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Abstract001

In applications such as dialogue systems, per-002
sonalized recommendations, and personal as-003
sistants, large language models (LLMs) need004
to retain and utilize historical information over005
the long term to provide more accurate and con-006
sistent responses. Although long-term mem-007
ory capability is crucial, recent studies have008
not thoroughly investigated the memory per-009
formance of large language models in long-010
term tasks. To address this gap, we introduce011
the Long-term Chronological Conversations012
(LOCCO) dataset and conduct a quantitative013
evaluation of the long-term memory capabili-014
ties of large language models. Experimental015
results demonstrate that large language mod-016
els can retain past interaction information to a017
certain extent, but their memory decays over018
time. While rehearsal strategies can enhance019
memory persistence, excessive rehearsal is not020
an effective memory strategy for large mod-021
els, unlike in smaller models. Additionally, the022
models exhibit memory preferences across dif-023
ferent categories of information. Our study not024
only provides a new framework and dataset for025
evaluating the long-term memory capabilities026
of large language models but also offers impor-027
tant references for future enhancements of their028
memory persistence.029

1 Introduction030

In recent years, large language models (LLMs)031

have been widely applied across various fields, driv-032

ing technological advancements. In many practical033

applications, such as personal assistants (Lu et al.,034

2023), personalized recommendations (Wang et al.,035

2023c), and dialogue systems (Zhong et al., 2024),036

models need to retain and utilize past information037

over the long term to provide more accurate and038

consistent responses. Although long-context strate-039

gies (Bertsch et al., 2024) and retrieval-augmented040

generation techniques (Shuster et al., 2021) have041

improved LLMs’ memory in handling long-term042

Figure 1: An Example in LOCCO. We impart mem-
ory to the LLMs through supervised fine-tuning and
examine how this memory changes over time. Mem-
ory1 represents the model’s memory of the dialogues
from the first time period. The model gradually forgets
the information from this initial period.

tasks, these text-based memory methods face sig- 043

nificant limitations in terms of token count, com- 044

putational cost, and inference time (Zhang et al., 045

2024). 046

In contrast, parameter-based memory stores in- 047

formation by adjusting the model’s internal param- 048

eters, meaning that this information is an inher- 049

ent part of the model, better reflecting the concept 050

of memory within the model itself. While prior 051

work has demonstrated the memory performance of 052

LLMs in related domains (Shao et al., 2023), their 053

memory performance in long-term tasks remains 054

underexplored. Considering that human-machine 055

dialogue is a crucial application of LLMs, memory 056

plays a key role. Evaluating LLMs’ performance 057
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in long-term dialogue tasks can indirectly reflect058

their long-term memory capabilities (Zhang et al.,059

2024).060

To this end, we propose a pipeline for con-061

structing long-term dialogue data: Long Conver-062

sation Generation (LoCoGen), an automated di-063

alogue generation pipeline based on LLMs. We064

use LoCoGen to build a dialogue dataset fo-065

cused on evaluating LLMs’ long-term memory066

capabilities—Long-term Chronological Conversa-067

tions (LOCCO). LOCCO contains 100 users’ long-068

term dialogues with a chatbot, totaling 3080 in-069

teractions, simulating the application scenario of070

LLMs as chatbots.071

Previous research has predominantly assessed072

memory by evaluating the extent to which models073

fit the training data, employing identical task for-074

mats during both the training and evaluation phases075

(Tirumala et al., 2022; Wang et al., 2019; Han et al.,076

2020). However, for LLMs, the memory process077

should represent an organic integration of train-078

ing data, rather than mere rote memorization of its079

paradigms. Inspired by (Maharana et al., 2024; Du080

et al., 2024), we examine LLMs’ memory through081

dialogue question-answering tasks. In our exper-082

imental setup, the model does not learn how to083

utilize the conversation to perform the Q&A tasks084

during the memory formation process. Therefore,085

when the model can accurately answer questions us-086

ing information from the conversation, it indicates087

that the model has genuinely retained the conversa-088

tional information. This demonstrates an organic089

and interactive memory process. Additionally, met-090

rics like ROUGE (Lin, 2004) and BLEU (Papineni091

et al., 2002) have limited accuracy in open-domain092

dialogues, so we trained a consistency model to093

replace existing automated metrics for assessing094

response accuracy.095

Experiments on open-source LLMs show that096

they possess a certain degree of memory capabil-097

ity in long-term tasks, able to recall historical in-098

teraction information such as names, places, and099

specific events, and use this information to answer100

questions. However, LLMs face limitations in han-101

dling dialogues over long time spans, gradually for-102

getting historical dialogues. To enhance memory103

persistence, we employed a rehearsal strategy from104

continual learning. The results demonstrate that,105

unlike in smaller models, excessive rehearsal is not106

an effective memory strategy. Our contributions107

are as follows:108

i)We provide an automated pipeline, LoCoGen,109

for constructing long-term dialogue data and create 110

the LOCCO dataset to measure LLMs’ long-term 111

memory. 112

ii)We quantitatively evaluate LLMs’ long-term 113

memory capabilities using LOCCO and further ex- 114

plore factors that may affect memory. We find 115

that memory gradually weakens over time and that 116

LLMs exhibit memory preferences. 117

iii)We found that rehearsal strategies can en- 118

hance the memory of LLMs; however, they do not 119

prevent complete forgetting. Additionally, spaced 120

learning is more effective than massed learning 121

in terms of memory retention. Nevertheless, for 122

LLMs, excessive rehearsal is not an effective mem- 123

ory strategy. 124

2 Related Works 125

2.1 Memory in LLMs 126

Previous studies have proposed several promising 127

memory mechanisms, categorizing memory into 128

text-based and parameter-based forms. Memory in 129

textual form (Li et al., 2023; Huang et al., 2023; 130

Zhong et al., 2024) offers good interpretability and 131

implementation convenience for long-term mem- 132

ory in LLMs. However, it also faces challenges 133

such as high computational cost, inference time 134

delays, information loss, and inference robustness 135

issues. Approaches that alter model parameters 136

through fine-tuning (Shao et al., 2023; Wang et al., 137

2023b) are not constrained by the context length 138

limitations of LLMs. They offer higher inference 139

efficiency and lower inference costs. However, fine- 140

tuning LLMs can lead to forgetting original knowl- 141

edge due to parameter updates (Jang et al., 2021; 142

Ke et al., 2021). This can impact the performance 143

of LLMs on tasks requiring long-term continuous 144

memory. Previous work has not quantitatively as- 145

sessed the performance of fine-tuned memory in 146

long-term tasks, highlighting the need for quanti- 147

tative evaluation of models’ memory in long-term 148

memory tasks. 149

2.2 Long-term Dialogue 150

Recent approaches (Xu et al., 2022b; Chen et al., 151

2024) store memory in text form without changing 152

model parameters, preventing models from truly 153

remembering dialogue history. We adjust model pa- 154

rameters through supervised fine-tuning, enabling 155

models to internalize key information from long- 156

term dialogues as an inherent part. To evaluate the 157

performance of dialogue agents in long-term con- 158
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versations, some datasets have been proposed(Jang159

et al., 2023; Zhang et al., 2023). These datasets160

only cover a few to dozens of dialogue turns, lack-161

ing sufficient historical dialogue content and time162

span to adequately assess the long-term memory163

capabilities of LLMs. Maharana et al. (2024) use164

the F1 score as an evaluation metric for dialogue165

question-answering, which is insufficient to accu-166

rately assess the performance of LLMs across dif-167

ferent formats. By introducing LoCoGen, we auto-168

matically constructed dialogue data with long-term169

consistency, addressing the limitations in time span170

and historical content of existing methods. Ad-171

ditionally, we provide a more precise evaluation172

method for long-term conversational memory.173

3 Task Setup174

3.1 Long-term Dialogue Memory175

We denote long-term dialogue data as D =176

{D1, D2, ..., Dn}, where Dj represents the dia-177

logue data within the Tj time period. Each Dj con-178

sists of multiple individual dialogues, i.e., Dj =179

{Dj1, Dj2, ..., Djm}, where m is the number of180

dialogues within the Tj time period. We ensure181

that the number of dialogues in each time period is182

approximately equal. Qj represents the questions183

posed by the user regarding the dialogues in Dj ,184

Qj = {Qj1, Qj2, ..., Qjk} (where k ≤ m). Each185

question Qjx uniquely corresponds to a dialogue186

Djx. If the trained model M can accurately utilize187

the information in Djx to answer the user’s ques-188

tion Qjx, then the model M is considered to have189

memory of Djx.190

3.2 Research Questions191

We have formulated the following six research192

questions to explore the long-term memory capa-193

bilities of large language models: i) How do large194

language models perform in terms of long-term195

memory? ii) Does the memory performance of196

large language models vary with the introduction197

of new data? iii) Do large language models exhibit198

memory preferences similar to those observed in199

humans? iv) Do large language models experience200

cognitive load in a manner analogous to humans?201

v) Do large language models exhibit a forgetting202

baseline? vi)Do large language models achieve203

permanent memory through replay strategies com-204

parable to those utilized by humans?205

3.3 Data Construction 206

Long-term Chronological Conversations. Con- 207

structing long-term dialogues faces two main chal- 208

lenges: i) The length of text generated by LLMs is 209

limited (e.g., GPT-4o’s maximum length is 4096 210

tokens); ii) It is essential to ensure that the back- 211

ground and development trajectory of characters 212

remain coherent throughout the dialogue, avoid- 213

ing inconsistent or conflicting plots. We propose 214

a pipeline named LoCoGen (Long Conversation 215

Generation) that can automatically generate long 216

and consistent dialogues based on brief character 217

descriptions. Figure 2 shows an overview of LoCo- 218

Gen. 219

We first selected character descriptions from the 220

MBTI-S2Conv dataset (Tu et al., 2023) as the foun- 221

dation. This dataset contains 1024 virtual charac- 222

ters, each with a structured data description, in- 223

cluding name, gender, age, personality, and back- 224

ground. To ensure that the dialogues reflect the 225

characters’ changes, we set specific timestamps for 226

each character description. To extend the character 227

descriptions and simulate real-life user changes, we 228

first used prompts to expand the initial character 229

descriptions to cover three different time points. 230

These time-point descriptions reflect the characters’ 231

growth and changes while maintaining consistency 232

with their backgrounds. In this way, we initially 233

established a timeline for each character, ensuring 234

the rationality and consistency of character depic- 235

tions across different time periods. To obtain more 236

detailed character descriptions and showcase the 237

characters’ long-term changes in detail, we inserted 238

new time-point descriptions between the existing 239

time points and iterated this process. The prompts 240

included the character descriptions from the pre- 241

ceding and following time points. Inspired by the 242

plot progression techniques used by novelists in 243

constructing long narratives, we iteratively inserted 244

new descriptions to build more detailed long-term 245

descriptions, ensuring the characters’ development 246

remained coherent and consistent. 247

After completing the long-term description of 248

characters, we further inserted multiple events be- 249

tween each description to simulate the experiences 250

of characters during that period. To ensure event 251

consistency, we were inspired by Yang et al. (2022) 252

and employed recursive reprompting. After gener- 253

ating each new event, we summarize past events 254

to retain key information. Additionally, we main- 255

tain an automatically updated structured list that 256
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Figure 2: Overview of LoCoGen. We use unique character descriptions as the initialization, followed by generating
a series of events and interactions related to the characters to construct the dataset. We illustrate the construction
process of long-term dialogue data for a character in LOCCO, omitting some parts for brevity.

Dataset Avg. turns per
conv.

Avg. sessions
per conv.

Avg. tokens
per conv.

Time Interval Collection

MPCChat (Ahn et al., 2023) 2.8 1 53.3 - Reddit
MMDialog (Feng et al., 2022) 4.6 1 72.5 - Social media
Daily Dialog (Li et al., 2017) 7.9 1 114.7 - Crowdsourcing
SODA (Kim et al., 2023) 7.6 1 122.4 - LLM-generated
MSC(Xu et al., 2022a) (train: 1–4 sessions) 53.3 4 1,225.9 few days Crowdsourcing
Conversation Chronicles (Jang et al., 2023) 58.5 5 1,054.7 few hours - years LLM-generated
LoCoMo (Maharana et al., 2024) 304.9 19.3 9,209.2 few months LLM-gen.+ crowdsourc.
LOCCO (ours) 258.7 30.8 3,856.20 few days LLM-generated

Table 1: Statistics comparing LOCCO with existing dialogue datasets, showing that the average session length of
long-term dialogues in LOCCO significantly exceeds that of existing datasets.

records information about key characters, locations,257

items, and other elements mentioned in the events.258

When generating new events, the following four259

components are referenced: i)Character descrip-260

tions at two time points: Ensures events align with261

character development; ii)Event summary: Sum-262

marizes the new event and some previous events263

to ensure important contextual information is re-264

tained; iii)Automatically updated structured list:265

This list records important elements mentioned in266

events (e.g., characters, locations, items) in real-267

time and is used to maintain consistency when268

generating new events; iv)Most recently generated269

event: Incorporates the content of the latest event270

into prompts to help generate subsequent events, en-271

suring smooth continuity with prior content. Based272

on long-term events, we use LLMs to generate dia-273

logues. The generated long-term dialogues closely 274

align with the characters’ backgrounds and devel- 275

opment trajectories. The dialogues simulate in- 276

teractions between characters acting as users and 277

the large language model. Detailed prompts used 278

in LoCoGen can be found in Appendix A.1. We 279

randomly selected 100 characters from the MBTI- 280

S2Conv (Tu et al., 2023) dataset to initialize char- 281

acter descriptions. By running the aforementioned 282

generation process, we constructed a long-term 283

consistent dialogue dataset, Long-term Chronolog- 284

ical Conversations (LOCCO), containing 3080 di- 285

alogue entries. The generated LLM data some- 286

times exhibit quality inconsistencies, potentially 287

containing incorrect information or deviating from 288

the specified format. To ensure high quality and 289

consistency of the dataset, we implemented an auto- 290

4



mated process to filter out these issues (see detailed291

process in Appendix A.2). Table 1 presents the292

statistics of the LOCCO dataset.293

We refer to (Bae et al., 2022) and employ a man-294

ual approach to evaluate the dialogue data. Specif-295

ically, we randomly selected 200 historical dia-296

logues and required crowdworkers to rate their297

level of agreement with each evaluation criterion298

on a scale from 0 to 5. The overall results are299

presented in Table 2. Detailed descriptions of the300

evaluation criteria can be found in Appendix A.3).301

Metrics Avg Std
Consistency 4.40 0.52
Coherence 4.45 0.78
Participation 4.58 0.86
Overall 4.47 -

Table 2: Results of Manual Evaluation of Dialogue
Data.

Gao et al. (2023) has utilized LLMs as evaluators302

to assess data quality, demonstrating high consis-303

tency with human evaluation results. Therefore, we304

also use LLMs to evaluate the dialogue data, scor-305

ing dialogues in terms of Participation, Coherence,306

and Rationality. Detailed scoring instructions and307

results are provided in Appendix A.4.308

Dialogue Question Answering. Considering309

that dialogue Q&A can effectively assess a model’s310

memory (Maharana et al., 2024), we generated a311

set of dialogue Q&A pairs for each conversation,312

with answers intended to align with key informa-313

tion mentioned in the historical dialogue. The core314

idea of the evaluation is that if the model can ac-315

curately use key information from the historical316

dialogue to answer questions, it is considered to317

have remembered that dialogue. To ensure data318

quality and evaluation effectiveness, we manually319

filtered the Q&A pairs, ultimately retaining 2,981320

dialogue Q&A pairs. For detailed construction pro-321

cesses and filtering rules, refer to Appendix B.322

4 Experiments323

4.1 Experimental Setup324

We conducted experiments on 8 x NVIDIA325

GeForce RTX 3090 (each with 24GB) and used326

LLama-Factory for model training and inference,327

employing LoRA (Low-Rank Adaptation) for train-328

ing. The training used a batch size of 1 (we found329

that smaller batch sizes lead to clearer memory of330

key information in dialogues), with rank and al-331

pha set to 128 and 256, respectively. The learning332

rate was set to 1.0e-4, and training lasted for 3333

epochs (we found this sufficient for the model to 334

remember some dialogues, even if not achieving 335

peak performance, ensuring fairness across differ- 336

ent models). Detailed data formatting can be found 337

in Appendix C. 338

4.2 Dataset, Models, and Metric 339

We utilize LOCCO as the long-term dialogue 340

dataset and employ corresponding dialogue Q&A 341

data to assess the model’s memory. The config- 342

uration of the training data varies as we explore 343

different research questions. Detailed data parti- 344

tioning and the prompt templates used to test the 345

model’s memory with questions can be found in 346

Appendix D. 347

We selected ChatGLM3-6B (GLM et al., 2024), 348

internlm2_5-7b-chat (Cai et al., 2024), Meta- 349

Llama-3-8B-Instruct (AI@Meta, 2024), openchat- 350

3.5-0106 (Wang et al., 2023a), and Qwen1.5-Chat 351

(0.5B-14B) (Bai et al., 2023) 1 as subjects of study. 352

These models have been fine-tuned with instruc- 353

tions and perform well on dialogue tasks. Eval- 354

uating the response quality of generative models 355

presents many challenges, especially when possible 356

correct responses are diverse. 357

Automatic metrics like BLEU (Papineni et al., 358

2002) have weak correlations with human annota- 359

tions, leading to significant discrepancies between 360

different models and datasets. Some researchers 361

use human evaluation to judge response quality, but 362

this method is costly, time-consuming, and diffi- 363

cult to scale. Therefore, we trained a Consistency 364

Model to replace human evaluation in assessing 365

whether responses are consistent with historical 366

dialogues. More detailed training information is 367

available in Appendix E. We employed manual ver- 368

ification to validate the evaluation results of the 369

consistency model, with the final results presented 370

in Table 3. Detailed evaluation procedures are de- 371

scribed in Appendix F. 372

Model Evaluation Results Model Evaluation Accuracy
Consistent 94%
Inconsistent 97%

Table 3: Evaluation Accuracy of the Consistency
Model.

1Considering that the size of language model parameters
might affect memory, we chose models with varying parameter
sizes from the Qwen1.5-Chat series for training and testing.
The Qwen1.5-Chat series offers a richer variety of models with
different parameter sizes, providing a significant advantage
over other series.
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We use response accuracy to evaluate model373

memory: Assume model M ’s response to ques-374

tion Qjx (where Qjx is a question in the set Qj) is375

Rjx. We use Ajx to denote response accuracy:376

Ajx = g(Djx, Qjx, Rjx) (1)377

where g represents the evaluation function. In378

this study, we use a consistency model as the evalu-379

ation function.If Rjx is consistent with the informa-380

tion in Djx, then Ajx = 1 (meaning the model "re-381

members" this information). Otherwise, Ajx = 0,382

indicating the model "forgot" this information.383

The response accuracy Mj for Qj is:384

Mj =
1

k

k∑
x=1

Ajx (2)385

where k represents the number of questions. We386

use Mj to measure model M ’s memory of Dj . A387

higher Mj indicates that the model can better uti-388

lize the information in Dj to answer user questions;389

in other words, the higher the Mj , the stronger the390

model’s memory of Dj .391

4.3 Main Results392

Long-Term Memory Performance We train the393

models sequentially to simulate the gradual in-394

crease in user dialogue over time, covering six time395

periods. After each phase, we tested the model’s396

memory of D1 (the initial dialogue) using Q1. As397

depicted in Figure 3, all models demonstrated the398

highest memory retention at the outset of training.399

However, as training advanced, their ability to re-400

member Q1 generally diminished. This indicates401

that introducing new data makes models prone to402

forgetting earlier dialogue information. Within the403

same series, models with larger parameters (such as404

Qwen1.5-14B-Chat) were better at retaining early405

information, demonstrating stronger memory reten-406

tion capabilities.407

To more clearly observe the forgetting rate, we408

calculated the percentage decrease in M1 relative409

to its initial value at each time point, as shown in410

Figure 4. Even models with similar parameter sizes411

(6B-8B) can exhibit significant differences in mem-412

ory retention. For instance, openchat-3.5-0106 had413

strong memory retention at T1 ( M1=0.455) but for-414

got 85.27% of the information by T2. In contrast,415

ChatGLM3-6B retained 48.25% of its memory af-416

ter six periods. These differences may relate to417

model architecture, training data, and methods.418

Figure 3: Memory of D1 by LLMs at different time
stages.

Impact of New Data on Memory Consider- 419

ing that LLMs need to remember dialogues across 420

all time periods in long-term memory tasks, we 421

examined their ability to recall subsequent dia- 422

logue information. After training each period, we 423

tested using corresponding dialogue Q&A. Fig- 424

ure 5 shows that models’ memory of new dialogues 425

gradually declines. Openchat-3.5-0106 exhibited 426

the largest drop, with M1 of 0.455 at T1 falling 427

to M6 of 0.05 at T6, below Qwen1.5-0.5B-Chat’s 428

0.07. ChatGLM3-6B declined more slowly, from 429

M1=0.31 at T1 to M6=0.27 at T6, a decrease of 430

only 12.9%. While larger parameter sizes improve 431

memory capacity, they do not mitigate the decline. 432

Maintaining stable memory of new dialogue infor- 433

mation is crucial for long-term tasks and remains a 434

future challenge. 435

Memory Preferences Inspired by Robertson 436

(2012), human memory for different types of infor- 437

mation varies. We used LLMs to classify informa- 438

tion in dialogue Q&A, with details in Appendix G. 439

In Figure 6, We found that models exhibit varying 440

memory strength for different categories of infor- 441

mation, such as names, locations, and events. For 442

instance, Llama-3-8B-Instruct had an M1 of 0.484 443

for location information at T1, 110.4% higher than 444

for names, but location memory declined faster, 445

eventually falling below name memory. Differ- 446

ent models also have distinct memory preferences; 447

Llama-3-8B-Instruct remembers location informa- 448

tion more accurately, while internlm2_5-7b-chat 449

excels at event memory with an M1 of 0.468. Bal- 450

ancing memory capabilities for different types of 451

information can enhance long-term dialogue sys- 452

tem performance. 453

Impact of Dialogue Density on Memory When 454

LLMs need to remember a large amount of dia- 455

logue data within the same time period, their mem- 456
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Figure 4: Percentage decrease in M1 relative to T1 for
LLMs at different time stages. A larger M1 Decrease
indicates faster forgetting.

Figure 5: Memory of LLMs for new dialogues.

ory capabilities may also be affected. To verify457

this hypothesis, we selected user data of different458

quantities and divided the data into six time pe-459

riods based on dialogue timestamps, training the460

models sequentially to observe the impact of dia-461

logue density on memory performance. As shown462

in Figure 7, it is more challenging for the model to463

remember a large amount of dialogue information464

at once and maintain memory persistence. When465

the model remembers dialogues with 20 users at466

once, the M1 at T1 is 0.420, which is 48.4% higher467

than for 100 users ( M1 is 0.283). At T6, the M1468

for 20-user dialogues (0.15) is 354.5% higher than469

the M1 for 100-user dialogues (0.033).470

Do LLMs exhibit a forgetting baseline? Tiru-471

mala et al. (2022) found that models exhibit a for-472

getting baseline, meaning the forgetting curve has473

a lower bound (the model retains a certain memory474

of the first batch of training data and does not com-475

pletely forget). Moreover, this baseline increases476

with the model size, indicating that scaling up the477

model can mitigate forgetting. Inspired by this, we478

divided LOCCO into 20 time periods to observe the479

memory retention of LLMs over longer intervals.480

The experimental results are shown in Figure 8.481

Figure 6: Memory of LLMs for different categories of
information.

Figure 7: Impact of different dialogue densities on
the long-term memory of LLMs. The model used is
Qwen1.5-7B-Chat.

Notably, our experimental results differ from the 482

observations in Tirumala et al. (2022), for long- 483

term dialogue memory, LLMs tend to almost com- 484

pletely forget the initial dialogue content after a 485

sufficiently long interval, with no memory baseline. 486

Increasing model size does not effectively alleviate 487

long-term forgetting. 488

Specifically, Tirumala et al. (2022) measures 489

memory by evaluating the model’s prediction ac- 490

curacy for contexts within the training data (such 491

as missing text segments or missing words). If a 492

model can accurately predict the missing words, it 493

is considered to have memorized the context. How- 494

ever, for LLMs with reasoning capabilities, even 495

if they do not remember the missing words, they 496

can still infer based on existing knowledge and lan- 497

guage structures. This leads to the model being 498

able to guess the correct words to some extent even 499

after forgetting all information, thereby establish- 500

ing a forgetting baseline. In contrast, we assess 501

memory by calculating the accuracy of the model’s 502

responses, thereby avoiding the aforementioned 503

issue. Therefore, we contend that LLMs do not 504

possess a forgetting baseline. 505
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Figure 8: Forgetting of LLMs over longer time spans.

Replay Strategies for Permanent Memory506

Continual learning enables models to learn from507

an ongoing data stream over time. Inspired by re-508

play strategies in continual learning (Robins, 1995;509

Rolnick et al., 2019; De Lange et al., 2021) as well510

as by the replay phenomena observed in humans511

(Smolen et al., 2016) and in neural network models512

(Amiri et al., 2017), we explore whether simple513

continual learning strategies remain effective for514

LLMs. Accordingly, we have designed the follow-515

ing replay strategies: i)Massed Repetition: After516

training on D1, conduct three additional training517

sessions; ii)Spaced Repetition: Repeat D1 within518

the first 10 time periods, with intervals of 1, 3, and519

5 periods. Repetition is only within the first 10 pe-520

riods to observe its impact on memory during and521

after the repetition period. We use Memory Reten-522

tion Score to measure the impact of repetition on523

memory: summing M1 over a specific time range524

represents the total memory capacity within that525

range. A higher score indicates stronger memory526

retention, as shown in Figure 9.527

We find that repetition within the first 10 peri-528

ods enhances memory across the entire time range,529

particularly in the 10 < T ≤ 20 range, showing530

a clear advantage over NR. Additionally, models531

using the SR-3 strategy outperform MR in all time532

ranges. Despite both undergoing three repetitions,533

spaced repetition is more effective than massed534

repetition. Moreover, we found that higher replay535

frequencies strengthen the model’s memory within536

the 0 < T ≤ 10 time interval but weaken mem-537

ory retention in the 10 < T ≤ 20 time interval.538

For LLMs, due to their vast parameter counts and539

complexity, continual learning differs from its ap-540

plication in smaller models (including smaller pre-541

trained language models); excessive repetition is542

not an effective memory strategy.543

Figure 9: The impact of different repetition strategies
on memory across various time ranges. MR represents
Massed Repetition, SR-N represents repetition every
N time periods, and NR represents no repetition. The
model used is Qwen1.5-7B-Chat. We sum M1 for the
time ranges 0 < T ≤ 10 and 10 < T ≤ 20.

5 Conclusion 544

To explore the long-term memory of LLMs, we 545

developed an automated pipeline, LoCoGen, for 546

constructing long-term dialogue data and created 547

the LOCCO dataset, which includes long-term dia- 548

logue data between 100 users and a chatbot, along 549

with QA pairs to evaluate model memory. Exper- 550

iments show that LLMs can remember historical 551

interaction information with users to some extent, 552

but this memory gradually weakens over time, espe- 553

cially when dealing with very long time spans. We 554

also revealed that models have preferences when 555

remembering different categories of information, 556

providing a new direction for future research on 557

how to balance and optimize memory capabilities 558

for different types of information. Additionally, 559

we found that repetition strategies can effectively 560

improve the persistence of model memory. Our re- 561

search not only provides new methods and datasets 562

for evaluating the long-term memory capabilities 563

of LLMs but also offers important references and 564

insights for future improvements in the persistence 565

and accuracy of model memory. Future work can 566

further explore improvements in model architecture 567

and training methods to better support long-term 568

memory retention and application. 569

Limitations 570

Although the LOCCO dataset includes long-term 571

dialogues from 100 users, these dialogues are gen- 572

erated by LLMs and may lack the diversity and 573

complexity of real user interactions. Future re- 574

search could incorporate more real-world data to 575

validate the generalizability of the results. Addi- 576
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tionally, we used closed-source models for data577

generation, meaning we accessed the most power-578

ful commercial LLMs through paid APIs. More-579

over, our pipeline for generating long-term dia-580

logues based on LLMs was developed only for581

English. However, our pipeline can be adapted582

for any other language using proficient LLMs and583

appropriate translations of our prompts.584
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A LoCoGen for LOCOMO844

A.1 Prompts845

We used GPT-4o in LoCoGen to construct data,846

as it is one of the most powerful models currently847

available. For each step in LoCoGen, we initially848

conducted small-batch generations and manually849

checked the data quality, adjusting prompts to en-850

hance the quality of the generated data. Figure 10-851

15 provide the prompts used in different steps.852

A.2 Quality 853

To ensure consistent quality in LOCCO, we fil- 854

tered out the following cases: (1) Dialogue data 855

with missing or incomplete records were removed. 856

(2) Dialogues containing excessive noise (such 857

as spelling errors, grammatical mistakes, non- 858

linguistic characters, etc.) were filtered out to en- 859

hance data quality and model training effectiveness. 860

We used GPT-4o to inspect the dialogues, with spe- 861

cific prompts shown in Figure 16. 862

A.3 Human Evaluation Criteria 863

We require crowdworkers to evaluate the dialogue 864

based on the following three aspects: 865

• Coherence: The chatbot understands the con- 866

text and provides coherent responses. 867

• Consistency: The chatbot maintains consis- 868

tency throughout the conversation. 869

• Participation: I enjoy interacting with this 870

chatbot for extended periods. 871

A.4 Model Evaluation Criteria 872

We evaluated the dialogue data in terms of engage- 873

ment, coherence, and plausibility. We found that 874

data constructed by large models were of high qual- 875

ity. Figure 17 shows the prompts used for evalua- 876

tion, and Table 4 presents the evaluation results. 877

Metrics Avg Std
Participation 4.21 0.77
Coherence 4.15 0.96
Rationality 4.42 1.02
Overall 4.26 -

Table 4: GPT-4o evaluation for the quality of LOCCO.
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Figure 10: Prompts for extending character descriptions.

Figure 11: Prompts for obtaining more detailed character descriptions.
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Figure 12: Prompts for inserting multiple events.

Figure 13: Prompts for generating dialogues between the user and the chatbot.
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Figure 14: Prompts for automatically updating the structured data list.

Figure 15: Prompts for summarizing event content.
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Figure 16: Prompt for Dialogue Filtering.

Figure 17: The prompt used for evaluating conversations.
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B Dialogue QA Data878

B.1 Generating dialogue QA pairs879

Specifically, we instructed the large language880

model to first select a key piece of information881

from the dialogue and then construct a dialogue882

QA pair between the user and the chatbot based on883

this information. Key information includes names,884

locations, event names, etc., which are considered885

crucial points in the dialogue worth remembering886

long-term by the model. The prompts used for gen-887

erating dialogue QA pairs are shown in Figure 18.888

B.2 Filtering Rules889

We removed QA pairs that did not meet the criteria890

based on the following two rules: Rule 1: The ques-891

tion is ambiguously phrased, leading to multiple892

reasonable answers. In other words, the question893

does not provide enough clear information, making894

it impossible to ensure a uniquely correct model895

response. Rule 2: The key information required for896

the answer comes from multiple different dialogue897

fragments. The model must rely on key informa-898

tion from the corresponding historical dialogue in899

the QA pair to answer, otherwise, it does not meet900

our evaluation goals.901

C Training Example902

To explore whether training can enable large mod-903

els to remember historical dialogues, we need to904

construct a reasonable data format, which is differ-905

ent from improving the model’s dialogue capability.906

We used supervised fine-tuning to help the large907

model remember dialogues with the user. Specif-908

ically, we included the character’s name and di-909

alogue timestamp as part of the instructions and910

used the dialogue content as labels. Specific train-911

ing examples are shown in Figure 19.912

D Assess Memory913

D.1 Testing Example914

We tested using a few-shot approach by providing915

the model with 3 additional correct dialogue QA916

examples. We found this method very effective917

for smaller parameter models, as their instruction-918

following capabilities might be insufficient to ac-919

curately comprehend test instructions. Figure 20920

shows the specific prompt templates for testing921

memory.922

D.2 Data Partition 923

We configure the training data differently when 924

exploring various research questions, with the de- 925

tailed data partitioning outlined below: 926

• Research Questions 1-3: We selected long- 927

term dialogue data from 32 users in LOCCO 928

and divided each user’s long-term dialogues 929

into six time periods, resulting in an average 930

of 162 dialogues per time period. Utilizing a 931

smaller user group helps reduce experiment 932

duration and enhances the efficiency of model 933

training. 934

• Research Question 4: We selected long-term 935

dialogues from varying numbers of users in 936

LOCCO and partitioned them into six time 937

periods. The model was progressively trained 938

to observe the impact of dialogue density, i.e., 939

the number of dialogues per training session, 940

on the model’s memory performance. 941

• Research Questions 5-6: We employed long- 942

term dialogues from all users in LOCCO and 943

divided each user’s long-term dialogues into 944

20 equal segments, with an average of 154 945

dialogues per time period. 946

E Training Consistency Model 947

When training the consistency model, we randomly 948

selected 500 consistent responses from the QA data 949

as positive samples and used GPT-4o to generate 950

500 inconsistent responses as negative samples. 951

The dataset was split into training and validation 952

sets in an 8:2 ratio. Training was conducted ac- 953

cording to the instructions in Figure 21. We used 954

Qwen1.5-4B-Chat as the pre-trained model and 955

adopted LoRA (Low-Rank Adaptation) for train- 956

ing. The training process used a batch size of 4, 957

with rank and alpha set to 128 and 256, respec- 958

tively, and a learning rate of 1.0e-4, continuing for 959

2 epochs. A cosine annealing learning rate sched- 960

ule was employed, with a 10% warm-up ratio at 961

the beginning. Our Consistency Model achieved 962

an accuracy of 98% on the validation set. 963
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Figure 18: Prompts for Generating Dialogue QA Pairs.

Figure 19: Data Format for Training Historical Dialogues.
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Figure 20: Prompts for Testing Model Memory.
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F Evaluating Consistency Model964

We conducted manual verification of the consis-965

tency model’s evaluation results. Specifically, we966

randomly selected 200 examples that the consis-967

tency model deemed correct and 200 examples968

deemed incorrect from the experimental results.969

Three human evaluators were then tasked with970

verifying the accuracy of the consistency model’s971

assessments. The evaluators were instructed as972

follows: "Given a historical dialogue, a question-973

answer pair, and an evaluation of the answer, please974

determine whether the evaluation is correct. If975

the answer is consistent with the information men-976

tioned in the historical dialogue, the evaluation977

should be consistent; otherwise, the evaluation978

should be inconsistent." In instances where the hu-979

man evaluators’ assessments differed, the majority980

decision was adopted.981

G Classifying Information982

Figure 22 shows the prompts used for classifying983

key information involved in the dialogue QA pairs.984

Table 5 displays the percentage and number of QA985

pairs for different categories. For categories with986

fewer instances, the test results may not be repre-987

sentative, and we merged them into the "Others"988

category.989

Category Percentage Quantity
Name 23.60% 704
Location 18.80% 560
Event 37.60% 1121
Others 20% 596

Table 5: Distribution of different categories.
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Figure 21: Instructions for Training the Consistency Model.

Figure 22: Prompts for classifying key information.
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