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Abstract

While Natural Language Processing (NLP) al-001
gorithms keep reaching unprecedented mile-002
stones, out-of-distribution generalization is still003
challenging. In this paper we address the prob-004
lem of multi-source adaptation to unknown do-005
mains: Given labeled data from multiple source006
domains, we aim to generalize to data drawn007
from target domains that are unknown to the008
algorithm at training time. We present an al-009
gorithmic framework based on example-based010
Hypernetwork adaptation: Given an input ex-011
ample, a T5 encoder-decoder first generates a012
unique signature which embeds this example013
in the semantic space of the source domains,014
and this signature is then fed into a Hypernet-015
work which generates the weights of the task016
classifier. In an advanced version of our model,017
the learned signature also serves for improv-018
ing the representation of the input example. In019
experiments with two tasks, sentiment classifi-020
cation and natural language inference, across021
29 adaptation settings, our algorithms substan-022
tially outperform existing algorithms for this023
adaptation setup. To the best of our knowledge,024
this is the first time Hypernetworks are applied025
to adaptation to unknown domains.1026

1 Introduction027

Deep neural networks (DNNs) have substantially028

improved natural language processing (NLP),029

reaching task performance levels that were con-030

sidered beyond imagination until recently (Con-031

neau and Lample, 2019; Brown et al., 2020). How-032

ever, this unprecedented performance typically de-033

pends on the assumption that the test data is drawn034

from the same underlying distribution as the train-035

ing data. Unfortunately, as text may stem from036

many origins, this assumption is often not met in037

practice. In such cases, the model faces an out-of-038

distribution (OOD) generalization scenario, which039

often yields significant performance degradation.040

1Our code and data will be available upon acceptance.

To alleviate this difficulty, several OOD general- 041

ization approaches proposed to use unlabeled data 042

from the target distribution. For example, a promi- 043

nent domain adaptation (DA, (Daumé III, 2007; 044

Ben-David et al., 2010)) setting is unsupervised 045

domain adaptation (UDA, (Ramponi and Plank, 046

2020)), where algorithms use labeled data from 047

the source domain and unlabeled data from both 048

the source and the target domains (Blitzer et al., 049

2006, 2007; Ziser and Reichart, 2017). In many 050

real-world scenarios, however, it is impractical to 051

expect training-time access to target domain data. 052

This could happen, for example, when the target 053

domain is unknown, when collecting data from the 054

target domain is impractical or when the data from 055

the target domain is confidential (e.g. in healthcare 056

applications). In order to address this setting, three 057

approaches were proposed. 058

The first approach follows the idea of domain 059

robustness, generalizing to unknown domains 060

through optimization methods which favor robust- 061

ness over specification (Hu et al., 2018; Oren et al., 062

2019; Sagawa et al., 2020; Wald et al., 2021). Par- 063

ticularly, these approaches train the model to focus 064

on domain-invariant features and overlook prop- 065

erties that are associated only with some specific 066

source domains. In contrast, the second approach 067

implements a domain expert for each source do- 068

main, hence keeping knowledge of each domain 069

separately. In this mixture-of-experts (MoE) ap- 070

proach (Kim et al., 2017; Guo et al., 2018; Wright 071

and Augenstein, 2020), an expert is trained for each 072

domain separately, and the predictions of these ex- 073

perts are aggregated through averaging or voting. 074

To bridge the gap between these opposing ap- 075

proaches, a third intermediate approach has been re- 076

cently proposed by Ben-David et al. (2022). Their 077

PADA algorithm, standing for a Prompt-based 078

Autoregressive Approach for Adaptation to Un- 079

seen Domains, utilizes both domain-invariant and 080

domain-specific features to perform example-based 081
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adaptation. Particularly, given a test example it gen-082

erates a unique prompt that maps this example to083

the semantic space of the source domains of the084

model, and then conditions the task prediction on085

this prompt. In PADA, a T5-based algorithm (Raf-086

fel et al., 2020), the prompt-generation and task087

prediction components are jointly trained on the088

source domains available to the model.089

Despite their promising performance, none of090

the previous models explicitly learns both shared091

and domain-specific aspects of the data, and effec-092

tively applies them together. Particularly, robust-093

ness methods focus only on shared properties, MoE094

methods train a separate learner for each domain,095

and PADA trains a single model using the training096

data from all the source domains, and applies the097

prompting mechanism in order to exploit example-098

specific properties. This paper hence focuses on099

improving generalization to unseen domains by ex-100

plicitly modeling the shared and domain-specific101

aspects of the input.102

To facilitate effective parameter sharing between103

domains and examples, we propose a modeling ap-104

proach based on Hypernetworks (HNs, Ha et al.105

(2017)). HNs are networks that generate the106

weights of another target network, that performs the107

learning task. The input to the HN defines the way108

information is shared between training examples.109

Mahabadi et al. (2021) previously focused on a sim-110

pler DA challenge, applying HNs to supervised DA,111

when a small number of labeled examples from the112

target are used throughout the training procedure.113

Nevertheless, to the best of our knowledge, we are114

the first to apply HNs to DA scenarios where la-115

beled data from the target domain, and actually116

also any other information about potential future117

test domains, are not within reach. Hence, we are118

the first to demonstrate that HNs generalize well to119

unseen domains.120

We propose three models of increasing complex-121

ity. Our basic model is Hyper-DN, which explicitly122

models the shared and domain-specific aspects of123

the training domains. Particularly, it trains the HN124

on training data from all source domains, to gener-125

ate classifier weights in a domain-specific manner.126

The next model, Hyper-DRF, an example-based127

HN, performs parameter sharing at both the domain128

and the example levels. Particularly, it first gener-129

ates an example-based signature as in PADA, and130

then uses this signature as input to the HN so that it131

can generate example-specific classifier weights.2 132

Finally, our most advanced model is Hyper-PADA 133

which, like Hyper-DRF, performs parameter shar- 134

ing at both the example and domain levels, using 135

the above signature mechanism. Hyper-PADA, 136

however, does that at both the task classification 137

and the input representation levels. For a detailed 138

description see §3. 139

We follow Ben-David et al. (2022) and exper- 140

iment in the any-domain adaptation setup (§4,5). 141

Concretely, given access to labeled datasets from 142

multiple domains, we perform leave-one-out exper- 143

iments, training the model on all domains but one 144

and testing it on the remaining domain. Further, 145

while our models are designed for cross-domain 146

(CD) generalization, we can also explore cross- 147

language cross-domain adaptation (CLCD) setups, 148

by utilizing a multilingual pre-trained language 149

model. Hyper-PADA outperforms an off-the-shelf 150

SOTA model (a fine-tuned T5-based classifier, with- 151

out any domain adaptation effort) by 9.5% (accu- 152

racy), 8.4% (accuracy) and 14.8% (macro-F1) in 153

CLCD and CD sentiment classification (12 settings 154

each) and CD MNLI (5 settings), on average, re- 155

spectively. Moreover, our HN-based methods out- 156

perform previous models from the three families 157

described above. Finally, ablative comparisons be- 158

tween our HN-based algorithms shed light on the 159

relative importance of their components. 160

2 Related Work 161

2.1 Unsupervised Domain Adaptation 162

Most recent DA research addresses UDA (Blitzer 163

et al., 2006; Reichart and Rappoport, 2007; Glorot 164

et al., 2011). Since the rise of DNNs, the main 165

focus of UDA resaerch shifted to representation 166

learning methods (Titov, 2011; Glorot et al., 2011; 167

Ganin and Lempitsky, 2015; Ziser and Reichart, 168

2017, 2018, 2019; Rotman and Reichart, 2019; 169

Han and Eisenstein, 2019; Ben-David et al., 2020; 170

Lekhtman et al., 2021). 171

The recent DA setup that we consider in this pa- 172

per assumes no training-time knowledge about the 173

target domain (denoted as any-domain adaptation 174

(ADA) by Ben-David et al. (2022)). As discussed 175

in §1, some papers that addressed this setup follow 176

the domain robustness path (Arjovsky et al., 2019), 177

while others learn a mixture of domain experts 178

(Wright and Augenstein, 2020). Ben-David et al. 179

2DRFs stand for Domain Related Features and DN stands
for Domain Name. See §B.2

2



(2022) presented PADA, an algorithm trained on180

data from multiple domains and adapted to test ex-181

amples from unknown domains through prompting.182

PADA leverages domain related features (DRFs)183

to implement an example-based prompting mech-184

anism. The DRFs provide semantic signatures for185

the source domains, representing the similarities186

among them and their unique properties.187

Given a source domain example, PADA is188

trained (in a multitask fashion) to either generate a189

DRF signature for this example or classify it, with190

the signature as a prompt. Then, during inference,191

PADA first generates a DRF signature for its in-192

put example and then classifies the example given193

the signature as a prompt. Since we use an ad-194

ditional architecture component, HNs, we divide195

the training process to two separate phases, as de-196

scribed in §3. Unlike previous DA work in NLP197

(and specifically PADA), we perform adaptation198

through hypernetworks which are trained to gener-199

ate the weights of the task classifier in a domain-200

based or example-based manner. This framework201

allows us to both explicitly model domain-invariant202

and domain-specific aspects of the training data,203

and perform example-based adaptation.204

2.2 Hypernetworks205

Hypernetworks (Ha et al., 2017) are networks that206

learn to generate weights for other networks. In-207

tuitively, HNs can generate diverse personalized208

models, conditioned on the input. Further descrip-209

tion of HNs can be found at Appendix B.1.210

HNs were applied in areas like computer vision211

(Klein et al., 2015; Riegler et al., 2015; Klocek212

et al., 2019), continual learning (von Oswald et al.,213

2020), federated learning (Shamsian et al., 2021),214

weight pruning (Liu et al., 2019), Bayesian neural215

networks (Krueger et al., 2017; Ukai et al., 2018;216

Pawlowski et al., 2017; Deutsch et al., 2019), multi-217

task learning (Shen et al., 2018; Klocek et al., 2019;218

Serrà et al., 2019; Meyerson and Miikkulainen,219

2019) and block code decoding (Nachmani and220

Wolf, 2019).221

Despite being widely used in other ML branches,222

HN research in NLP is limited. HNs were shown to223

be effective for language modeling (Suarez, 2017),224

cross-task adaptation (Bansal et al., 2020), cross-225

task cross-language adaptation (Üstün et al., 2022)226

and machine translation (Platanios et al., 2018).227

Moreover, Üstün et al. (2020) and Mahabadi et al.228

(2021) applied HNs to Transformer architectures229

(Vaswani et al., 2017) in cross-lingual parsing and 230

multi-task learning, by generating adapter (Houlsby 231

et al., 2019) weights and keeping the pre-trained 232

language model weights fixed (Mahabadi et al. 233

(2021) addressed the supervised DA setup, where 234

labeled data from the target domain is available). 235

We apply HNs for generating the weights of a 236

task classifier, where we train the HN jointly with 237

the fine-tuning of a large LM. Furthermore, follow- 238

ing Ben-David et al. (2022) we perform example- 239

based adaptation, a novel application of HNs in 240

NLP: To the best of our knowledge, HNs have not 241

been applied in NLP in an example-based man- 242

ner before. Finally, we are the first to introduce a 243

HN mechanism aimed for adaptation to previously 244

unseen domains. 245

3 Domain Adaptation with 246

Hypernetworks 247

In this section, we present our HN-based model- 248

ing framework for domain adaptation. We present 249

three models in increased order of complexity: We 250

start by generating parameters only for the task 251

classifier in a domain-based manner (Hyper-DN), 252

proceed to example-based classifier parametriza- 253

tion (Hyper-DRF) and, finally, introduce example- 254

based parametrization at both the classifier and the 255

text representation levels (Hyper-PADA). 256

Throughout this section we use the running ex- 257

ample of Table 1. This is a Natural Language In- 258

ference (NLI) example from one of our experimen- 259

tal MNLI (Williams et al., 2018) setups. In this 260

task, the model is presented with two sentences, 261

Premise and Hypothesis, and it should decide the 262

relationship of the latter to the former: Entailment, 263

Contradiction or Neutral (see §4). 264

§3.1 describes the model architectures and their 265

training procedure. We refer the reader to Ap- 266

pendix B.2 for more specific details of the DRF 267

scheme, borrowed from Ben-David et al. (2022). 268

The DRFs are utilized to embed input examples in 269

the semantic space of the source domains, hence 270

supporting example-based classifier parametriza- 271

tion and improved example representation. 272

3.1 Models 273

Hyper Domain Name (Hyper-DN) Our basic 274

model (Figure 1b) integrates a pre-trained T5 lan- 275

guage encoder, a classifier (CLS), and a hypernet- 276

work (HN), which generates the classifier weights. 277

Hyper-DN casts the domain name as the input of 278
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Premise. Homes not located on one of these roads
must place a mail receptacle along the route traveled.
Hypothesis. Other roads are far too rural to provide
mail service to.
Domain. Government.
Label. Entailment.
DRF Signature. travel: city, area, town, reports, mod-
ern

Fiction: jon, tommy, tuppence, daan, said, looked
Slate: newsweek, reports, according, robert
Telephone: yeah, know, well, really, think, something
Travel: century, city, island, modern, town, built, area

Table 1: An example of Hyper-DRF and Hyper-PADA
application to an MNLI example. In this setup the
source training domains are Fiction, Slate, Telephone
and Travel and the unknown target domain is Govern-
ment. The top part presents the example and the DRF
signature generated by the models. The bottom-part
presents the DRF set of each source domain.

the HN. Since the domain name is unknown at test-279

time inference, we use a special “UNK” token to280

represent unknown domains at this stage, for all281

input examples. In order to make this dummy do-282

main name familiar to the model, during training283

we sample an α proportion of the training exam-284

ples for which we use the “UNK” token as the HN285

input, instead of the domain name. This architec-286

ture supports parameter sharing between the input287

domains, and optimizes the weights for examples288

from unknown domains – all at the classifier level.289

In the example of Table 1, the premise and hy-290

pothesis of the test example are fed into the T5291

encoder, and the “UNK” token is fed to the HN.292

In this model, there is no generation of either a293

domain-name or an example-specific signature.294

Hyper-DRF Parameter sharing based on the do-295

main of an input example may not be sufficient,296

especially that the boundaries between domains are297

not always well defined. For instance, the sentence298

pair of our running example is taken from the Gov-299

ernment domain but is also semantically related to300

the Travel domain. Thus, we present Hyper-DRF301

(Figure 1c), an example-based adaptation architec-302

ture, which makes use of domain-related features303

(DRFs) in addition to the domain name. Impor-304

tantly, this model may connect the input example305

to semantic aspects of multiple source domains.306

Hyper-DRF is a multi-stage multi-task autore-307

gressive model, which first generates a DRF sig-308

nature for the input example, and then uses this309

signature as an input to the HN. The HN, in turn,310

generates the task-classifier (CLS) weights, but, un-311

like in Hyper-DN, these weights are example-based 312

rather than domain-based. The model is comprised 313

of the following components: (1) a T5 encoder- 314

decoder model which generates the DRF signature 315

of the input example in the first stage (travel: city, 316

area, town, reports, modern in our running exam- 317

ple); (2) a (separate) T5 encoder to which the exam- 318

ple is fed in the second stage; and (3) a HN which 319

is fed with the DRF signature, as generated in the 320

first stage, and generates the weights of the task- 321

classifier (CLS). This CLS is fed with the example 322

representation, as generated by the T5 encoder of 323

(2), to predict the task label. 324

Below we discuss the training of this model in 325

details. The general scheme is as follows: We first 326

train the T5 encoder-decoder of the first stage ((1) 327

above), and then jointly train the rest of the archi- 328

tecture ((2) and (3) above), which is related to the 329

second stage. For the first training stage we have 330

to assign each input example a DRF signature. In 331

§B.2 we provide the details of how, following Ben- 332

David et al. (2022), the DRF sets of the source train- 333

ing domains are constructed based on the source 334

domain training corpora, and how a DRF signature 335

is comprised for each training example in order to 336

effectively train the DRF signature generator ((1) 337

above). For now, it is sufficient to say that the DRF 338

set of each source domain is comprised of words 339

that are strongly associated with this domain, and 340

the DRF signature of each example is a sequence 341

of DRFs (words). 342

During inference, when introduced to an exam- 343

ple from an unknown domain, Hyper-DRF gener- 344

ates its DRF signature using its trained generator 345

(T5 encoder-decoder). This way, the signature of a 346

test example may consist of features from the DRF 347

sets of one or more source domains, forming a mix- 348

ture of semantic properties of these domains. In our 349

running example, while the input sentence pair is 350

from the unknown Government domain, the model 351

generates a signature based on the Travel and Slate 352

domains. Importantly, unlike in Hyper-DN, there 353

is no need in an “UNK” token as input to the HN 354

since the DRF signatures are example-based. 355

Hyper-PADA While Hyper-DRF implements 356

example-based adaptation, parameter-sharing is 357

modeled only at the classifier level: The language 358

representation (with the T5 encoder) is left un- 359

touched. Our final model, Hyper-PADA, casts the 360

DRF-based signature generated at the first stage of 361

the model, both as a prompt concatenated to the 362
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(a) T5-NoDA (b) Hyper-DN (c) Hyper-DRF (d) Hyper-PADA

Figure 1: The four models representing the evolution of our HN-based domain adaptation framework. From left
to right: T5-NoDA is a standard NLP model comprised of a pre-trained T5 encoder with a classifier on top of it,
both are fine-tuned with the downstream task objective. Hyper-DN employs an additional hypernetwork (HN),
which generates the classifier (CLS) weights given the domain name (or an “UNK” specifier for examples from
unknown domains). Hyper-DRF and Hyper-PADA are multi-stage multi-task models (first-stage inputs are in
red, second stage inputs in black), comprised of a T5 encoder-decoder, a separate T5 encoder, a HN and a task
classifier (CLS). At the first stage, the T5 encoder-decoder is trained for example-based DRF signature generation
(§B.2). At the second stage, the HN and the T5 encoder are jointly trained using the downstream task objective.
In Hyper-PADA, the DRF signature of the first stage is applied both for example representation and HN-based
classifier parametrization, while in Hyper-DRF it is applied only for the latter purpose. In all HN-based models, our
HN is a simple two-layer feed-forward NN (§E).

input example before it is fed to the T5 language363

encoder, and as an input to the HN.364

Specifically, the architecture of Hyper-PADA365

(Figure 1d) is identical to that of Hyper-DRF. At366

its first stage, which is identical to the first stage of367

Hyper-DRF, it employs a generative T5 encoder-368

decoder which learns to generate an example-369

specific DRF signature for each input example.370

Then, at its second stage, the DRF signature is371

used in two ways: (A) unlike in Hyper-DRF, it is372

concatenated to the input example as a prompt, and373

the concatenated example is then fed into a T5 en-374

coder, in order to create a new input representation375

(in Hyper-DRF the original example is fed into the376

T5 encoder); and (B) as in Hyper-DRF, it is fed to377

the HN which generates the task-classifier weights.378

Finally, the input representation constructed in (A)379

is fed into the classifier generated in (B) in order to380

yield the task label.381

Training While some aspects of the selected382

training protocols are based on development data383

experiments (§4), we discuss them here in order to384

provide a complete picture of our framework.385

For Hyper-DN, we found it most effective to386

jointly train the HN and fine-tune the T5 encoder us-387

ing the task objective. As discussed above, Hyper-388

DRF and Hyper-PADA are multi-stage models,389

where the HN (in both models) and the T5 lan- 390

guage encoder (in hyper-PADA only) utilize the 391

DRF signature generated in the first stage by the 392

T5 encoder-decoder. Our development data ex- 393

periments demonstrated significant improvements 394

when using one T5 encoder-decoder for the first 395

stage, and a separate T5 encoder for the second 396

stage. Moreover, since the output of the first stage 397

is discrete (a sequence of words), we cannot train 398

all components jointly. 399

Hence, we train each stage of these models sepa- 400

rately. First, the T5 encoder-decoder is trained to 401

generate the example-based DRF signature. Then, 402

the HN and the (separate) T5 encoder are trained 403

jointly with the task objective. 404

4 Experimental Setup 405

4.1 Tasks, Datasets, and Setups 406

While our focus is on domain adaptation, the avail- 407

ability of multilingual pre-trained language en- 408

coders allows us to consider two setups: (1) Cross- 409

domain transfer (CD); and (2) cross-language cross- 410

domain transfer (CLCD). We consider multi-source 411

adaptation and experiment in a leave-one-out fash- 412

ion: In every experiment we leave one domain 413

(CD) or one domain/language pair (CLCD) out, 414

and train on the datasets that belong to the other 415
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domains (CD) or the datasets that belong to both416

other domains and other languages (CLCD; nei-417

ther the target domain nor the target language are418

represented in the training set).3419

Data set sizes Despite the growing ability to420

collect massive datasets, obtaining large labeled421

datasets is still costly and labor-intensive. When422

addressing a new task, one may have a limited423

annotation budget. Accordingly, they can choose424

whether to focus the annotation effort on a single425

domain or to split the effort across multiple do-426

mains, obtaining fewer examples from each while427

reaching a similar data size (in total) and exploit-428

ing the same budget. In this work, we explore the429

latter scenario. In order to follow the experimental430

setup presented in previous DA works (Guo et al.,431

2018; Wright and Augenstein, 2020; Ben-David432

et al., 2022) and to perform realistic experiments,433

we hence adjust our multi-domain datasets. We434

downsample each domain to have several thousand435

(3K-10K) training examples (with a proportionate436

development set) in each experiment.437

Cross-domain Transfer (CD) for Natural Lan-438

guage Inference We experiment with the MNLI439

dataset (Williams et al., 2018). In this task, each440

example consists of a premise-hypothesis sentence441

pair and the relation between the the latter and the442

former: Entailment, contradiction, or neutral. The443

corpus consists of ten domains, five of which are444

split to train, validation, and test sets, while the445

other five do not have training sets. We experiment446

with the former five: Fiction (F), Government (G),447

Slate (S), Telephone (TL), and Travel (TR).448

Since the MNLI test sets are not publicly avail-449

able, we use the validation sets as our test sets and450

split the training sets to train and validation. Fol-451

lowing our above multi-domain setup, we down-452

sample each domain so that in each experiment453

we have 10,000 training (from all source domains454

jointly) , 800 validation and about 2000 test exam-455

ples (see details in §C).456

Cross-language Cross-domain (CLCD) and Mul-457

tilingual Cross-domain (CD) Transfer for Senti-458

ment Analysis We experiment with the task of459

sentiment classification, using the Websis-CLS-10460

dataset (Prettenhofer and Stein, 2010), which con-461

sists of Amazon reviews from 4 languages (English462

(En), Deutsch (De), French (Fr), and Japanese (Jp))463

3URLs of the datasets, implementation details, and hyper-
parameter configurations are described in Appendix E.

and 3 product domains (Books (B), DVDs (D), and 464

Music (M)). 465

We perform one set of multilingual cross-domain 466

(CD) generalization experiments and one set of 467

cross-language cross-domain (CLCD) experiments. 468

In the former, we keep the training language fixed 469

and generalize across domains, while in the latter 470

we generalize across both languages and domains. 471

Hence, experimenting in a leave-one-out fashion, 472

in the CLCD setting we focus each time on one 473

domain/language pair. For instance, when the tar- 474

get pair is English-Books, we train on the training 475

sets of the {French, Deutsch, Japanese} languages 476

and the {Movies, Music} domains (a total of 6 sets), 477

and the test set consists of English examples from 478

the Books domain. Likewise, in the CD setting we 479

keep the language fixed in each experiment, and 480

generalize from two of the domains to the third one. 481

We hence have 12 CLCD experiments (one with 482

each language/domain pair as target) and 12 CD 483

experiments (for each language we perform one 484

experiment with each domain as target). Follow- 485

ing our above multi-domain setup, we downsample 486

each language-domain pair so that each experiment 487

includes 3000 train, 600 validation and 2000 test 488

examples (see details in §C). 489

4.2 Models and Baselines 490

We compare our HN based models (Hyper-DN, 491

Hyper-DRF, and Hyper-PADA) to models from 492

three families (see §1): (a) domain expert models 493

that do not share information across domains: A 494

model trained on the source domains and applied 495

to the target domain with no adaptation effort (T5- 496

NoDA); and three mixture of domain-specific ex- 497

pert models (Wright and Augenstein, 2020), where 498

a designated model is trained on each source do- 499

main, and test decisions are made through voting 500

between the predictions of these models (T5-MoE- 501

Ind-Avg, T5-MoE-Ind-Attn, and T5-MoE-Avg); (b) 502

domain robustness models, targeting generaliza- 503

tion to unknown distributions through objectives 504

that favor robustness over specification (T5-DANN 505

(Ganin and Lempitsky, 2015) and T5-IRM (Ar- 506

jovsky et al., 2019)); and (c) example-based multi- 507

source adaptation through prompt learning (PADA, 508

the SOTA model for our setup). 509

Below we briefly discuss each of these models. 510

All models, except from T5-MoE, are trained on a 511

concatenation of the source domains training sets. 512
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Deutsch English French Japanese
B D M B D M B D M B D M Avg

T5-NoDA 77.1 75.8 63.9 78.4 78.8 64.5 83.0 82.6 75.1 61.5 79.9 79.7 75.0
T5-MoE-Ind-Avg 81.9 76.6 79.6 86.0 81.2 81.6 85.0 84.9 77.2 82.2 83.6 82.0 81.8
T5-MoE-Ind-Attn 82.1 76.2 79.6 86.0 82.6 81.7 84.6 84.6 77.4 81.8 82.2 82.9 81.8
T5-MoE-Avg 81.6 76.7 79.0 85.7 81.5 81.6 85.0 84.8 77.0 82.2 83.4 81.9 81.7
T5-DANN 82.1 77.8 80.8 84.6 78.8 79.0 84.2 82.6 77.2 68.7 78.8 81.6 79.7
T5-IRM 71.2 70.2 75.8 80.8 72.5 73.0 82.3 80.6 78.4 75.5 75.8 78.4 76.2
PADA 57.7 74.8 74.2 71.8 75.9 78.8 81.8 82.0 76.8 77.2 78.8 80.0 75.8
Hyper-DN 86.2 80.8 84.4 85.6 84.2 83.4 86.5 84.5 81.6 81.3 82.0 83.2 83.7
Hyper-DRF 85.9 81.2 84.6 86.4 84.0 83.9 85.7 85.5 81.4 82.2 82.0 83.9 83.9
Hyper-PADA 85.7‡⋄+ 81.8♣‡⋄+ 85.0♣‡+ 86.0‡⋄ 84.4♣‡⋄+ 85.1♣⋄+ 86.6♣‡⋄+ 85.9‡⋄+ 81.8♣‡⋄+ 83.9‡⋄+ 83.9♣⋄+ 83.8‡⋄+ 84.5
Upper-bound 86.7 83.8 86.4 88.7 85.9 86.9 87.9 87.3 83.9 84.4 86.4 86.9 86.3

Table 2: CLCD sentiment classification accuracy. The statistical significance of the Hyper-PADA results (with the
McNemar paired test for labeling disagreements (Gillick and Cox, 1989), p < 0.05) is denoted with: ♣ (vs. the best
of Hyper-DN and Hyper-DRF), + (vs. the best domain expert model), ⋄ (vs. the best domain robustness model),
and ‡ (vs. PADA (example-based adaptation)).

(a.1) T5-No-Domain-Adaptation (T5-NoDA)513

A model consisting of a task classifier on top of a514

T5 encoder. The entire architecture is fine-tuned515

on the downstream task (see Figure 1a).516

(a.2-4) T5-Mixture-of-Experts (T5-MoE-Ind-517

Avg, T5-MoE-Ind-Attn, T5-MoE-Avg) Our im-518

plementation of the Independent Avg, Independent519

Fine Tune, and MoE Avg models presented by520

Wright and Augenstein (2020)4. For T5-MoE-Ind-521

Avg, we fine-tune an expert model (with the same522

architecture as T5-NoDA) on the training data from523

each source domain. At inference, we average the524

class probabilities of all experts, and the class with525

the maximal probability is selected.526

For T5-MoE-Ind-Attn, we train an expert model527

for each source domain. Then, in order to find the528

optimal weighted expert combination, we perform529

a randomized grid search on our (source domain)530

development set. Finally, T5-MoE-Avg is similar531

to T5-MoE-Ind-Avg except that we also include a532

general-domain expert, identical to T5-NoDA, in533

the expert committee.534

(b.1) T5-Invariant-Risk-Minimization (T5-IRM)535

Using the same architecture as T5-NoDA, but with536

an objective term that penalizes representations537

with different optimal classifiers across domains.538

(b.2) T5-Domain-Adversarial-Network (T5-539

DAN) An expert with the same architecture as540

T5-NoDA, but with an additional adversarial do-541

main classifier head (fed by the T5 encoder) which542

facilitates domain invariant representations.543

(c.1) PADA A T5 encoder-decoder that is fed544

with each example and generates its DRF signature.545

The example is then appended with this signature546

4For the MoE models, we follow the naming conventions
of Wright and Augenstein (2020).

as a prompt, fed again to the T5 encoder and the re- 547

sulting representation is fed into the task classifier. 548

We follow the implementation and training details 549

from (Ben-David et al., 2022). 550

For each setup we also report an upper-bound: 551

The performance of the model trained on the train- 552

ing sets from all source domains (or source lan- 553

guage/domain pairs in CLCD) including that of 554

the target, when applied to the target domain’s (or 555

language/domain pair in CLCD) test set. 556

5 Results 557

Table 2 and Figure 2 present sentiment classifica- 558

tion accuracy results for CLCD and CD transfer, 559

respectively (12 settings each), while Table 3 re- 560

ports Macro-F1 results for MNLI in 5 CD settings. 561

We report accuracy or F1 results for each setting, 562

as well as the average performance across settings. 563

Finally, we report statistical significance follow- 564

ing the guidelines at Dror et al. (2018), comparing 565

Hyper-PADA to the best performing model in each 566

of the three baseline groups discussed in §4: (a) 567

domain expert models (T5-NoDA and T5-MoE); 568

(b) domain robustness models (T5-DANN and T5- 569

IRM) and (c) example-based adaptation (PADA). 570

We also report whether the improvement of Hyper- 571

PADA over the simpler HN-based models, Hyper- 572

DN and Hyper-DRF, is significant. 573

Our results clearly demonstrate the superiority 574

of Hyper-PADA and the simpler HN-based models. 575

Specifically, Hyper-PADA outperforms all baseline 576

models (i.e. models that do not involve hypernet- 577

work modeling, denoted bellow as non-HN models) 578

in 11 of 12 CLCD settings, in 8 of 12 CD sentiment 579

settings, and in all 5 CD MNLI settings, with an av- 580

erage improvement of 2.7%, 3.9% and 3.4% over 581

the best performing baseline in each of the settings, 582

respectively. Another impressive result is the gap 583
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B D M B D M B D M B D M Avg

T5-NoDA

T5-DANN

T5-IRM

T5-MOE-Ind-Avg

T5-MOE-Ind-Attn

T5-MOE-Avg

PADA

Hyper-DN

Hyper-DRF

Hyper-PADA

83.3 81.8 82.6 87 52 63.6 85.2 50.3 81.6 81.9 84.1 84.7 76.5

-0.3 -1.2 0.6 -0.9 31 18.5 -0.5 33.5 0.2 2 -34.1 -1.5 4

-31 -1.8 0.6 -0.6 29.6 18.5 -1.7 31.9 -3.2 0.8 1.1 -5.1 3.3

-0.1 -2 -1 -3.5 6.2 18.2 -1.4 31.1 -6.6 -1.8 -1.7 -2.1 3

-2.1 -2.4 -0.7 -2.4 28.8 17.2 -2.4 30.5 -6.1 -1.5 -2.9 -2 4.5

1.2 -0.7 0.1 0.1 -2.8 -0.6 0 31.1 -0.9 -0.1 0.4 -0.4 2.3

-0.7 -1.6 -12.9 -0.8 30.8 18.4 1 10.5 -2.2 2 -5.7 0.2 3.3

0 0 1.7 -1.4 31.8 21.7 1 35.7 1.3 2.8 -0.3 -0.1 7.9

0.9 0.2 0.6 -0.8 32.5 21.8 1.5 35.8 1.4 1 1.7 -8.5 7.4

-0.1 1.6 1.5 1.4 33.6 19.2 0.4 35.5 2.1 3.7 1.1 0.2 8.4

De En Fr Jp All

Figure 2: Accuracy improvements over T5-NoDA, in
cross-domain (CD) generalization for four languages:
German, English, French, and Japanese. From the 28
out of 36 settings where Hyper-PADA outperforms the
best model in each of the baselines groups, in 23 cases
the difference is significant (following Table 2 protocol).

between Hyper-PADA and the T5-NoDA model,584

which does not perform adaptation: Hyper-PADA585

outperforms this model by 9.5%, 8.4% and 14.8%586

in CLCD and CD sentiment classification and CD587

MNLI, respectively.588

Hyper-DN and Hyper-DRF are also superior to589

all non-HN models across settings (Hyper-DRF590

in 10 CLCD sentiment settings, in 7 CD senti-591

ment settings and in 2 CD MNLI settings, as well592

as on average in all three tasks; Hyper-DN in 8593

CLCD sentiment settings, in 6 CD sentiment set-594

tings, and in 2 CD MNLI settings, as well as on595

average in all three tasks). It is also interesting596

to note that the best performing baselines (non-597

HN models) are different in the three tasks: While598

T5-MoE (group (a) of domain expert baselines)599

and T5-DANN (group (b) of domain robustness600

baselines) are strong in CLCD sentiment classifica-601

tion, PADA (group (c) of example-based adaptation602

baselines) is the strongest baseline for CD MNLI603

(in CD sentiment classification the average perfor-604

mance of all baselines is within a 1% regime). This605

observation is related to another finding: Using606

the DRF-signature as a prompt in order to improve607

the example representation is more effective in CD608

MNLI – which is indicated both by the strong per-609

formance of PADA and the 3.1 F1 gap between610

Hyper-PADA and Hyper-DRF – than in CLCD and611

CD sentiment classification – which is indicated612

both by the weaker PADA performance and by the613

0.6% (CLCD) and 1% (CD) accuracy gaps between614

Hyper-PADA and Hyper-DRF.615

These findings support our modeling considera-616

tions: (1) integrating HNs into OOD generalization617

modeling (as the HN-based models strongly outper-618

F G S TL TR Avg
T5-NoDA 58.2 66.0 60.2 74.3 69.1 65.6
T5-MoE-Ind-Avg 55.6 65.3 57.7 58.1 64.3 60.2
T5-MoE-Ind-Attn 55.6 64.6 59.1 59.3 64.5 60.6
T5-MoE-Avg 56.7 66.4 60.0 67.9 65.4 63.3
T5-DANN 72.1 76.9 65.7 74.8 76.1 73.1
T5-IRM 51.1 64.6 51.7 54.7 64.5 57.3
PADA 76.7 79.6 75.3 78.1 75.2 77.0
Hyper-DN 74.5 81.2 74.9 76.7 79.8 77.4
Hyper DRF 75.3 82.3 73.8 76.3 78.7 77.3
Hyper PADA 79.0♣‡⋄+ 84.1♣‡⋄+ 78.2♣‡⋄+ 79.8♣⋄+ 81.1‡ 80.4
Upper-bound 80.2 85.8 77.9 81.5 83.4 81.8

Table 3: Cross-domain MNLI results (Macro-F1). The
statistical significance of Hyper-PADA vs. the best base-
line from each group (with the Bootstrap test, p < 0.05)
is denoted similarly to Table 2.

form the baselines); and (2) integrating DRF sig- 619

nature learning into the modeling framework, both 620

as input to the HN (Hyper-DRF and Hyper-PADA) 621

and as means of improving example representation 622

(Hyper-PADA). In Appendix D we present addi- 623

tional analysis: (a) Hyper-PADA’s performance on 624

seen domains; (b) model performance as a function 625

of the training set size; and (c) the impact of the 626

HN on the success of our model. 627

6 Discussion 628

We presented a Hypernetwork-based framework 629

for example-based domain adaptation, designed for 630

multi-source adaptation to unseen domains. Our 631

framework provides several novelties: (a) the appli- 632

cation of hypernetworks to unsupervised domain 633

adaptation and any domain adaptation in NLP; (b) 634

the application of hypernetworks in example-based 635

manner (which is novel at least in NLP, to the best 636

of our knowledge); (c) the generation of example- 637

based classifier weights, based on a learned sig- 638

nature which embeds the input example in the se- 639

mantic space spanned by the source domains; and 640

(d) the integration of all the above with an exam- 641

ple representation mechanism that is based on the 642

learned signature. While the idea of DRF signa- 643

tures and their use for example representation in 644

example-based adaptation is borrowed from Ben- 645

David et al. (2022), the above novelties are unique 646

contributions of this work. 647

Our extensive experiments, with 2 tasks, 4 lan- 648

guages and 8 domains, for a total of 29 adaptation 649

settings, demonstrate the superiority of our frame- 650

work over a range of previous approaches, and the 651

positive impact of each of our modeling decisions. 652
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A Limitations 1039

Extending beyond sequence classification Al- 1040

though our experimental setup is broad and ex- 1041

tensive, the tasks we considered are limited to 1042

sentence-level classification tasks. However, there 1043

are many other NLP tasks that present challenging 1044

out-of-distribution scenarios. Since it is not trivial 1045

to extend HNs effectively to token-level classifica- 1046

tion or text generation, we would like to address 1047

such cases in future work. Ultimately, our goal is 1048

to shape our methodology to the level that NLP 1049

technology becomes available to as many textual 1050

domains as possible, with minimum data annota- 1051

tion and collection efforts. 1052

Utilizing large models Our modeling solution 1053

consists of a large pretrained language model. 1054

While one could apply the same method using 1055

smaller models (available today), it might lead to 1056

an unsatisfying performance level compared to the 1057

ones reported in this work. 1058

B Additional Background 1059

B.1 Hypernetworks 1060

Hypernetworks are fundamental for this paper. In 1061

this section, we hence describe them in more de- 1062

tails. 1063

In Figure 3, we present an HN-based sentiment 1064

classification model. The model receives a review 1065

that originates from the “Movies” domain and the 1066

HN (f ), which is conditioned on the domain name, 1067

generates the weights for the discriminative archi- 1068

tecture (g), which, in turn, predicts the (positive) 1069

sentiment of the input review (p). HNs are formu- 1070

lated by the following equations: 1071

θI = f(I, θf ) (1) 1072

spI = g(p, θI) (2) 1073

Where f is the HN, g is the main task network, θf 1074

are the learned parameters of f , I is the input of 1075

f , and p is the representation of the input example. 1076

θI , the parameters of network g, are generated by 1077

the HN f , and spI are the (task-specific) model 1078

predictions. 1079

B.2 Domain Related Features (DRFs) 1080

In order to perform example-based domain adapta- 1081

tion, the first stage of the Hyper-DRF and Hyper- 1082

PADA models maps each input example into a se- 1083

quence of Domain Related Features (DRFs). Se- 1084

lecting the DRF sets of the source domains is hence 1085
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Figure 3: A discriminative model, based on hypernet-
works. The HN (f ), that is conditioned on the example
domain (I), generates the weights (θI ) for a classifier
(g), which is based on a feedforward network.

crucial for these models, as they should allow the1086

models to map input examples to the semantic1087

space of the source domains. Since a key goal1088

of example-based adaptation is to account for soft1089

domain boundaries, it is important that the DRF1090

set of each source domain should reflect both the1091

unique semantic aspects of this domain and the1092

aspects it shares with other source domains.1093

To achieve these goals, we follow the definitions,1094

selection, and annotation processes in Ben-David1095

et al. (2022). For completeness, we briefly describe1096

these ideas here.51097

DRF Set Construction Let S be the set of all
source domains, and Sj ∈ S the domain for which
we construct the DRF set. We perform the follow-
ing selection process, considering all the training
data from the participating source domains. First,
we define the domain label of a sentence to be 1 if
the sentence is from Sj and 0 otherwise. We then
look for the top l words with the highest mutual in-
formation (MI) with the 0/1 labels. Then, since MI
could indicate association with each of the labels
(related to the domain (1) or not (0)), and we are in-
terested only in words associated with the domain,
we select only words that meet the criterion:

CS\Sj
(w)

CSj (w)
≤ ρ, CSj (w) > 0

Where CS\Sj
(w) is the count of the word w in1098

all of the source domains except Sj , CSj (w) is1099

5We also implemented an alternative approach which ex-
tracts DRF sets based on a TF-IDF criterion. Yet, we noticed
that the extracted DRFs are very similar to the ones extracted
by the method of Ben-David et al. (2022), which we use for
the main results of this paper, and so are the downstream task
performances. For instance, in the MNLI task, the average
performance differences between implementations with the
two DRF selection methods, for Hyper-DRF and Hyper-PADA
are 0.1% and 0.6%, respectively.

Sentence. This documentary is poorly produced, has
terrible sound quality and stereotypical "life affirming"
stories. There was nothing in here to support Wal-Mart,
their business practices or their philosophy.
Domain. DVD.
Label. Negative.
DRF Signature. music: history, rock, sound, story

Table 4: An example of Hyper-DRF and Hyper-PADA
application to a sentiment classification example. The
source domains are Books, and Music. Generated DRF
features from the Books and Music domains are in blue
and green, respectively.

the word count in Sj and ρ is a domain-specificity 1100

parameter: The smaller it is, the stronger is the 1101

association. The DRF set of Sj is denoted with Rj . 1102

Annotating DRF-based Signatures for Training 1103

In order to train the DRF signature generator of 1104

Hyper-DRF and Hyper-PADA we have to construct 1105

a DRF signature for each training example. Our 1106

goal in this process is to match each training exam- 1107

ple with those DRFs in its domain’s DRF set that 1108

are most representative of its semantics. We do this 1109

in an automatic manner. 1110

Let w1, ...wn be the tokens of a sentence x from
the domain Sj . Each DRF rj ∈ Rj is assigned
with the following score:

score(rj , {w1, ...wn} ∈ x) = min
i=1,...n

{s(rj , wi)}

s(rj , wi) = ∥Φ(rj)− Φ(wi)∥22

where Φ(x) is the embedding of x in the pre-trained 1111

embedding layer of an off-the-shelf BERT model. 1112

Then, let T1, ..., Tk be the k DRFs with the lowest 1113

scores and D the domain name. We define the 1114

DRF signature of x to be the following string: “D : 1115

T1, ..., Tk”. 1116

To summarize, we utilize this annotation only 1117

during training, as a training signal for the DRF 1118

signature generator (in stage 1 of both Hyper-DRF 1119

and Hyper-PADA). 1120

Tables 1 (main paper) and 4 provide MNLI 1121

and sentiment classification examples and their 1122

DRF signatures, as generated by Hyper-PADA and 1123

Hyper-DRF in a specific adaptation setup. 1124

The two-phase training protocol of Hyper- 1125

PADA As discussed in the main paper, Hyper- 1126

DRF and Hyper-PADA are multi-stage models. 1127

Both models utilize the DRF signature generated in 1128

the first stage by the T5 encoder-decoder through 1129

13



(a) Generator (b) Discriminator

Figure 4: Hyper-PADA training. The generative (T5
encoder-decoder) and discriminative (HN, T5 Ecnoder
and CLS) components are trained separately, using
source domains examples.

the HN (in both models) and the T5 language en-1130

coder (in hyper-PADA only). After testing sev-1131

eral configurations, we found (based on develop-1132

ment data experiments) that using one T5 encoder-1133

decoder for the first stage and a separate T5 encoder1134

for the second stage yields optimal performance.1135

Moreover, since the output generated in the first1136

stage is discrete (a sequence of words), training1137

all components jointly is not trivial and considered1138

beyond the scope of this work.1139

Accordingly, as illustrated in Figure 4 (for1140

Hyper-PADA, but the same applies for Hyper-1141

DRF), we train each stage of these models sep-1142

arately. First, the T5 encoder-decoder is trained to1143

generate the example-based DRF signature (§B.2).1144

Then, the HN and the (separate) T5 encoder are1145

trained jointly with the task objective.1146

C Dataset Sizes1147

Table 5 presents the number of training, develop-1148

ment and test examples from each domain. Notice1149

that since we consider multiple training domains1150

in each of our experiments, the number of training1151

and development examples in our experiments are1152

an aggregation of the numbers shown in the table.1153

For example, in the CLCD sentiment analysis task,1154

when we test on the English DVD domain, we use1155

3000 training examples, 600 development exam-1156

ples and 2000 test examples. In each experiment,1157

the source domains development sets are used in1158

order to select the hyper-parameters of the models.1159

D Ablation Analysis1160

Training Size Effect Our experiments focus on1161

scenarios that are both low-resource and domain1162

adaptation, as the combination of the two yields a1163

Sentiment Analysis (En, De, Fr, Jp)
Domain Training (src) Dev (src) Test (trg)
Books (B) 500 100 2000
DVD (D) 500 100 2000
Music (M) 500 100 2000

MNLI (En)
Domain Training (src) Dev (src) Test (trg)
Fiction (F) 2500 200 1, 973
Government (G) 2500 200 1, 945
Slate (SL) 2500 200 1, 955
Telephone(TL) 2500 200 1, 966
Travel (TR) 2500 200 1, 976

Table 5: The number of examples in each domain (and
language) of our two tasks. We denote the examples
used when a domain is included as a source domain (src),
and when it is the target domain (trg). For sentiment we
present the number of examples in a single language,
while there are four different languages - English (En),
Deutsch (De), French (Fr), and Japanese (Jp), each with
the same number of examples per domain.

very challenging, yet realistic, generalization setup 1164

(Landeiro and Culotta, 2018; Calderon et al., 2022). 1165

Yet, it is also essential to assess the impact of our 1166

modeling approach across training sets of various 1167

sizes, including cases where labeled data is abun- 1168

dant. Hence, we next turn to evaluate Hyper-PADA 1169

and the non-DA baseline, T5-NoDA, across mul- 1170

tiple subsets of the training data available for our 1171

tasks (sentiment analysis and MNLI). We experi- 1172

ment with the following subset sizes: 10%-100% 1173

(in 10% steps) for the CLCD setting (sentiment 1174

analysis); and 1%-5% (in 1% steps) and 10%- 1175

100% (in 10% steps) for the CD setting of MNLI. 1176

For each experiment, we sample a subset of the cor- 1177

responding percentage from the training examples 1178

of each of the source domains and use the same test 1179

and validation sets across all experiments. 1180

Figure 5 summarizes our results. Figure 5a 1181

presents sentiment classification results for the 1182

CLCD transfer, including subsets ranging from 1183

10% to 100% (for a total of 10 subset points). Fig- 1184

ure 5b presents results for MNLI in the CD transfer, 1185

with subsets ranging from 1% to 20% (with 7 sub- 1186

set points) and Figure 5c focuses on the MNLI 1187

subsets corresponding to subsets larger than 30% 1188

(with 8 subset points). Each point in the presented 1189

graphs presents the average performance across all 1190

settings. For instance, the point corresponding to 1191

10% in CLCD sentiment analysis presents the av- 1192

erage performance across all CLCD settings (12 1193

overall). Accordingly, each of the 12 settings uses 1194

10% of the training examples of the corresponding 1195

source domains (we sample a subset of the 10% 1196

14
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(a) Sentiment Analysis - 10% to 100%
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(b) MNLI - 1% to 20%
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(c) MNLI - 30% to 100%

Figure 5: The performances of Hyper-PADA and T5-NoDA on training subsets of different size. The red vertical
dashed lines present the training subset size in our main experimental setup.

Sentiment
CLCD Sentiment CD MNLI

T5-NoDA 78.7 82.0 65.2
T5-MoE-Ind-Avg 83.8 80.4 59.0
T5-MoE-Ind-Attn 84.7 84.0 59.9
T5-MoE-Avg 83.6 80.0 61.9
T5-DANN 81.3 79.0 72.2
T5-IRM 77.1 81.8 57.1
PADA 78.6 83.0 77.1
Hyper-DN 86.7 85.7 77.1
Hyper-DRF 86.8 85.1 77.7
Hyper-PADA 87.5 85.5 80.6

Table 6: Seen domains results. HN-based methods are
superior.

from each source domain).1197

For sentiment classification, Figure 5a presents1198

a clear and stable trend across all subsets: Hyper-1199

PADA is superior to T5-NoDA, which does not1200

perform domain adaptation. The performance1201

gap between the methods is more significant in1202

low-resource scenarios (smaller training subsets).1203

Furthermore, while Hyper-PADA’s advantage de-1204

creases as the labeled training size grows, it still1205

performs better than T5-NoDA across all training1206

set sizes.1207

For MNLI, when considering up to 20% of the1208

data (more than 60K training examples), Hyper-1209

PADA significantly outperforms T5-NoDA, as1210

demonstrated in Figure 5b. For larger subsets1211

(more than 30%, Figure 5c), Hyper-PADA and T5-1212

NoDA demonstrate compatible performance. We1213

note that for subsets of 30% of the MNLI data, the1214

models train on more than 22.5K examples from1215

each source domain (for a total of 90K training1216

examples), which seems to be enough to overcome1217

the OOD effect. For comparison, the 100% subsets1218

of the CLCD sentiment analysis dataset contain1219

12K examples.1220

Evaluating Performance on Seen Domains In1221

this paper, we put a strong emphasis on the perfor-1222

mance of an algorithm on unseen target domains. 1223

Our main reasoning is that compared to the lim- 1224

ited number of known source domains, there is 1225

potentially an unlimited number of unknown tar- 1226

get domains, which the algorithm may encounter 1227

in future tests. Still, it is essential to verify that 1228

our algorithms do not sacrifice their source domain 1229

performance in order to achieve out-of-distribution 1230

generalization. Hence, We next measure the perfor- 1231

mance on the source domains in each experiment 1232

by calculating the F1 score (MNLI) or accuracy 1233

(sentiment classification) across all development 1234

examples from the source domains. In each ex- 1235

periment, we calculate the relevant metric on each 1236

source domain’s validation set. Then, we average 1237

the results of each domain across all runs. 1238

Table 6 reports our results, demonstrating the 1239

superiority of our models on seen domains. The 1240

HN models are superior in all the setups, with 1241

Hyper-PADA outperforming all models for senti- 1242

ment CLCD and MNLI setups and is the second 1243

best model in the sentiment CD setup, where it is 1244

slightly outperformed by Hyper-DN. 1245

Importance of Diversity in Generated Weights 1246

To demonstrate the impact of example-based classi- 1247

fier parametrization, Figure 6 plots the diversity 1248

of the example-based classifier weights as gen- 1249

erated by Hyper-PADA vs. the improvement of 1250

Hyper-PADA over PADA in the CLCD sentiment 1251

classification settings. We choose to compare these 1252

models because both of them use the self-generated 1253

signature for improved example representation, but 1254

only Hyper-PADA uses it for classifier parametriza- 1255

tion. To estimate the diversity of the weights gen- 1256

erated by the HN in a given test domain, we first 1257

measure the standard deviation of each weight gen- 1258

erated by the HN across the test examples of that 1259

test domain. We then average the SDs of these 1260
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Figure 6: Correlation between the diversity of the
example-based classifier weights generated by Hyper-
PADA, and the improvement of this model over PADA
in CLCD sentiment classification. Each point in the
graph represents a target domain. To estimate the SD,
we calculated the SD of each of the weights of the HNs
generated for the test examples of this domain, and re-
ported the average. The Spearman Correlation is 0.475.
For CD sentiment classification, the corresponding num-
bers are 0.539 and 0.175, for Pearson and Spearman
correlations, respectively (not shown in the graph).

weights and report the resulting number as the di-1261

versity of the HN-generated weights in the test1262

domain. We repeat this process for each test do-1263

main. The relatively high correlations between the1264

two measures is an encouraging indication, sug-1265

gesting the potential importance of example-based1266

parametrization for improved task performance.1267

E Implementation Details1268

E.1 URLs of Code and Data1269

• Our Code Repository - our official code1270

repository will be published upon acceptance.1271

In addition, we attach to this submission a1272

zip folder that contains our anonymized code1273

source.1274

• HuggingFace (Wolf et al., 2020) - code and1275

pretrained weights for the T5 model and tok-1276

enizer: https://huggingface.co/1277

• MNLI dataset - The natural language1278

inference data experimented with within1279

this paper. https://cims.nyu.edu/1280

~sbowman/multinli/1281

• Websis-CLS-10 dataset - The multi-1282

lingual multi-domain dataset which is1283

experimented with within this paper.1284

https://zenodo.org/record/1285

3251672#.YdQiIWhBwQ81286

E.2 Hyperparameter Different Choices 1287

For all the pre-trained models we use the Hugging- 1288

face Transformers library (Wolf et al., 2020). For 1289

the T5 model we use the T5-base model (Raffel 1290

et al., 2020) for MNLI, and the MT5-base model 1291

(Xue et al., 2021) for sentiment classification. For 1292

contextual representation of the HN input (domain 1293

name or “UNK’ in Hyper-DN, DRF signature in 1294

Hyper-DRF and Hyper-PADA), we use the BERT- 1295

base-uncased and the mBERT-based-uncased mod- 1296

els, for MNLI and sentiment classification, respec- 1297

tively. 1298

We choose ρ = 1.5 for the DRF set construction 1299

process. In the DRF signature annotation process, 1300

we take the k = 5 most associated DRFs for each 1301

input example. When generating the signature (in 1302

Hyper-DRF and Hyper-PADA) we employ the Di- 1303

verse Beam Search algorithm (Vijayakumar et al., 1304

2016) with the T5 decoder, using the following pa- 1305

rameters: 5 sequences, with a beam size of 5, a 5 1306

beams group and a diversity penalty of 0.1. 1307

The HN consists of two linear layers of the same 1308

input and output dimensions (1 × 768), each of 1309

which is followed by a ReLU activation layer. The 1310

output of the second layer is fed into two parallel 1311

linear layers, one to predict the weights of the linear 1312

classifier (a 2× 768 matrix), and one to predict its 1313

bias (a 1 × 2 vector). For task classification, we 1314

feed the linear classifier (CLS) with the average of 1315

the encoder token representations. 1316

Generative models are trained for 3 epochs and 1317

discriminative models for 5 epochs. We use the 1318

Cross Entropy loss for all models, optimized with 1319

the ADAM optimizer (Kingma and Ba, 2015), a 1320

batch size of 16, and a learning rate of 5 ∗ 10−6. 1321

We limit the number of input tokens to 128. 1322

E.2.1 Computing Infrastructure and Runtime 1323

All experiments were performed on a single Nvidia 1324

Quadro RTX 6000 GPU, with 4608 cores, 24 GB 1325

GPU memory, 12 CPU cores and 125 GB RAM. 1326

For a single CLCD sentiment analysis experiment 1327

with Hyper-DN, we measured a runtime of 5 min- 1328

utes, which corresponds to a single cell in Table 2 1329

(in the Hyper-DN row). Respectively, for a sin- 1330

gle CD MNLI experiment, we measured a runtime 1331

of 12 minutes for Hyper-DN, corresponding to a 1332

single cell in Table 3. For Hyper-PADA and Hyper- 1333

DRF, we measured a runtime of 20 minutes for a 1334

single CLCD sentiment analysis experiment, and 1335

45 minutes for a single MNLI experiment (corre- 1336
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sponding to a single cell in Table 2 and a single cell1337

in Table 3 respectively).1338
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