
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNCLE: AN UNLEARNING FRAMEWORK FOR CON-
TINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in deep learning require models to exhibit continual learning
capability, allowing them to learn new tasks and progressively accumulate knowl-
edge without forgetting old tasks. Concurrently, there are growing concerns and
regulatory requirements to meet privacy and safety by discarding some knowledge
through machine unlearning. With the rapidly rising relevance of continual learn-
ing and machine unlearning, we consider them together under a unified framework
in this paper. However, the conflicting nature of past data unavailability arising
from continual learning makes it challenging to perform unlearning with existing
methods which assume data availability. Moreover, in the proposed setup, where
tasks are repeatedly learned and unlearned in a sequence, it is another challenge
to maintain the stability of the tasks that need to be retained. To address these
challenges, we propose UnCLe, an Unlearning Framework for Continual Learn-
ing designed to learn tasks incrementally and unlearn tasks without access to past
data. To perform data-free unlearning, UnCLe leverages hypernetworks in con-
junction with an unlearning objective that seeks to selectively align task-specific
parameters with noise. Our experiments on popular benchmarks demonstrate Un-
CLe’s consistent unlearning completeness and ability to preserve task stability
over long sequences.

1 INTRODUCTION

Progress in Artificial Intelligence necessitates models capable of continual updates throughout their
lifespan. These updates can be either additive or reductive. Additive updates allow models to acquire
new tasks over time, ideally without relying on past task data or disrupting knowledge from prior
learning, which would result in the catastrophic forgetting of old tasks. This challenge of sequential
learning while mitigating forgetting is addressed in the field of Continual Learning (CL) Wang et al.
(2024). Conversely, reductive updates are achieved through Machine Unlearning, which focuses on
selectively removing specific knowledge (Nguyen et al., 2022) to meet privacy or regulatory require-
ments. For instance, consider a diabetes detection model trained on data from multiple hospitals.
If one hospital withdraws its data, selectively unlearning that subset is preferable to retraining the
model from scratch. Modern deep learning models must support both additive and reductive updates,
integrating CL and unlearning capabilities seamlessly.

Bringing unlearning capabilities into a continual learning system can provide other practical advan-
tages besides data privacy. As a CL model accumulates tasks, its plasticity inevitably decreases,
making it challenging to learn new tasks effectively Kirkpatrick et al. (2017). We hypothesize that
unlearning can address model saturation in Continual Learning (CL) settings. In such scenarios,
unlearning can restore flexibility by removing outdated or irrelevant knowledge. For example, con-
sider a robot transitioning from an industrial environment to a household setting. With unlearning
capabilities, the robot can discard obsolete industrial skills and acquire new skills suited to its house-
hold role. Reflecting these real-world demands, it is important to develop models and methods that
continually learn and unlearn tasks to remain adaptive and efficient.

Data availability presents a key challenge in integrating unlearning into the CL setting. Existing
unlearning methods Chundawat et al. (2023a); Foster et al. (2024a); Fan et al. (2024) often require
access to the specific data that needs to be unlearned. This contrasts with the CL philosophy where
data is discarded after training. Even when the data constraint is relaxed, and privacy concerns are

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

L1 L2 U1 L3 L4 U3 L5 U2init

1 1

2

2 2 2

3 3

2 2

4

4 4

4

5

5

time

Model

State

Request

Figure 1: Diagram depicting how the model state changes as each request is processed. The model
starts blank with zero expertise on any task. At each learning operation, the model gains expertise on
that particular task, as represented by the colored chips added to the model state. Conversely, when
a task is unlearned, the model loses expertise on that particular task, indicated through the removal
of corresponding task chips.

set aside, permitting a memory buffer for past data, we find that repeated use of existing unlearn-
ing methods destabilizes the learned model. This instability can cause models to forget tasks they
need to retain and, in some cases, struggle to learn new tasks effectively. The issue of instability
extends past unlearning. We observe that with current unlearning methods, models recover their
performance on unlearned tasks while learning new tasks. This unintentional recovery undermines
the goal of unlearning, making it difficult to ensure that removed knowledge remains forgotten while
still enabling effective learning of new tasks.

To tackle these challenges, we propose a unified framework for continual learning and unlearning
that supports learning and unlearning tasks whenever required, as shown in Figure 1. Reflecting this
philosophy, we introduce UnCLe: an Unlearning Framework for Continual Learning. UnCLe seam-
lessly integrates continual learning and unlearning through a hypernetwork-based architecture. This
hypernetwork incrementally generates task-specific parameters for the main classifier, conditioned
on task embeddings that are learned alongside the hypernetwork. For unlearning, UnCLe aligns the
hypernetwork’s output for the target task to white noise, requiring only the task embedding and no
access to past data. A regularization term preserves the performance of retained tasks while ensuring
complete unlearning of the target task. We evaluate UnCLe on popular benchmarks using diverse
metrics to provide a comprehensive view of unlearning in a continual setting. Our experiments high-
light UnCLe’s superiority in unlearning, particularly in terms of efficacy and stability, compared to
existing methods.

In summary, we make the following contributions:

1. We study unlearning in the context of continual learning and propose a problem setup that
considers the restrictions arising from CL in performing unlearning.

2. We propose UnCLe, a framework designed for continual learning and data-free unlearning
over a sequence of tasks.

3. We demonstrate UnCLe’s unlearning efficacy in a continual setting and ability to learn new
tasks better through a range of experimental setups, data sets, and metrics.

2 RELATED WORKS

Continual Learning (Wang et al., 2024) represents a class of methods that mitigate catastrophic
forgetting and facilitate knowledge transfer between tasks. There are a myriad of ways in which
this is achieved. Regularisation-based methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017; von
Oswald et al., 2020) harness a regularisation term in their objective that prevents interference from
new tasks on parameters deemed important to older tasks. Replay-based methods (Rolnick et al.,
2019; Riemer et al., 2019; Shin et al., 2017; Buzzega et al., 2020) utilize a memory buffer or use a
generative model to replay samples from old tasks while training on new tasks. Parameter isolation
methods (Mallya & Lazebnik, 2018; Yoon et al., 2018) divide existing parameters between tasks or
grow the network by adding new parameters to accommodate new tasks without interference.

Unlearning methods can be categorized into three categories based on the requirement of data. Meth-
ods such as (Graves et al., 2020; Chundawat et al., 2023a; Cotogni et al., 2024; Golatkar et al., 2020;
Kurmanji et al., 2023; Fan et al., 2024; Foster et al., 2024b) required both forget set data and retain
set data to perform unlearning on the model. Apart from this, Foster et al. (2024a) is a method that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

requires access to forget set only to perform unlearning. Chundawat et al. (2023b) proposes two
different methods that require neither forget set data nor retrain set data to perform unlearning.

There are limited works that explore data-free unlearning in the context of continual learning such
as (Shibata et al., 2021a) that leverages natural catastrophic forgetting to unlearn by ceasing to
regularise on the forget-task, (Liu et al., 2022) that utilizes parameter isolation to perform learning
and unlearning, and (Chundawat et al., 2023b) that uses a generative model to create the forget-set
on the fly. As observed in the experiments, these existing methods have massive space utilization,
poor efficiency, and are ineffective for intermittent continual learning and unlearning tasks.

3 BACKGROUND

3.1 CONTINUAL LEARNING

Continual Learning Wang et al. (2024) considers a problem setting wherein the model encounters
a sequence of requests over time to learn tasks represented by task identifier Tt and corresponding
data set Dt, R = {Rt}|R|

t=1 = {(Tt, Dt)}|R|
t=1. These tasks have non-identical data distributions:

Di ̸= Dj ,∀i, j; i ̸= j. Traditional algorithms falter in such non-stationary settings and exhibit
catastrophic forgetting of earlier tasks due to interference from new tasks Kirkpatrick et al. (2017).
The prime directive of the CL paradigm is to mitigate catastrophic forgetting and facilitate inter-task
knowledge transfer.

3.2 MACHINE UNLEARNING

Machine Unlearning (Nguyen et al.) is concerned with removing the influence of a selective subset
of data on a trained model so that the model behaves as if it has never been trained on that data.
Consider a model Al(D) trained on the dataset D with the learning algorithm Al and subsequently
removed of the influence of a forget-set Df using an unlearning algorithm Au. Let Dr = D \Df

be the retain-set and H′ be the hypothesis space; we then define unlearning as:
Pr(Al(Dr) ∈ H′) = Pr(Au(Al(D), D,Df) ∈ H′) (1)

Specifically, this is known as exact unlearning, which can either imply that the parameter or the
output distribution of an unlearned model should be equal to that of a model trained solely on the
retain set. This is non-trivial to achieve in practice, so most works (Chundawat et al., 2023a;b) focus
on approximate unlearning, relaxing the condition to imply an output distribution that is effectively
indistinguishable for most practical purposes.

4 PROBLEM FORMULATION

We consider the problem of Continual Learning and Unlearning (CLU) where the model incremen-
tally encounters a sequence of requests R = {Rt}|R|

t=1, as depicted in Figure 1. Each request is a
triplet Rt = (It, Tt, Dt) containing the instruction It, the task identifier Tt and the corresponding
dataset Dt. The instruction can either be to learn a new task or to unlearn a learned task. When
It = L the model learns the task Tt from the associated dataset Dt = {xit, yit}

|Dt|
i=1 . Here, xit ∈ X ,

the covariate space, and yit ∈ Y , the label space. In the case of unlearning, It = U and Dt = {}
as the requirement is to perform data-free unlearning. Given the absence of data, Equation 1 is thus
modified to adhere to the CLU setting:

Pr(Al(D≤t\f) ∈ H′) = Pr(Au(Al(D≤t), Tf) ∈ H′) (2)

where Al(D≤t) is a model continually trained on a sequence of datasets D≤t and Al(D≤t\f) is a
model trained on the same sequence barring the forget task Tf . Due to the inaccessibility of the
forget-task’s dataset Df as per the CLU formulation, the forget-task’s identifier Tf takes its place.
The aforementioned exact unlearning formulation is non-trivial to achieve in practice; hence, as with
most unlearning methods, UnCLe is an approximate unlearning framework.

5 METHODOLOGY

The objective is to address the challenges of catastrophic forgetting, model instability, and data
unavailability that stem from the proposed CLU setting. With this in mind, we consider a unified
framework capable of both continual learning and unlearning over long sequences in the absence of
any past data whatsoever. We propose an Unlearning Framework for Continual Learning (UnCLe)
that leverages hypernetwork to perform continual learning over tasks and data-free unlearning.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(A) (B)Trainable

Figure 2: A schematic of the architecture showcas-
ing the learning process (A) and the unlearning process
(B). Here, L represents the objective during learning as
mentioned in Equation 3 and U represents the unlearn-
ing objective as mentioned in Equation 5.

A hypernetwork Ha et al. (2017) H(. ;ϕ)
parameterized by ϕ, is a meta-model (typ-
ically a neural network) that generates
weights of the main network C(. ; θ) used
to solve a task. In a CL setting von
Oswald et al. (2020), the hypernetwork
takes in a task embedding et correspond-
ing to some unique task Tt and generates
main network weights θt that best suit the
data corresponding to the task under con-
sideration. To prevent catastrophic for-
getting, the hypernetwork is regularized
so that previous tasks’ generated param-
eters remain largely consistent. This is
achieved through a knowledge distillation-
inspired objective that minimizes the dif-
ference between the current hypernetwork
output and that of a frozen hypernetwork
copy made before learning the current task t. The use of embeddings makes for a negligible growth
in parameters with each new task. Moreover, as the task-specific main network parameters are all
generated by the hypernetwork, we also reap the benefits of inter-task knowledge transfer due to the
sharing of hypernetwork parameters between tasks. The schematic of the architecture is presented
in Figure 2.

In the CLU setting, when a learning request Rt = (L, Tt, Dt) is encountered, the hypernetwork
learns to generate main network parameters conditioned on task embedding et. The hypernetwork
parameters ϕ and et are learned by minimizing the task-specific loss (Ltask) computed using data
set Dt. To prevent catastrophic forgetting over tasks that are retained (not considered for unlearn-
ing until t), a regularization term over those tasks enforces the hypernetwork to generate the same
parameters for those tasks. This regularization considers knowledge distillation using a frozen hy-
pernetwork with parameters ϕ∗ prior to training on the current task. This results in the following
learning objective: (here, β controls the strength of the regularization.)

argmin
ϕ,et

Ltask + β · Lreg, where Lreg =
1

t− 1

t−1∑
t′=1
It′ ̸=U

∥H(et′ ;ϕ
∗)−H(et′ ;ϕ)∥22 (3)

Conversely, for an unlearning request, Rt = (U, Tf , {}), task embeddings are the sole task-specific
parameters in the hypernetwork framework. A trivial way to unlearn would be to discard the embed-
ding ef . But, as we have seen, parameter-sharing between tasks at the hypernetwork level enables
inter-task knowledge transfer, inhibiting total unlearning of tasks. This can be seen empirically from
Figure 3 (right) where we demonstrate that it is possible to partially recover the discarded task em-
bedding by simply optimizing over a very small subset of samples and achieving performance that
is very close to that of the original task embedding.

With unlearning, we require the model’s prediction to be akin to a random guess, implying an
output logit distribution close to a uniform distribution. A straightforward way to accomplish this
in the model’s output is to set all the model parameters to zero or, at the very least, the final layer
parameters to zero. This leads to the model predicting 0 on all the logit nodes, the softmax of
which is a uniform distribution. Based on this idea, we propose a new objective function to train
the hypernetwork to more effectively unlearn the tasks to be unlearnt. To drive all the task-specific
model parameters generated by the hypernetwork conditioned on task embedding ef to zero, we
optimize the hypernetwork with the unlearning objective

argmin
ϕ

γ · ∥H(ef ;ϕ)∥22 + Lreg. (4)

To prevent unintended catastrophic forgetting on the other tasks, we utilize a similar regularisation
formulation as with learning, controlled by the hyperparameter γ. Here, the regularisation skips out
on the forgotten tasks and is calculated only over the tasks to be retained. Our experiments suggest

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: The plot on the left displays how the magnitude of hypernetwork parameters varies through
the unlearning process for different noising strategies, comparing norm reduction and UnCLe’s noise
alignment with different values of noise sampling. The plot on the right demonstrates the recovery of
task embeddings. Different lines denote different numbers of data samples used in recovery. “Base”
denotes the accuracy obtained through the original embedding.

that while the norm reduction objective achieves unlearning with high γ values, it comes at the
cost of model stability, with the performance of the retained tasks and the ability to learn new tasks
severely compromised. With this unlearning objective, our experiments indicate that lower γ values
are insufficient in attaining complete unlearning. We hypothesize that regressing the hypernetwork
to generate zeros inadvertently drives some of the hypernetwork parameters acquiring values close
to zero, which destabilizes the entire framework. Our empirical findings suggest that this is the case.
Figure 3(left) clearly shows that the norm reduction objective consistently reduces the magnitude of
the hypernetwork parameters with each unlearning task in the sequence.

To achieve a similar result without the destructive side effects, we approximate the L2-norm term
with a mean squared error (MSE) of the hypernetwork output with noise z ∼ N (0, Id), averaged
over n samples. Adjusting n allows us to control the severity of unlearning, leading to the following
unlearning objective:

argmin
ϕ

γ ·

(
1

n

n∑
i=1

∥H(ef ;ϕ)− zi∥22

)
+ Lreg (5)

We can understand the effect of n on the unlearning process of driving hypernetwork output to
zero from the theorems presented in Appendix A. We observe that as n → ∞ MSE objective
becomes similar to the norm reduction objective as shown in Lemma 1 in Appendix A). Theorem
3 in Appendix A) suggests that for a fixed deviation δ, the probability that the average described
in Equation 5 is far from the expected mean (squared norm over hypernetwork outputs) is inversely
proportional to n×d. In our case, as the dimension d is that of a main network that is being generated
by a hypernetwork, having a smaller value of n can provide us sufficiently small probability. As
portrayed in Figure 3(left), n = 1 is unstable in that it drives up the magnitude of the hypernetwork
parameters, which could sometimes result in the accuracy of the retained tasks crashing. At the
other end, n = ∞ is nothing but norm reduction that drives the hypernetwork parameters down to
zero. The key is to strike a balance between the two extremes to achieve stable unlearning; thus, it
needs to be chosen carefully. Algorithm 2 provides an unlearning algorithm for UnCLe.

The hypernetwork is optimized over the unlearning objective laid out in Equation 5 over a number
of iterations that we term the burn-in. The burn-in can be tuned to suit the complexity of the model
and data. Just as forward transfer enables quicker learning of successive tasks, we observed the
same phenomenon with unlearning, where unlearning successive tasks became easier with each
unlearning operation. We exploit this forward transfer in unlearning to improve overall unlearning
efficiency by annealing the burn-in with each unlearning operation.

6 EXPERIMENTS

6.1 DATASETS

Our experiments are performed on the following datasets: (1) Permuted-MNIST: An MNIST vari-
ant with 10 random permutations of pixels as 10 different tasks proposed by Goodfellow et al.. (2)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 The Learning Algorithm
Input: Task Dt, Learning regularization con-
stant β, Learning epochs El

1: procedure LEARNING (Dt, β, El)
2: et = random init()
3: for j = 0 to EL do
4: for each batch (Xi, Yi) in Dt do
5: θt = H(et;ϕ)

6: Ŷi = F(X; θt)

7: Llrn = Ltask(Yi, Ŷi) + β · Lreg
8: Optimize {ϕ, et} w.r.t Llrn
9: end for

10: end for
11: ϕ∗ = ϕ
12: end procedure

Algorithm 2 The Unlearning Algorithm
Input: Forget Task Identifier Tf , Unlearning reg-
ularization constant γ, Burn-In Eu, Number of
noise samples n

1: procedure UNLEARNING(Tf , γ, Eu, n)
2: for j = 0 to Eu do
3: θf = H(ef ;ϕ)
4: Lfgt = 0
5: for k = 0 to n do
6: z ∼ N (0, Id)
7: Lfgt = Lfgt + 1

n∥θf − z∥22
8: end for
9: Lul = γ · Lfgt + Lreg

10: Optimize {ϕ} w.r.t Lul
11: end for
12: end procedure

5-Datasets: A compilation comprising MNIST (Deng (2012)), Kuzushiji-MNIST (Clanuwat et al.
(2018)), notMNIST (Bulatov (2011)), SVHN (Netzer et al. (2011)) and Fashion MNIST (Xiao et al.)
forming five different tasks. (3) CIFAR-100: The CIFAR-100 dataset proposed by Krizhevsky,
is divided into 10 different tasks. (4) Tiny-ImageNet: The Tiny-ImageNet dataset proposed by
Moustafa, is divided into 20 different tasks. All datasets entail tasks with 10 classes each.

6.2 BASELINES

We compare UnCLe with existing methods that perform unlearning in a continual setting, namely
CLPU (Liu et al., 2022) and LWSF (Shibata et al., 2021b). Due to the scarcity of works that perform
unlearning in a continual setting, we adapt existing unlearning methods to the CL setting with a
memory buffer of 500 samples per task as specified in the DER++ algorithm (Buzzega et al., 2020).
In this manner, we consider the following baselines: BadTeacher by Chundawat et al., SCRUB by
Kurmanji et al., SalUn by Fan et al. and SSD by Foster et al.. The aforementioned methods require
data from both the retain and forget tasks during unlearning. We also consider JiT by Foster et al.
that operates with just the forget-task data and GKT by Chundawat et al., which doesn’t explicitly
require memory buffers as it leverages a generative model to synthesize the required samples on
the fly. In addition, we consider JiT-Hnet and GKT-Hnet, which utilize a hypernetwork for CL in
DER++’s place. We also compare with standard baselines like fine-tuning (FT) and retraining (RT
& RT-Hnet). FT and the two RT variants assume the availability of the complete retain-task data
during unlearning. Further details related to baselines are provided in Appendix D.2.

6.3 METRICS

A CLU framework must be complete, efficient, stable, and undetectable. To measure each of these
facets and paint a holistic picture of each unlearning method, we employ five diverse metrics: (1)
Retain-task accuracy (RA) measures the average accuracy of the tasks that are retained at the end of
the sequence. (2) Forget-task accuracy (FA) measures the average accuracy of the forgotten tasks.
(3) Unlearning Time (UT) measures the average time taken to perform unlearning. (4) Stability
(SBY) measures how well the algorithm preserves the stability of the learned tasks. (5) Uniform
(UNI) measures the Jensen Shannon (JS) divergence of the output distribution of the model against
a uniform distribution. It is scaled with [1 − JS(., .)] × 100 to match the other metrics. An ideal
unlearning algorithm would have maximum RA, UNI, and SBY, minimum UT, and an FA of 1

c with
c being the number of classes for forget task, indicating an output that is as good as the random.

A unique problem that arises from unlearning in a continual setting is the instability of the learned
model where the model’s performance on retained tasks degrades with time due to multiple unlearn-
ing instances in sequence. To quantitatively measure this phenomenon, we present stability as a key
metric of the CLU formulation, and is described in the following manner:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Consider aij as the accuracy of the model on the ith task, evaluated after the jth request. Let St be
the stability of task t and SR be the overall stability of the request sequence. St and SR are thus
computed:

SR =
1

T

T∑
t=1

St, where St =
1

e− s

e∑
k=s

[
1−

(
ats − atk

ats

)]
∗ 100 (6)

Here, T is the total number of tasks from the request sequence R, and s is the sequence index when
a task t is learned, and e is the sequence index just before task t is unlearned. Note that if a task is
never unlearned in the request sequence, then e would point to the final request on the sequence.

6.4 IMPLEMENTATION

We use a fully connected Hypernetwork with 3 hidden layers of dimensions 128, 256, and 512.
The hypernetwork generates ResNet18 parameters in the case of Permuted MNIST experiments and
ResNet50 elsewhere to demonstrate scalability. We defer ResNet18 results on other datasets to the
E.4.1 of the Appendix. In the interest of efficiency, the parameters are generated in chunks, as
obtaining them in a single pass would require a huge hypernetwork owing to the large ResNet sizes.
Further information on the architecture of the hypernetwork and the chunking mechanism can be
found in Appendix B. We use the Adam optimizer for both learning and unlearning, with a learning
rate of 0.001. The learning rate is scheduled with a step learning rate scheduler with a step size of
25 epochs and a reduction factor of 0.5. We use a batch size of 512 across all the experiments. We
train UnCLe with a different number of epochs for each dataset: 10 for Permuted-MNIST, 30 for
5-Datasets, 50 for CIFAR-100, and 100 for Tiny-ImageNet. Our models were trained on a single
V100 GPU (32 GB).

6.5 HYPERPARAMETER TUNING

While learning the hypernetwork, tuning β plays an important role in balancing stability and plastic-
ity. The values for β were obtained through a search detailed in Appendix C.1. The chosen values for
β are as follows: 0.01 for Tiny-ImageNet, 0.001 for 5-Datasets, and 0.1 for both Permuted-MNIST
and CIFAR-100.

The intensity of unlearning is controlled by two variables: the regularisation hyperparameter γ and
the burn-in period Eu. As with β in learning, γ balances the remembrance and the forgetting terms
of the unlearning objective. The burn-in, Eu controls the number of iterations the hypernetwork is
optimised over the unlearning objective. A range of values for γ and Eu were explored as detailed
in Appendix C.2. We use a burn-in of 100 iterations, annealed by 10% with each task, and a lower
limit of 20 burn-in iterations. We use a γ of 0.1 for 5 Datasets and 0.01 for the rest. For all the
datasets, we used n = 10 noise samples.

7 RESULTS

Our comparison of UnCLe with current unlearning methods is measured on five diverse metrics
to paint a holistic picture of the unlearning process and highlight the strengths and shortfalls of
each method. The results are benchmarked against a theoretical ideal unlearning framework, which
would exhibit maximum accuracy on retained tasks (RA), maximum stability (SBY), a uniform
output distribution (UNI), zero unlearning time (UT), and a forget-task accuracy (FA) of 1

c , where
c is the number of classes. We conduct our experiments over 3 distinct sequences of operations, of
which the first sequence’s results are presented in Table 1, with additional results on the ResNet-
18 backbone and other sequences (including mean and standard deviation) presented in Appendix
E.5. To summarize and enable an intuitive visual comparison, Figure 5 portrays the performance
signature of each framework on the Tiny-ImageNet test dataset across five metrics. Additional plots
for other sequences are presented in Figure F.12.

UnCLe consistently outperforms all unlearning baselines on SBY and UNI metrics across all
datasets, demonstrating its capability to excel in a continual learning setup. Moreover, UnCLe
achieves FA values closest to a random prediction for all datasets, reflecting its thoroughness in un-
learning. In terms of RA, UnCLe performs strongly and ranks among the top methods, even without
relying on data for replay. Conversely, most baselines exhibit poor performance on retained tasks,
as shown in Figure 4, but inflate their RA by relearning tasks from a memory buffer. As illustrated

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Methods RA(↑) FA(↓) UNI(↑) SBY(↑) UT(↓) RA(↑) FA(↓) UNI(↑) SBY(↑) UT(↓)

RS FS Permuted-MNIST CIFAR-100

FT∗ 94.47 67.70 19.93 98.52 1139 72.43 55.44 10.50 96.60 719.7
RT∗ 93.35 10.38 99.20 98.26 1532 62.91 9.690 99.19 92.45 577.4

BadTeacher 92.17 10.20 99.95 83.87 55.50 61.75 14.57 99.63 86.13 10.95
SCRUB 9.970 9.840 -inf 87.93 118.9 29.45 10.06 -inf 64.85 30.02
SalUn 92.39 59.24 98.47 93.53 358.3 66.56 44.89 59.85 89.32 51.47

JiT 86.93 29.90 -3.76 84.52 213.7 65.94 43.93 22.11 87.31 24.01
GKT 89.77 12.13 96.64 72.46 36.08 57.05 10.70 95.97 70.23 68.61
SSD 86.32 9.930 99.66 71.88 35.16 43.27 10.00 99.97 65.95 5.730

LwSF+ 35.68 0.0 96.45 24.36 − 21.09 0.0 99.96 36.77 −
CLPU 91.73 0.0 − 97.22 0.0 63.10 0.0 − 91.44 0.0

RT-Hnet∗ 70.78 14.08 -30.27 78.04 1685 23.81 9.710 -1.240 63.53 784.9
Hnet+ 96.60 96.91 -405.1 83.59 − 60.52 62.84 -85.50 82.74 −

Jit-Hnet 76.81 10.27 89.58 76.51 257.5 60.79 16.97 74.97 85.20 22.94
GKT-Hnet 95.34 14.46 91.03 75.01 43.77 40.22 9.970 90.98 73.62 83.46

UnCLe 96.87 10.00 100.0 99.99 13.16 62.65 10.00 100.0 99.19 41.70

5-Datasets Tiny-ImageNet

FT∗ 88.66 67.99 23.85 97.58 1592 60.08 52.56 -11.47 95.55 694.2
RT∗ 84.79 9.600 99.76 96.58 1566 51.86 10.47 99.23 90.74 693.2

BadTeacher 54.38 8.550 99.99 86.14 76.78 52.79 15.73 99.55 83.76 8.680
SCRUB 9.160 12.97 -inf 77.55 171.1 19.48 10.00 -inf 71.13 32.52
SalUn 74.75 25.02 99.19 93.80 491.9 58.44 36.02 65.02 86.94 65.20

JiT 19.10 17.20 -inf 87.09 242.1 57.86 32.70 21.10 84.42 17.71
GKT 10.27 13.67 94.58 75.24 57.67 52.44 11.35 97.16 70.90 147.5
SSD 8.850 10.36 99.79 72.83 47.12 39.78 10.37 99.98 69.70 5.810

LwSF+ 31.76 0.0 99.98 51.21 − 17.58 0.0 99.97 35.28 −
CLPU 85.00 0.0 − 96.50 0.0 54.90 0.0 − 89.54 0.0

RT-Hnet∗ 76.23 18.44 -108.5 95.63 1896 53.54 9.740 -23.62 73.55 784.8
Hnet+ 94.56 96.73 -380.9 99.99 − 57.53 54.31 -72.66 76.06 −

Jit-Hnet 10.19 11.29 -inf 73.65 306.5 54.10 13.05 91.07 81.61 22.83
GKT-Hnet 10.53 14.48 88.66 77.19 83.34 44.40 9.850 94.43 73.61 75.75

UnCLe 94.12 10.04 100.0 99.91 33.28 55.24 10.00 100.0 98.19 29.63

Table 1: Table comparing UnCLe’s performance with the baselines on each of the five metrics on
4 different datasets. Presented results are for Request Sequence 1 (Table D.6) averaged over 3 runs
with different seeds. The table also highlights whether an algorithm requires access to the forget
(FS) and the retain sets (RS) to perform unlearning. To enable comparison, the baselines have been
augmented with a memory buffer to operate in a CL setting. ‘+’ indicates methods that rely on
catastrophic forgetting to enable unlearning. In such cases, metrics are calculated after the next
learning request. ‘∗’ denotes methods that require the complete retain task data in unlearning. ‘−’
indicates cases where metric calculation is not applicable.

in Figure 5, UnCLe achieves the greatest overlap with the ideal unlearning framework, excelling in
SBY, FA, UNI, and achieving competitive RA and UT.

Does unlearning protect data privacy? To evaluate whether data is properly unlearned, we mea-
sure Membership Inference Attack (MIA) scores (Shokri et al., 2017). Our observations reveal that
MIA scores are similar across most unlearning methods. Our setup employs different classifier
heads for different tasks. When unlearning a task, the corresponding head is heavily randomized by
all methods, resulting in indistinguishable representations. This randomization ensures equivalent
MIA performance across all methods. A detailed explanation of MIA and accompanying results are
deferred to Appendix D.3.4.

Does UnCLe preserve stability? Our experiments reveal critical shortcomings in baseline meth-
ods. We find that existing methods destabilize models when tasked with balancing the dual demands
of preserving some tasks and unlearning others, as seen in Figure 4. Specifically, we observe that
unlearning operations impact the performance of other learned tasks apart from the task to be un-
learned. Our experiments show that such spillovers degrade RA. It is only due to replay during
subsequent learning operations that the fallen RA is partially recovered. Similarly, we also find that
once a task is unlearned, its accuracy almost recovers to where it was before the unlearning opera-
tion. This happens when other tasks are learned subsequently. UnCLe, however, maintains a stable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Plots tracking task 0’s accuracy through a sequence of learning and unlearning operations
on the TinyImageNet (left) and CIFAR 100 (right) datasets, comparing the stability of UnCLe with
competing baselines

20

40

60

80

100

UT UNI

FA SBY

RA

Scale

Figure 5: Radar plots comparing UnCLe’s performance with the baselines on each of the five metrics
on the Tiny-ImageNet dataset (Sequence 1). The pink plots display the signature of an expected ideal
unlearning algorithm. The blue plots display UnCLe’s performance and that of each baseline.

performance throughout the entire sequence of operations. We explore the implications behind these
observations in great detail and include additional plots in Appendix E.4.

Does unlearning help in learning future tasks better? To answer this, we perform a comparison
between a model that only learns tasks and UnCLe, which both learns and unlearns tasks. Table 3
displays the average RA obtained at the end of the operational sequence comparing both the cases.
We observe that relinquishing unnecessary tasks provides tangible benefits, particularly with more
complex datasets and longer sequences. In simpler dataset and sequences, we find minimal increase
in performance, implying the model has not saturated. More detailed comparisons between UnCLe
and Only Learning are presented in Appendix E.2. This highlights how unlearning not only serves as
a privacy tool but also extends the longevity and maintainability of CL models by removing obsolete
information.

Methods RA FA MIA RA FA MIA

Permuted-MNIST CIFAR-100

Fixed Noise 84.55 9.870 49.99 21.79 10.36 49.97
Norm Reduce 96.70 94.99 49.10 62.75 34.42 44.13

Discard ef 96.87 61.79 49.11 60.21 20.7 46.88
UnCLe 96.87 10.00 50.00 62.65 10.00 50.00

5-Datasets Tiny-ImageNet

Fixed Noise 83.04 10.94 50.07 34.68 9.44 50.11
Norm Reduce 94.31 26.11 51.19 55.11 36.61 42.65

Discard ef 94.52 80.91 50.25 56.50 15.54 48.44
UnCLe 94.12 10.04 50.01 55.24 10.00 50.00

Table 2: A comparison of UnCLe with alternative unlearn-
ing strategies.

Methods Permuted-MNIST 5-Datasets

Only Learning 96.84 94.12
UnCLe 96.87 94.12

Tiny-ImageNet CIFAR-100

Only Learning 50.47 60.51
UnCLe 55.24 62.65

Table 3: A comparison of average accu-
racy across the retained tasks from Un-
CLe versus a sequence with just learn-
ing tasks, demonstrating that unlearning
old tasks helps learn new tasks better.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

How does UnCLe compare with other unlearning strategies? We explore alternative unlearning
strategies, such as Fixed Point Noising, Norm Reduction, and Discarding forget-task embeddings
(ef). A detailed comparison is presented in Table 2. Our findings indicate that UnCLe achieves
better privacy by attaining near-perfect MIA scores. Additionally, UnCLe demonstrates holistic
performance, excelling in RA and FA, while other strategies show significant weaknesses in one or
more metrics. We defer further details and additional results to Appendix E.1

5D PMNIST CIFAR100 TinyIN
0

20

40

60

80

100

Re
ta

in
 S

et
 A

cc
ur

ac
y without regularization

with regularization

Figure 6: Plot provides a compari-
son of our approach UnCLe when
used with and without regulariza-
tion Lreg in the unlearning objec-
tive.

Can the time taken to unlearn be reduced? We exploit the
forward transfer observed in unlearning to make UnCLe more
efficient by annealing the burn-in iterations by 10%, with a
lower limit of 20 iterations. Our experiments demonstrate that
efficiency can be boosted thus without damage to unlearning
efficacy. We defer further details and results to Appendix E.3.

How are relevant tasks protected from unlearning
spillover? The term Lreg in Equation 5 serves to regularize
the outputs of the current hypernetwork with that of the hy-
pernetwork version before unlearning. This helps in keeping
the effects of unlearning from spilling over to other tasks that
need to be retained. Figure 6 presents the results of the abla-
tion study, demonstrating the importance of Lreg during un-
learning.

7.1 KEY TAKEAWAYS

In building an Unlearning framework for Continual Learning, we identify a number of challenges:
Firstly, current unlearning methods require past tasks’ data to unlearn, which goes against the ethos
of continual learning. UnCLe overcomes this data requirement through a novel hypernetwork-based
solution and achieves data-free unlearning.

Secondly, stability remains a challenge for existing unlearning frameworks. Our experiments show
that baseline methods destabilize the model when continually learning and unlearning. As seen in
Figure 4 (left), existing unlearning methods unintentionally cause forgetting in tasks to be retained
and rely on replay to help salvage lost performance during the next operation. On the other hand,
UnCLe firmly maintains the stability of a task until it is unlearned.

A key expectation of any unlearning algorithm is to be thorough and permanent. Alarmingly, with
existing unlearning methods, we find that on learning new tasks after unlearning, the performance
of the unlearned task almost recovers to where it was before unlearning. We note that this troubling
discovery should prompt future investigation. UnCLe achieves permanent unlearning where the
unlearned tasks are irrecoverable. (Refer Figure 4 and Appendix E.4)

Finally, our experiments demonstrate by unlearning old and obsolete tasks, a model can learn new
tasks better. This phenomenon is consistent across datasets, as presented in Table 3 and Appendix
E.2.

8 CONCLUSION AND FUTURE WORK

Recognizing the shortcomings of existing unlearning approaches in continual settings, we propose
a unified treatment of continual learning and unlearning with UnCLe. Our experiments display
UnCLe’s effectiveness in addressing existing limitations such as model stability and unlearning
completeness. Our experiments reveal that unlearning with existing methods is susceptible to re-
covery. We also show that unlearning obsolete old tasks helps learn future tasks better, opening
new research avenues into more flexible CL frameworks. To address these, we proposed UnCLe, a
novel hypernetwork-based data-free task unlearning framework that demonstrates stable unlearning
performance, ensuring privacy protections and enabling greater continual learning flexibility.

UnCLe is capable of learning and unlearning tasks continually. However, UnCLe currently lacks
the flexibility to learn and unlearn individual classes in a task in any arbitrary order. A future work
is to imbue UnCLe with such granularity in learning and unlearning. Another future direction to
study is how UnCLe can be applied to large pretrained transformer architectures that are continually
fine-tuned on downstream tasks, either naively or through Parameter Efficient Fine Tuning methods
(PEFT) such as LoRA, adapters, etc.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yaroslav Bulatov. Notmnist dataset. Google (Books/OCR), Tech. Rep.[Online]. Available:
http://yaroslavvb. blogspot. it/2011/09/notmnist-dataset. html, 2, 2011.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark ex-
perience for general continual learning: a strong, simple baseline. Advances in neural information
processing systems, 33:15920–15930, 2020.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks,
2023. URL https://arxiv.org/abs/2312.08399.

Vikram S Chundawat, Ayush K Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
induce forgetting? unlearning in deep networks using an incompetent teacher. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pp. 7210–7217, 2023a.

Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Zero-shot ma-
chine unlearning. IEEE Transactions on Information Forensics and Security, 18:2345–2354,
2023b. ISSN 1556-6021. doi: 10.1109/tifs.2023.3265506. URL http://dx.doi.org/
10.1109/TIFS.2023.3265506.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature, 2018.

Marco Cotogni, Jacopo Bonato, Luigi Sabetta, Francesco Pelosin, and Alessandro Nicolosi. Duck:
Distance-based unlearning via centroid kinematics, 2024. URL https://arxiv.org/abs/
2312.02052.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, and Sijia Liu. Salun: Em-
powering machine unlearning via gradient-based weight saliency in both image classification and
generation. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=gn0mIhQGNM.

Jack Foster, Kyle Fogarty, Stefan Schoepf, Cengiz Öztireli, and Alexandra Brintrup. An information
theoretic approach to machine unlearning, 2024a. URL https://arxiv.org/abs/2402.
01401.

Jack Foster, Stefan Schoepf, and Alexandra Brintrup. Fast machine unlearning without retrain-
ing through selective synaptic dampening. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 38(11):12043–12051, Mar. 2024b. doi: 10.1609/aaai.v38i11.29092. URL
https://ojs.aaai.org/index.php/AAAI/article/view/29092.

Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net: Se-
lective forgetting in deep networks, 2020. URL https://arxiv.org/abs/1911.04933.

Ian J. Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks, 2015. URL https:
//arxiv.org/abs/1312.6211.

Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning, 2020. URL
https://arxiv.org/abs/2010.10981.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, March 2017. ISSN 1091-6490. doi: 10.1073/pnas.1611835114. URL http:
//dx.doi.org/10.1073/pnas.1611835114.

11

https://arxiv.org/abs/2312.08399
http://dx.doi.org/10.1109/TIFS.2023.3265506
http://dx.doi.org/10.1109/TIFS.2023.3265506
https://arxiv.org/abs/2312.02052
https://arxiv.org/abs/2312.02052
https://openreview.net/forum?id=gn0mIhQGNM
https://arxiv.org/abs/2402.01401
https://arxiv.org/abs/2402.01401
https://ojs.aaai.org/index.php/AAAI/article/view/29092
https://arxiv.org/abs/1911.04933
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/2010.10981
https://openreview.net/forum?id=rkpACe1lx
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex Krizhevsky. Learning multiple layers of features from tiny images, 2009.

Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. To-
wards unbounded machine unlearning. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 1957–1987. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE transactions on pattern analysis
and machine intelligence, 40(12):2935–2947, 2017.

Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning, 2022. URL https:
//arxiv.org/abs/2203.12817.

M. Loève. Probability Theory. Number v. 1-2 in Graduate texts in mathematics. Springer-
Verlag, 1977. ISBN 9783540902102. URL https://books.google.co.in/books?
id=f8xFAQAAIAAJ.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning, 2018.

Mohammed Ali Moustafa. Tiny imagenet, 2017. URL https://kaggle.com/
competitions/tiny-imagenet.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. Advances in Neural Information
Processing Systems (NIPS), 2011.

Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin,
and Quoc Viet Hung Nguyen. A survey of machine unlearning, 2022. URL https://arxiv.
org/abs/2209.02299.

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence, 2019.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
replay for continual learning. Advances in neural information processing systems, 32, 2019.

Takashi Shibata, Go Irie, Daiki Ikami, and Yu Mitsuzumi. Learning with selective forgetting. IJCAI,
2(4):6, 2021a.

Takashi Shibata, Go Irie, Daiki Ikami, and Yu Mitsuzumi. Learning with selective forgetting. Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp.
989–996, 8 2021b. doi: 10.24963/ijcai.2021/137. URL https://doi.org/10.24963/
ijcai.2021/137. Main Track.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay, 2017.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
attacks against machine learning models, 2017. URL https://arxiv.org/abs/1610.
05820.

Yiwen Tu, Pingbang Hu, and Jiaqi Ma. Towards reliable empirical machine unlearning evaluation:
A game-theoretic view, 2024. URL https://arxiv.org/abs/2404.11577.

Roman Vershynin. High-dimensional probability: an introduction with applications in
data science, volume 47. Cambridge University Press, New York, 2018. ISBN
9781108415194;1108415199;1108231594;9781108231596;.

Johannes von Oswald, Christian Henning, Benjamin F. Grewe, and João Sacramento. Continual
learning with hypernetworks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=SJgwNerKvB.

12

https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/062d711fb777322e2152435459e6e9d9-Paper-Conference.pdf
https://arxiv.org/abs/2203.12817
https://arxiv.org/abs/2203.12817
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://books.google.co.in/books?id=f8xFAQAAIAAJ
https://kaggle.com/competitions/tiny-imagenet
https://kaggle.com/competitions/tiny-imagenet
https://arxiv.org/abs/2209.02299
https://arxiv.org/abs/2209.02299
https://doi.org/10.24963/ijcai.2021/137
https://doi.org/10.24963/ijcai.2021/137
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/2404.11577
https://openreview.net/forum?id=SJgwNerKvB

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application, 2024.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms, 2017. URL https://arxiv.org/abs/1708.07747.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks, 2018.

13

https://arxiv.org/abs/1708.07747

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A CONNECTING MSE AND L2

Lemma 1. Consider the parameters of a model to be θ ∈ R
d. A noisy approximation of the L2-

norm of parameters θ can be represented as an average of Mean Squared Error between parameters
θ and samples zi ∈ R

d from standard normal, N (0, Id). In other words,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d

Proof. Consider Yi = ∥θ − zi∥22 to be a random variable. Consider E[.] as the function calculating
the expectation of a random variable. As zi are i.i.d. samples of standard normal and θ is a constant,
Yi are also i.i.d. samples. Using Strong Law of Large Numbers (Loève (1977)), we can say that:

Pr

[
lim
n→∞

1

n

n∑
i=1

Yi = E[Yi]

]
= 1 (7)

Now we would show that E[Yi] = ∥θ∥22 + d, where d is the dimension of the parameter θ.

E[Yi] = E
[
∥θ − zi∥22

]
= E

[
θT θ − zTi θ − θT zi + zTi zi

]
= E

[
θT θ

]
− 2E

[
zTi θ

]
+ E

[
zTi zi

]
(8)

= θT θ − 2
∑
j

θjE[zij] +
∑
j

E[z2ij]

= ∥θ∥22 +
∑
j

1 (9)

= ∥θ∥22 + d (10)

Here, Equation 8 is using linearity property of expectation and Equation 9 uses the fact that E[zij] =
0 and E[z2ij] is nothing but variance of that variable zij , which is equal to 1.

Based Equation 7 and Equation 10, we can say that,

lim
n→∞

1

n

n∑
i=1

∥θ − zi∥22 = ∥θ∥22 + d

Lemma 2. Bernstein’s inequality (refer to Vershynin (2018)) Consider X1, X2, · · · , Xn as inde-
pendent, mean-zero and sub-exponential random variables. Define Sn =

∑n
i=1 Xi. Then for every

ϵ ≥ 0, we have

Pr [|Sn| ≥ ϵ] ≤ 2 exp

[
−cmin

(
ϵ2∑n

i=1 ∥Xi∥2ψ1

,
ϵ

maxi ∥Xi∥ψ1

)]
where c > 0 is a constant and ∥.∥ψ1 is 1-sub-exponential norm of a random variable.

Theorem 3. Consider ∀i, Yi ∈ R
d is a random variable defined as Yi = ∥θ − zi∥22, where zi ∼

N (0, Id). Define Sn =
∑n
i=1 Yi. Then, with a relative deviation δ,

Pr [Sn ≥ (1 + δ)E[Sn]] ≤
2

eΘ(min(δ2nd,δn
√
d))

(11)

where Θ(.) denotes the asymptotic average bound, commonly known as Big-Theta notation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Proof. We first need to understand the distribution of the random variable, Yi. As Yi is the L2-
norm of a shifted d-dimensional standard normal distribution, Yi follows a non-central chi-squared
distribution with d degree of freedom and non-centrality parameter λ = ∥θ∥22

Yi ∼ χ2
d(λ)

We know that the chi-square random variable is a sub-exponential random variable (Vershynin,
2018). We use the Lemma 2 to find the rate of convergence and its dependency with n and d. To
apply Lemma 2, we first need to centre the random variable,

Xi = Yi − E[Yi] = ∥θ − zi∥22 − (∥θ∥22 + d) = ∥θ − zi∥22 − (λ+ d) (12)
Now, Xi is a mean-zero sub-exponential random variable. Now, we need to compute the 1-sub-
exponential norm of Xi. The chi-squared distribution is known to have a finite sub-exponential
norm, but it’s complex to compute, so we use an upper bound for it. Vershynin (2018) For a sub-
exponential random variable with variance σ2, sub-exponential norm satisfies, ∥X∥ψ1

≤ Cσ where
C is some constant.

V ar(Xi) = V ar(∥θ − zi∥22) = 2(d+ 2λ) (13)
As ∥θ − zi∥22 is a non-central chi-square distribution, we directly use its variance formula to get
Equation 13. Now, for Xi, 1-sub-exponential norm is

∥Xi∥ψ1
≤ C

√
2(d+ 2λ) (14)

Applying Bernstein’s inequality (Lemma 2) to Xi’s, we get,

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

[
−cmin

(
ϵ2

2n(d+ 2λ)
,

ϵ√
2(d+ 2λ)

)]

Pr

[∣∣∣∣∣
n∑
i=1

(Yi − E[Yi])

∣∣∣∣∣ ≥ ϵ

]
≤ 2 exp

[
−cmin

(
ϵ2

2n(d+ 2λ)
,

ϵ√
2(d+ 2λ)

)]
(15)

To analyze the upper tail bound, consider Sn =
∑n
i=1 Yi.

Pr

[
n∑
i=1

(Yi − E[Yi]) ≥ ϵ

]
= Pr [Sn ≥ E[Sn] + ϵ] (16)

Let’s define relative deviation δ as

δ =
ϵ

E[Sn]
⇒ ϵ = δE[Sn] ⇒ ϵ = δn(d+ λ) (17)

Using Equation 15,Equation 16 and Equation 17 we can write that,

Pr [Sn ≥ (1 + δ)E[Sn]] ≤ 2 exp

[
−cmin

(
[δn(d+ λ)]2

2n(d+ 2λ)
,

δn(d+ λ)√
2(d+ 2λ)

)]
(18)

≤ 2 exp

[
−cmin

(
δ2n(d+ λ)2

2(d+ 2λ)
,

δn(d+ λ)√
2(d+ 2λ)

)]
(19)

Consider θj to be the value of θ on jth index. Then

λ = ∥θ∥22 ≥ dθ2min where θmin = min
1≤j≤d

θj

λ = ∥θ∥22 ≤ dθ2max where θmax = max
1≤j≤d

θj

d2(θ2min + 1)2

d(2θ2min + 1)
≤ (d+ λ)2

d+ 2λ
≤ d2(θ2max + 1)2

d(2θ2max + 1)

d

(
(θ2min + 1)2

2θ2min + 1

)
≤ (d+ λ)2

d+ 2λ
≤ d

(
(θ2max + 1)2

(2θ2max + 1)

)
c1.d ≤ (d+ λ)2

d+ 2λ
≤ c2.d where c1, c2 > 0 are some constants

(d+ λ)2

d+ 2λ
≈ Θ(d)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, d+λ√
d+2λ

≈ Θ(
√
d)

Based on the above claims, Equation 19 can rewritten as,

Pr [Sn ≥ (1 + δ)E[Sn]] ≤ 2 exp[−c.Θ(min(δ2nd, δn
√
d))] (20)

for some absolute constant c > 0.

From the Theorem 3, we can observe that for a fixed deviation δ, the probability that Sn is far from
E[Sn] is inversely proportional to n× d.

B HYPERNETWORK

Hypernetworks H(. ;ϕ) are a class of neural networks designed to generate the parameters of another
network, referred to as the target network C(. ; θ). Introduced by Ha et al. (2017), hypernetworks im-
prove parameter efficiency and adaptability in machine learning models by learning a mapping from
task-specific embeddings et to the weights of the target network θt, instead of directly optimizing
the target network’s weights. This enables greater flexibility in handling diverse tasks.

The hypernetwork framework comprises two main components:

1. Hypernetwork: A neural network responsible for generating the weights of the target
network. In UnCLe, we employ a multi-layer perceptron as the hypernetwork.

2. Target Network: The primary network that performs the desired classification tasks us-
ing weights generated by the hypernetwork. Our experiments utilize both ResNet18 and
ResNet50 as the target network.

When a learning request is encountered, the hypernetwork generates the main network parameters
conditioned on the task embedding et. To achieve this, the hypernetwork parameters ϕ and the task
embedding et are optimized by minimizing the task-specific loss Ltask, which is computed using
the data set Dt corresponding to the current task. In our case, the task-specific loss is the Cross
Entropy loss.

As tasks are learned continually, to ensure that knowledge of previously learned tasks is preserved,
a regularization term is introduced. This term enforces the hypernetwork to generate consistent pa-
rameters for those tasks by aligning the output of the current hypernetwork with that of a frozen copy
of the hypernetwork, denoted by ϕ∗, saved prior to training on the current task. The regularization
term leverages a knowledge distillation approach, comparing the outputs of the current and frozen
hypernetworks for the embeddings of previous tasks.

The overall learning objective is defined as follows, where β controls the strength of the regulariza-
tion:

argmin
ϕ,et

Ltask + β · Lreg, where Lreg =
1

t− 1

t−1∑
t′=1

∥H(et′ ;ϕ
∗)−H(et′ ;ϕ)∥22 (21)

Here, Lreg represents the regularization term, calculated as the average squared difference between
the outputs of the frozen and current hypernetworks for all previous tasks. This approach ensures that
the parameters of the hypernetwork remain stable for previously learned tasks, effectively mitigating
catastrophic forgetting.

They key benefit of using task embeddings to generate task-specific parameters results is negligible
parameter growth as new tasks are added, ensuring high parameter efficiency. Since the hypernet-
work generates all task-specific parameters and its core parameters are shared across tasks, it also
facilitates inter-task knowledge transfer. This allows improvements in one task to benefit others.

A schematic representation of this architecture is presented in Figure B.7.

The hypernetwork consists of three hidden layers with dimensions 128, 256, and 512. Given the
large size of the generated ResNet parameters, the hypernetwork’s last layer becomes excessively

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure B.7: Schematic of the architecture showcasing the task eTt
and chunk embeddings c, the

hypernetwork and its various heads H, the generated parameters θ, the ResNet classifier F and, the
input image xit and the predicted output ŷit.

large. To address this, we partition the main network parameters into smaller chunks and gener-
ate them separately. This significantly reduces the size of the hypernetwork’s last layer, thereby
minimizing the overall size of the hypernetwork.

Similar to how the hypernetwork generates task-specific networks by conditioning on unique task
embeddings, it generates large networks in chunks by conditioning on unique chunk embeddings.
These chunk embeddings are concatenated with task embeddings to create unique task-chunk em-
bedding pairs, which generate the corresponding chunk of the parameters for the specific task net-
work.

The chunk embeddings, like task embeddings, are learned through backpropagation. To prevent
catastrophic forgetting, the chunk embeddings are frozen after the first task. In our implementation,
both chunk and task embeddings have a dimension of 32. We found that dividing each task-specific
network into 200 chunks strikes an effective balance between efficiency and performance.

Building on the previously described approach of generating task-specific network parameters in
chunks, the hypernetwork further optimizes parameter generation by dividing its final layer into
specialized heads. Each head is responsible for generating a specific type of parameter required
for the target network: network weights, batch normalization parameters, and residual connection
parameters. By explicitly separating the generation of different parameter types, the hypernetwork
avoids generating unnecessary or redundant parameters. Each head is optimized to produce only the
parameters relevant to its designated role, reducing computational overhead and memory usage.

The chunk-based parameter generation approach described earlier is seamlessly integrated with the
specialized heads. For each chunk, the hypernetwork’s heads produce only the subset of parameters
required for that chunk, whether it is network weights, batch normalization parameters, or residual
connection parameters. By generating parameters in chunks and assigning specialized roles to the
final layer heads, the hypernetwork achieves a high degree of parameter efficiency. This design
ensures that the size of the hypernetwork remains manageable even when generating large target
networks like ResNet18 or ResNet50.

This architecture strikes an effective balance between scalability, modularity, and efficiency, making
it well-suited for tasks requiring the generation of large and complex networks. The schematic of
the hypernetwork used is described in Figure B.7.

B.1 INITIALISATION

Classic weight initialization methods such as the Xavier Initialisation and the Kaiming He Initialisa-
tion, when applied on the hypernetwork, fail to generate classifier parameters in the correct scale. To
counteract this, we employ Hyperfan Initialization, a principled parameter initialization technique

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

for hypernetworks proposed by Chang et al.. The goal of hyperfan initialization is to result in the
generated parameters themselves following Kaiming He initialization.

C HYPERPARAMETER TUNING

C.1 LEARNING HYPERPARAMETER: BETA

We perform a hyperparameter search to determine the best value for β. We perform experiments
with β values 1, 0.1, 0.01, and 0.001 and select the best-performing value for each dataset. The
results of the hyperparameter search are presented in Table C.4:

Dataset 1 0.1 0.01 0.001

Permuted MNIST 96.24 96.68 96.64 96.52
Five Datasets 94.46 94.42 94.13 94.54
CIFAR-100 48.58 72.16 52.62 15.72
TinyImageNet 34.33 35.74 53.7 48.49

Table C.4: Results of tuning hyperparameter β. The highest average accuracy values are highlighted
in bold.

As apparent, the chosen values for β are as follows: 1e-2 for TinyImageNet, 1e-3 for Five Datasets
and 1e-1 for both Permuted MNIST and CIFAR-100.

C.2 UNLEARNING HYPERPARAMETERS: GAMMA & BURN-IN

We perform a hyperparameter search to determine the ideal value for γ. Our search range comprises
the γ values 0.1, 0.01, and 0.001. Our selection of gamma is dependent on two factors, namely the
Forget Set Accuracy (FA) and the Retain Set Accuracy (RA). A good unlearning algorithm should
attain an FA of less than chance (1c where c is the number of classes, in this case 10%). We first
select all the γ values that result in an FA ≤ 10. We then pick the γ that maximizes RA among those
selected values. The results of the hyperparameter search are presented in Table C.5. We find that
the burn-in of 100 is sufficient across datasets and we adopt it as standard in all our experiments.

Dataset FA RA

0.1 0.01 0.001 0.1 0.01 0.001

Permuted-MNIST 10.412 10.417 17.907 96.524 96.544 96.602
CIFAR-100 8.000 10.830 17.190 70.950 71.817 72.173
5-Datasets 8.278 8.070 9.783 92.868 92.779 92.847

Tiny-ImageNet 10.000 10.000 10.000 45.590 48.625 48.623

Table C.5: Table depicting the FA and RA for various gamma values across datasets.

The chosen γ values are 1e-1 for 5-Datasets and 1e-2 elsewhere.

D EXPERIMENTAL DETAILS

D.1 OPERATION SEQUENCES

On each dataset, we perform experiments over three unique sequences of learning and unlearning
requests generated through random seeds. Experiments on the Five Datasets benchmark are per-
formed over sequences of 7 requests. For Permuted-MNIST and CIFAR-100 datasets, we utilize
sequences of 15 requests, and for the Tiny-ImageNet dataset, we experiment with long 30-request
sequences. The sequences used are presented in Table D.6.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Datasets Seq Nos Sequences

5-Datasets
(7 requests)

1 L0 → L1 → U0 → L2 → L3 → L4 → U1

2 L3 → L4 → L2 → L0 → L1 → U3 → U0

3 L0 → L2 → U0 → L4 → L3 → U2 → U4

Permuted-MNIST
& CIFAR-100
(15 requests)

1 L1 → L0 → U1 → L5 → L8 → L9 → L7 → U0 → L2 → L3 → L4 → U8 → U3 → U5 → L6

2 L6 → L7 → L2 → L1 → L0 → U1 → L9 → U7 → U2 → U0 → L4 → U4 → L8 → U6 → L5

3 L7 → L1 → L2 → L8 → L0 → U1 → L3 → L6 → U3 → U2 → L4 → L5 → U8 → L9 → U7

Tiny-ImageNet
(30 requests)

1
L3 → L0 → U3 → L9 → L5 → L17 → L1 → L7 → L14 → L15 → L19 → U17 → U7 →
→ L6 → U15 → U9 → L12 → L4 → U5 → U4 → U6 → U0 → U1 → U14 → U12 →
→ L13 → L18 → L2 → L11 → L8

2
L12 → L13 → L5 → L8 → L2 → U8 → L14 → U13 → U5 → U2 → L3 → U3 → L16 →
→ U12 → L11 → U16 → L7 → L15 → L10 → L19 → L9 → U14 → U7 → L18 → L6 →
→ L1 → L0 → L4 → U6 → L17

3
L2 → L7 → U2 → L18 → L12 → U7 → U18 → L16 → L0 → U16 → U0 → L13 → L4 →
→ U12 → U13 → L9 → L19 → U19 → U4 → L10 → L14 → L5 → U5 → U10 → L11 →
→ L1 → U1 → L17 → L6 → L3

Table D.6: This table provides three different sequences that are used to understand the generaliz-
ability of our approach. Here, L#n implies ‘learn task n’ and U#n implies ‘unlearn task n’. Also
for different task we have different sequence length showing that our method can scale to longer
sequences.

D.2 BASELINES: ADDENDUM

Methods that use DER++ as the base CL method use a standard ResNet backbone architecture with
independent heads for each task. As these are in a task incremental setting, we get task IDs during
inference, which is used to choose the required head. For these methods, we used Adam Optimizer
with a learning rate of 0.001. For different datasets, learning epochs were different. 5-Datasets were
trained for 20 epochs, CIFAR100 was trained for 30 epochs, Permuted-MNIST was trained for 10
epochs, and Tiny-ImageNet was trained for 30 epochs.

Methods that use Hypernetwork generate weights for the main network, which is a ResNet. In these
cases the learning hyperparameters were the same as UnCLe.

CLPU Liu et al. (2022) is a method that perform exact unlearning. It requires apriori knowledge
about which task has a possibility to be unlearned and which task will never be unlearned. Based on
this information, the task that can be unlearned in the future is used to train an independent network.
When they receive a request to unlearn a particular task, they just drop that network. In our CLU
setup, no such assumption was made about the prior information, so we assume every task can get
an unlearning request in the future. So, the direct implementation would be having independent
networks for each task and throwing the network when an unlearning request is received. So, it
is apparent that we will get a Forget set Accuracy of zero and an Unlearning Time of zero. Also,
as the network is unavailable to us, we will not be able to calculate the divergence with uniform
distribution.

LWSF Shibata et al. (2021b) introduces a new setup of learning with selective forgetting where, at
every request, we will receive a set of classes to learn and a set of classes to forget. An extreme case
of their setup is ours, where at every request, we either receive to learn classes or to unlearn classes.
They introduced an approach using class-specific mnemonic codes. We observed that when their
approach was applied to an extreme case like ours, they failed to unlearn the task. Their approach
primarily used the advantage of learning and unlearning together and leveraged the catastrophic
forgetting behavior of neural networks. So, to get the full potential of their approach, we calculated
all the unlearning metrics for an unlearning operation after the next learning request arrives. Note
that there can be multiple unlearning requests simultaneously; in that case, after all the unlearning,
when the next learning comes, we will calculate all the unlearning metrics after that. As a reason for
this modification, we don’t compute unlearning time for this method as it won’t be a fair comparison.
For this method, we used a batch size of 200 with SGD optimizer and momentum as 0.9. We used
a learning rate of 0.1 for all the datasets. For LWSF, Permuted-MNIST was not converging during
training, so we didn’t report results for this dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

BadTeacher Chundawat et al. (2023a) is a baseline that uses a random network as a teacher model
for the forget set and uses KL-divergence to match the distribution of the forget class to that of a
random model. For the retained set, it tries to reduce the cross entropy corresponding to the ground
truth. For our CLU setup, we modified the algorithm where for the CL part, we use a DER++,
experience reply-based method where the memory buffer is again used to get the retain and forget
set. We performed a

SalUn Fan et al. (2024) targets specific model weights that are most influenced by the data to be
removed (the data from forget set) rather than modifying the entire model. This selective adjustment
helps the unlearned model retain high performance on the remaining data. It needs to generate the
weight saliency map corresponding to the forget set, which it does based on gradients. Based on this
approach, we designed a baseline with DER++ as the base CL algorithm. To set this in a CL setup,
the weight saliency mask needs to be created every time we encounter an unlearning request.

SCRUB Kurmanji et al. (2023) is designed to selectively remove knowledge of specific data points
from a pre-trained model while maintaining overall model performance on the remaining data. Un-
learning Phase (Forgetting): A student model is trained to deviate from the predictions of a pre-
trained teacher model on the data that must be forgotten (the ”forget set”). This step ensures that
the model forgets specific information tied to those data points. Retention Phase: While the student
model unlearns the forget set, it is simultaneously trained to match the performance of the teacher
model on the remaining dataset (the ”retain set”). This ensures that the model retains its predictive
power on data that does not need to be forgotten. Based on this approach, we designed a baseline
with DER++ as the base CL algorithm.

SSD Foster et al. (2024b) SSD operates as a two-step, post hoc method that does not require re-
training the model, making it computationally efficient and suitable for scenarios where training
data might not be readily accessible. Parameter Selection phase: SSD uses the Fisher information
matrix to identify parameters crucial to the data that need to be forgotten. Dampening phase: It
dampens these parameters’ effects proportionally to their importance, allowing the model to forget
the targeted data while maintaining performance on the remaining data. Based on this approach we
designed a baseline with base CL algorithm as DER++.

GKT & GKT-Hnet: These baselines are based on the paper Chundawat et al. (2023b) where a
generator is used to generate samples that are then used to forget information from the main network.
We designed two methods, one that uses DER++ as the base CL algorithm and the other that uses
Hypernetwork as the base algorithm.

JiT & JiT-Hnet: These baselines are based on Foster et al. (2024a), which leverages Lipschitz
continuity to perform unlearning in a zero-shot manner. This approach involves smoothing the
output of the model with respect to perturbations of the input data targeted for deletion, which helps
in forgetting the specific data points while maintaining the model’s overall performance. We used
two different variants of this method for our setup, where one (JiT) uses DER++ as the base CL
algorithm, and the other (JiT-Hnet) uses Hypernetwork as the base CL algorithm. We tuned the
hyperparameters for each of these and found not much difference was achieved. So we have the
same hyperparameters as provided in Foster et al. (2024a).

Others Apart from all these baselines, we also used FT where when an unlearning request is en-
countered, the current model is fine-tuned on the whole retain set. This also uses DER++ as the
base CL approach. RT is one of the baselines that retrain the whole network from scratch on the
retrain set to perform unlearning. Hnet is a baseline that uses a hypernetwork as the CL algorithm
and uses the implicit forgetting nature of the neural network to perform unlearning. It just removes
the the particular regularization for the forget task, so the unlearning will only be apparent once a
new learning request is encountered. RT-Hnet is a baseline that uses Hypernetwork as the base CL
algorithm, and whenever an unlearning request is encountered, it trains a new hypernetwork in a
sequential fashion on the retrain set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.3 METRICS: ADDENDUM

D.3.1 AVERAGE RETAIN SET ACCURACY

The Average Retain Set Accuracy (RA) measures Unlearning Stability, indicating undesirable
spillover effects over the tasks to be retained. It is the mean of the accuracy of all the retained
tasks measured at the end of the sequence.

D.3.2 AVERAGE FORGET SET ACCURACY

The Average Forget Set Accuracy (FA) is a measure of Unlearning Completeness. It is the mean
of the accuracy of all the forget tasks, measured at the end of their respective unlearn operations.
An ideal FA value should be close to (100/Nc) where Nc is the number of classes per task. All
experiments performed with UnCLe entail tasks with 10 classes each, putting the ideal FA value at
10.

D.3.3 OUTPUT DIVERGENCE FROM UNIFORM DISTRIBUTION

This is simultaneously a measure of Unlearning Completeness and Unlearning Detectability. An
ideal unlearning algorithm should be both complete and undetectable in its wake. This metric mea-
sures the Jensen-Shannon divergence between the output logit distribution and the uniform distribu-
tion. An exact unlearning algorithm would report a divergence score of zero.

D.3.4 MEMBERSHIP INFERENCE ATTACK

The Membership Inference Attack (MIA) metric is a critical tool in evaluating the effectiveness of
machine unlearning methods. MIAs exploit the model’s behavior to infer whether a specific data
point was included in its training set, raising concerns about privacy and data retention. In the
context of machine unlearning, the MIA metric is employed to measure how effectively a model has
”forgotten” the training data. The objective is for the model to behave indistinguishably on forgotten
data and new, unseen data, indicating successful unlearning. To evaluate this, adversarial attacks are
used, where an attacker attempts to infer the membership status of data samples targeted for removal.

If a MIA value is 50%, it generally indicates that the attack performs no better than random guess-
ing. In this context, the attack’s ability to correctly determine whether a data point was part of the
training set is equivalent to a coin flip, where the attacker has a 50% chance of correctly identifying
membership or non-membership Tu et al. (2024). A 50% MIA value suggests that the model has suc-
cessfully mitigated the attack, as the adversary cannot infer membership status with any meaningful
accuracy.

Datasets 5-Datasets Permuted-MNIST CIFAR100 Tiny-ImageNet

Methods Mean Std Mean Std Mean Std Mean Std

FT* 49.56 0.22 49.63 0.07 45.00 0.66 45.26 0.73
RT* 49.95 0.37 49.98 0.07 49.82 0.50 49.72 0.23

BadTeacher 50.03 0.16 50.04 0.11 53.06 0.82 52.54 0.33
SCRUB 50.25 0.21 49.99 0.01 50.00 0.00 50.00 0.00
SalUn 50.25 0.29 49.85 0.13 46.26 0.42 47.47 0.73

JiT 49.99 0.17 49.95 0.08 45.80 0.73 47.28 0.15
GKT 50.05 0.08 49.99 0.01 49.88 0.20 49.93 0.06
SSD 49.98 0.03 50.01 0.01 50.00 0.00 50.00 0.00

RT-Hnet* 49.75 0.06 49.90 0.04 50.28 0.39 50.05 0.22
Jit-Hnet 50.10 0.06 50.02 0.08 48.74 1.11 49.39 0.24

GKT-Hnet 49.99 0.19 49.98 0.22 50.12 0.11 50.10 0.05

UnCLe 50.01 0.09 50.00 0.02 50.00 0.00 50.00 0.00

Table D.7: That table compares the MIA performance of different baseline approaches against Un-
CLe. Here, we provide results on all 4 datasets on request sequence 1, averaged across 3 seeds.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table D.7 presents MIA values, with mean and standard deviation (std) across various methods and
datasets such as Permuted-MNIST, CIFAR100, and Tiny-ImageNet. The values, which are around
50%, suggest a general trend where models are largely resistant to MIA, indicating that attackers
have difficulty distinguishing between data points in and out of the training set.

As our setup is a setup for task unlearning with task incremental continual learning, we use different
heads for different tasks. when forgetting a particular task, the corresponding head is severely ran-
domized by each of the methods. So when performing MIA, the representation corresponding to the
forget head is already random for all the cases, providing indistinguishable representations leading
to an equivalent performance in MIA for all the methods.

Apart from this, our approach, UnCLe, exhibits near-perfect resistance to MIA, consistently showing
a mean MIA value of 50.00% across all datasets. This means that the attacker’s ability to infer
whether a data point was part of the training set is equivalent to random guessing, signifying robust
privacy protection.

E OTHER EXPERIMENTS

E.1 BASELINES: ALTERNATIVE UNLEARNING STRATEGIES

Methods RA FA UNI MIA UT RA FA UNI MIA UT

5-Datasets CIFAR-100

Fixed Noise 83.04 10.94 -inf 50.07 18.74 21.79 10.36 -inf 49.97 25.76
Norm Reduce 94.31 26.11 52.44 51.19 18.3 62.75 34.42 41.27 44.13 25.39

Discard ef 94.52 80.91 -214.0 50.25 0.00 60.21 20.70 11.21 46.88 0.00
UnCLe 94.12 10.04 100.0 50.01 33.28 62.65 10.00 100.0 50.00 41.70

Permuted-MNIST Tiny-ImageNet

Fixed Noise 84.55 9.870 -inf 49.99 10.48 34.68 9.440 -inf 50.11 22.62
Norm Reduce 96.70 94.99 -49.56 49.10 10.34 55.11 36.61 0.80 42.65 22.42

Discard ef 96.87 61.79 -64.54 49.11 0.00 56.50 15.54 6.88 48.44 0.00
UnCLe 96.87 10.00 100.0 50.00 13.16 55.24 10.00 100.0 50.00 29.63

Table E.8: Table exploring various noising strategies on each of the four datasets. Results are on
Request Sequence 1. All the other unlearning hyperparameters (γ, Eu) are kept constant for these
experiments.

We experiment with a variety of noising strategies and compare our approach to norm reduction and
fixed noise perturbation. Norm reduction uses the unlearning objective from Equation 4. Fixed
noise perturbation uses the objective ∥H(ef ;ϕ) − z∥22 + γ · Lreg where the noise z is fixed
throughout all tasks. Discard ef is the baseline in which to perform unlearning, remove the for-
get task embedding ef , and replace them with random embedding. From the Table E.8, we conclude
that Fixed noise perturbation hampers the retain-task accuracy. We also observe that the forget-task
accuracy it achieves, while lower than UnCLe in some instances, is marginally detectable, whereas
UnCLe’s output remains the closest to the uniform distribution. Norm reduction maintains good RA
but exhibits poor unlearning. If further reduction in FA is attempted via increasing burn-in, it com-
promises the model’s stability and impacts RA, as noted in the methodology. We also observe that
UnCLe, compared to all the other baselines, has the closest MIA value to 50, proving its superiority
in data privacy.

E.2 SATURATION ALLEVIATION

A CL model is said to be saturated when the amount of free parameters available is insufficient
to accommodate a new task without incurring catastrophic forgetting of old tasks. In the field of
Continual Learning, saturation is typically encountered when a large number of tasks are learned
relative to the model’s size. Saturation is a prime motivation for dynamic architectures that can
expand model capacity to accommodate a greater number of classes Yoon et al. (2018). However,
dynamic architectures suffer from issues such as having a large memory footprint and little to no
knowledge transfer.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A saturated model suffers from the stability-plasticity dilemma Kirkpatrick et al. (2017). Such
a model loses all its plasticity owing to all its parameters being tasked with storing information
pertaining to a large variety of tasks. Attempts to forcefully learn new tasks will compromise its
stability, resulting in catastrophic forgetting of old tasks. In regularization-based CL, where the
model capacity cannot be expanded, there is no existing solution that can enable the model to learn
new tasks without compromising stability. In such situations, we hypothesize that unlearning can
alleviate saturation by effectively removing old and obsolete tasks, thereby making way for new
tasks.

The hypernetwork in UnCLe maintains separate task embeddings for each task. Each of these em-
beddings, when input into the hypernetwork, generates task-specific classifier models. The consis-
tency of the generation as the model adds new tasks continually is preserved by a regularization term
depicted in Figure 2. Whenever there is a new learning operation, the regularization term enforces
that the output of the hypernetwork in its current state is similar to that of the hypernetwork before
the current operation. To do this, a copy of the hypernetwork is made, and the copy’s parameters
are frozen. Now, as a new operation is performed and the hypernetwork’s parameters change, the
distillation-inspired regularization term makes sure that the hypernetwork’s output for past tasks’
embeddings remains consistent, thereby minimizing forgetting. As a task is unlearned, the hyper-
network is no longer regularized with respect to its embedding when it learns future tasks. As a
result, this reduces the number of constraints on the hypernetwork, helping alleviate saturation and
improving the learning of new tasks post-unlearning.

To empirically demonstrate this phenomenon, we perform a comparison between a model that only
learns tasks and UnCLe, which both learns and unlearns tasks. We analyze the results in two ways.
As presented in Algorithm E.8, we compare the performance of each task right after the learning
operation. As we can observe, after every unlearning operation, there is a notable performance when
the next task is learned compared to Only Learning. Furthermore, Figure E.9 compares the perfor-
mance of the tasks that remain at the end of the sequence of operations. In both cases, we find that
UnCLe consistently outperforms the baseline that only performs learning operations, demonstrating
that unlearning old tasks help learn new tasks better.

L3 L0 U3 L9 L5 L17 L1 L7 L14 L15 L19 U17 U7 L6 U15 U9 L12 L4 U5 U4 U6 U0 U1
U14 U12 L13 L18 L2 L11 L8

Request Sequence

0

10

20

30

40

50

60

70

Te
st

 se
t A

cc
ur

ac
y

Only Learning
UnCLe

Figure E.8: A comparison between the individual task accuracies of UnCLe and a trivial baseline that
only performs learning operations. Each of the above measurements are made immediately after the
operation is performed. Note that tasks that follow unlearning operations consistently benefit from
a higher accuracy. UnCLe outperforms the trivial baseline in every task that is retained.

E.3 BURN-IN ANNEALING

We leverage the forward transfer observed in unlearning to enhance UnCLe’s efficiency by intro-
ducing an annealing strategy for the burn-in phase. With each unlearning operation, the burn-in rate
is reduced by 10%, with a minimum of 20 iterations to ensure stability. This progressive reduc-
tion capitalizes on the model’s improved adaptability over time, significantly decreasing Unlearning

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

T19 T13 T18 T2 T11 T8
Tasks

0

10

20

30

40

50

60

Te
st

 A
cc

ur
ac

y

Only Learning
UnCLe

Figure E.9: A comparison between the final accuracies of the tasks that remain. UnCLe is compared
with a trivial baseline that only performs learning operations. The measurements are made at the
end of the sequence of operations.

Time (UT) without compromising performance. As shown in Table E.9, the Forget-Task Accuracy
(FA) and Uniformity (UNI) metrics remain consistent, demonstrating that the annealing strategy
maintains the quality of unlearning while optimizing computational efficiency.

Methods FA UNI UT FA UNI UT
CIFAR-100 Tiny-ImageNet

without Annealing 10.00 100.0 43.98 10.00 100.0 45.12
with Annealing 10.00 100.0 41.70 10.00 100.0 29.63

Table E.9: A comparison of UnCLe with and without Burn-In annealing.

E.4 STABILITY

Stability remains a significant challenge for existing unlearning frameworks, particularly in scenar-
ios involving the continual learning and unlearning of tasks. Our experiments reveal critical short-
comings in baseline methods, which tend to destabilize models when tasked with balancing the dual
demands of preserving knowledge for some tasks while unlearning others. We present the results of
our experiments in Figure 4 in the main paper and in Figure E.10 and Figure E.11 in the appendix.
The instability of existing unlearning methods in continual settings manifests in two ways:

E.4.1 FORGETTING RETAINED TASKS

Existing unlearning methods inadvertently cause catastrophic forgetting in tasks that are meant to
be retained. This occurs because unlearning operations often modify shared model parameters,
leading to unintentional degradation in the performance of previously learned tasks. Replay of data
from previous tasks serves as the saving grace, helping salvage lost performance. However, this
dependency on replay is not always practical, given that the lost performance will persist until a new
learning operation follows. Even then, the lost performance almost never recovers fully.

We can observe this phenomenon in Figure E.10 and Figure E.11. In between the learning of the task
and its eventual unlearning, we find that the task accuracy degrades whenever an unlearning opera-
tion is encountered only to rise back up when the next learning operation occurs. As mentioned, this
is entirely due to replay, in the absence of which, the lost performance would remain lost. Various

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

baselines exhibit this instability in maintaining task accuracies to varying degrees whereas UnCLe
stays close to the accuracy obtained right after the learning operation.

UnCLe, by contrast, is designed to maintain task stability firmly until a task is explicitly unlearned.
This is achieved through the careful design of the hypernetwork and task-specific embeddings, which
ensure that task representations remain untouched unless explicitly targeted for unlearning. This
parameter isolation allows UnCLe to uphold the performance of retained tasks without requiring re-
play, making it a more efficient and reliable solution for continual learning and unlearning scenarios.

E.4.2 REMEMBERING FORGOTTEN TASKS

A key expectation from any unlearning algorithm is that it must ensure unlearning is both thorough
and permanent. Thoroughness implies that all knowledge related to the unlearned task is effectively
erased from the model, leaving no residual influence on future operations. Permanence ensures
that once a task is unlearned, its knowledge cannot be recovered when new tasks are introduced.
Our findings highlight an alarming shortfall in existing unlearning methods: after unlearning a task,
subsequent learning of new tasks can unintentionally restore the performance of the unlearned task
to a level close to what it was before unlearning. As witnessed in Figure E.10 and Figure E.11,
we find that the task accuracy jumps back up after unlearning when new tasks are learned. Various
baselines exhibit this phenomenon to varying degrees whereas UnCLe stays close to the accuracy
obtained right after the unlearning operation.

We believe that this occurs because existing methods often fail to completely eliminate the inter-
nal representations associated with the unlearned task. Instead, these representations may persist in
latent forms within shared parameters or feature spaces, leading to unintended recovery when new
tasks reinforce similar patterns. This troubling discovery raises serious concerns about the relia-
bility and security of current unlearning frameworks, particularly in applications where permanent
removal of knowledge is a regulatory or ethical necessity.

UnCLe directly addresses this issue by ensuring that unlearning is irreversible. Its hypernetwork-
based architecture, coupled with a noise-alignment unlearning objective, thoroughly erases task-
specific representations from the model. By aligning the outputs of the hypernetwork for unlearned
tasks to noise, UnCLe effectively eliminates any trace of the unlearned task’s influence on model
behavior. Unlike existing methods, UnCLe prevents recovery of unlearned tasks when new tasks are
subsequently introduced, making it a more reliable framework for permanent unlearning.

The stark contrast between UnCLe and existing methods underscores the importance of designing
unlearning algorithms that meet the dual requirements of stability and permanence. The short-
comings of existing methods, particularly their inability to guarantee permanence, demand further
investigation. Future work should focus on:

1. Analyzing Residual Representations: Understanding why and how unlearned tasks persist
in shared model spaces and developing techniques to eliminate such residual traces.

2. Defining Robust Metrics: Establishing rigorous benchmarks and metrics for evaluating the
thoroughness and permanence of unlearning beyond task-specific accuracy.

UnCLe’s advancements in stability and permanence represent a significant step forward in continual
learning and unlearning. By addressing critical challenges in a robust and efficient manner, it sets a
strong foundation for the next generation of unlearning frameworks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure E.10: Figure tracking task accuracies through the sequence of operations on the CIFAR 100
dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure E.11: Figure tracking task accuracies through the sequence of operations on the TinyIma-
geNet dataset. Each chart tracks a single task’s accuracy as mentioned on the left.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

E.5 PRIMARY EXPERIMENTS: ADDENDUM

E.5.1 RESNET18 RESULTS

In this section, we present experiments with ResNet-18 as a backbone architecture. Each of these
experiments is performed on Sequence 1 (Table D.6). The results are averaged over three runs with
different seeds. We can observe from Table E.10, Table E.11, Table E.12, Table E.13, Table E.14
and Table E.15 that UnCLe performs better than all the other baselines on at least 3 out of 5 metrics.
On the metric in which UnCLe is not the best, it performs equally well compared to the best one.
These tables show UnCLe’s superiority over other unlearning baselines.

Methods RA FA UNI SBY UT

mean std mean std mean std mean std mean std

BadTeacher 62.87 8.07 9.650 0.65 99.96 0.02 89.24 2.64 51.45 7.76
SCRUB 10.90 2.44 9.340 0.58 -inf - 75.64 1.33 111.7 10.6
SalUn 58.94 9.87 35.16 5.02 99.35 0.14 88.95 2.51 380.9 30.3

JiT 16.66 2.77 8.990 1.93 -31.09 42.4 76.87 1.12 235.8 56.6
GKT 10.82 1.25 15.21 1.68 96.37 0.76 75.35 0.42 37.39 6.02
SSD 30.22 22.5 15.07 6.14 99.99 0.01 79.74 5.22 38.46 3.9

Jit-Hnet 14.74 4.69 13.15 4.49 -inf - 74.44 8.69 201.0 16.9
GKT-Hnet 10.07 0.71 10.69 1.4 83.19 1.36 77.10 0.43 42.92 2.27

UnCLe 93.77 0.40 9.600 0.99 100.0 0.00 99.94 0.04 10.89 0.02

Table E.10: Results on 5-Datasets (Sequence 1) with ResNet-18 Backbone

Methods RA FA UNI SBY UT

mean std mean std mean std mean std mean std

BadTeacher 65.13 3.67 10.11 0.52 99.55 0.01 88.58 0.4 6.65 3.29
SCRUB 53.39 3.15 10.00 0.00 -inf - 74.73 0.26 18.00 4.14
SalUn 69.29 2.42 46.24 0.99 81.83 0.31 91.57 0.48 85.69 12.62

JiT 68.96 1.93 40.74 0.41 35.00 6.49 87.82 0.92 28.96 6.79
GKT 61.53 3.49 11.01 0.57 93.16 4.83 70.33 0.53 38.80 1.23
SSD 47.31 5.45 10.00 0.00 99.98 0.01 66.72 0.44 4.440 0.50

Jit-Hnet 51.52 18.8 21.84 4.71 64.49 14.22 88.21 4.52 20.50 1.59
GKT-Hnet 40.87 5.85 13.89 1.11 91.32 1.47 72.67 1.38 47.06 2.72

UnCLe 66.97 3.59 10.00 0.00 100.0 0.00 99.33 0.39 13.26 0.01

Table E.11: Results on CIFAR100 (Sequence 1) with ResNet-18 backbone

Methods RA FA UNI SBY UT

mean std mean std mean std mean std mean std

BadTeacher 53.76 1.63 12.12 0.52 99.47 0.02 85.96 0.12 6.310 1.28
SCRUB 11.71 1.90 10.00 0.00 -inf - 70.45 1.35 17.31 1.09
SalUn 59.47 0.80 39.27 1.64 71.80 0.93 89.21 0.18 44.18 5.52

JiT 59.88 0.65 38.60 0.77 47.13 5.43 86.27 0.25 17.18 0.33
GKT 54.31 0.31 13.01 0.90 97.39 0.05 71.45 0.31 112.74 3.85
SSD 53.37 2.60 10.26 0.36 99.99 0.00 67.81 0.78 4.530 0.48

Jit-Hnet 59.20 1.77 16.32 0.23 89.57 2.54 87.32 1.85 15.37 0.70
GKT-Hnet 48.34 1.15 10.92 0.43 96.97 0.56 73.74 0.62 45.30 0.83

UnCLe 59.22 2.14 10.00 0.00 100.0 0.00 98.58 0.66 11.42 0.03

Table E.12: Results on Tiny-ImageNet (Sequence 1) with ResNet-18 backbone

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 94.47 0.12 67.70 2.11 19.93 0.10 98.52 1.09 1139 57.8
RT* 93.35 0.19 10.38 1.53 99.20 0.09 98.26 1.33 1532 436

BadTeacher 92.17 0.04 10.20 0.40 99.95 0.01 83.87 13.1 55.50 35.4
SCRUB 9.97 0.46 9.84 0.14 -inf - 87.93 32.3 118.9 50.6
SalUn 92.39 0.26 59.24 2.74 98.47 0.07 93.53 4.18 358.3 51.6

JiT 86.93 6.09 29.90 4.96 -3.76 112 84.52 13.3 213.7 44.3
GKT 89.77 0.31 12.13 0.95 96.64 1.32 72.46 18.1 36.08 0.07
SSD 86.32 0.40 9.93 0.13 99.66 0.13 71.88 18.5 35.16 14.9

CLPU 91.73 0.22 0.00 0.00 - - 97.22 1.55 0.00 0.00
RT-Hnet* 70.78 1.71 14.08 0.54 -30.27 7.54 78.04 22.6 1149 54.23

Hnet 96.60 0.16 96.91 0.09 -405.1 19.1 83.59 15.4 - -
Jit-Hnet 76.81 14.1 10.27 0.94 89.58 9.28 76.51 17.6 257.5 20.9

GKT-Hnet 95.34 0.37 14.46 0.35 91.03 0.55 75.01 17.6 43.77 0.34

UnCLe 96.87 0.20 10.00 0.06 100.0 0.00 99.99 0.01 13.16 0.05

Table E.13: Results on Permuted-MNIST (Sequence 1) with ResNet-18 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 95.12 0.68 70.51 1.29 3.29 1.78 99.01 0.13 776.66 43.88
RT* 95.19 0.41 10.22 0.68 99.17 0.02 98.56 0.20 939.12 219.29

BadTeacher 94.88 0.30 9.94 0.54 99.96 0.00 90.78 1.97 50.52 27.79
SCRUB 10.06 0.07 9.81 0.31 -inf - 73.16 0.36 112.72 40.27
SalUn 95.30 0.11 56.92 0.87 98.83 0.05 94.53 0.40 448.90 168.07

JiT 36.59 47.23 19.70 3.11 66.60 7.48 79.06 1.43 191.15 30.01
GKT 92.35 0.25 10.70 0.82 97.01 1.00 74.72 0.24 34.68 0.05
SSD 89.75 0.74 9.84 0.16 99.94 0.01 74.22 0.11 34.11 13.12

CLPU 95.21 0.29 0.00 0.00 - - 97.72 0.16 0.00 0.00
RT-Hnet* 82.94 14.33 14.02 0.55 -35.60 21.74 84.17 2.56 1045 45.6

Hnet 96.67 0.29 96.71 0.12 -280.94 27.89 89.53 0.01 - -
Jit-Hnet 94.15 2.19 10.55 0.54 92.11 7.14 78.65 2.32 220.32 44.34

GKT-Hnet 96.31 0.09 13.84 0.33 90.92 0.47 76.66 0.30 41.94 0.38

UnCLe 97.00 0.15 9.84 0.16 100.00 0.00 99.97 0.02 11.01 0.02

Table E.14: Results on Permuted-MNIST (Sequence 2) with ResNet-18 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 94.22 0.10 65.17 1.93 21.65 1.19 98.40 0.06 1297 82.42
RT* 93.49 0.06 10.62 1.01 99.46 0.06 97.93 0.12 1505 412

BadTeacher 79.56 4.29 10.28 0.81 99.94 0.02 90.96 0.46 49.34 15.3
SCRUB 9.97 0.08 9.98 0.25 -inf - 62.45 4.39 118.0 47.2
SalUn 82.40 0.89 64.78 2.31 98.30 0.13 93.50 0.11 488.8 203

JiT 34.45 42.3 31.00 11.7 71.94 11.4 79.05 10.5 189.0 36.0
GKT 12.80 2.35 11.43 0.72 96.37 1.44 68.62 0.19 36.70 0.07
SSD 9.90 0.32 9.92 0.45 99.99 0.00 67.81 0.13 36.81 9.92

CLPU 91.72 0.16 0.00 0.00 - - 96.97 0.10 0.00 0.00
RT-Hnet* 49.57 8.69 16.15 0.74 5.80 8.45 69.49 2.50 1635 97.2

Hnet 96.80 0.08 96.72 0.11 -345.1 29.9 94.59 0.02 - -
Jit-Hnet 9.41 0.43 9.73 0.63 -inf - 69.83 3.45 182.3 40.9

GKT-Hnet 13.96 2.53 17.25 2.26 89.65 0.91 71.46 0.35 44.55 0.40

UnCLe 96.98 0.23 9.93 0.19 100.0 0.00 99.99 0.00 14.79 0.22

Table E.15: Results on Permuted-MNIST (Sequence 3) with ResNet-18 Backbone

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.5.2 RESNET50 RESULTS

The results from the primary results table, Table 1 are obtained from Sequence 1, averaged over
three runs with different seeds. This section hosts the results from all three sequences, reported
with mean and standard deviation obtained from averaging each experiment performed over three
different seeds. The section is organized as a list of tables, with one table for each dataset-sequence
pair, in the order of 5-Datasets, CIFAR-100, and Tiny-ImageNet.

Methods RA FA UNI SBY UT

mean std mean std mean std mean std mean std

FT∗ 88.66 0.45 67.99 2.83 23.85 1.66 97.58 0.15 1595 22.3
RT∗ 84.79 1.88 9.600 4.22 99.76 0.03 96.58 0.36 1566 19.5

BadTeacher 54.38 23.5 8.550 1.23 99.99 0.0 86.14 6.71 76.78 16.3
SCRUB 9.160 0.15 12.97 0.08 -inf - 77.55 10.1 171.1 5.81
SalUn 74.75 1.56 25.02 1.22 99.19 0.02 93.80 0.27 491.9 8.01

JiT 19.10 13.8 17.20 3.55 -inf - 87.09 14.8 242.1 31.4
GKT 10.27 0.91 13.67 1.52 94.58 2.10 75.24 0.22 57.67 5.98
SSD 8.850 0.00 10.36 0.09 99.79 0.05 72.83 0.40 47.12 0.45

LWSF+ 31.76 0.25 0.00 0.00 99.98 0.01 51.21 1.05 - -
CLPU 85.00 0.43 0.00 0.00 - - 96.50 0.15 0.00 0.00

RT-Hnet∗ 76.23 3.31 18.44 0.78 -108.5 71.04 95.63 0.48 1896 1.25
Hnet+ 94.56 0.28 96.73 0.04 -381.0 63.54 99.99 0.07 - -

Jit-Hnet 10.19 1.18 11.29 4.37 -inf - 73.65 6.20 306.6 5.08
GKT-Hnet 10.53 0.61 14.48 1.00 88.66 0.77 77.19 0.11 83.30 1.37

UnCLe 94.12 0.43 10.04 1.14 100.0 0.0 99.91 0.16 33.28 11.7

Table E.16: Results on 5-Datasets (Sequence 1) with ResNet-50 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT∗ 88.54 0.53 58.07 2.4 42.12 5.03 95.62 0.13 3920 79.7
RT∗ 86.14 3.72 9.410 0.59 99.80 0.07 94.85 0.60 3851 68.5

BadTeacher 40.01 3.01 8.270 0.37 99.94 0.03 85.25 1.09 69.38 27.5
SCRUB 9.90 0.24 12.80 2.63 -inf 0 66.65 0.32 119.6 1.45
SalUn 56.29 7.81 29.40 2.71 93.56 1.01 87.62 1.72 357.5 4.25

JiT 11.66 3.51 22.31 6.3 19.88 14.3 77.09 2.48 170.3 33.6
GKT 10.52 0.22 14.44 0.88 97.24 0.84 66.98 0.26 66.48 11.3
SSD 10.10 0.01 14.59 4.66 100.0 0.0 66.54 0.68 33.24 0.19

CLPU 83.18 1.62 0.0 0.0 - - 93.94 0.37 0.0 0.0
RT-Hnet∗ 62.78 6.57 10.55 1.01 -75.78 17.3 85.05 0.04 3956 15.1

Hnet+ 96.39 0.07 93.84 0.24 -524.8 50.6 99.97 0.07 - -
Jit-Hnet 9.770 0.23 17.18 8.8 75.77 5.97 83.46 4.39 202.2 5.89

GKT-Hnet 9.010 1.14 9.370 0.69 90.22 1.46 68.62 0.32 87.28 1.08

UnCLe 95.91 0.07 9.930 3.23 100.0 0.0 99.83 0.07 36.12 0.18

Table E.17: Results on 5-Datasets (Sequence 2) with ResNet-50 Backbone

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT∗ 91.21 0.45 58.63 0.59 6.520 2.24 97.75 0.38 568.0 15.08
RT∗ 91.87 0.66 7.86 1.81 99.56 0.06 95.31 0.42 551.8 7.12

BadTeacher 39.07 25.2 10.20 0.96 99.99 0.00 79.02 2.58 74.15 11.56
SCRUB 9.22 2.39 10.22 0.55 -inf - 85.90 7.73 165.9 3.08
SalUn 37.55 6.75 21.99 1.96 99.22 0.07 86.75 0.22 468.0 6.16

JiT 12.56 7.53 11.77 1.43 -55.48 57.9 73.85 2.30 225.5 14.94
GKT 8.35 0.88 13.03 1.25 96.71 0.25 67.29 0.47 50.69 0.39
SSD 12.42 7.55 10.22 0.55 99.51 0.78 73.44 11.7 46.09 1.24

CLPU 89.54 0.79 0.00 0.00 - - 95.30 0.25 0.00 0.00
RT-Hnet∗ 94.05 0.13 9.350 0.48 -119.1 68.6 95.89 1.84 597.2 12.5

Hnet+ 92.96 0.13 93.26 0.08 -442.1 40.1 99.95 0.05 - -
Jit-Hnet 7.12 0.66 11.40 2.95 -62.05 114 72.39 0.57 289.8 4.23

GKT-Hnet 15.11 4.94 13.74 0.90 91.83 2.07 72.32 0.64 76.71 1.85

UnCLe 93.24 0.76 11.40 3.05 100.0 0.00 99.93 0.07 19.50 0.00

Table E.18: Results on 5-Datasets (Sequence 3) with ResNet-50 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 72.43 3.46 55.44 4.16 10.50 9.08 96.60 3.45 719.6 130
RT* 62.91 3.62 9.69 1.17 99.19 0.10 92.45 4.12 577.4 112

BadTeacher 61.75 4.47 14.57 0.60 99.63 0.01 86.13 6.99 10.95 2.23
SCRUB 29.45 7.18 10.06 0.10 -inf - 64.85 18.9 30.02 6.96
SalUn 66.56 3.58 44.89 2.14 59.85 3.05 89.32 5.09 51.47 0.10

JiT 65.94 3.58 43.93 2.48 22.11 3.84 87.31 5.97 24.01 5.60
GKT 57.05 3.15 10.70 0.44 95.97 0.18 70.23 17.5 68.61 7.72
SSD 43.27 4.25 10.00 0.00 99.97 0.01 65.95 18.6 5.73 0.31

CLPU 63.10 3.77 0.00 0.00 - - 91.44 3.93 0.00 0.00
RT-Hnet* 23.81 0.89 9.71 1.37 -1.24 27.73 63.53 25.5 845.2 12.5

Hnet 60.52 3.73 62.84 2.72 -85.50 25.34 82.74 15.0 - -
Jit-Hnet 60.79 4.45 16.97 3.49 74.97 7.58 85.20 12.3 22.94 1.87

GKT-Hnet 40.22 7.49 9.97 0.83 90.98 1.43 73.62 17.9 83.46 9.58

UnCLe 62.65 3.85 10 0.00 100.0 0 99.19 0.42 41.70 4.25

Table E.19: Results on CIFAR-100 (Sequence 1) with ResNet-50 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 73.45 3.47 57.81 1.24 9.05 3.15 97.52 0.17 387.2 95.2
RT* 67.42 2.41 9.84 1.60 99.14 0.20 94.03 0.58 399.5 61.1

BadTeacher 66.67 3.58 12.97 1.37 99.73 0.02 85.80 1.13 7.22 0.36
SCRUB 13.13 4.09 10.00 0.00 -inf - 69.12 0.97 24.66 1.04
SalUn 72.33 3.00 44.16 2.21 53.45 1.56 90.13 0.53 46.60 0.32

JiT 71.80 3.38 45.98 0.26 14.26 3.93 89.21 0.72 20.15 1.03
GKT 61.00 2.27 11.82 0.85 95.43 0.64 72.47 0.22 61.26 4.15
SSD 46.45 1.43 10.00 0.00 99.56 0.36 70.55 0.61 5.38 0.48

CLPU 69.83 1.85 0.00 0.00 - - 92.47 0.36 0.00 0.00
RT-Hnet* 44.32 6.60 10.06 1.06 -9.17 10.1 72.37 2.86 412.5 30.8

Hnet 66.08 2.07 62.59 1.37 -66.95 16.9 88.48 0.87 - -
Jit-Hnet 66.97 2.81 20.24 2.34 84.11 3.51 90.76 4.88 24.10 6.61

GKT-Hnet 58.58 5.98 11.36 0.29 91.41 0.88 77.35 0.83 86.52 8.85

UnCLe 66.82 2.85 10.00 0.00 100.0 0.00 99.4 0.55 29.52 0.65

Table E.20: Results on CIFAR-100 (Sequence 2) with ResNet-50 Backbone

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 72.01 2.19 58.79 3.25 5.55 6.56 96.88 1.24 659.3 181
RT* 62.47 2.65 9.79 1.34 99.25 0.12 92.21 0.82 618.1 93.11

BadTeacher 52.76 1.51 14.55 1.58 99.56 0.02 86.65 0.69 11.47 1.99
SCRUB 10.00 0.00 10.00 0.00 -inf - 61.99 0.78 32.53 2.85
SalUn 57.92 2.15 48.07 1.99 57.57 1.80 89.00 1.30 53.57 0.38

JiT 55.19 5.52 46.77 2.28 26.37 4.19 87.20 1.34 20.17 1.87
GKT 11.91 1.38 12.67 1.30 91.88 2.51 65.83 0.33 68.73 5.49
SSD 10.00 0.00 10.36 0.62 99.94 0.01 62.46 2.16 6.17 1.12

CLPU 61.23 2.56 0.00 0.00 - - 90.31 1.71 0.00 0.00
RT-Hnet* 15.42 1.75 9.60 0.45 10.93 15.81 58.79 0.99 789.4 52.4

Hnet 60.66 2.37 62.04 0.35 -131.33 25.54 92.77 0.89 - -
Jit-Hnet 28.17 7.95 17.87 0.69 83.00 2.84 82.35 3.45 24.09 3.35

GKT-Hnet 9.54 0.94 11.44 1.49 89.80 4.72 67.90 0.34 93.04 2.41

UnCLe 58.15 6.09 10.00 0.00 100.00 0.00 98.85 0.74 41.12 0.59

Table E.21: Results on CIFAR-100 (Sequence 3) with ResNet-50 Backbone

Methods RA FA UNI SBY UT

Mean Std Mean std Mean std mean std mean std

FT* 60.08 0.30 52.56 2.38 -11.47 6.08 95.55 0.30 694.2 28.6
RT* 51.86 0.16 10.47 0.59 99.23 0.07 90.74 0.82 693.2 27.8

BadTeacher 52.79 1.40 15.73 1.09 99.55 0.00 83.76 0.36 8.68 0.32
SCRUB 19.48 15.4 10.00 0.00 -inf - 71.13 0.79 32.52 2.72
SalUn 58.44 1.57 36.02 1.23 65.02 0.70 86.94 1.14 65.2 2.15

JiT 57.86 2.13 32.70 0.48 21.10 4.79 84.42 0.42 17.71 0.95
GKT 52.44 1.53 11.35 0.77 97.16 0.75 70.90 0.54 147.6 72.8
SSD 39.78 3.43 10.37 0.62 99.98 0.01 69.70 1.83 5.81 0.32

CLPU 54.90 1.27 0.00 0.00 - - 89.54 0.85 0.00 0.00
RT-Hnet* 53.54 2.76 9.74 0.86 -23.62 12.3 73.55 0.40 758.0 56.0

Hnet 57.53 2.26 54.31 3.35 -72.66 4.57 76.06 0.43 0.00 0.00
Jit-Hnet 54.10 2.39 13.05 0.35 91.07 1.65 81.61 0.28 22.83 3.73

GKT-Hnet 44.40 2.26 9.85 0.30 94.43 1.51 73.61 0.51 75.75 0.05

UnCLe 55.24 3.66 10.00 0.00 100.0 0.00 98.19 0.73 29.63 0.29

Table E.22: Results on Tiny-ImageNet (Sequence 1) with ResNet-50 Backbone

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F COMPARISON OF REQUEST SEQUENCES

5-
D

at
as

et
s

Pe
rm

ut
ed

-M
N

IS
T

C
IF

A
R

-1
00

Sequence 3Sequence 2Sequence 1
T

in
y-

Im
ag

eN
et

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

Ideal UnCLe Overlap

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

20
40

60
80

100

Figure F.12: A collage of radar plots displaying UnCLe’s performance over different request se-
quences and datasets. The sequences are presented in Table D.6. This shows that UnCLe’s perfor-
mance is agnostic to sequences.

33

	Introduction
	Related Works
	Background
	Continual Learning
	Machine Unlearning

	Problem Formulation
	Methodology
	Experiments
	Datasets
	Baselines
	Metrics
	Implementation
	Hyperparameter Tuning

	Results
	Key Takeaways

	Conclusion and Future Work
	Connecting MSE and L2
	Hypernetwork
	Initialisation

	Hyperparameter Tuning
	Learning Hyperparameter: Beta
	Unlearning Hyperparameters: Gamma & Burn-in

	Experimental Details
	Operation Sequences
	Baselines: Addendum
	Metrics: Addendum
	Average Retain Set Accuracy
	Average Forget Set Accuracy
	Output Divergence from Uniform Distribution
	Membership Inference Attack

	Other Experiments
	Baselines: Alternative Unlearning Strategies
	Saturation Alleviation
	Burn-In Annealing
	Stability
	Forgetting Retained Tasks
	Remembering Forgotten Tasks

	Primary Experiments: Addendum
	ResNet18 Results
	ResNet50 Results

	Comparison of Request Sequences

