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ABSTRACT

Prompt tuning vision-language models like CLIP has shown great potential in
learning transferable representations for various downstream tasks. The main is-
sue is how to mitigate the over-fitting problem on downstream tasks with lim-
ited training samples. While knowledge-guided context optimization (Yao et al.,
2023; 2024) has been proposed by constructing consistency constraints to handle
catastrophic forgetting in the pre-trained backbone, it also introduces a potential
bias toward pre-training. This paper proposes a novel and simple Divergence-
enhanced Knowledge-guided Prompt Tuning (DeKg) method to address this issue.
The key insight is that the bias toward pre-training can be alleviated by encourag-
ing the independence between the learnable and the crafted prompt. Specifically,
DeKg employs the Hilbert-Schmidt Independence Criterion (HSIC) to regularize
the learnable prompts, thereby reducing their dependence on prior general knowl-
edge, and enabling divergence induced by target knowledge. Comprehensive eval-
uations demonstrate that DeKg serves as a plug-and-play module can seamlessly
integrate with existing knowledge-guided methods and achieves superior perfor-
mance in three challenging benchmarks.

1 INTRODUCTION

Large-scale vision-language models (VLMs) like CLIP (Radford et al., 2021) and ALIGN (Jia et al.,
2021) have demonstrated excellent capabilities in zero-shot recognition and generalization represen-
tation. Unfortunately, the large model sizes, high computational resource requirements, and massive
trainable data restrict their deployment on real vision-language tasks. To address this problem,
a new paradigm of prompt tuning has been proposed and attracted increasing attention in recent
years (Radford et al., 2021; Zhou et al., 2022b).

Prompt tuning (Zhou et al., 2022b) aims to optimize a limited set of dynamic continuous prompt
representations with the end-to-end objective function, i.e., the cross-entropy loss, to transfer the
pre-trained knowledge of VLMs to targeted tasks. These methods are less than optimal due to
challenges in determining what should be preserved and what should be adapted for downstream
tasks. For example, in the base-to-new generalization task, as shown in Figure 1, CoOp(Zhou et al.,
2022b) can achieve a significant performance improvement over the manually prompted method
CLIP(Radford et al., 2021) on base (seen) classes, yet is inferior on new (unseen) classes in the
same dataset. This suggests that the prior general knowledge may be distorted by the limited task-
specific labeled data, causing fine-tuned models to deviate from the pre-trained VLMs and leading
to overfitting issues.

The overffitting issues can be attributed to the lack of regularization in the latent space to model
the prior general knowledge for the unseen class distribution (Yao et al., 2023). Since the frozen
CLIP (Radford et al., 2021) coupled with crafted prompts exhibits robust abilities to unseen classes,
indicating that the pre-trained backbone serves as a valuable source of prior knowledge for each
class, recent works (Yao et al., 2023; Zhu et al., 2023a;b; Yao et al., 2024) all construct a novel
constraint term by enforcing the consistency between the learnable and crafted prompts, called
knowledge-guided context optimization (KGCO). However, despite the benefits of regularization
in preventing catastrophic forgetting, KGCO tends to be biased toward the pre-trained model, es-
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pecially when the data distribution of the target task differs from that of the pre-trained data. For
example, as shown in Figure 1, KgCoOp (Yao et al., 2023) improves CoOp on new classes but de-
grades on base classes, mainly due to the bias of the learnable prompts toward the representations of
the pre-trained CLIP. Overall, an effective prompt tuning method should address the contradiction
problem between catastrophic forgetting in fine-tuning and bias in pre-training.
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Figure 1: Performance comparison of DeKg with
prompt tuning methods (CLIP/ CoOp, KgCoOp (base-
line method), and DeKg (Ours)) under base-to-new
generalization setting. We measure average accuracy
on the base classes (a) and new classes (b) over 11
datasets. The red dotted line indicates the performance
of CoOp for base classes and the zero-shot CLIP for
new classes.

In this work, we propose a novel method,
called Divergence-enhanced Knowledge-
guided Prompt tuning (DeKg). We aim
to maintain the advantage of knowledge-
guided context optimization but alleviate
the contradiction problem between catas-
trophic forgetting and bias towards general
knowledge. Specifically, we introduce a
novel constraint by employing the Hilbert-
Schmidt Independence Criterion (HSIC)
regularization. The proposed constraint
encourages the learnable prompts to main-
tain a consistent yet independent relation
with general knowledge, optimizing the
balance between adapting general knowl-
edge and fine-tuning for targeted tasks. As
shown in Figure 1, DeKg overcomes the
weakness of KgCoOp, performing best on
both base classes and new classes.

Our contributions can be summarized as
follows:

• We tackle an inherent issue of knowledge-guided context optimization in overly biasing
general knowledge in pre-training, and propose a novel HISC-based regularization method
DeKg for encouraging independence between the learnable and the crafted prompts.

• DeKg integrates seamlessly with existing knowledge-guided methods. Compared to the
baselines, DeKg not only introduces divergence between the learnable and crafted prompts
but also enhances differentiation between learnable prompts for distinct classes.

• Extensive experiments demonstrate the superiority of the proposed method in three chal-
lenging benchmarks: base-to-new generalization, cross-dataset generalization, and few-
shot learning.

2 RELATED WORK

Vision-Language Models (VLMs) pre-trained on large-scale image-text association pairs through
self-supervised methods have exhibited impressive performance in various visual tasks (Radford
et al., 2021; Jia et al., 2021). Despite the powerful generalization capacities, the enormous size of
these models makes it challenging to fine-tune the entire models for downstream tasks, particularly
when dealing with few-shot data. Such a trend raises the essential need to study different adaptation
approaches, where prompting has been shown to be one of the simple and effective strategies.

Prompt Tuning for VLMs: Prompting was initially proposed in the domain of Natural Language
Processing (NLP) (Lester et al., 2021; Li & Liang, 2021), providing textual instructions to the task
input for distilling task-relevant knowledge. For example, CLIP (Radford et al., 2021) utilizes a col-
lection of crafted templates “a photo of a [CLASS]” as textual inputs for category-wise embeddings,
and demonstrates exceptional zero-shot image recognition capabilities. However, building a proper
predefined prompt requires domain-specific knowledge and enormous time. To circumvent this, a
series of methods that automate learning embeddings at the input tokens, known as soft prompts,
have emerged for fast adaptation to various downstream tasks. CoOp (Zhou et al., 2022b) optimizes
the prompt content by a continuous set of learnable vectors that are used as input to the text encoder
alongside the class name. However, the prompts are learned by minimizing the classification error
on a training set within the given base classes, resulting in weak generalization on new classes. Co-
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CoOp (Zhou et al., 2022a) further expands by constructing conditional prompts on specific image
instances. However, such methods have a worse generalization than CLIP on the same task to the
unseen classes. In addition to the textual prompt tuning, MaPLe (Khattak et al., 2023a) conducts the
visual-textual prompt tuning by jointly conducting the prompt tuning on the visual and text encoders.

Knowledge-guided Prompt Tuning: To ensure that learnable prompts retain essential general tex-
tual knowledge contained in frozen CLIP, ProGad (Zhu et al., 2023a), and KgCoOp (Yao et al.,
2023) all constrained the consistency between the learnable prompt and the crafted prompt by em-
ploying a novel constraint term. Specifically, ProGad tries to optimize the learnable prompts with
the aligned direction generated by the crafted prompts. KgCoOp adopts the Euclidean distance
to minimize the discrepancy between textual embeddings generated by learned prompts and crafted
prompts. PromptSRC (Khattak et al., 2023b) presents a self-regulating approach to prompt learning,
overcoming overfitting and improving generalization by leveraging mutual agreement, prompt self-
ensembling, and textual diversity. Later, TCP (Yao et al., 2024) constructs an embedding module
to inject the class-level textual knowledge into the learnable prompt tokens. While existing prompt
learning techniques have boosted the generalization ability by applying consistency constraints on
the textual input between learnable and crafted tokens, they exhibit limited capability to capture
specific knowledge. To mitigate this limitation, we propose a novel textual prompting method that
incorporates consistency and diversity to enhance the generalization and discriminative capabilities
of the learnable tokens.

3 METHODOLOGY

In this paper, we seek a more general prompting to empower the capabilities of capturing task-
specific information without forgetting task-agnostic general knowledge. Our method is built upon
the framework of knowledge-guided context optimization (Yao et al., 2023), which enforces a con-
sistency constraint between the learnable and crafted prompts to distill knowledge from the frozen
encoders, thus defying catastrophic forgetting. However, relying too much on pre-trained knowl-
edge may hurt downstream knowledge and degrade performance. To mitigate this limitation, we
propose a new method based on the Hilbert-Schmidt Independence Criterion (HSIC) regularization.

3.1 REVISITING KNOWLEDGE-GUIDED CONTEXT OPTIMIZATION

CLIP (Radford et al., 2021) is a fundamental Vision-Language Model, offering a zero-shot transfer
strategy by pre-training the visual backbone and textual encoder on 400M large-scale image-text
pairs through contrastive learning. Benefiting its robust generalization capabilities to new classes,
the frozen text embeddings {wclip

i } of the crafted prompt “ a photo of a [class]” can be a valuable
source of prior general knowledge1, where the “ [class]” is replaced by i-th class name. However,
general knowledge is less able to accurately describe downstream tasks, mainly without considering
the task-specific knowledge of each task.

To obtain discriminative target task knowledge, a set of learnable prompts T = {t1, t2, . . . , tM}
is designed for generating task-specific textual embeddings of all classes, where M is the length of
tokens. Similar to CLIP, the corresponding class token ci is concatenated with the learnable tokens
for generating the textual token wi = {t1, t2, . . . , tM , ci}. Then the textual embeddings of all
classes can be optimized by minimizing the contrastive loss between the given image’s embedding
x and its class embedding wy , which formulates as:

Lce =
1

N

∑
(x,y)∈Ds

exp(sim(x,wy)/τ)∑Nc

i=1 exp(sim(x,wi)/τ)
, (1)

where Ds denotes the seen dataset, N is the number of training images, Nc is the number of classes,
sim(·) represents the cosine similarity, and τ refers to a temperature parameter frozen in CLIP.

Despite delivering promising results, it can be observed the learned context is prone to overfitting to
small training data and not generalizing to new classes (Zhou et al., 2022a), primarily because the
context is fixed once learned and only optimized for specific classes, i.e., catastrophic forgetting for

1Following Yao et al. (2023), “general knowledge” in this work denotes the information contained in the
pre-trained CLIP model.
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Figure 2: The knowledge-guided optimization framework of DeKg. Lce is the cross-entropy loss,
and Lkg is a consistency constraint. Lkd is a regularization term that uses the Hilbert-Schmidt Inde-
pendence Criterion (HSIC) to encourage the independence between learnable and crafted prompts.

pre-trained knowledge. To exploit the prior general textual knowledge contained in the frozen CLIP
for learnable tokens optimization, a simple yet efficient consistency constraint is added during the
prompt tuning to prevent catastrophes forgetting (Yao et al., 2023), which can be expressed as

Lkg = ∥wi −wclip
i ∥22. (2)

The consistency constraint enforces that the learnable tokens have similar distributions as the crafted
prompts, suggesting the potential bias toward pre-training. The reason lies in the different data
distributions of the different domains. Compared to the pre-trained VLMs, the training data of
downstream tasks is extremely limited, resulting in the learnable context inevitably towards pre-
trained knowledge distributions.

Overall, existing soft prompt learning methods still encounter substantial challenges, i.e., catas-
trophic forgetting and bias, leading to performance degradation.

3.2 DIVERGENCE-ENHANCED KNOWLEDGE-GUIDED CONTEXT OPTIMIZATION

The proposed framework is shown in Figure 2. Considering that the consistency between learn-
able tokens and general knowledge plays an important role in preventing catastrophic forgetting, we
propose to add a new regularization to prevent current task-specific knowledge from being inter-
fered with by prior general knowledge to some extent, i.e., encouraging the independence between
the learnable and crafted prompts. Thus, the context optimization can be guided with divergence-
enhanced prior general knowledge.

To constrain independence, Hilbert-Schmidt Independence Criterion (HSIC) is adopted to penalize
the dependency between the learnable and crafted prompts. HSIC measures the degree of depen-
dency, with lower values indicating stronger independence and higher values suggesting greater
correlation. Formally, the learnable prompts of Nc classes are defined as W = {wi}Nc

i=1, and the
corresponding crafted prompt is defined as Wclip = {wclip

i }Nc
i=1. HSIC between W and Wclip is

empirically expressed from Gretton et al. (2005) as below:

Lkd = HSIC(W,Wclip) = (Nc − 1)
−2

tr(KHKclipH), (3)
where K ∈ RNc×Nc , Kclip ∈ RNc×Nc with entries K(i, j) = k(wi,wj), Kclip(i, j) =

k(wclip
i ,wclip

j ), k(., .) is a kernel function; H = INc
− 1

Nc
1Nc1

T
Nc

∈ RNc×Nc is the centering
matrix, which is used to remove the bias within each representations and focus on the inter-variable
relationships; tr represents the trace of the matrix. In our implementation, we use the inner product
kernel function, i.e., Kclip = WclipTWclip, and promising performance is achieved.

Define A = HKclipH, Eq.(3) can be rewritten as follows:

Lkd = (Nc − 1)−2tr(KA) (4)

= (Nc − 1)−2
∑
i,j

K(i, j)Ai,j .
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Notice that A is fixed because it is only related to the representations of the crafted prompts. There-
fore, Lkd is only affected by {K(i, j)}, which describe the relationship between the set of learnable
prompts W = {wi}Nc

i=1. Thus the computation of HSIC is only related to W = {wi}Nc
i=1 without

introducing any extra parameters.

Let us revisit the computation of Lkd in Eq.(4). It actually involves both intra-class relations (e.g.,
between wi and wclip

i ) and inter-class relations (e.g., between wi and wj). Therefore, penalizing
Lkd encourages both intra-class and inter-class independence.

Finally, we constrain the learnable prompts with both consistency and independence, which can be
expressed as follows:

L = Lce + λLkg + µLkd, (5)

where λ and µ are tradeoff hyperparameters encoding the belief degrees for consistency and expres-
siveness, respectively.

4 EXPERIMENTS

In this section, we conduct extensive experiments on three widely-used benchmarks to evaluate the
ability of base-to-new generalization, cross-data generalization, and few-shot learning, and demon-
strate the effectiveness of the proposed method by comparing with strong vision-language prompt
tuning baselines.

4.1 EXPERIMENTAL SETUP

Dataset: For downstream tasks, we follow previous work (Radford et al., 2021; Zhou et al.,
2022a;b), to conduct experiments on 11 representative image classification datasets, including Im-
ageNet (Deng et al., 2009) and Caltech (Fei-Fei et al., 2004) for generic object classification; Ox-
fordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), and FGVCAircraft (Maji et al., 2013) for fine-grained visual
categorization, EuroSAT (Helber et al., 2019) for satellite image classification, UCF101 (Soomro
et al., 2012) for action recognization, DTD (Cimpoi et al., 2014) for texture classification, and
SUN397 (Xiao et al., 2010) for scene recognition.

Baselines: First, to demonstrate that DeKg can embody the advantage of preserving both the general
knowledge frozen in CLIP and task-specific knowledge, we compare the results of CLIP (Radford
et al., 2021), CoOp(Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a) and MaPLe (Khattak et al.,
2023a) which only make use of general or task-specific knowledge, i.e., only use cross-entropy for
prediction. Second, to show the significant advantage of enhancing task-specific knowledge, we
compared with two baselines (KgCoOp (Yao et al., 2023), and ProGad (Zhu et al., 2023a)) which
preserve the general knowledge by enforcing the consistency between the learnable tokens and
crafted prompts. Besides, to highlight the importance of divergence guided by general knowledge
and task-specific knowledge, we compared with PromptSRC (Khattak et al., 2023b) and TCP (Yao
et al., 2024) which incorporates other strategies to consistency constraint, i.e., PromtSRC adds self-
ensembling and textual diversity regularization, while TCP inserts class-specific knowledge into
embeddings.

For the DeKg method which unifies the general knowledge preservation and divergence upon
general-specific knowledge into one framework, four baselines, i.e., KgCoOp, ProGad, TCP, and
PromtSRC, can be expanded by adding the HSIC regularization to produce the divergence by target
knowledge with general knowledge preservation. In our experiments, only KgCoOp and TCP are
adopted and expanded to generate the final learnable tokens, denoted as DeKgKgCoOp and DeKgTCP
respectively. The main reason for this is that, on one hand, ProGad aligns prompts with general
knowledge of the gradient, while the others are directly aligned with the embeddings. On the other
hand, PromptSRC includes visual prompts and textual prompts, while other baselines only include
textual prompts.

Training Details: Our implementation is based on KgCoOp’s (Yao et al., 2023) and TCP’s (Yao
et al., 2024) codes. To ensure a fair comparison, all experiments were conducted using the Vit-
B/16 (Dosovitskiy et al., 2021) as the vision backbone and the context length set as 4. Additionally,
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we maintained consistency with the corresponding baselines in DeKgKgCoOp and DeKgTCP for ran-
dom prompt initialization, training epoch, training schedule, and data augmentation settings. In our
experiments, we set the ratio of λ/µ to 3/1 by grid search, which translates to λ being 6 and µ being
2. All experiments were carried out using the HYGON DCU-Z100L.

Table 1: Comparison with existing methods in the base-to-new generalization setting with ViT-B/16
as the backbone. The context length M is 4 for prompt-based methods with the 16-shot samples
from the base classes. H: Harmonic mean.

Datasets CLIP CoOp CoCoOp MaPLe KgCoOp ProGrad PromptSRC TCP DeKgKgCoOp DeKgTCP

Regularization: only cross entropy consistency
constraint

consistency constraint
and other

consistency and
indenpendence constraints

Average
Base 69.34 82.64 80.47 82.28 80.73 82.48 84.26 84.13 82.59 84.96
New 74.22 68.00 71.69 75.14 73.6 70.75 76.10 75.36 74.93 76.38

H 71.70 74.61 75.83 78.55 77.0 76.16 79.97 79.51 78.57 80.44

ImageNet
Base 72.43 76.46 75.98 76.66 75.83 77.02 77.60 77.27 76.65 77.40
New 68.14 66.31 70.43 70.54 69.96 66.66 70.73 69.87 69.66 69.20

H 70.22 71.02 73.10 73.47 72.78 71.46 74.01 73.38 72.99 73.07

Caltech
Base 96.84 98.11 97.96 97.74 97.72 98.02 98.10 98.23 98.13 98.64
New 94.00 93.52 93.81 94.36 94.39 93.89 94.03 94.67 95.09 95.20

H 95.40 95.76 95.84 96.02 96.03 95.91 96.02 96.42 96.59 96.89

Pets
Base 91.17 94.24 95.20 95.43 94.65 95.07 95.33 94.67 95.00 94.47
New 97.26 96.66 97.69 97.76 97.76 97.63 97.30 97.20 97.71 97.76

H 94.12 95.43 96.43 96.58 96.18 96.33 96.30 95.92 96.34 96.09

Cars
Base 63.37 76.20 70.49 72.94 71.76 77.68 78.27 80.80 76.31 81.18
New 74.89 69.14 73.59 74.00 75.04 68.63 74.97 74.13 75.27 74.75

H 68.65 72.50 72.01 73.47 73.36 72.88 76.58 77.32 75.79 77.83

Flowers
Base 72.08 97.63 94.87 95.92 95.00 95.54 98.07 97.73 97.72 98.58
New 77.80 69.55 71.75 72.46 74.73 71.87 76.50 75.57 74.04 75.18

H 74.83 81.23 81.71 82.56 83.65 82.03 85.95 85.23 84.25 85.30

Food
Base 90.10 89.44 90.70 90.71 90.5 90.37 90.67 90.57 90.57 90.73
New 91.22 87.50 91.29 92.05 91.7 89.59 91.53 91.37 91.95 91.55

H 90.66 88.46 90.99 91.38 91.09 89.98 91.10 90.97 91.25 91.14

Aircraft
Base 27.19 39.24 33.41 37.44 36.21 40.54 42.73 41.97 39.08 45.20
New 36.29 30.49 23.71 35.61 33.55 27.57 37.87 34.43 34.97 35.09

H 31.09 34.32 27.74 36.50 34.83 32.82 40.15 37.83 36.91 39.51

SUN397
Base 69.36 80.85 79.74 80.82 80.29 81.26 82.67 82.63 81.19 82.52
New 75.35 68.34 76.86 78.70 76.53 74.17 78.47 78.20 76.57 78.30

H 72.23 74.07 78.27 79.75 78.36 77.55 80.52 80.35 78.81 80.35

DTD
Base 53.24 80.17 77.01 80.36 77.55 77.35 82.37 82.77 80.90 83.80
New 59.90 47.54 56.00 59.18 54.99 52.35 62.97 58.07 58.21 59.66

H 56.37 59.69 64.85 68.16 64.35 62.45 71.75 68.25 67.70 69.70

EuroSAT
Base 56.48 91.54 87.49 94.07 85.64 90.11 92.90 91.63 88.29 94.02
New 64.05 54.44 60.04 73.23 64.34 60.89 73.90 74.73 72.69 81.69

H 60.03 68.28 71.21 82.3 73.48 72.67 82.32 82.32 79.73 87.42

UCF101
Base 70.53 85.14 82.33 83.00 82.89 84.33 87.10 87.13 84.64 88.06
New 77.50 64.47 73.45 78.66 76.67 74.94 78.80 80.77 78.04 81.77

H 73.85 73.38 77.67 80.77 79.65 79.35 82.74 83.83 81.21 84.80

4.2 PERFORMANCE COMPARISION & ANALYSIS

4.2.1 BASE-TO-NEW GENERALIZATION

The base-to-new generalization setting aims to evaluate whether the models learned on base tasks
can generalize to new tasks without unseen classes, i.e., a category shift exists between base and
new tasks. Following the baselines, on each dataset, we first construct a base and new task by
equally dividing the dataset into two groups, then perform prompt tuning on the base classes and
test the learned model on both the base and new tasks. Table 1 presents the performance of different
methods across 11 datasets with 16-shot samples, where the best and second results are marked in
bold and underlined, respectively. For convenience, we refer to the classification accuracy of base
tasks and new tasks as base accuracy and new accuracy, respectively. The harmonic mean (H) of
base accuracy and new accuracy is also computed to demonstrate the generalization trade-off.

Compared with zero-shot CLIP, the baselines optimized with only cross-entropy loss, i.e., CoOp,
CoCoOp, and MaPLe, achieve improvement on base classes but show inferior performance on new
classes except Maple. This suggests that they overall tend to overfit the task-specific data distribu-
tions, losing the original generalization capability of the frozen CLIP model towards new tasks. Al-
though KgCoOp alleviates the poor generalization problem in CoOp by preserving the prior general
knowledge, it hardly outperforms CoOp in base accuracy in almost all benchmarks, i.e., KgCoOp
has an average drop from 82.64% to 80.73% compared with CoOp, while ProGrad has a simi-
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Table 2: Comparison in the cross-dataset Generalization the prompts from ImageNet(16-shot sam-
ples) with ViT-16/B, and evaluating on the other 10 datasets.

Datasets CLIP CoOp MaPLe PromptSRC KgCoOp ProGrad TCP DeKgKgCoOp DeKgTCP
ImageNet 66.70 71.51 70.72 71.27 70.66 72.24 71.40 71.34 72.33
Caltech101 93.30 93.70 93.53 93.60 93.92 91.52 93.97 93.87 94.73
Pets 89.10 89.14 90.49 90.25 89.83 89.64 91.25 90.16 90.02
Cars 65.70 64.51 65.57 65.70 65.41 62.39 64.69 65.91 65.49
Flowers 70.70 68.71 72.20 70.25 70.01 67.87 71.21 70.6 72.39
Food101 85.90 85.30 86.20 86.15 86.36 85.40 86.69 86.37 86.59
Aircraft 24.90 18.47 24.74 23.90 22.51 20.16 23.45 23.37 25.05
SUN397 62.60 64.15 67.01 67.10 66.16 62.47 67.15 66.11 67.19
DTD 44.30 41.92 46.49 46.87 46.35 39.42 44.35 46.16 44.47
EuroSAT 48.30 46.39 48.06 45.50 46.04 43.46 51.45 43.15 51.37
UCF101 67.60 66.55 68.69 68.75 68.50 64.29 68.73 68.17 68.78
Avg. 65.24 63.88 66.30 65.81 65.51 62.71 66.29 65.33 66.64

lar trend. This suggests that the learnable context may be skewed towards the general knowledge
frozen in the CLIP, due to the limited task-specific knowledge. In contrast, DeKg improves on both
base and new classes over CLIP and CoOp. Specifically, DeKgTCP obtains an average gain of 2.32%
(i.e., 84.96% vs 82.64%) over CoOp in base accuracy, and 2.16% (i.e., 74.22% vs 76.38%) over
CLIP in new accuracy, respectively. Additionally, DeKgKgCoOp has a similar trend. This shows the
benefits of DeKg by optimizing context explicit guidance by general and target knowledge which
aid base and new classes respectively.

PromptSRC and TCP are two strong competitors because they both leverage task-specific knowledge
and general knowledge together to improve generalization. Fortunately, DeKgTCP demonstrates
improved performance for both base and new class recognition. Specifically, DeKgTCP outperforms
PromptSRC on 8 out of 11 datasets in terms of base accuracy and almost half of the datasets in new
accuracy. Additionally, DeKgTCP shows improvement over TCP in almost all 11 datasets. The main
reason is that PromptSRC and TCP guide the prompt with the token alignment strategy, limited by
handling domain shift in the test set. This demonstrates that DeKgTCP gains advantages by taking
into account the textual embedding distribution with an independence constraint.

4.2.2 CROSS-DATASET GENERALIZATION

To further demonstrate that the proposed model can bridge the distribution gap between the pre-
training dataset and the downstream evaluation set for zero-shot generalization, we compare DeKg
with baselines under the cross-dataset generalization. In this experiment, we follow the baselines
to regard ImageNet as the source dataset and the other 10 dataset as target datasets, i.e., there is a
distribution shift between the base and new tasks.

From the comparison results in Table 2, we can see that our DeKgTCP obtains the highest average
performance among all baselines (66.64% vs 66.29% of TCP). By comparison, the performance
on other datasets with distant and more fine-grained or specialized categories is much lower, such
as Aircraft where the accuracy number is well below 30%. Nonetheless, DeKgTCP exhibits much
stronger transferability than TCP with an average gain of 1.6% (i.e., 25.05% vs 23.45% ) on Aircraft,
as well as on most other fine-grained or specialized datasets. Additionally, DeKgKgCoOp achieves
inferior performance to PromptSRC and TCP, mainly due to the inability to explicitly model the
downstream class distribution.

4.2.3 FEW-SHOT CLASSIFICATION

To verify the model’s ability to develop robust representations with a severely limited amount of
downstream data, we follow the previous work(Yao et al., 2024) to train the model using K-shot
labeled source images from each class and evaluate the testing domain with the same spaces as the
training classes. A summary comparison of the 4-shot setting between the proposed DeKg and ex-
isting baselines appears in Table 3, from which can observe that: the proposed DeKgTCP achieves
the best average performance than all baselines. In addition, the baselines KgCoOp and TCP have
shown respective improvements with independence constraint (i.e., DeKgKgCoOp and DeKgTCP) of
the average gains of 0.64% (i.e, 75.12% vs 74.48%) and 0.44% (i.e, 77.06% vs 76.12%) across 11
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Table 3: Comparison of few-shot learning with 4-shot samples.

ImageNet Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 Avg.
CLIP 66.70 93.30 89.10 65.70 70.70 85.90 24.90 62.60 44.30 48.30 67.60 65.37
CoOp 69.37 94.44 91.30 72.73 91.14 82.58 33.18 70.13 58.57 68.62 77.41 73.59

CoCoOp 70.55 94.98 93.01 69.10 82.56 86.64 30.87 70.50 54.79 63.83 74.99 71.98
MaPLe 70.67 94.30 92.05 68.70 80.80 86.90 29.03 71.47 54.73 54.87 73.70 70.66
ProGrad 70.21 94.93 93.21 71.75 89.98 85.77 32.93 71.17 57.72 70.84 77.82 74.21

PromptSRC 70.80 94.77 93.23 71.83 91.31 86.06 32.80 72.80 60.64 75.02 79.35 75.33
KgCoOp 70.19 94.65 93.20 71.98 90.69 86.59 32.47 71.79 58.31 71.06 78.40 74.48

TCP 70.48 95.00 91.90 76.30 94.40 85.3 36.20 72.11 63.97 77.43 80.83 76.72
DeKgKgCoOp 70.24 94.97 93.1 72.24 90.5 86.88 32.88 72.33 61.05 72.65 79.43 75.12

DeKgTCP 70.19 95.21 92.15 74.9 95.21 85.72 37.02 72.85 64.24 79.16 81.05 77.06

Table 4: Effect of the constraints in our model.

Method Base New H
CoOp 82.63 67.99 74.60
+Lkg 80.73 73.61 77.00
+Lkd 83.13 69.87 75.93
+Lkg + Lkd(ours) 82.59 74.93 78.57

Table 5: Comparision of model complexity.

Method Total Parameters(M) H
KgCoOp 124.325 77.00
TCP +0.329 79.51
DeKgKgCoOp +0 78.57
DeKgTCP +0.329 80.44

datasets. This demonstrates that optimizing the learnable prompts with independence and consis-
tency constraints together is indeed beneficial.

Next, we will conduct more detailed investigations for DeKg. If there is no special statement, all
reported results are averaged performance across over 11 datasets.

4.2.4 ABLATION STUDY AND ANALYSIS

To investigate the learning process of DeKg, we conduct ablative analysis including as follows:

Effect of the constraints employed in DeKg: DeKg contains two key constraints, including
the consistency constraint (i.e., Lkg) and the independence constraint (i.e., Lkd). We conduct a
constraint-wise analysis by adding one or two of them to the baseline method CoOp. Table 4 shows
the results. We can see that the baseline CoOp provides high base class performance but suffers from
poor generalization. By incorporating Lkg alone, the performance of new classes increases signif-
icantly by 5.62% (i.e., 73.61% vs 67.99%), but the base class degrades from 82.63% to 80.73%.
This suggests that Lkg explicitly enforces the prompts to capture generalizable features from frozen
CLIP, or even overfitting to fail to capture task-specific knowledge. In contrast, incorporating Lkd

leads improvements in both base and new classes compared with CoOp, indicating its ability in bal-
ancing model adaptation and generalization. It achieves the best performance in base classes but
still legs behind KgCoOp in new classes. Finally, combining Lkd and Lkg , DeKg achieves improve-
ments in both base and new classes, leading to the average new class and harmonic mean gains of
6.94%( i.e., 74.93% vs 67.99%) and 3.97%( i.e., 78.57% vs 74.60%).

Comparision of Model Complexity: To better understand the benefits of the proposed DeKg, we
examined the model complexity. As shown in Table 5, it can be observed that DeKg is an efficient
method that performs better with the same model complexity of corresponding baselines. For exam-
ple, DeKgKgCoOp shows an average improvement of 1.57% (i.e., 78.57% v 77.00% ) over KgCoOp
without adding any parameters. The main reason is that DeKg simply adds an efficient regulariza-
tion for generating discriminative classifiers guided by better knowledge, i.e., optimizing the balance
between adapting general knowledge and fine-tuning for targeted tasks.

Effect of Hyperparameter λ and µ: To further investigate the impact of consistency and inde-
pendence constraints on model performance, we analyze the effect of hyperparameter λ and µ in
the proposed model DeKg, i.e., λ controls the contribution of capturing general knowledge, and µ
controls the divergence between task-specific knowledge and general knowledge. The effect of λ
and µ on DeKg with KgCoOp and TCP (i.e., DeKgKgCoOp and DeKgTCP ) is shown in Figure 3a and
Figure 3b, respectively. It can be seen that the performance of new tasks becomes better as λ/µ
increases, indicating that the consistency constraint effectively captures the essential knowledge for
new classes. The results reach the best when λ/µ = 3/1 for both DeKgKgCoOp and DeKgTCP. After
that, the performance decreases because a larger ratio forces the learnable prompts to rely strongly
on general knowledge, failing to capture task-specific information. The trend for base precision is
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reversed. This result is reasonable because a larger ratio of λ/µ reduces the importance of task-
specific knowledge, which is essential for base tasks.

(a) DeKgKgCoOp (b) DeKgTCP

Figure 3: Effect of Hyperparameters λ and µ on DeKgKgCoOp and DeKgTCP.

Figure 4: Visualization the HSIC between the prompt of W and W clip in DTD dataset.

Visualization: To further explore the impact of independence on model performance, we examined
the HSIC between learnable context and crafted prompts. In Figure 4, we observed that KgCoOp
yielded very high values, indicating a strong reliance on general knowledge, thus resulting in poor
performance on base tasks. Conversely, CoOp produced very low values, suggesting overfitting to
the target task and limited generalization ability for new tasks. The values obtained by DeKg were
moderate compared to the baselines, indicating a balance between not overfitting the target task and
not being biased toward pre-training.

5 CONCLUSION

Knowledge-guided context optimization is a representative visual-language prompt tuning frame-
work. It emphasizes the consistency between the learnable and crafted prompts to alleviate catas-
trophic forgetting, which boosts the generalization ability but degrades the few-shot learning ability
in downstream tasks. In this paper, we introduce the method DeKg, introducing Hilbert-Schmidt
Independence Criterion regularization for encouraging the intra-class independence between the
learnable and crafted prompts and the inter-class independence between the learnable prompts. Ex-
tensive evaluations on three challenging benchmarks demonstrate that DeKg is an effective and
efficient prompt tuning method. It can seamlessly integrate with existing knowledge-guided meth-
ods such as KgCoOp (Yao et al., 2023) and TCP (Yao et al., 2024), and significantly improve their
performance without adding extra parameters. Especially, existing methods often struggle to keep a
balance between the generalization ability and few-shot learning ability. In contrast, DeKg outper-
forms strong baselines on both base classes and new classes in base-to-new settings, and also obtains
superior performance in cross-dataset generation and few-shot learning settings. In the future, we
plan to incorporate DeKg to more visual-language prompt tuning frameworks and applications.
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