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Abstract

Capsule networks offer a promising solution in computer vision by addressing the limitations
of convolutional neural networks (CNNs), such as data dependency and viewpoint challenges.
Unlike CNNs, capsules reduce the need for data augmentation by enhancing generalization
from limited training data. We explore capsules from the perspective of information theory,
viewing them as continuous random variables. We use marginal differential entropy to
measure the information content of capsules, and relative entropy to model the agreement
between lower-level and higher-level capsules. The proposed entropy voting method aims
to maximize marginal capsule entropies and to minimize their relative entropy. We show
through an ablation study that such a relationship exists between the capsules. We also show
that our approach performs better or comparably against state-of-the-art capsule networks
while significantly improving inference time. This research highlights the synergy between
capsules and information theory, providing insights into their combined potential.

1 Introduction

Capsule networks have emerged as a promising approach in computer vision, with a clear focus on alleviating
the shortcomings of convolutional neural networks (CNNs). CNNs struggle with several issues, notably the
need for enormous amounts of data, the vulnerability to challenges posed by varying viewpoints, scaling,
occlusion, and deformation in images, and the lack of understanding of spatial relationships. To circumvent
these limitations, CNNs require an extensive use of data augmentation techniques. Modern alternatives like
Vision Transformers (ViT) do not solve this problem since they are even more demanding with respect of the
amount of training data (Dosovitskiy et al., 2021). In contrast, capsules are designed to reduce the reliance
on data augmentation, aiming to directly mitigate the need for such techniques and enhance the network’s
ability to generalize from limited training data.

Capsules, first proposed by Hinton et al. (2011) and later refined by Sabour et al. (2017), can be seen as
vectors that are designed to capture rich and hierarchical information about objects in an image. Unlike
traditional convolutional network units, capsules explicitly encode object instantiation parameters, such as
texture and pose, thus enabling them to learn more robust representations without having to use data
augmentation to achieve the same effect. The intuition behind capsule networks is to model objects as
a composition of capsules, with lower-level capsules encoding parts of an object and higher-level capsules
encoding the object as a whole, which are then linked together through a voting procedure that is commonly
referred to as agreement between lower- and higher-level capsules.

The different levels of capsules provide a modular design that, through agreement, is able to learn part-
whole relationships and spatial hierarchy in the image. Thus, capsules enable the network to utilize both
global and local visual information at various levels of abstraction, thereby encoding a more comprehensive
representation of the input image. While state-of-the-art methods mainly focus on modelling agreement
between the capsules, we investigate capsule networks from the point of view of information theory, exploring
how information-theoretic concepts can enhance our understanding and utilization of capsules.

Viewed through the lens of information theory, a capsule can be modeled as a continuous random variable
with well-defined mean and variance, since capsules are inherently real-valued vectors. These moments are
estimated using the method of moments for the log-normal distribution, allowing us to parameterize the
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entropy and divergence calculations directly from data. This allows us to compute the marginal differential
entropy of each capsule, which reflects the amount of information it encodes. Higher entropy indicates richer
and more descriptive representations. To model the relationship between lower-level (child) and higher-level
(parent) capsules, we use relative entropy, also known as the Kullback-Leibler divergence, which quantifies
how well a parent capsule aligns with its corresponding children. Our proposed approach, entropy voting,
is built on the dual objective of maximizing the marginal entropy of individual capsules and minimizing the
relative entropy between lower- and higher-level capsules.

In our experiments, we provide empirical evidence that underscores the effectiveness of these information-
theoretic principles in elevating the performance and robustness of capsule networks. This investigation
illuminates the synergistic relationship between capsule networks and information theory, shedding valuable
insights into their combined potential. We compare our results against three baselines, which are the state-
of-the-art of capsule networks.

2 Related works

The concept of capsules was first introduced by Hinton et al. (2011) as a way to encode both descriptor
and probability parameters of an object or object part. However, it was the work by Sabour et al. (2017)
that formulated the concept of capsule networks as it is now known, including (1) the dynamic routing
mechanism, (2) a capsule-specific loss function, (3) a reconstruction regularizer. and (4) a squash activation
function that converts the magnitude of each parent capsule to a probability. Since then, there have been
many works on capsule networks, namely focusing on improving the underlying routing algorithm, but also
some modeling capsules as matrices rather than vectors.

Hinton et al. (2018) proposed to treat capsules as 4 × 4 pose matrices with an activation probability. The
method uses an iterative expectation-maximization algorithm that includes a transformation matrix which
learns a mapping between capsules at different levels. In addition, the authors propose a new, matrix-capsule
specific loss function.

Choi et al. (2019) investigate a routing mechanism based on attention and propose a modification to the
squash activation function. Routing based on self-attention has also been proposed by Mazzia et al. (2021).
They, too, introduced a modification to the squash activation function, similar to Choi et al. (2019).

Routing in capsule networks has also been investigated as an optimization problem by Wang & Liu (2018).
The authors formulated routing as a clustering problem, and used a Kullback-Leibler divergence term for
regularization. In their proposed work, capsules are squashed only after routing to stabilize the growth of
capsule under the assumption that only parent capsules should have a probabilistic magnitude.

Zhang et al. (2018) investigate an alternative approach to capsule networks, based on orthogonal represen-
tation of capsule subspaces onto which feature vectors (i.e. first-level capsules) are projected. Each capsule
subspace is updated until it contains input feature vectors corresponding to the associated class, i.e. parent
capsule. Their proposed method does not involve any routing mechanism as capsule subspaces and projection
matrices are learned through back-propagation.

Ribeiro et al. (2020) propose a routing method based on variational Bayesian inference, an interpretation of
expectation-maximization. In their proposed method capsule activation is done only after routing. Another
alternative routing method is proposed by Zhang et al. (2020), which is based on kernel density estimation.
The authors proposed two different approaches, one based on expectation-maximization, and the other on
mean shift, a feature-space analysis technique. Building on variational methods, De Sousa Ribeiro et al.
(2020) investigate a routing mechanism based on variational inference that accounts for uncertainty.

Hahn et al. (2019) investigate routing as a separate network. Each capsule is routed independently by a
dedicated sub-network, each of which is a single-layer perceptron (SLP), meaning that there are as many
SLPs as there are higher-level capsules. The SLPs have two sets of weights, one for pose and one for routing.
Rajasegaran et al. (2019) explore a routing method based on 3D convolutions, and introduce a 3D variant
of the squash function.
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However, Byerly et al. (2021) show that no routing is needed by using homogeneous vector capsules, which
replace matrix multiplication with the Hadamard product, in order to keep capsule dimensions untangled.
Their approach also leverages multiple classification branches.

One notable entropy-based approach is by Renzulli et al. (2022), which analyzes and refines part-whole
relationships captured by the routing mechanism. However, the proposed method is not end-to-end trainable
but, instead, it requires manual pruning of routing coefficients during training and, afterwards, quantizing the
routing coupling coefficients into discrete levels and extracting parse trees based on the resulting quantized
sequences. These sequences are then used to construct a dictionary of parse trees, from which entropy
is computed to assess and enforce structural consistency. Furthermore, the proposed routing method is
iterative.

The aforementioned approaches fall short in at least one of two aspects; computationally inefficient routing
(be it iterative, attention-based, a sub-network, or other), and capsule activation done using some non-
differentiable function (the squash function or a variant thereof, such as vector norm). The first aspect leads
to large execution times during training and/or inference, and the second aspect often leads to instability
during training. Moreover, in all cases test performance is reported using significant amounts of data
augmentation. Keeping in mind that one of the key ideas of capsule networks is to reduce the necessity of
data augmentation, this is at least somewhat questionable. An objective evaluation of the performance of
capsule networks w.r.t. the issues they are designed to mitigate should not be based on data augmentation.
We address all three aspects in our work. Furthermore, we assume that the large execution times (not only
for training but especially for inference) are the main reason that capsule networks are still rarely used,
despite their theoretical advantages, which is not addressed by any of the aforementioned works.

We selected Sabour et al. (2017), Mazzia et al. (2021), and Byerly et al. (2021) as our baselines due to the
fact that they are the state-of-the-art capsule networks on MNIST, which is still the de facto dataset for
capsule networks.

3 Motivation

Information theory provides a robust framework for quantifying and analyzing the information content and
relationships between variables. As random variables are defined as measurable real-valued functions, we
can use differential entropy to measure the information content of such functions based on their moments,
thus offering insights into the intrinsic information it carries. Similarly, Kullback-Leibler divergence serves
as a measure of distance between two such functions, allowing us to evaluate how closely they align with
respect to their underlying distributions.

These concepts are critical for modeling relationships between random variables and can be extended to
real-valued vectors, enabling the study of dependencies and information transfer between capsules in the
context of capsule networks based on their moments. Thus, applying differential marginal entropy and
Kullback-Leibler divergence to functions provides a powerful method to quantify information content, assess
similarity, and analyze dependencies and information transfer. This is motivated by the concept of mutual
information, which quantifies the shared information between two random variables.

4 Methodology

4.1 Construction of capsules

We model capsules as positive real-valued vectors. Formally, let Ψ = {ψi}Ni=1 denote the set of child capsules
and Ω = {ωj}Mj=1 the set of parent capsules, where each ψi ∈ Rd+ and ωj ∈ Rd′

+ . We then treat each
capsule vector as a log-normally distributed random variable, such that ψi ∼ LogNormal(µψi

, σ2
ψi

) and
ωj ∼ LogNormal(µωj

, σ2
ωj

), defined via a softplus activation function to ensure positivity and numerical
stability. This is motivated by the central limit theorem, under which the internal activation of artificial
neurons can often be regarded as approximately Gaussian. When passed through an exponential function ex,
these Gaussian-distributed variables result in a log-normal distribution, which aligns well with the desired
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positive support of capsule outputs. Furthermore, this formulation allows us to quantify both the marginal
entropies of individual capsules and the agreement between lower-level (child) and higher-level (parent)
capsules using principles from information theory.

ζ(x) = log(1 + exp(x)) (1)

However, in our implementation we use the softplus activation function ζ(x) (Equation 1) instead of the
exponential function in the capsule layers since we empirically observed it to perform better and to be more
stable. Note that softplus applied to a Gaussian distribution does not only have a similar appearance of a
log-normal distribution in the same co-domain [0,+∞), as can be seen in Figure 1, but that it is a good
approximation of the exponential function for x being small or negative, as the quotient of ζ(x)

ex quickly
converges to 1 for x→ −∞.

Furthermore, we assume that the reason why the exponential activation function ex behaves unstably is
because its derivative is the exponential function itself, ex, meaning that the gradients can become exponen-
tially large during back-propagation, leading to the problem of exploding gradients. On the other hand, the
derivative of the softplus function is the sigmoid function, which is defined in [0, 1] and thus behaves more
stably.

Figure 1: Difference between softplus log-normal PDF and regular log-normal PDF.

By treating the capsules as random variables, we are able generate multiple samples from the input space to
approximate the true posterior distribution of object instantiation parameters.

Child capsules, Ψ, are constructed using 2D depthwise convolutions. Therefore, each child capsule ψ ∈ Ψ
is derived from just one input feature map as depthwise convolution does not mix information across input
channels, which reduces the number of parameters. Furthermore, the output of the 2D depthwise convolution
is a (K,K,D × N) tensor, where K is the feature map height and width respectively, D is the length of
the child capsules, i.e. the depth multiplier, and N is the number of input channels. The output tensor
is then reshaped to (D, 1, 1,K × K × N) to enable the construction of parent capsules. Therefore, 2D
depthwise convolution conveniently allows to move from a 3-dimensional (width, height, channels) tensor to
an 4-dimensional tensor (depth, width, height, channels), thereby constructing the first-level of capsules, i.e.
child capsules. We set D=8, as per Sabour et al. (2017), which acts as the depthwise multiplier in the 2D
depthwise convolutional layer.

Parent capsules, Ω, are derived from child capsules through a 3D transpose convolution. Whereas each
child capsule attends to a subregion of one input feature map, each parent capsule attends to all child
capsules, aggregating the information the child capsules encode. The motivation behind using a 3D transpose
convolution is that it enables to go from a (D, 1, 1, N) tensor to a (D′, 1, 1, N ′) tensor, where D′ >> D and
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N ′ << N . D′ is 16, as defined by Sabour et al. (2017), and N ′ is the number of classes. The kernel size for
the 3D transpose convolution is 5×1×1 and the strides are (2, 1, 1) in order to double the depth dimension,
i.e. capsule size.

4.2 Entropy voting

As each parent capsule, ω ∈ Ω, is conditioned on all child capsules, ψ ∈ Ψ, we know that there is a latent
joint distribution p(Ψ,Ω), which allows to compute the agreement between child and parent capsules using
information theory. The parent capsule ω ∈ Ω with the highest average entropy score w.r.t. to all ψ ∈ Ψ is
considered the correct prediction.

We define the entropy voting function as:

f(Ψ,Ω) = h(Ψ) + h(Ω)−DKL(Ψ ∥ Ω) (2)

with h(Ψ) and h(Ω) being the marginal differential entropy terms and DKL(Ψ||Ω) being the Kullback-Leibler
(KL) divergence of Ψ from Ω.

The differential entropy for a log-normal distribution is given by:

h(x) = µx + 1
2 ln(2πeσ2

x) (3)

Thus, to obtain the capsule-wise marginal differential entropies:

h(ψi) = µψi + 1
2 ln(2πeσ2

ψi
) (4)

h(ωj) = µωj + 1
2 ln(2πeσ2

ωj
) (5)

To maximize f(Ψ,Ω), we want to maximize the log-normal marginal differential entropy terms (Equation 3)
h(Ψ) and h(Ω), while minimizing DKL(Ψ||Ω); the higher the marginal entropy terms h(Ψ) and h(Ω) are, the
more information the underlying log-normal distributions carry, and the lower the DKL(Ψ||Ω) term is, the
better some ω ∈ Ω describes all ψ ∈ Ψ on average. Since capsules are bound to encode shared parameters
about pose, texture, color, etc., as they are global properties, by maximizing h(Ψ) and h(Ω), the capsules are
encouraged to capture object-specific properties better, because maximizing differential entropy is basically
the same as maximizing variance, which makes the underlying distribution spread out.

The Kullback-Leibler divergence (also known as relative entropy, Equation 6)) DKL(p||q) - as defined for
two univariate continuous distributions (Belov & Armstrong, 2011) - is used to model agreement between
the actual distribution p and a reference distribution q:

DKL(p||q) = log
σq
σp

+
σ2
p + (µp − µq)2

2σ2
q

− 1
2 (6)

Thus, to obtain the relative entropy w.r.t. ψi and ωj :

DKL(ψi ∥ ωj) = log
σωj

σψi

+
σ2
ψi

+ (µψi
− µωj

)2

2σ2
ωj

− 1
2 (7)

Therefore, relative entropy can be interpreted to measure how much information is lost when approximating
p with q; a relative entropy of 0 indicates that the two distributions, p and q, have identical quantities of
information and thereby no information is lost when approximating p with q. Therefore, KL divergence
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sufficiently models agreement between child capsules Ψ (the actual distribution) and parent capsules Ω (the
reference distribution) in our formulation.

The voting scores for each parent capsule, ωj , are computed as:

zj = 1
N

N∑
i=1

[h(ψi) + h(ωj)−DKL(ψi ∥ ωj)] (8)

Finally, to obtain the prediction probabilities, the raw voting scores, z⃗, are pushed through the softmax
function:

ŷj = softmax(z⃗)j = exp(zj)∑M
k=1 exp(zk)

(9)

Algorithm 1 Entropy voting.
1: procedure Entropy voting(Ψ,Ω)
2: ∀ψ ∈ Ψ : αi ← h(ψ)|ψ|

i=1 ▷ Computes Eq. 4
3: ∀ω ∈ Ω : βj ← h(ω)|ω|

j=1 ▷ Computes Eq. 5
4: ∀ψ ∈ Ψ;∀ω ∈ Ω : δij ← DKL(ψi||ωj) ▷ Computes Eq. 7
5: zj ← 1

|Ψ|
∑
i αi + βj − δij ▷ Computes Eq. 8

6: ŷj ← softmax(z⃗)j ▷ Computes Eq. 9
7: return ŷj
8: end procedure

The moments are estimated directly from data using the method of moments for the log-normal distribution:

µ̂x = log

 E[x]√
E[x]2

Var[x]

 (10)

σ̂2
x = log

(
Var[x]
E[x]2 + 1

)
(11)

To estimate the moments for child and parent capsules, we substitute ψi and ωj for x in Equation 10 and
Equation 11, respectively.

Note that the entropy voting function f(Ψ,Ω) is strongly motivated by mutual information I(Ψ; Ω): Since
DKL(Ψ||Ω) = h(Ψ,Ω)−h(Ψ) and I(Ψ; Ω) = h(Ψ)+h(Ω)−h(Ψ,Ω), one can rewrite Equation 2 as f(Ψ,Ω) =
h(Ψ) + I(Ψ; Ω). Thus, maximizing f(Ψ,Ω) means both maximizing the marginal differential entropy of Ψ
and the mutual information of Ψ and Ω. While the former guarantees that the underlying distribution carries
as much information as possible, the latter ensures agreement between Ψ and Ω.

One big advantage of using entropy voting besides its theoretical justification is that it can be computed very
efficiently due to its lack of mixed entropy terms; computing the relative entropy of two univariate distri-
butions is computationally tractable as it can be done using their respective moments (Belov & Armstrong,
2011).

5 Experiments

5.1 Network architecture

The overall architecture used in our experiments is illustrated in Figure 2. The first four layers of the network
are simple 2D convolutional layers with the ReLU activation function followed by batch normalization. For
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Figure 2: An abstract illustration of the network architecture w.r.t. MNIST. Note that f(Ψ,Ω) denotes the
entropy voting function.

MNIST, the last convolution layer has stride of 1 and stride of 2 for SmallNorb. The preceding depthwise
convolutional layer has stride of two for MNIST and stride of four for SmallNORB. Furthermore, the number
of filters in the transpose 3D convolutional layer is 10 for MNIST (as can be seen in Figure 2) and 5 for
SmallNorb. Otherwise there is no difference in the network configuration between the datasets.

5.2 Experimental setup

We conduct our experiments on the MNIST (LeCun et al., 2010) and smallNORB (LeCun et al., 2004)
datasets as these are the standard datasets in research on capsule networks. We use the same training
setup for all datasets; a batch size of 32, Adam optimizer with a learning rate of 0.0005. We train both
with augmentations and completely without augmentations. We augment the images with random affine
transformations; scale, translation, rotation, and shear, all within a ±20% range. Affine transformations
are basic data augmentation techniques that apply geometric operations to the image without changing its
content, e.g. as opposed to cropping. As for the hardware, we use an NVIDIA V100 GPU for training and
testing.

The MNIST dataset contains a total of 70,000 grayscale images of handwritten digits. The images are of
size 28x28 pixels. Each image represents a single digit ranging from 0 to 9, with the digit being in the center
of the image. The training set consists of 60,000 images, while the test set contains 10,000 images.

The smallNORB dataset consists of grayscale images of 3D objects. The objects belong to five different
categories, and each object was imaged by two cameras under 6 lighting conditions, 9 elevations, and 18
azimuths. The dataset is split evenly between training and testing sets, with 24,300 images each. The
training set contains 5 instances (4, 6, 7, 8 and 9) of each category, and the test set the remaining 5 instances
(0, 1, 2, 3, and 5).

For comparison we reimplemented CapsNet by Sabour et al. (2017) according to the description given in
the paper, used the official implementation of Efficient-CapsNet by Mazzia et al. (2021), and reimplemented
HVC-CapsNet (for the lack of better nomenclature) by Byerly et al. (2021), also as per the description given in
the paper. A direct comparison with the results given in their papers is problematic as different augmentation
methods are used, which is one of the issues capsule networks were designed to address. Furthermore, since
two of the three baselines - CapsNet and Efficient-CapsNet - benefit from a reconstruction network as a
regularizer, we tested our model with and without it. That being said, the parameter counts in Table 1
exclude the reconstruction regularizer for simplicity of comparison.

The reconstruction regularizer we use is a simple three-layer feedforward network with 512 and 1024 units
in the first two layers, respectively, and both layers use the ReLU activation function. The output layer
uses the sigmoid activation function, and the number of units is equal to the number of pixels in the input
image. In the loss function, the sum of squared penalties between the normalized input pixel values and the
reconstruction output is minimized. The penalty term is scaled down by a factor of 0.0005 and added to the
overall loss (Sabour et al., 2017).
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Table 1: Results from our implementations. Test error % averages and standard deviations of top-5 trials.
No ensembles used. Note that ∗ refers to input size 96 × 96, ‡ to input size 48 × 48, and † to input size
32× 32.

DATASET METHOD PARAMS FPS W/O AUG W/ AUG

MNIST

Our method w/o recon. 604 161 0.28±0.008 0.23±0.007
Our method w/ recon. 604 120 0.34±0.03 0.31±0.03
Sabour et al. (2017) 6806 86 0.57±0.02 0.35±0.03
Mazzia et al. (2021) 161 112 0.41±0.02 0.37±0.06
Byerly et al. (2021) 1237 66 0.48±0.02 0.38±0.02

smallNORB
Our method w/o recon.∗ 806 152 2.61±0.09 3.84±0.15
Our method w/ recon.∗ 806 113 2.97±0.11 4.65±0.26
Mazzia et al. (2021)‡ 151 108 10.58±1.15 9.25±0.27
Sabour et al. (2017)† 6640 84 12.88±0.31 11.6±0.28

5.3 Results

As can be seen in Table 1 below, our approach outperforms all of the three baselines on every dataset,
not only in the error rates but also in inference speed, given in frames per second (FPS). Compared to
CapsNet the number of parameters is one order of magnitude lower although it does not yet reach the low
parameter count of Efficient-CapsNet. Regardless, our method still achieves a higher FPS. This is mainly
due to differences in the voting procedure, as attention-based methods tend to be computationally more
expensive.

For the smallNORB experiments, we use original input size for our model, and different input sizes for
the baselines as defined in the respective papers. In the case of CapsNet, smallNORB images are first
resized to 48× 48 and then patches of 32× 32 are cropped out (Sabour et al., 2017), whereas in the case of
Efficient-CapsNet, the images are resized to 64× 64, after which patches of 48× 48 are cropped out (Mazzia
et al., 2021). We noticed that CapsNet performs suboptimally on inputs sizes larger than 32× 32, and that
Efficient-CapsNet is limited to only two different input sizes, i.e. 28 × 28 and 48 × 48 (hence experiments
only on MNIST and smallNORB). We tested our own method on the original input sizes for smallNORB,
and outperformed both baselines without any resizing or cropping.

We also tested our model on the original smallNORB dataset with input image size of 96× 96, and achieved
a test error % of 3.84±0.15 with augmentations and 2.61±0.09 without augmentations. These results will be
analyzed further in section 5.4.

Note that the test results given in the baseline papers (see Table 2) differ from our own experiments,
mainly due to their use of different data augmentations and experimental setup. Moreover, since one of
the main advantages of capsule networks from a theoretical point of view is the ability to learn robust
abstract representations without the need for data augmentation, we believe that it is best to compare
different capsule network approaches without any data augmentation at all, but provide results with data
augmentation as well. However, while Sabour et al. (2017), Mazzia et al. (2021), and Byerly et al. (2021)
use different augmentations compared to the augmentations we use (they also differ from each other), we
use the same augmentation setup for all methods in our experiments.

It is also worth to note that the biggest discrepancy in terms of the results from our experiments and what
was reported by the authors in their respective papers is between our implementation of HVC-CapsNet
(Byerly et al., 2021) as tested on MNIST, and the results reported by the authors on MNIST. This might be
due to the specific data augmentation techniques used by the authors, which include cropping a 4× 4 patch
of pixels from the input image, for example. However, it can also be that there is, for example, a disconnect
between the description of the model as provided in the paper and the implementation details of the model
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Table 2: Test error % reported in other CapsNet works. Best only, if no standard deviation is given. All
reported results use some form of data augmentation or reconstruction regularizer. Results obtained with
ensembles in italics.

METHOD MNIST SmallNORB

Sabour et al. (2017) 0.25±0.005 2.7
Hinton et al. (2018) - 1.4
Hahn et al. (2019) - 15.91±1.09
Rajasegaran et al. (2019) 0.28 -
Ribeiro et al. (2020) - 1.6±0.06
Zhang et al. (2020) 0.38 2.2
De Sousa Ribeiro et al. (2020) 0.28±0.01 1.4±0.09
Mazzia et al. (2021) 0.26±0.0002 2.54±0.003
Byerly et al. (2021) 0.13 (0.17) -
Renzulli et al. (2022) 0.44±0.0002 -

used in their experiments. Regardless, as can be seen in Table 1, of the chosen baselines, HVC-CapsNet
performs the poorest on MNIST using generic data augmentations. That being said, none of the baseline
implementations achieved performance similar to what was reported in their respective papers.

For completeness, Table 2 also gives the results of the three baseline methods as well as additional ones
as given in the respective papers. Note, that the exact results cannot directly be compared to each other
since they use different augmentation techniques, some use a reconstruction regularizer, and some results
are based on ensembles. Moreover, most of the results are best only and not averages with some given
standard deviation. Nevertheless, our proposed method, coupled with simple affine transformations as data
augmentation, achieves better performance on MNIST than all approaches but Byerly et al. (2021), which
we were not able to reproduce using our implementation of their approach.

However, when considering other datasets, our method does not exhibit comparable performance to the
leading approaches reported in the table, which may be because we used the same model for all datasets,
whereas others tweaked their model to the dataset in question - or used ensembles - coupled with extensive
data augmentation techniques. We chose to not tweak our model to each dataset or use an ensemble because
we were interested in exploring the generalization ability of our approach in order to investigate the potential
of capsules as-is. That is also why we deem it important to measure the performance of capsule networks
without data augmentation.

This brings forth an important question regarding the effectiveness of data augmentation in the context
of capsule networks. Considering the fundamental objective of capsules, which is to acquire robust and
equivariant object representations and instantiation parameters, the use of data augmentation becomes a
matter of inquiry. Capsule networks aim to address the limitations associated with the need for extensive
data augmentation, which can be computationally strenuous. One of the primary challenges that capsules
seek to overcome is the reliance on data augmentation techniques, and an exhaustive amount of data in
general, which are computationally expensive.

5.4 Ablation Study

The motivation for this ablation study arises from the hypothesis that an inherent relationship exists between
between child and parent capsules, which can be effectively captured by the proposed voting term h(Ψ) +
h(Ω)−DKL(Ψ||Ω). This formulation suggests that a balance of uncertainty and alignment is crucial for robust
decision-making. The ablation study is designed to empirically validate whether this theoretical relationship
holds in practice and to evaluate the contribution of each component — h(Ψ), h(Ω), and DKL(Ψ||Ω) —
towards achieving optimal performance across the chosen datasets.
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Table 3: Results from ablation study, comparing different voting terms.
DATASET VOTING TERM W/O AUG W/ AUG

MNIST

h(Ψ) + h(Ω)−DKL(Ψ||Ω) 0.28±0.008 0.23±0.007
h(Ψ) + h(Ω) 0.37±0.009 0.31±0.019
h(Ω)−DKL(Ψ||Ω) 0.33±0.018 0.29±0.014
−DKL(Ψ||Ω) 0.50±0.011 0.43±0.026
h(Ω) 0.36±0.009 0.30±0.022

smallNORB

h(Ψ) + h(Ω)−DKL(Ψ||Ω) 2.61±0.09 3.84±0.15
h(Ψ) + h(Ω) 3.86±0.35 5.13±0.27
h(Ω)−DKL(Ψ||Ω) 3.03±0.14 4.00±0.21
−DKL(Ψ||Ω) 4.31±0.37 6.04±0.29
h(Ω) 3.63±0.19 4.15±0.52

The ablation study results for the MNIST dataset demonstrate that incorporating the voting term h(Ψ) +
h(Ω)−DKL(Ψ||Ω) leads to the best performance, achieving the lowest error rates both with and without data
augmentation. This suggests that the combination of entropy terms h(Ψ) and h(Ω) along with the Kullback-
Leibler divergence voting term DKL(Ψ||Ω), synergistically improves decision-making. Other terms, such as
h(Ψ) + h(Ω) and h(Ω) −DKL(Ψ||Ω), are outperformed by the full combination, emphasizing the necessity
of integrating all components. Interestingly, relying solely on −DKL(Ψ||Ω) or h(Ω) results in significantly
higher error rates, highlighting their insufficiency in isolation.

For the smallNORB dataset, a similar trend emerges, with h(Ψ) + h(Ω) − DKL(Ψ||Ω) again yielding the
best performance. It achieves the lowest error rates in both settings, with and without augmentation.
The improvements seen with this term are even more pronounced compared to other terms, particularly
when data augmentation is applied. For example, −DKL(Ψ||Ω) performs poorly, yielding a very high mean
error rate with augmentation, which is notably higher than the best-performing term. This underscores
the importance of balancing entropy terms with divergence for robust performance. The results indicate
that while smallNORB is more challenging than MNIST, the proposed combination of terms generalizes
well to more challenging datasets. SmallNORB performs worse with augmentation likely due to its inherent
complexity, as it consists of diverse object images captured under varying viewpoints, where the viewpoints
are different in training and test sets. Augmentation introduces additional variability, which may amplify the
dataset’s existing challenges, such as increased ambiguity in object recognition under altered transformations.
This suggests that while augmentation enhances robustness in simpler datasets like MNIST, it can overwhelm
models on inherently complex datasets like smallNORB by exacerbating the need for fine-grained feature
discrimination.

Overall, the results show that h(Ψ)+h(Ω)−DKL(Ψ||Ω) is the most effective voting term across both datasets,
regardless of augmentation. The term effectively balances marginal entropy, captured by the terms h(Ψ)
and h(Ω), with alignment via −DKL(Ψ||Ω), leading to consistent performance improvements. The superior
performance on both MNIST and smallNORB also highlights its versatility, as it excels in both simpler
(MNIST) and more complex (smallNORB) scenarios. These findings underline the importance of jointly
optimizing entropy and divergence in tasks requiring robust generalization, particularly when augmentation
techniques are used to simulate real-world variability.

6 Conclusion

In this work, we proposed a non-iterative voting procedure between child and parent capsules that is moti-
vated by information theory. We proved empirically that through discriminative learning, our method is able
to learn representations that generalize sufficiently well, even without data augmentation, by maximizing
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the marginal differential entropies of all capsules while minimizing the relative entropy between child and
parent capsules.

Thus, our work provides two contributions to the field of capsule networks; (1) an interpretation of capsules
and the voting procedure that is firmly rooted in information theory, which also allows for the use of a
differentiable activation function for capsules, and (2) the use of 3D transpose convolution to derive parent
capsules from child capsules so that changes in dimensions and sizes between the capsules are taken into
account, instead of using workaround matrix operations to achieve the same effect.

Although our proposed method exhibits degradative performance on more complex datasets, the experiments
also indicate that it benefits from a larger input size and, to some extent, larger capsule size. Hence, there
is room for research on capsule networks with respect to more complex, higher resolution images, especially
without data augmentation. In general, methods that aim to make data augmentation unnecessary should
receive more attention in the research community as data augmentation is a roundabout way of addressing
one of the most fundamental challenges in computer vision.

References
Dmitry I Belov and Ronald D Armstrong. Distributions of the kullback–leibler divergence with applications.

British Journal of Mathematical and Statistical Psychology, 64(2):291–309, 2011.

Adam Byerly, Tatiana Kalganova, and Ian Dear. No routing needed between capsules. Neurocomputing, 463:
545–553, 2021. ISSN 0925-2312.

Jaewoong Choi, Hyun Seo, Suii Im, and Myungjoo Kang. Attention routing between capsules. In 2019
IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1981–1989. IEEE
Computer Society, 2019.

Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos Kollias. Introducing routing uncertainty in capsule
networks. Advances in Neural Information Processing Systems, 33:6490–6502, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvian Gelly, Jakob Uszoreit, and Neil
Houldby. An image is worth 16x16 words: Transformers for image recognition at scale. In International
conference on learning representations, 2021.

Taeyoung Hahn, Myeongjang Pyeon, and Gunhee Kim. Self-routing capsule networks. Advances in neural
information processing systems, 32, 2019.

Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders. In Artificial Neu-
ral Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural
Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21, pp. 44–51. Springer, 2011.

Geoffrey E Hinton, Sara Sabour, and Nicholas Frosst. Matrix capsules with em routing. In International
conference on learning representations, 2018.

Yann LeCun, Fu Jie Huang, and Léon Bottou. Learning methods for generic object recognition with in-
variance to pose and lighting. Proceedings of the 2004 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2:II–104, 2004.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Vittorio Mazzia, Francesco Salvetti, and Marcello Chiaberge. Efficient-capsnet: Capsule network with self-
attention routing. Scientific reports, 11(1):14634, 2021.

Jathushan Rajasegaran, Vinoj Jayasundara, Sandaru Jayasekara, Hirunima Jayasekara, Suranga Senevi-
ratne, and Ranga Rodrigo. Deepcaps: Going deeper with capsule networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10725–10733, 2019.

11



Under review as submission to TMLR

Riccardo Renzulli, Enzo Tartaglione, and Marco Grangetto. Rem: Routing entropy minimization for capsule
networks. arXiv preprint arXiv:2204.01298, 2022.

Fabio De Sousa Ribeiro, Georgios Leontidis, and Stefanos Kollias. Capsule routing via variational bayes. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 3749–3756, 2020.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. Advances in
neural information processing systems, 30, 2017.

Dilin Wang and Qiang Liu. An optimization view on dynamic routing between capsules. In International
Conference on Learning Representations, 2018.

Liheng Zhang, Marzieh Edraki, and Guo-Jun Qi. Cappronet: Deep feature learning via orthogonal projec-
tions onto capsule subspaces. Advances in neural information processing systems, 31, 2018.

Suofei Zhang, Quan Zhou, and Xiaofu Wu. Fast dynamic routing based on weighted kernel density estimation.
Cognitive Internet of Things: Frameworks, Tools and Applications, pp. 301–309, 2020.

12


	Introduction
	Related works
	Motivation
	Methodology
	Construction of capsules
	Entropy voting

	Experiments
	Network architecture
	Experimental setup
	Results
	Ablation Study

	Conclusion

