. [28] highlights that bilingual lexicons can provide an

effective solution by enabling cross-lingual word embedding

generation when text data is scarce. This approach enhances

language model performance in low-resource environments,

helping bridge the gap in multilingual understanding.

B. Document Embeddings

Document embeddings extend the concept of word em-

beddings to represent entire documents as fixed-length vec-

tors. These representations capture the semantic meaning of

larger text units, supporting various downstream tasks such as

document classification, retrieval, and clustering. This section

reviews key techniques for creating document embeddings,

with a focus on methods for combining word embeddings and

exploring generative topic embedding models.

1) Methods for Combining Word Embeddings: Creating

document embeddings often involves aggregating word em-

beddings from individual words in the document. This section

discusses common aggregation methods, including averaging,

pooling, and other compositional techniques.

a) Averaging and Pooling: Methods, Strengths, and Lim-

itations: A straightforward approach to creating document

embeddings is to average the word embeddings of all words

in the document. Although simple, this method can be highly

effective and sometimes outperforms more complex models,

particularly when word order is not critical [49]. Averag-

ing captures semantic relationships by leveraging word co-

occurrence patterns [49]. However, this method overlooks

word order and may miss nuanced information in complex

sentences [49].

Pooling methods, such as max-pooling or min-pooling, offer

an alternative by selecting the most salient features from word

embeddings. While these methods can highlight important

features, they may still lose significant contextual information.

More sophisticated techniques, like using recurrent neural net-

works (RNNs) with Long Short-Term Memory (LSTM) cells,

process words sequentially, accumulating richer information

as they traverse the document [11]. This method has shown

effectiveness in tasks like document retrieval, as demonstrated

in [11].

b) Compositional Methods for Aggregating Word Embed-

dings: Beyond simple averaging and pooling, compositional

methods aim to capture interactions between words within

a document. [57] explores compositional embedding models

that create representations for substructures within annotated

sentences, addressing the challenge of representing a diverse

range of sentences by building sentence embeddings from

component word embeddings. Additionally, [7] presents an ap-

proach that learns embeddings for phrases by combining word

embeddings, providing richer phrase-level representations for

documents.

2) Generative Topic Embedding Models: Generative topic

embedding models combine the strengths of word embeddings

and topic modeling to learn latent document representations.

These models overcome some limitations of traditional topic

models by capturing both local and global semantic informa-

tion.



a) Combining Word Embeddings with Topic Modeling

(LDA): Integrating word embeddings into topic models, such

as Latent Dirichlet Allocation (LDA), enhances the quality of

learned topics. [44] proposes a generative topic embedding

model that merges local word collocation patterns with global

document-level topic patterns through variational inference.

This approach yields topic embeddings and topic mixing

proportions for each document, resulting in low-dimensional,

continuous representations [44].

b) Correlated Topic Models for Semantic Relatedness:

Correlated topic models aim to capture relationships between

topics. [58] introduces the Correlated Gaussian Topic Model

(CGTM), which uses word embeddings to represent topics as

multivariate Gaussian distributions. This structure captures se-

mantic relatedness and correlations between words, improving

topic coherence over traditional topic models [58].

c) Embedded Topic Model (ETM) for Enhanced Topic

Quality: The Embedded Topic Model (ETM), described in

[59], combines word embeddings with traditional topic models

to improve topic quality and predictive performance. Unlike

LDA, ETM uses word and topic embeddings to model word

probabilities within a topic, effectively handling large vocab-

ularies and rare words. This model has demonstrated superior

performance over LDA in settings with extensive vocabularies

[59].

3) Hierarchical Neural Language Models for Documents:

Hierarchical neural language models provide a robust approach

for learning distributed representations of both documents

and words in data streams. These models use multi-layer

architectures, where each layer captures distinct levels of

information.

a) Multi-layer Architectures for Document and Word

Representations: Hierarchical neural models often use layered

structures to capture different aspects of context. [12] presents

a two-layer model: the upper layer models the temporal

context of document sequences, assuming that temporally

close documents are likely to be related, while the lower

layer captures word sequence context within each document.

This setup enables the model to learn joint representations

for both documents and words within a shared feature space,

which simplifies tasks like document tagging through nearest-

neighbor search. This hierarchical structure can be extended

with additional layers, such as a user layer, to incorporate user

preferences for personalized recommendations.

b) Temporal Context in Document and Word Sequences:

A key advantage of hierarchical neural models is their ability

to incorporate temporal context. [12] shows how these models

learn representations that account for temporal co-occurrences

of documents within a stream. By optimizing the joint log-

likelihood of document and word sequences, the model bal-

ances context at both levels, moving beyond traditional bag-of-

words approaches. This temporal awareness supports a more

dynamic understanding of language, resulting in improved

performance in tasks like movie classification (MovieLens

dataset) and click-through prediction (Yahoo News dataset).

c) Applications: Document Retrieval, Recommendation,

and Tagging: The joint representations of documents and

words learned by hierarchical neural language models enable

a range of applications. For document retrieval, the similarity

between a query and document can be efficiently computed by

comparing their vector representations in the shared embed-

ding space. In recommendation systems, the model leverages

user preferences, represented in an additional user layer, to

generate personalized suggestions. For automatic tagging, the

shared embedding space facilitates nearest-neighbor searches

to assign relevant tags based on document vectors. [12] demon-

strates the model’s superior performance on tasks like movie

classification, underscoring its versatility in document retrieval

and recommendation. The ability to capture both document-

and word-level context makes these models highly applicable

for text mining.

C. Cross-Lingual and Multi-Lingual Embeddings

1) Cross-Lingual Word Embeddings: Methods and Appli-

cations: Cross-lingual word embeddings map words from

different languages into a shared vector space, facilitating

cross-lingual knowledge transfer. This approach is especially

useful for low-resource languages, which often lack sufficient

monolingual training data. Supervised methods typically use

bilingual lexicons or word alignments from parallel corpora.

For example, [30] introduces bilingual word embeddings

learned from a large, unlabeled corpus, where machine transla-

tion word alignments are used to enforce translational equiva-

lence. These embeddings, when integrated into a phrase-based

machine translation system, show significant improvements in

translation quality. Another supervised approach, explored in

[28], leverages bilingual lexicons to enhance language models

for low-resource languages, applying this technique to the

language Yongning Na.

In contrast, unsupervised methods develop cross-lingual

embeddings without explicit parallel data. [60] proposes a

multilingual neural language model that shares parameters

across languages, jointly learning word embeddings in a

shared space without parallel data or pre-training. This method

proves effective even with limited monolingual data or domain

differences across languages. For a comprehensive overview of

contextual and cross-lingual embeddings, [62] offers valuable

insights.

2) Challenges and Evaluation of Cross-Lingual Embed-

dings: Developing cross-lingual embeddings entails signifi-

cant challenges, especially in low-resource settings and when

data domains differ across languages. Limited training data

can impair unsupervised methods, as noted in [60], where

application to the language Yongning Na highlights resource

scarcity challenges. Domain differences across languages also

impact embedding quality; while [60] demonstrates that their

model can handle different-domain corpora, achieving high-

quality embeddings remains challenging.

Evaluating cross-lingual embeddings typically involves both

intrinsic and extrinsic tasks. Intrinsic evaluations assess em-

beddings through word similarity tasks, while extrinsic evalua-
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tions examine embedding performance in downstream applica-

tions. For instance, [30] uses the NIST08 Chinese-English ma-

chine translation task for extrinsic evaluation. For a thorough

discussion on the challenges and evaluation of cross-lingual

embeddings, [61] provides extensive analysis.

3) Language-Agnostic Sentence Embeddings: Techniques,

Evaluation, and Addressing Bias: Language-agnostic sentence

embeddings represent sentences from different languages in

a unified vector space, enabling cross-lingual semantic sim-

ilarity and retrieval tasks. Techniques for generating these

embeddings include knowledge distillation and fine-tuning

of pre-trained multilingual models. [52] proposes extend-

ing monolingual sentence embeddings to new languages via

knowledge distillation, where a student model replicates the

vector space of a monolingual teacher model. This approach

shows strong results for low-resource languages and effec-

tively minimizes language bias. Additionally, [29] introduces

LaBSE, a language-agnostic BERT sentence embedding model

that achieves state-of-the-art performance on bi-text retrieval

tasks.

Evaluation of language-agnostic sentence embeddings often

involves tasks like semantic textual similarity (STS) and bi-

text mining. Addressing language bias, where models may

preferentially align certain language pairs, is a key challenge.

[52] notes that their approach, as well as mUSE, avoid

language bias issues seen in models like LASER and LaBSE.

Fig 2 illustrates the taxonomy of sentence and document em-

beddings discussed in this section. The taxonomy categorizes

embedding techniques into three main areas: Sentence Embed-

dings, Document Embeddings, and Cross-Lingual and Multi-

Lingual Embeddings. Each category is further subdivided into

specific methodologies.

IV. GROUNDING LANGUAGE MODELS IN OTHER

MODALITIES

A. Grounding Language to Vision

1) Connecting Language and Perception: With the advanc-

ing capabilities of language models, researchers are increas-

ingly exploring their applications in multimodal tasks, par-

ticularly those involving vision. Grounding language models

in visual perception bridges the gap between linguistic repre-

sentations and the physical world. This approach is inspired

by how humans learn language—by associating words and

concepts with perceptual experiences.

By grounding language models in vision, we can create

more robust and comprehensive representations that capture

not only statistical relationships between words but also their

connections to tangible objects and scenes. This alignment of

language with perception is essential for developing AI sys-

tems capable of understanding and interacting with the world

in a more human-like manner. Such multimodal grounding

enables applications like image captioning, visual question

answering, and robotic manipulation, where an AI system’s

ability to interpret both language and visual context is crucial.

2) Methods for Visual Grounding:

a) Joint Embedding Spaces: Learning Shared Represen-

tations for Images and Text: A common approach to visual

grounding involves creating joint embedding spaces for images

and text. In these spaces, visual and textual data are mapped

into a shared vector representation, enabling direct comparison

and interaction between the two modalities. [63] introduces an

encoder-decoder pipeline to achieve this. In this architecture,

an encoder maps both images and sentences into a shared

latent space, and a decoder generates descriptions from this

space. Another approach utilizes multimodal contrastive learn-

ing, as described in [64], where a two-stream model for visual

and language inputs aligns representations by maximizing



agreement between paired image-text data while minimizing

agreement for unrelated pairs.

b) Attention Mechanisms for Cross-Modal Retrieval and

Alignment: Attention mechanisms are highly effective for

aligning visual and textual information in cross-modal retrieval

tasks. By employing attention, models can identify the most

relevant visual features for a textual query or vice versa. [64]

employs a cross-modal attention module that retrieves specific

visual objects based on language queries. This mechanism

allows for fine-grained alignment, enabling the model to focus

on essential parts of the input specific to a task.

c) Similarity Learning and Grounding Object, Verb, and

Attribute Representations: Similarity learning plays an essen-

tial role in grounding representations of objects, verbs, and

attributes. [65] uses similarity learning within an embodied

simulation environment, enabling comparison of objects based

on their properties and behaviors. By learning a similarity

metric through interactions within this simulation, the model

effectively grounds word vectors to object representations,

facilitating tasks like zero-shot learning, where novel objects

can be recognized based on descriptions alone. Notably, [65]

also found that grounding object representations enhances the

grounding of verbs and attributes, aligning with findings in

analogical reasoning.

3) Applications of Visually Grounded Language Models:

Visually grounded language models, which learn joint rep-

resentations of images and text, have shown considerable

promise in multimodal applications. These models align visual

and textual information, allowing them to excel in tasks that

require understanding the relationship between images and

their corresponding descriptions.

a) Image Captioning and Retrieval: Image captioning

generates textual descriptions for images, while image retrieval

involves finding images that match a given textual query. [63]

introduced an encoder-decoder pipeline that creates a joint em-

bedding space for images and text, combined with a ”structure-

content” neural language model. This model achieved state-of-

the-art results in both image captioning and retrieval tasks on

the Flickr8K and Flickr30K datasets.

b) Visual Question Answering (VQA): Visual Question

Answering (VQA) requires answering questions based on

visual information within images. [35] explored multimodal

embeddings by integrating language models with acoustic

information and paralinguistic cues to enhance emotion recog-

nition—a crucial aspect for VQA applications. Additionally,

[66] developed a deep neural network that learns a shared

embedding space for point-cloud, natural language, and ma-

nipulation trajectory data, enabling robots to manipulate novel

objects based on instructions and visual experience. [67]

introduced the Visual Semantic Embedding Probe (VSEP)

to evaluate contextualized word embeddings for zero-shot

object recognition in complex visual scenes. Further, [68]

utilized pre-trained language models to create interpretable

and efficient predictors for tasks, including visually grounded

applications.

c) Referring Expression Comprehension and Generation:

Referring expression comprehension identifies an object in

an image based on a textual description, while referring

expression generation produces a unique textual description for

a specified object within an image. [69] introduced Kosmos-2,

a multimodal large language model capable of grounding text

to visual information, such as drawing bounding boxes around

objects. Trained on a large-scale dataset of grounded image-

text pairs, Kosmos-2 demonstrated enhanced performance on

tasks involving referring expression comprehension and gen-

eration.

d) Multimodal Image Search: Multimodal image search

uses a blend of textual and visual queries to locate images. [64]

proposed a two-stream model that aligns visual and language

representations through cross-modal contrastive learning, en-

abling multimodal image searches using queries composed of

images, text, or combinations of both.

4) Impacts and Challenges: Visually grounded language

models have demonstrated benefits across a range of linguistic

tasks. [70] investigated the impact of visual grounding on

both concrete and abstract words, finding that grounding can

enhance representations for both types of words. This study

also highlighted the advantages of visual grounding for con-

textualized embeddings, particularly when trained on smaller

corpora, where the added visual context helps compensate

for limited textual data. [15] examined the role of contextual

information in language modeling, showing that context is

essential for addressing semantic challenges in tasks like word

sense disambiguation.

Despite these advancements, visually grounded language

models face notable challenges. [67] identified the lack of

mutual exclusivity bias as a limitation in current visual seman-

tic embedding models, where models may fail to distinguish

between overlapping or closely related objects within scenes.

Addressing such biases and enabling language models to

reason more effectively about novel visual scenes are key areas

for future research, with the goal of enhancing the models’

robustness and generalization across diverse visual-linguistic

contexts.

B. Multimodal Embeddings for Robotics

1) Motivation: Challenges in Representing and Integrating

Diverse Sensor Modalities: Robots operating in unstructured,

real-world environments face significant challenges in pro-

cessing and integrating data from diverse sensor modalities.

These include visual data from cameras and depth sensors,

natural language instructions from human operators, haptic

feedback, and motion trajectories from manipulators. Inte-

grating these varied data streams is essential for robots to

build a comprehensive understanding of their environment and

interact effectively. However, as highlighted by [66], manually

designing features that bridge these modalities is extremely

difficult due to differences in data formats and inherent

complexities. For instance, visual data may be represented

as images, point clouds, or voxel grids, each with unique



dimensional structures, whereas language instructions are sym-

bolic sequences that must be translated into a format suitable

for robotic control. Similarly, manipulation trajectories can be

represented as time series data of joint angles, end-effector

positions, or force/torque measurements. This heterogeneity

presents a substantial barrier to direct comparison or fusion of

information across modalities.

Developing techniques that can automatically learn joint

representations to capture relationships between these diverse

modalities is crucial for advancing robot autonomy and in-

telligence. Additionally, as noted by [15], context is essential

for interpreting both linguistic and sensorimotor information.

While embeddings are effective in capturing syntactic and

some semantic relationships, they require contextualization to

handle challenges such as word sense disambiguation and the

integration of real-world knowledge, particularly in robotics

applications.

2) Methods for Multimodal Embeddings in Robotics:

a) Deep Neural Networks for Shared Embedding Spaces:

Architectures and Training Strategies: Deep neural networks

are a powerful tool for learning shared embedding spaces

that unify different modalities, mapping them into a common

vector space where semantically related concepts are closer

together. Various architectures are used for this purpose. For

example, [64] discusses a two-stream architecture where sepa-

rate networks process individual modalities, such as vision and

language, before merging outputs into a joint representational

space. Alternatively, a single network can concurrently process

all modalities, directly learning a shared embedding space.

Training strategies for multimodal embeddings typically

involve a two-stage process: an initial pre-training phase

on large unimodal datasets, such as image-caption pairs or

text corpora, to learn general features within each modality,

followed by fine-tuning on smaller multimodal datasets to

align representations across modalities. This approach proved

effective in [35], where acoustic information was integrated

into contextualized lexical embeddings to enhance emotion

recognition through paralinguistic cues.

b) Loss Functions for Multimodal Similarity Learning:

Margin-based Approaches: Effective multimodal embedding

training relies on carefully designed loss functions. Margin-

based approaches, which aim to separate embeddings of dis-

similar concepts while grouping similar ones, are commonly

used. For instance, triplet loss, as discussed by [70], teaches

the model to position an anchor instance closer to a positive

(semantically similar) instance than to a negative (semanti-

cally dissimilar) instance by a predefined margin. Similarly,

contrastive loss, employed in [66], works by distinguish-

ing between similar and dissimilar pairs, pushing dissimilar

embeddings apart while pulling similar ones closer. These

loss functions encourage a semantically structured embedding

space that effectively captures relationships between modali-

ties.

3) Combining Point-Cloud Data, Natural Language In-

structions, and Manipulation Trajectories: The integration of

point-cloud data, natural language instructions, and manipu-

lation trajectories is critical for enabling robots to understand

and execute complex tasks in real-world environments. Point

clouds, obtained from depth sensors, provide 3D geometric

information about the environment. Natural language instruc-

tions specify goals and actions, while manipulation trajecto-

ries, derived from demonstrations or learned experience, offer

actionable paths to achieve these goals.

Embedding these diverse modalities into a shared space,

as explored in [66], enables the establishment of meaningful

connections across representations. For instance, robots can

ground language instructions, such as ”grasp the blue object,”

by linking the instruction to the corresponding point cloud of

a blue object and its associated manipulation trajectory. This

multimodal grounding enables generalization to novel objects

and instructions, fostering more flexible and adaptive robotic

behaviors.

4) Applications of Multimodal Embeddings in Robotics:

a) Robotic Manipulation of Novel Objects: Multimodal

embeddings enable robots to interact with and manipulate

unfamiliar objects based on previous experiences. By learning

a shared embedding space that includes object representations

(e.g., point clouds), language instructions, and manipulation

trajectories, as demonstrated by [66], robots can generalize

their knowledge to novel objects. When encountering a new

object alongside a language instruction, the robot can map

the object’s representation into the shared embedding space,

retrieving the most relevant manipulation trajectory aligned

with the instruction. This capability allows robots to adapt to

new situations and perform tasks without requiring explicit

programming for every new object-action combination.

b) Task Planning and Execution Based on Natural Lan-

guage Instructions: Comprehending and executing complex

tasks specified via natural language is a critical objective in

robotics. Multimodal embeddings facilitate this by aligning

language commands with corresponding action sequences.

This enables robots to understand and perform multi-step

tasks expressed in natural language, such as ”navigate to the

table, pick up the book, and place it on the shelf.” With a

multimodal embedding model, the robot can translate these

instructions into a sequence of actions, including navigation,

object recognition, grasping, and placement. This approach

moves beyond simple, keyword-based command interpreta-

tion, fostering more flexible and sophisticated human-robot

interactions. Future research, as suggested by [40], could

enhance this capability by fine-tuning language models with

attention mechanisms to improve the accuracy and robustness

of mapping natural language instructions to specific actions.

c) Evaluation and Benchmarks: Real-World Robot Ex-

periments and Simulated Environments: Evaluating multi-

modal embeddings in robotics requires a mix of real-world

experiments and simulations. Real-world experiments provide

a realistic measure of a model’s ability to generalize to new

scenarios and handle the complexities of unstructured envi-

ronments. However, these tests can be resource-intensive and

time-consuming. Simulated environments offer a controlled

and efficient platform to evaluate model performance across



various tasks and conditions. For instance, [66] demonstrates

how simulations can pre-train models before deploying them

on physical robots. Common evaluation metrics include task

success rate, execution time, and path efficiency.

d) Open Challenges and Future Directions: Scalability

and Real-Time Performance: The field of multimodal embed-

dings for robotics presents ongoing challenges and exciting

research directions. One primary challenge is scalability to

high-dimensional sensor data. As robots incorporate advanced

sensors like high-resolution cameras and lidar, the dimension-

ality of data increases significantly. Efficiently processing and

embedding this high-dimensional data is essential for real-

world applications. Another critical challenge is achieving

real-time performance; real-time sensor data processing and

action generation are vital for effective interaction in dynamic

environments. Continued research is needed to create more

efficient embedding models and architectures that support real-

time robotic control. Exploring alternative embedding tech-

niques, such as those discussed by [10], could yield scalable,

efficient solutions for handling high-dimensional data in real-

time applications.

C. Modeling Brain Activity with Language Model Embeddings

1) Motivation: Connecting Artificial and Biological Lan-

guage Processing: The impressive capabilities of large lan-

guage models (LLMs) in natural language processing tasks

have prompted research into their internal representations and

whether these mirror the way the human brain processes

language. [32] discusses the shift from word-level to sentence-

level representations in language models, which reflects ad-

vances in understanding complex language representations.

Exploring the connection between artificial and biological

language processing is essential for developing AI that is

more human-like and for gaining insights into the cognitive

foundations of language comprehension. [71] investigates how

the structure of language representations correlates with hu-

man brain responses, highlighting the potential for identifying

shared computational principles. Additionally, [15] emphasizes

the role of embeddings and contextual information, which

could enhance our understanding of both artificial and bi-

ological language processing systems. This line of research

not only enriches cognitive neuroscience but also informs

the development of more robust and interpretable language

models.

2) Methods for Modeling Brain Activity:

a) Neuroimaging Techniques (e.g., fMRI, EEG, ECoG)

for Capturing Brain Responses to Language: Several neu-

roimaging techniques allow researchers to study brain activity

during language processing. Functional magnetic resonance

imaging (fMRI) measures brain activity through blood flow

changes, providing insight into the brain regions involved

in various language tasks. [72] used fMRI to analyze the

impact of contextual information on brain responses. Elec-

troencephalography (EEG) captures electrical activity from

scalp electrodes, offering high temporal resolution for tracking

neural response timing to language stimuli. [73] applied EEG

to examine brain responses to familiar entities. Electrocor-

ticography (ECoG), which involves placing electrodes on the

brain’s surface, provides even higher spatial resolution than

EEG. [74] utilized ECoG to study the geometric similarity

between brain embeddings and contextual language model

embeddings. These techniques capture neural responses to

linguistic stimuli, ranging from single words to complex

narratives.

b) Extracting Brain Embeddings from Neural Record-

ings: Brain embeddings are continuous vector representations

derived from neural activity in response to linguistic stimuli.

These embeddings encapsulate patterns of brain responses

across specific time windows and regions of interest (ROIs).

For example, [74] extracted brain embeddings by averaging

neural activity in the inferior frontal gyrus (IFG) during a

listening task. This enables direct comparison with word em-

beddings derived from language models, facilitating a deeper

understanding of how the brain processes language.

c) Comparing Brain Embeddings to Language Model

Embeddings: Geometric Alignment and Zero-Shot Mapping:

Techniques such as geometric alignment and zero-shot map-

ping are used to compare brain embeddings with language

model embeddings. Geometric alignment assesses the struc-

tural similarity between embedding spaces, while zero-shot

mapping involves predicting brain activity patterns for new

words based on their language model representations, or vice

versa. [71] adapted a transfer learning approach to reveal

a low-dimensional structure in language model representa-

tions that aligns with brain responses. [74] found that brain

embeddings and DLM embeddings share similar geometry,

enabling zero-shot predictions of brain activity for novel

words, suggesting a potential alignment between human and

artificial language representation.

3) Relating Language Model Layers to Temporal Dynamics

of Brain Activity: Research has explored the relationship

between the layered architecture of deep language models

(DLMs) and the temporal dynamics of brain activity. [75]

found a correspondence between sequential transformations

in DLM layers and the temporal sequence of neural activity

in brain regions associated with language. This suggests that

different DLM layers may reflect different stages of language

processing in the brain. However, the study also identifies

unique neural processes, such as recurrent information accu-

mulation and responses to unpredictable words, which are not

fully captured by current DLMs.

4) Encoding Personal Memories and Experiences with Lan-

guage Models: Subject-Specific Semantic Representations:

While language models are typically trained on large general

corpora, individual experiences shape human language under-

standing. [73] demonstrated that language models could rep-

resent subject-specific semantic knowledge of familiar people

and places when trained on personalized data. This capabil-

ity opens up possibilities for personalized language models

that capture both general and individual semantic knowledge,

with applications in personalized recommendations and user-

specific content generation.



5) Open Challenges and Future Directions: Dimensionality

of Brain Embedding Spaces, Neural Processing of Unpre-

dictable Words, and Linking Brain Embeddings to Cognitive

Processes: Despite recent advancements, challenges remain

in modeling brain activity with language model embeddings.

Understanding the dimensionality of brain embedding spaces

and how they relate to language model dimensions is es-

sential. Another key challenge is modeling neural processes

for unpredictable words, which current models do not fully

capture. Additionally, linking brain embeddings to cognitive

processes and behavioral measures could enhance our under-

standing of the cognitive mechanisms underlying language.

[32] underscores the need to understand properties encoded in

sentence representations, which could inform future research

in this area. Addressing these challenges may lead to more

cognitively plausible language models and deeper insights into

the neural basis of language.

V. ADVANCED TOPICS AND RESEARCH GAPS

A. Embedding Model Compression: Techniques for Reducing

Model Size and Memory Footprint

1) Need for Compression: Computational and Storage

Challenges of Large Embedding Matrices: The impressive

performance of large language models (LLMs) in NLP appli-

cations often comes with substantial computational and storage

requirements, particularly due to the embedding layers that

represent vocabulary items as dense vectors. As vocabular-

ies expand to include hundreds of thousands of tokens and

embedding dimensions increase to capture nuanced semantic

relationships, the memory footprint can become prohibitive,

especially in resource-constrained environments like mobile

devices. This scalability challenge is further compounded

by the increasing demand for multilingual and multimodal

models, which necessitate even larger embedding matrices to

represent diverse linguistic and perceptual information [29],

[35]. Efficient compression techniques are essential for effec-

tively deploying these powerful models [76]. Additionally, the

computational cost associated with large embedding matrices

can impede training and inference speed, impacting real-time

applications [10], [26].

2) Compression Techniques:

a) Knowledge Distillation: Training Smaller Student

Models to Mimic Larger Teacher Models: Knowledge distilla-

tion trains a smaller ”student” model to replicate the behavior

of a larger ”teacher” model, effectively transferring knowledge

from a complex model to a more efficient one. In cross-

lingual embeddings, this technique helps transfer the rich

semantic space of a high-resource language model to a smaller

model that supports multiple languages, as demonstrated in

[52]. This approach is particularly valuable for low-resource

languages by leveraging knowledge from data-rich languages

[28]. Knowledge distillation can also be applied for vocabulary

reduction, enabling a smaller embedding matrix to capture

essential semantic information with a condensed vocabulary

[77].

b) Weight Tying: Sharing Parameters Between Input and

Output Embeddings: Weight tying reduces model size by shar-

ing parameters between different layers, commonly between

input and output embedding matrices in language models

[46], [78]. This approach not only decreases the memory

footprint but can also enhance performance by promoting

consistency between input and output representations. [79]

further proposes a modification that decouples the hidden state

from word prediction, achieving comparable or better results

with fewer parameters.

c) Quantization: Reducing Embedding Vector Precision:

Quantization reduces the precision of embedding vectors (e.g.,

using 8-bit integers instead of 32-bit floats), significantly

lowering storage requirements and accelerating computations,

though potentially at the cost of precision loss. Quantization

techniques are particularly effective for memory-constrained

devices [80].

d) Pruning: Removing Less Important Embedding Di-

mensions or Vectors: Pruning techniques reduce model size by

removing redundant or less important dimensions or vectors

from the embedding matrix. By carefully selecting pruning cri-

teria, this method can maintain performance while making the

model more efficient, though excessive pruning can degrade

performance [81].

e) Subspace Embedding Methods: Representing Embed-

dings in Lower-Dimensional Subspaces: Subspace embed-

ding methods map high-dimensional embeddings into lower-

dimensional subspaces. For instance, [82] uses a Cartesian

product of subspaces to construct compact embeddings, while

[83] applies Tensor-Train Decomposition (TTD) to compress

embedding layers, achieving significant size reduction with

minimal or no performance loss. Additionally, [84] projects

word history vectors onto multiple diverse low-dimensional

subspaces.

3) Evaluating Compression Methods: Balancing Compres-

sion Rate and Task Performance: Evaluating embedding com-

pression techniques involves balancing the compression rate

against performance on downstream tasks. High compression

rates improve efficiency but can adversely impact model accu-

racy. [77] demonstrated significant compression with minimal

performance drop, while [82] achieved high compression with

only a slight decrease in accuracy. Selecting an appropriate

compression method requires careful consideration of the

target application and tolerance for performance degradation.

B. Interpretability and Explainability of Embeddings

1) The Black Box Nature of Embedding Spaces: Embed-

ding models have revolutionized natural language processing

by capturing semantic relationships between words, phrases,

and sentences. However, the internal mechanisms of these

models remain largely opaque, creating challenges for in-

terpretability. Although embeddings perform well in various

tasks, understanding why they work and what specific infor-

mation they encode remains difficult. This ”black box” nature

limits our ability to fully trust and effectively debug these



models. Traditional word embeddings, for instance, can strug-

gle with nuanced word-level relationships [55]. Transformer-

based models, despite excelling at complex NLP tasks, present

additional interpretability challenges due to their depth and

complexity, making it difficult to understand the properties

encoded in sentence representations and potential risks of

information leakage [32]. As models grow more sophisticated,

developing techniques to interpret their embeddings becomes

increasingly critical.

2) Methods for Understanding Embeddings:

a) Visualization Techniques: Visualizing embedding

spaces provides insights into relationships between words, sen-

tences, and concepts. Dimensionality reduction techniques like

Principal Component Analysis (PCA), t-distributed Stochastic

Neighbor Embedding (t-SNE), and Uniform Manifold Ap-

proximation and Projection (UMAP) are often used to project

high-dimensional embeddings into two or three dimensions for

visualization. For example, [85] visualized word embeddings

to understand how Arabic word semantics are represented.

Similarly, [86] applied dimensionality reduction to visualize

the semantic space of text in the sports domain. However, visu-

alizations come with limitations: projecting high-dimensional

data into lower dimensions involves information loss, and the

choice of technique can affect the insights gained.

b) Probing Tasks: Probing tasks are designed to evaluate

specific linguistic properties within embeddings. These tasks

involve training a simple classifier (e.g., linear classifier) to

predict linguistic attributes (e.g., part-of-speech, tense) from

embeddings, with classifier performance indicating the extent

to which embeddings capture these attributes. For instance,

[87] used probing tasks to compare the linguistic knowledge

in BERT and Word2vec embeddings. Additionally, [88] ana-

lyzed how word representation varies across layers in neural

language models, finding that deeper layers capture complex

linguistic features like semantics and morphology. [55] further

explored how input and output embeddings in neural models

encode different semantic knowledge.

c) Concept Activation Vectors (CAVs): Concept Activa-

tion Vectors (CAVs) offer insights into the contribution of

specific concepts to a model’s predictions. A CAV represents a

direction in the embedding space corresponding to a particular

concept. By projecting embeddings onto this direction, we can

measure the association of embeddings with that concept. [89]

briefly references CAVs but does not provide specifics on their

implementation.

d) Embedding Inversion Attacks: Embedding inversion

attacks aim to reconstruct the original text from its embedding,

highlighting privacy risks and potential information leakage.

[90] proposed a generative inversion attack that could re-

construct input sequences from sentence embeddings, expos-

ing the possibility of recovering sensitive information from

anonymized representations.

3) Using LLMs to Interpret Embeddings: Large language

models (LLMs) present a novel approach to interpreting em-

beddings by generating explanations and narratives for embed-

ding vectors. As demonstrated in [89], LLMs can translate ab-

stract embeddings into understandable descriptions, enhancing

interpretability and expanding applications for embeddings.

4) Applications of Explainable Embeddings: Explainable

embeddings are essential for developing more trustworthy AI

systems and improving model debugging. By understanding

the encoded information and its impact on predictions, we

can identify and mitigate biases [91]. Explainable embeddings

also aid in debugging by clarifying why a model made

specific predictions, allowing identification and correction of

errors or biases in the model’s training data or architecture.

While interpretability remains a challenge, ongoing research

in methods like visualization, probing tasks, CAVs, embedding

inversion attacks, and leveraging LLMs for interpretation, are

paving the way for more transparent and reliable language

models.

C. Encoding Numerical Information in Language Models

1) Challenges of Representing Numbers in Text: Represent-

ing numbers poses unique challenges for language models

due to their inherent quantitative properties, which differ from

typical lexical tokens. Unlike words, numbers have magnitudes

and relationships that are essential for understanding quantita-

tive context. For example, the difference between ”1” and ”2”

is a quantitative one, not just a lexical difference, and the re-

lationship between ”1” and ”10” is distinct from that between

”9” and ”10,” despite similar lexical distances. Standard word

embedding methods often treat numbers as regular tokens,

failing to capture these crucial quantitative and relational

aspects. This limitation becomes particularly problematic for

tasks requiring numerical reasoning or quantitative information

extraction, where the model must understand magnitudes and

relationships between numbers [92].

2) Embedding Numerical Information:

a) Default Embedding Methods: Treating Numbers as

Regular Tokens: In most language models, numbers are treated

as standard tokens and are assigned vector representations

similar to words. This approach does not inherently encode

the quantitative properties of numbers, often resulting in

poor performance on tasks involving numerical magnitudes

or relationships [42]. The limitations of this method are most

apparent in mathematical reasoning and quantitative informa-

tion extraction tasks, where an understanding of numbers is

crucial.

b) Exponential Embeddings: Encoding Numerical Mag-

nitude: Exponential embeddings seek to address these limi-

tations by encoding numerical magnitudes in the embedding

space, often using a logarithmic scale. This approach allows

the embedding distance to approximate the ratio between

numbers, capturing some aspects of numerical magnitude.

However, while exponential embeddings offer an improvement

over default methods, they still struggle to fully represent

numerical relationships [37].

c) Floating-Point Embeddings: Leveraging Computer

System Representations: Floating-point embeddings take in-

spiration from the computer’s floating-point representation,

encoding numbers as a combination of a mantissa and an



exponent. This enables models to capture both the magnitude

and precision of numerical values, improving their compre-

hension of numerical information and enhancing performance

on numerical reasoning tasks [93].

3) Specialized Architectures for Numerical Reasoning in

LLMs: To bolster numerical reasoning capabilities in large

language models (LLMs), researchers are developing special-

ized architectures that integrate external knowledge sources

or modules for handling numerical and mathematical opera-

tions. Such architectures provide promising advancements for

tasks requiring numerical reasoning, quantitative information

extraction, and other forms of numerical understanding [94].

4) Evaluation of Numerical Reasoning Capabilities:

Datasets and Metrics: Evaluating the numerical reasoning

abilities of language models requires specialized datasets

and metrics. Datasets like Numeracy-600K and Wiki-

Concert contain textual data with numerical information,

serving as benchmarks to assess model performance on

numerical reasoning tasks [93]. Key metrics—such as

accuracy, precision, recall, and F1-score—help quantify a

model’s capability to correctly extract and process numerical

information. These datasets and metrics are crucial for

tracking advancements in developing language models with

strong numerical reasoning capabilities.

D. Efficient and Scalable Training of Embedding Models

1) Computational Cost of Training Large Embedding Ma-

trices: The increasing scale of data used in natural lan-

guage processing (NLP) has led to a proportional increase

in embedding matrix sizes, creating significant computational

challenges. This is particularly evident in pre-trained language

models like BERT and GPT, which often contain billions

of parameters. The memory footprint of these models is

substantial, posing difficulties for deployment on resource-

constrained devices and impacting both training and inference

times. For instance, [13] emphasizes the need for efficient

language representations and improved evaluation methods,

while [77] focuses on compressing large models like BERT

to reduce computational demands.

2) Efficient Training Techniques: Several techniques aim to

reduce the computational cost of training large embedding ma-

trices while preserving the quality of the learned embeddings

[7]. These methods focus on optimizing the training process to

achieve faster convergence and lower resource consumption.

a) Noise-Contrastive Estimation: Approximating the Loss

Function for Faster Training: Noise-contrastive estimation

(NCE) approximates the loss function in training word embed-

dings, significantly accelerating the process. [10] demonstrates

how NCE enables high-quality word embedding training with

reduced data and computational needs by simplifying loss

computation, especially beneficial for large vocabularies and

datasets.

b) Subsampling Techniques: Reducing the Number of

Training Examples for Faster Convergence: Subsampling re-

duces the number of training examples used in the embedding

learning process, facilitating faster convergence and lower

computational costs. [95] presents an efficient subsampling

approach for neural word embeddings trained with hierarchi-

cal softmax, focusing on the most informative examples for

quicker and potentially more accurate learning.

c) Optimized Batching Strategies: Improving Training

Throughput with Large Batch Sizes: Optimized batching

strategies enhance training throughput by employing larger

batch sizes, which is particularly useful for large language

models. [96] discusses using large batches to improve em-

bedding discriminativeness. Larger batch sizes lead to more

stable parameter updates and faster convergence, although

careful tuning is required to manage memory constraints and

convergence stability.

d) Parallel and Distributed Training Methods: Scaling

Up on Multiple GPUs or CPUs: Parallel and distributed

training techniques distribute computational workload across

multiple GPUs or CPUs, drastically reducing training time

for large models and datasets. [42] describes parallel training

methods that enable scaling beyond previous model sizes,

facilitating training for very large neural networks.

3) Hardware Acceleration for Embedding Training and

Inference: Specialized hardware such as GPUs and TPUs

offers significant acceleration for both training and inference

of embedding models. These devices’ parallel processing capa-

bilities are ideally suited for the matrix operations integral to

embedding computations, expediting model experimentation

and deployment in NLP applications [97].

E. Addressing Bias and Ethical Concerns in Embeddings

1) Sources of Bias in Embedding Models: Biases in lan-

guage models pose ethical challenges and can perpetuate

societal inequalities. These biases arise from various sources,

including the training data and the model architecture. Training

data often reflects societal biases, as noted by [13]. If the

corpus overrepresents specific demographics or viewpoints, the

resulting embeddings may inherit and amplify these biases.

Model architecture also contributes to bias; design choices,

such as the objective function or the incorporation of context,

may unintentionally favor certain types of information, leading

to skewed representations. For instance, models that prioritize

word co-occurrence patterns may inadvertently capture and

reinforce biases present in the data [32].

2) Measuring and Quantifying Bias: Accurate measure-

ment and quantification of bias are essential for understanding

its nature and impact. Intrinsic and extrinsic evaluation metrics

are commonly used. Intrinsic evaluations directly assess em-

beddings for bias, often through similarity measures or analogy

tasks. For instance, [98] used word similarity tasks to compare

translation-based and monolingual embeddings, revealing dif-

ferences in how they capture ontological information. Extrinsic

evaluations measure bias by examining its impact on down-

stream NLP tasks. Statistical tests, like the Word Embedding

Association Test (WEAT), help quantify biased associations,

while [99] used correlation analysis to explore the relationship

between intrinsic and extrinsic evaluations. Analyzing bias’s

differential impact on social groups is also essential; [91]



investigated intersectional biases, examining how gender iden-

tity, sexual orientation, and social class intersect to influence

biased representations.

3) Mitigating Bias: Bias mitigation in language models is

an active area of research. Data augmentation can balance

training datasets, minimizing the effects of skewed represen-

tations [15]. Debiasing techniques aim to neutralize biased

associations within embedding spaces; for instance, [92] pro-

posed a new metric for evaluating vector transformations. Ad-

ditionally, adversarial training helps models become robust to

biased inputs by making them insensitive to specific protected

attributes, enhancing fairness in model predictions.

4) Ethical Implications of Biased Embeddings: Biased em-

beddings raise ethical concerns surrounding fairness, trans-

parency, and accountability in NLP systems. Embeddings that

perpetuate stereotypes or discriminate against certain groups

can lead to harmful societal consequences. For example,

[47] examined word embeddings for hate speech detection,

emphasizing the importance of capturing context for accurate

identification. Transparency is essential to understand the

origins of biases and their impact on model decisions, while

accountability ensures that those developing and deploying

NLP systems take responsibility for mitigating bias and ad-

dressing potential harms.

F. Adaptive Language Modeling and Transfer Learning with

Embeddings

1) Transfer Learning: Using Pre-trained Embeddings for

Downstream Tasks: Pre-trained word embeddings have be-

come a cornerstone of NLP, providing rich semantic infor-

mation derived from extensive unlabeled text. This transfer

learning approach has proven effective across diverse NLP

applications. For instance, [11] demonstrates that LSTM-RNN

sentence embeddings enhance web document retrieval perfor-

mance, while [100] shows how neural word embeddings im-

prove translation model effectiveness. Beyond retrieval tasks,

[32] analyzes properties encoded in sentence embeddings,

offering insights into their capture of content, order, and

length. Pre-trained embeddings also benefit other areas: [24]

employs word embeddings to tackle vocabulary mismatch

in information retrieval, yielding notable improvements, and

[40] highlights the effectiveness of BERT embeddings in

knowledge base question answering.

2) Domain Adaptation: Fine-tuning Embeddings on

Domain-Specific Data: While generic pre-trained embeddings

provide a strong baseline, fine-tuning on domain-specific data

can further enhance their utility, particularly for specialized

vocabularies and semantic nuances. [101] demonstrates

that embeddings trained on engineering texts outperform

general-purpose models in engineering-related tasks. In the

clinical domain, [102] finds that contextual embeddings pre-

trained on clinical data achieve state-of-the-art performance

in clinical concept extraction. Similarly, [37] explores the

impact of domain-specific context on RNN language models,

emphasizing the benefits of domain adaptation.

3) Cross-Lingual Transfer Learning: Leveraging Embed-

dings for Low-Resource Languages: Cross-lingual embed-

dings enable knowledge transfer from resource-rich to

resource-poor languages by projecting words into a shared

embedding space. [28] explores cross-lingual embeddings

from bilingual lexicons to improve low-resource language

models, while [30] introduces bilingual embeddings learned

from unlabeled corpora and machine translation alignments,

enhancing translation performance. Even with limited data,

[103] shows that embeddings from neural machine translation

models outperform monolingual embeddings by capturing

conceptual and lexical-syntactic similarities. [60] further pro-

poses an unsupervised method for cross-lingual embeddings

using multilingual language models, achieving high quality

with limited monolingual data and across varying domains.

4) Adaptive Language Modeling: Conditioning Language

Models on Different Contexts: Adaptive language model-

ing allows models to condition on specific contexts, such

as style or sentiment, for more controlled text generation.

[104] explores weighting schemes for ELMo embeddings to

improve downstream performance in varied contexts. [105]

introduces LM-Switch, a lightweight approach for adapting

language models to specific conditions by manipulating word

embeddings, enabling nuanced language generation.

5) Zero-Shot Learning with Embeddings: Applying Lan-

guage Models to New Tasks without Task-Specific Training

Data: Zero-shot learning with embeddings enables language

models to tackle new tasks without task-specific training

data. [67] introduces the Visual Semantic Embedding Probe

(VSEP) for evaluating contextualized word embeddings in

zero-shot visual semantic understanding, while [106] argues

for evaluating language model embeddings on their direct

linguistic reasoning capabilities, showing potential for zero-

shot common-sense reasoning tasks.

G. The Role of Embeddings in Emerging Areas

1) Embodied AI: Grounding Language in Sensorimotor

Experiences: Embodied AI seeks to ground language un-

derstanding in sensorimotor experiences, enabling agents to

interact with and reason about the physical world. Multimodal

embeddings are crucial for bridging linguistic instructions and

robotic actions. [66] introduced an algorithm that learns a

shared embedding space for point-cloud data, natural lan-

guage, and manipulation trajectories, enhancing accuracy and

inference in robotic tasks. This approach allows robots to

generalize from past interactions with objects to manipulate

new objects based on linguistic commands. Further advancing

embodied AI, [107] proposed PaLM-E, a multimodal language

model that integrates continuous sensor data (e.g., visual,

state estimation) into a large language model, excelling in

embodied tasks like robotic manipulation planning, visual

question answering, and captioning. Kosmos-2 also contributes

to this field by grounding text in visual information, such as

bounding boxes, which supports complex multimodal tasks

like phrase grounding and referring expression comprehension

[69].
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2) Cognitive Science: Modeling Human Language Pro-

cessing with Embeddings: Embeddings have become a valu-

able tool in cognitive science for modeling human language

processing and understanding the neural basis of language.

Studies reveal a striking correspondence between brain activity

and artificial embeddings. [74] observed that brain embeddings

in Broca’s area share a similar geometry with contextual

embeddings from deep language models, allowing cross-

domain predictions and indicating a shared representational

space. Further research, such as [109], reinforces this shared

geometry’s predictive power, suggesting that embedding mod-

els provide a computational framework for language repre-

sentation in the brain. Additionally, [73] explored subject-

specific semantic representations, finding that language models

can capture individual differences in processing personally

familiar entities. [75] extended these insights by highlighting

a correspondence between deep language model (DLM) layers

and the temporal dynamics of brain activity during language

processing. These findings suggest that artificial embeddings

offer valuable insights into neural mechanisms underlying

language processing [32].

3) Reasoning and Commonsense Knowledge: Integrat-

ing Embeddings with Probabilistic Models and Knowledge

Graphs: Integrating embeddings with probabilistic models

and knowledge graphs enhances commonsense reasoning and

knowledge representation in language models. [110] intro-

duced a model-independent loss function that incorporates pre-

trained language models into knowledge graph embeddings,

improving knowledge graph completion accuracy. Addition-

ally, [111] demonstrated that joint modeling of knowledge

graphs and entity prediction with language models enhances

performance on both tasks. [26] provided a comprehensive

review of word embeddings and pre-trained language mod-

els, emphasizing their role in advancing NLP tasks. [106]

proposed a paradigm that evaluates language models based

on their capacity for direct linguistic reasoning, suggesting

that embeddings function as implicit knowledge repositories.

[26] also explored integrating pre-trained language models into

sequence-to-sequence models, highlighting their effectiveness

in tasks like machine translation and summarization. These

studies illustrate the potential of combining embeddings with

knowledge representation techniques to boost reasoning capa-

bilities. Moreover, [43] introduced a generative model for word

embeddings, providing a theoretical foundation for nonlinear

models and explaining how embeddings support analogical

reasoning. Fig 3 presents a taxonomy of advanced topics and

research gaps covered in this section.

VI. FUTURE DIRECTIONS

A. Open Challenges and Future Research Directions

The rapid development of large language model (LLM)

embeddings has led to impressive advancements in natural

language processing. However, several challenges and open

questions remain, which limit the full realization of their

potential.

One significant challenge is efficiently handling extremely

long documents. Current embedding models struggle with

long sequences, often resorting to truncation or segmentation,

which can lead to information loss and increased computa-

tional overhead. Developing scalable models capable of pro-

cessing extended contexts without compromising performance

is essential. For example, Jina Embeddings 2 [112] addresses

this by accommodating up to 8192 tokens, illustrating the

potential of extended context windows for representing lengthy

documents more effectively.

Improving interpretability and explainability of embeddings

is another critical area for future research. Although embed-

dings effectively capture semantic relationships, their abstract

nature often makes it difficult to understand how specific

representations are derived. This lack of transparency lim-

its their applicability in domains requiring explainable AI.

Methods that increase interpretability, such as transforming

abstract vectors into understandable narratives using LLMs, as

explored in [89], are essential for building trust and enabling

deeper analysis of model behavior. Further research into the

theoretical foundations of embedding models, including their

relation to human cognition, as studied in [74], can enhance

our understanding of their internal structures. Examining prop-

erties encoded in sentence representations, as done in [32],

is also a promising step towards clarifying these complex

representations.

Addressing bias and ethical concerns in embeddings is

paramount. Language models often reflect biases present in

their training data, potentially perpetuating harmful stereotypes

and discriminatory outcomes. Developing robust methods for

detecting, mitigating, and preventing bias in embeddings is

essential to ensure fairness and responsible LLM use. Research

like [91] highlights significant biases related to sensitive

attributes such as gender identity and sexual orientation, un-

derscoring the need for improved bias mitigation techniques.

Furthermore, ethical concerns surrounding data privacy and

potential malicious applications of embedding inversion at-

tacks, as demonstrated in [90], call for further research and

the development of safeguards.

Grounding language models in non-textual modalities of-

fers a promising avenue for enhancing world understanding.

Current models primarily rely on text, which may limit their

ability to capture grounded, real-world semantics. Integrat-

ing non-textual modalities such as images [63], or audio

and sensor data [66], could provide richer representations

connecting language to real-world experiences. Additionally,

grounding models in structured knowledge bases, as explored

in [113], could enhance their reasoning abilities and enable

more complex inferences.

Developing models that integrate knowledge and reasoning

capabilities into embeddings remains a crucial research di-

rection. Current embeddings primarily capture statistical word

correlations, often lacking deeper understanding of underlying

knowledge and logical relationships. Integrating knowledge

graphs, as investigated in [110], or designing models for

reasoning in the linguistic domain, as proposed in [114], could



support more sophisticated reasoning in LLMs. This includes

exploring logical expressions for word semantics, as proposed

in [115], and methods for encoding temporal information

into model weights, as studied in [116]. Additionally, further

exploration of embedding models’ theoretical foundations,

especially their relationship to human cognition as examined

in [71], could inform the development of more cognitively

plausible embeddings.

B. Potential Impact and Broader Implications

Advancements in embedding models for Large Language

Models (LLMs) hold significant promise for transforming a

wide range of applications and domains.

One major area of impact is improved natural language

understanding and generation. Although current LLMs have

shown remarkable capabilities, they still struggle with certain

aspects of language, such as capturing nuanced semantics,

handling ambiguity, and generating coherent, contextually

appropriate text. Enhanced embedding models could address

these limitations by providing richer, more nuanced represen-

tations, enabling LLMs to better grasp the meaning and intent

behind text. This advancement could lead to more accurate

and fluent machine translation systems [30], more effective

summarization tools [117], and more engaging, informative

dialogue systems [11].

Another promising area is the development of more so-

phisticated, human-like conversational AI systems. Current

conversational AI often struggles with maintaining context,

understanding complex queries, and generating appropriate

responses. Improved embeddings could enable these systems

to better understand the subtleties of human language, resulting

in more natural, engaging interactions with chatbots and virtual

assistants [40], more effective language tutoring systems [118],

and adaptive language learning platforms [28].

Embedding models also have the potential to significantly

enhance information retrieval and knowledge management sys-

tems. Traditional retrieval methods rely on keyword matching

or basic similarity measures, which are limited when handling

complex or ambiguous queries. Advanced embeddings could

provide a more nuanced and semantically rich representa-

tion of documents and queries, leading to more accurate

and relevant search results. This development could benefit

search engines [24], intelligent knowledge bases [113], and

sophisticated recommendation systems [33].

Beyond traditional NLP, embedding models are also gain-

ing traction in emerging fields like robotics, embodied AI,

and cognitive science. In robotics, embedding models can

ground language in perception and action, enabling robots to

understand and respond more effectively to human instructions

[66]. In embodied AI, embeddings facilitate the development

of human-like agents that interact with the world in a more

natural and intuitive way [114]. In cognitive science, embed-

dings offer insights into how the human brain represents and

processes language, providing valuable understanding of the

neural basis of language and cognition [74].

Lastly, advancements in embedding models could enable

more personalized and adaptive language technologies. Per-

sonalized embeddings capture individual differences in lan-

guage use and preferences [31], facilitating tailored language

learning experiences. Adaptive language models that adjust

based on user context can offer more relevant, useful in-

formation and services [119]. By incorporating user-specific

information, these technologies can enhance the accessibility

and usability of language systems for diverse audiences.

Moreover, embedding advancements could address broader

societal challenges such as misinformation, bias, and acces-

sibility. By capturing the nuances of language and concept

relationships, embeddings can help detect and mitigate biases

in language models [91], identify and counter misinformation

[37], and improve accessibility for people with disabilities.

These advancements hold potential to foster more equitable

and inclusive language technologies, benefiting society as a

whole.
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