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Abstract

The urging societal demand for fair AI systems has put pressure on the research
community to develop predictive models that are not only globally accurate but also
meet new fairness criteria, reflecting the lack of disparate mistreatment with respect
to sensitive attributes (e.g. gender, ethnicity, age). In particular, the variability
of the errors made by certain Facial Recognition (FR) systems across specific
segments of the population compromises the deployment of the latter, and was
judged unacceptable by regulatory authorities. Designing fair FR systems is a
very challenging problem, mainly due to the complex and functional nature of the
performance measure used in this domain (i.e. ROC curves) and because of the
huge heterogeneity of the face image datasets usually available for training. In
this paper, we propose a novel post-processing approach to improve the fairness of
pre-trained FR models by optimizing a regression loss which acts on centroid-based
scores. Beyond the computational advantages of the method, we present numerical
experiments providing strong empirical evidence of the gain in fairness and of the
ability to preserve global accuracy.

1 Introduction

Facial Recognition (FR) systems are increasingly deployed (e.g. at border checkpoints), for biometric
verification in particular. Although the global accuracy attained by certain FR systems is now judged
satisfactory and offers clear efficiency gains (see e.g. Krizhevsky et al., 2012), their operational
deployment has revealed statistically significant disparities in treatment between different segments
of the population. Fairness in algorithmic decisions is now a major concern and is becoming part
of the functional specifications of AI systems, and soon subject to regulation in certain application
domains, including FR (Grother, 2022). Following recent scandals2, the academic community has
delved into the investigation of bias in FR systems in the last few years. This exploration extends
back to early studies which examined racial bias in non-deep FR models (Phillips et al., 2003). A
recent comprehensive analysis conducted by the U.S. National Institute of Standards and Technology
(NIST) unveiled significant performance disparities among hundreds of academic/commercial FR
algorithms, based on e.g. gender (Grother, 2022). In the present work, fairness is understood as the
absence of (significant) disparate mistreatment, and we propose a novel methodology to reduce such
bias in deep learning-based FR systems.

Related work on mitigating bias in FR. Various approaches have been explored to address bias
in deep learning: pre-processing, in-processing, and post-processing methods (Caton & Haas, 2020).
These strategies differ based on whether the fairness intervention occurs before, during, or after the

∗Alternative correspondence: jeanremy.conti@gmail.com.
2See e.g. this study conducted by the American Civil Liberties Union that attracted notable media attention.

2nd Workshop on Regulatable ML at NeurIPS 2024.
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training phase. Pre-processing methods are deemed unsuitable for FR purposes since balanced train-
ing datasets are actually not enough to mitigate bias, as illustrated by Albiero et al. (2020) for gender
bias and Gwilliam et al. (2021) for racial bias. In terms of in-processing, Wang & Deng (2020) use
reinforcement learning for fair decision rules, but face computational challenges. Alasadi et al. (2019)
and Gong et al. (2019) employ adversarial methods to reduce bias, but these are recognized for their
instability and computational needs, while Wang et al. (2019) leverage imbalanced and transfer learn-
ing techniques. Note that in-processing strategies require a complete retraining, which is notoriously
costly as state-of-the-art FR systems require very large training datasets. Furthermore, these strategies
lead to fairness improvements at the expense of the performance, highlighting a performance-fairness
trade-off (Du et al., 2020). Concerning post-processing approaches, Dhar et al. (2021) mitigate the
racial bias of a pre-trained model by enforcing the embeddings not to contain any racial information.
Conti et al. (2022) reduce the gender bias using a statistical model for the embedding space, but they
admit that the method is not able to tackle other types of bias. Those works change the pre-trained
embeddings to improve the fairness, both in terms of false positives and false negatives. In contrast,
another line of research takes a different approach, not altering the latent space but modifying the
decision rule itself. Terhörst et al. (2020) intervene on the score function, while Salvador et al. (2021)
rely on calibration methods. Those works focus on the bias in terms of false positives and their
training set needs to have the same distribution than the test set, which may not be a realistic scenario.

Contributions. We propose a post-processing approach to mitigate the bias of a pre-trained/frozen
FR model that is accessible only as a black-box, making it applicable to numerous already deployed
FR systems. It is important to note that many methods fine tune state-of-the-art open-source FR
models, thereby acquiring their bias, which underscores the necessity of improving their fairness
properties. Our solution aims to align intra-group performance curves with those of a reference
group, a functional objective that is inherently challenging. By drawing an analogy between real
FR scores and centroid-based scores, we simplify the original fairness objective, enabling the
use of pseudo-metrics that are easier to compute and align with modern FR loss functions. This
approach thus bridges the gap between contemporary FR training and fairness mitigation. We
introduce a new loss function, Centroid Fairness, which aligns these pseudo-metrics across the
subgroups of the population, and use this loss to train a small model called the Fairness Module.
Extensive experiments demonstrate that our Fairness Module reduces bias in pre-trained models
while maintaining their performance, surpassing the traditional performance-fairness trade-off. In
summary, our bias mitigation method eliminates the need for a costly retraining of a large FR model,
is especially fast to train, and retains the state-of-the-art performance of the pre-trained model.

2 Background and Preliminaries

FR mainly serves two use cases: identification, involving the recognition of the identity of a probe
image among several pre-enrolled identities, and verification (the primary focus of this paper), aiming
at deciding whether two face images correspond to the same identity. Facial verification operates in
an open-set scenario: the identities present at the test phase are often absent from the training set.

Notations. The indicator function of an event E is denoted by I{E}. Assuming that there are
K ≤ +∞ identities within the images, a FR dataset of size N is denoted by (xi, yi)1≤i≤N , where
xi ∈ Rh×w×c is a face image of size h× w, c is the color channel dimension and yi ∈ {1, . . . ,K}
is the identity label of xi. In face verification, the standard approach is to train an encoder function
fθ : Rh×w×c → Rd (e.g. CNN) with learnable parameters θ to bring images from the same identity
closer together and images from distinct identities far away from each other in Rd. The latent
representation of an image xi is referred to as its face embedding fθ(xi).

2.1 Evaluation of Face Recognition Systems

We start by explaining how the performance of a trained FR model fθ is evaluated.

Decision rule. The similarity score between two face images xi,xj is usually measured using the
cosine similarity between their embeddings:

sθ(xi,xj) = cos(fθ(xi), fθ(xj)) ∈ [−1, 1], (1)

where cos(z, z′) = z⊺z′/(∥z∥ · ∥z′∥) and || · || is the Euclidean norm. The decision rule to decide
whether both images share the same identity is obtained by applying a threshold t ∈ [−1, 1] to this
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score. If sθ(xi,xj) > t, (xi,xj) is predicted to share the same identity (positive pair), while for
sθ(xi,xj) ≤ t we predict that they do not (negative pair). In this sense, face verification is a binary
classification with a pair of images as input.

Evaluation metrics. The gold standard to evaluate the performance of FR models is the ROC curve,
i.e. the False Rejection Rate (FRR) as a function of the False Acceptance Rate (FAR) as the threshold
t varies3. In practice, FAR and FRR are computed on an evaluation dataset (xi, yi)1≤i≤N . The set
of genuine (ground-truth positive) pairs is denoted as G = {(xi,xj), 1 ≤ i < j ≤ N, yi = yj}
while the set of impostor (ground-truth negative) pairs is I = {(xi,xj), 1 ≤ i < j ≤ N, yi ̸= yj}.
The metrics FAR and FRR of a FR model fθ are then given by:

FAR(t) =
1

|I|
∑

(xi,xj)∈I

I{sθ(xi,xj) > t}, FRR(t) =
1

|G|
∑

(xi,xj)∈G

I{sθ(xi,xj) ≤ t}, (2)

where | · | denotes the cardinality of a set. FAR(t) is the proportion of impostor scores predicted
as positive (same identity), while FRR(t) is the proportion of genuine scores predicted as negative
(distinct identities). The trade-off between these two metrics play a pivotal role in assessing FR
systems. For instance, in the context of airport boarding gates, achieving a very low FAR is crucial,
while simultaneously maintaining a reasonable FRR to ensure a smooth and user-friendly experience.

The ROC curve, evaluated at α ∈ (0, 1), is naturally defined as FRR(t) with t such that FAR(t) = α.
More rigorously, it is defined using the generalized inverse of a distribution function (see Ap-
pendix C.1), as ROC(α) = FRR

(
FAR−1(α)

)
. The FAR level α establishes the operational

threshold of the Face Recognition system, representing the acceptable security risk. Depending on
the use case, it is typically set to 10−i with i ∈ {1, . . . , 6}.

2.2 Fairness Metrics

To assess the fairness of a FR model, the typical approach involves examining differentials in
performance across several subgroups or segments of the population. These subgroups are defined by
a sensitive attribute, such as gender, ethnicity or age class. For a given discrete sensitive attribute that
can take A > 1 different values in say A = {0, 1, . . . , A−1}, the attribute of identity k ∈ {1, . . . ,K}
is denoted by ak ∈ A. With those notations, the attribute of a face image xi with identity yi is thus ayi

.

Intra-group metrics. For any a ∈ A, the sets of genuine/impostor pairs with attribute a are:
Ga = {(xi,xj), i<j, yi = yj , ayi

=ayj
=a}, Ia = {(xi,xj), i<j, yi ̸= yj , ayi

=ayj
=a}. (3)

From Ga and Ia, one naturally defines the intra-group metrics FARa(t) and FRRa(t) as for Eq. (2),
by replacing I by Ia and G by Ga. Because FR systems use a unique threshold t for their decision
rule, our focus will be on comparing intra-group metrics (FARa(t))a∈A (and (FRRa(t))a∈A) at any
fixed threshold t, as recommended by Robinson et al. (2020) and Krishnapriya et al. (2020).

Fairness metrics. We rely on fairness metrics used in previous work (Conti & Clémençon, 2024)
that align with those used by the NIST in their FRVT report, analyzing the fairness of hundreds of
academic/commercial FR models (Grother, 2022). As the FR performance may be more focused on
the FAR metric or on FRR, depending on the use-case, we consider one fairness measure to quantify
the differentials in (FARa(t))a∈A, and another for (FRRa(t))a∈A:

BFAR(t) = maxa∈A FARa(t)/FAR†(t), BFRR(t) = maxa∈A FRRa(t)/FRR
†(t), (4)

where FAR†(t) (resp. FRR†(t)) is the geometric mean of the values (FARa(t))a∈A (resp.
(FRRa(t))a∈A). One can read the above acronyms as “Bias in FAR/FRR”. Both metrics compare
the worst FAR/FRR performance across subgroups to an aggregated performance over all subgroups,
at a fixed threshold t. As for the ROC curve, this threshold t is set as t = FAR−1(α), with the FAR
level α ∈ (0, 1) defining the selected appropriate security risk. The FAR level α is computed using
the global population of the evaluation dataset, and not for some specific subgroup. In this sense,
both fairness metrics are in fact functions of the FAR level α, instead of t, as for the ROC curve.

We note that other FR fairness metrics exist in the literature, such as the maximum difference in the
values (FARa(t))a∈A used by Alasadi et al. (2019) and Dhar et al. (2021). However, this metric is
not normalized and thus lacks interpretability.

3Standard ROC definitions often used 1 − FRR (i.e., the True Positive Rate) instead of FRR. The FR
community favors the use of FRR so that both metrics FAR and FRR correspond to error rates.
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2.3 Training a Face Recognition System with Pseudo-Scores

We now review the state-of-the-art approach to train the deep encoder fθ : Rh×w×c → Rd on a large
training set (xi, yi)1≤i≤N with K identities. During the training phase exclusively, a fully-connected
layer is added on top of the embeddings, resulting in an output of a K-dimensional vector that
predicts the identity of each image within the training set. The complete model (the encoder and the
fully-connected layer) is trained as an identity classification task. The predominant form of FR loss
functions is (Wang et al., 2017; Hasnat et al., 2017):

L(θ,µ) = − 1

N

N∑
i=1

log

(
eκ sθ(xi,µyi

)∑K
k=1 e

κ sθ(xi,µk)

)
, with sθ(xi,µk) = cos(fθ(xi),µk), (5)

where the µk’s are the fully-connected layer’s parameters (µk ∈ Rd), κ > 0 is the inverse temperature
of the softmax and µ = (µk)1≤k≤K . Recent loss functions slightly change sθ(xi,µyi) in Eq. (5)
by incorporating a fixed margin to penalize more the intra-class angle variations. Examples include
CosFace (Wang et al., 2018) and ArcFace (Deng et al., 2019) and we apply our debiasing method on
both models. Note that minimizing the loss in Eq. (5) enforces the embeddings fθ(xi) of identity l to
be all clustered around µl on the unit hypersphere, while being far from any µk such that k ̸= l. In
this sense, one might consider µk as a pseudo-embedding which represents the identity k. The µk’s
are often called centroids (Zhu et al., 2019) of a class/identity.

Pseudo-scores. As a consequence of the embedding-like nature of the centroids, we call sθ(xi,µk)
in Eq. (5) the pseudo-score between image xi and centroid µk. Denoting the image-centroid
genuine/impostor pairs by

G = {(xi,µk), yi = k}, I = {(xi,µk), yi ̸= k}, (6)

we distinguish between genuine pseudo-scores {sθ(xi,µk), (xi,µk) ∈ G} and impostor pseudo-
scores {sθ(xi,µk), (xi,µk) ∈ I}. These pseudo-scores effectively serve as a proxy for real scores
during training. As the number of pseudo-scores is much smaller than the number of real scores,
this makes the centroid-based approach much more efficient than prior strategies relying on real
scores, like triplet loss-based approaches (Schroff et al., 2015). Our Fairness Module defined in the
next section builds upon this strategy to preserve efficiency in the post-processing step.

3 Centroid Fairness

We now present our approach. We assume to have access to a pre-trained FR model f , trained on
a training set (xi, yi)1≤i≤N . We consider here a black-box setting, where f is only available for
inference and its training parameters are unavailable (hence we drop θ from the notation fθ). Face
images are encoded by f into embeddings, and scores (Eq. 1) are computed for all embedding pairs
of the test set. Those scores define FARa(t), FRRa(t) metrics for the pre-trained model f , for
each subgroup a ∈ A, and the FARa(t) curves are typically not aligned/equal when a varies (and
similarly for FRRa(t)). The objective is to improve the fairness metrics of f (as defined in Eq. 4).
Our post-processing method consists in training a small fair model acting on the output of f . In
practice, we use the same training set as f for fair comparisons (see Appendix B.1 for a discussion).

Pseudo-scores estimation. Our approach uses the pseudo-scores of f , but assuming access to the
pre-trained centroids µk is not realistic as many open-source pre-trained FR models do not provide
those parameters. Following Section 2.3, a natural way to estimate the centroid of identity k for f
consists in taking the average of all normalized embeddings f(xi) of identity k:

µ
(0)
k = 1

nk

∑N
i=1 I{yi = k} f(xi)

∥f(xi)∥ ∈ Rd, (7)

where nk is the number of images xi from the training set whose identity satisfies yi = k. The
(estimated) pre-trained pseudo-scores s(xi,µ

(0)
k ) can then be computed using Eq. (5).

3.1 Pseudo-Score Transformation

As seen in Section 2.2, to achieve fairness for a trained model f , the intra-group metrics
(FARa(t))a∈A and (FRRa(t))a∈A should be nearly constant when a ∈ A varies, at any threshold
t ∈ [−1, 1]. Those intra-group metrics are computed with real scores s(xi,xj).
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Pseudo-metrics. Motivated by the analogy between real scores s(xi,xj) and pseudo-scores
s(xi,µ

(0)
k ) in Section 2.3, we define centroid versions of the intra-group metrics. The real intra-group

metrics involve image pairs (xi,xj) which belong to Ga or to Ia (see Eq. 3), i.e. genuine/impostor
pairs sharing the same attribute a ∈ A. Extending the definitions of the image-centroid pairs G and I
in Eq. (6), we define their counterparts for image-centroid pairs sharing the same attribute a ∈ A:

Ga = {(xi,µ
(0)
k ), yi = k, ayi = ak = a}, Ia = {(xi,µ

(0)
k ), yi ̸= k, ayi = ak = a}. (8)

One can then naturally define the intra-group pseudo-metrics for the pre-trained model f :

FARa(t) = 1/|Ia|
∑

(xi,µ
(0)
k )∈Ia

I{s(xi,µ
(0)
k ) > t}, FRRa(t) = 1/|Ga|

∑
(xi,µ

(0)
k )∈Ga

I{s(xi,µ
(0)
k ) ≤ t}. (9)

Just like pseudo-scores s(xi,µ
(0)
k ) are surrogates for real scores s(xi,xj), intra-group pseudo-

metrics FARa and FRRa are surrogates for intra-group real metrics FARa and FRRa. Those
pseudo-metrics are displayed in Fig. 3 and 5 for the FR model ArcFace (solid lines), evaluated on the
BUPT dataset which is annotated with race labels a (see Section 4 for more details). For the same
model and the same dataset, we show the real metrics FARa and FRRa in Fig. 4 and 6 (solid lines).
We see that pseudo and real metrics behave similarly, and the ranking of the best performance among
groups is preserved. We will thus work with intra-group pseudo metrics for efficiency purposes.

Pseudo-metric curve alignment. Our objective is to align the curves (FARa(t))a∈A across the
values of a, for any t, and similarly for (FRRa(t))a∈A. For simplicity, let us consider two subgroups:
a and r, where r is the reference subgroup on which one would like to align all other subgroups. In
this case, the objective is to align the curve FARa(t) on FARr(t), and FRRa(t) on FRRr(t).

Figure 1: Pseudo-score transformation to achieve
fairness. From a pseudo-score s

(−)
a (resp. s

(+)
a )

of an image-centroid impostor (resp. genuine)
pair sharing the attribute a, the pseudo-metric
FARa(s

(−)
a ) = α (resp. FRRa(s

(+)
a ) = α) is

computed. The transformed score is the score
which makes the reference pseudo-metric FARr

(resp. FRRr) equal to α, among the scores from
image-centroid pairs of attribute r.

To explain how the transformation works, we
rely on Figure 1. Let (xi,µ

(0)
k ) ∈ Ga be an

image-centroid genuine pair with attribute a,
to which the pre-trained model f assigns the
pseudo-score s

(+)
a := s(xi,µ

(0)
k ) shown in

a⃝. s
(+)
a is only involved in the computation

of FRRa(t) of the pre-trained model f (see
Eq. 9). Let α := FRRa[s

(+)
a ] be the FRRa

metric evaluated at s
(+)
a , shown in b⃝. By

definition of FRRa, s(+)
a is the α-th quantile

of the genuine pseudo-scores of attribute
a (i.e. of {s(xi,µ

(0)
k ) : (xi,µ

(0)
k ) ∈ Ga}).

To have FRRa(t) aligned with FRRr(t),
it suffices that their respective quan-
tiles are equal. The α-th quantile of
the genuine pseudo-scores of attribute r

(i.e. of {s(xi,µ
(0)
k ) : (xi,µ

(0)
k ) ∈ Gr}), is

attained for a certain pseudo-score starget satis-
fying FRRr[starget] = α (shown in c⃝). Using
the quantile function (FRRr)

−1, it means that
starget = (FRRr)

−1(α), as shown in d⃝.

Thus, for all (xi,µ
(0)
k ) ∈ Ga, we define the pseudo-score transformation for s(+)

a := s(xi,µ
(0)
k ) as

TFRR
a−→r(s

(+)
a ) = (FRRr)

−1 ◦ FRRa[s
(+)
a ].

Similarly, for (xi,µ
(0)
k ) ∈ Ia, we define the pseudo-score transformation for s(−)

a := s(xi,µ
(0)
k ) as

TFAR
a−→r(s

(−)
a ) = (FARr)

−1 ◦ FARa[s
(−)
a ].

The notation ◦ denotes the composition operator, and we refer to Appendix C.2 for rigorous defi-
nitions of the quantiles FAR

−1

r and FRR
−1

r . The transformations TFAR
a−→r, TFRR

a−→r are illustrated in
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Figure 2: The proposed Fairness Module framework. A frozen pre-trained model f outputs the
embedding f(xi) for the image xi. The Fairness Module outputs a new fair embedding gθ(xi).

Fig. 1. Assume that all the pseudo-scores of group a are modified as follows: all pairs from Ia

are transformed with TFAR
a−→r while all pairs from Ga are transformed with TFRR

a−→r. This operation
changes the pseudo-metrics FARa(t) and FRRa(t). As detailed in Appendix B.2, and proved with
Proposition B.1, the newly obtained pseudo-metrics are aligned with FARr and FRRr respectively.
In other words, TFAR

a−→r is an impostor pseudo-score transformation which aligns FARa(t) on FARr(t),
and TFRR

a−→r is a genuine pseudo-score transformation which aligns FRRa(t) on FRRr(t).

3.2 Fairness Module

Leveraging the pseudo-score transformations which align the group-wise pseudo-metrics with the
pseudo-metrics of a reference group presented in Section 3.1, we are now ready to present the Fairness
Module which will be responsible for learning these transformations.

The Fairness Module gθ with parameters θ takes as input an embedding f(xi) ∈ Rd of the pre-trained
model f and outputs a new embedding gθ(xi) ∈ Rd of the same dimension (see Fig. 2). To prioritize
simplicity and scalability, the architecture is a shallow MLP of size (d, 2d, d), with the first layer fol-
lowed by a ReLU activation. Motivated by the normalization of FR embeddings, both for FR training
and FR evaluation (see Section 2), we add a normalization step before entering the MLP. We also add a
shortcut connection after the normalization step in order to allow for the model to fit the identity func-
tion easily: by setting all the MLP’s weights to 0, the Fairness Module outputs the same embeddings
than f . As gains in FR fairness are often accompanied by high losses in performance (Dhar et al.,
2021), this shortcut connection makes it easy for the module to recover the performance of f if needed.

To learn the pseudo-score transformation introduced in Section 3.1, the Fairness Module needs
to output new pseudo-scores. Thus, in addition to the new embeddings gθ(xi), we learn K new
centroids µk, as detailed in the next section. Since the shortcut connection makes it easy for the
Fairness Module to recover the embedding space of the pre-trained model f , we initialize those new
centroids µk with the pre-trained centroids µ

(0)
k . Thus, the parameters used to train the Fairness

Module are: the MLP’s weights θ and the K new centroids µk. The new pseudo-scores obtained
from the Fairness Module are then given by sθ(xi,µk) = cos(gθ(xi),µk) ∈ [−1, 1]. Note that we
use the notation sθ(xi,µk) for the pseudo-scores of the Fairness Module, while the pseudo-scores of
the pre-trained model f are denoted by s(xi,µ

(0)
k ) = cos(f(xi),µ

(0)
k ).

3.3 Centroid Fairness Loss

We now present the loss function used to train the Fairness Module, following the pseudo-score
transformation of Section 3.1. Recall that we have access to estimated pre-trained centroids µ(0)

k , the
pre-trained pseudo-scores s(xi,µ

(0)
k ) and thus the (pre-trained) pseudo-metrics FARa, FRRa, for

any a ∈ A. A reference group r ∈ A is chosen, on which to align the pseudo-metrics of all groups.

The loss function we propose formulates the problem as a regression task over the Fairness Module
pseudo-scores sθ(xi,µk), where the target for this regression are given by transformed pre-trained
pseudo-scores. More precisely, let us consider an impostor image-centroid pair (xi,µ

(0)
k ) ∈ Iak

shar-
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ing the same attribute ayi
= ak. The pre-trained model assigned this pair the pseudo-score s(xi,µ

(0)
k ).

As seen in Section 3.1, to achieve fairness, the pre-trained model f should have given the pseudo-score

TFAR
ak−→r(s(xi,µ

(0)
k )) = (FARr)

−1 ◦ FARak
[s(xi,µ

(0)
k )]

to this pair. Therefore, we use this as the target score for the corresponding pseudo-score sθ(xi,µk)
of the Fairness Module. In other words, we learn new impostor pseudo-scores such that the FAR
pseudo-metric of the Fairness Module aligns with the pre-trained pseudo-metric FARr of the
reference group r. We use the squared error as loss function for this pair (xi,µk):

l
(i,k)
FAR(θ,µ) =

[
sθ(xi,µk)− TFAR

ak−→r(s(xi,µ
(0)
k ))

]2
.

The same idea follows for a genuine image-centroid pair (xi,µ
(0)
k ) ∈ Gak

. The pre-trained model
f gave the pseudo-score s(xi,µ

(0)
k ) and thus the target score is:

TFRR
ak−→r(s(xi,µ

(0)
k )) = (FRRr)

−1 ◦ FRRak
[s(xi,µ

(0)
k )],

and the loss function for this pair is then:

l
(i,k)
FRR(θ,µ) =

[
sθ(xi,µk)− TFRR

ak−→r(s(xi,µ
(0)
k ))

]2
.

Note that the target scores of our regression task are fully determined by the pre-trained model f ,
and thus fixed before the training of the Fairness Module. Finally, we combine these pair-level loss
functions into two weighted global losses, one for the FAR bias and another for the FRR bias:

LFAR(θ,µ) =

( ∑
1≤j≤N
1≤l≤K

w
(j,l)
FAR

)−1 ∑
1≤i≤N
1≤k≤K

w
(i,k)
FAR l

(i,k)
FAR(θ,µ),

LFRR(θ,µ) =

( ∑
1≤j≤N
1≤l≤K

w
(j,l)
FRR

)−1 ∑
1≤i≤N
1≤k≤K

w
(i,k)
FRR l

(i,k)
FRR(θ,µ).

We define the weights w(i,k)
FAR and w

(i,k)
FRR given to l

(i,k)
FAR and l

(i,k)
FRR as:

w
(i,k)
FAR =

I{yi ̸= k}I{ayi
= ak}

|Iak
| FARak

[s(xi,µ
(0)
k )]

, w
(i,k)
FRR =

I{yi = k}I{ayi = ak}
|Gak

| FRRak
[s(xi,µ

(0)
k )]

. (10)

These weights are carefully chosen to match our objective. First, as seen above, l
(i,k)
FAR is

only used for pairs in Iak
, and l

(i,k)
FRR for pairs in Gak

. Thus, it is necessary to enforce
w

(i,k)
FAR ∝ I{yi ̸= k}I{ayi

= ak} and w
(i,k)
FRR ∝ I{yi = k} I{ayi

= ak}. Second, the diversity of FR
use-cases requires to have good performance and fairness at all FAR and FRR levels, especially
at very low levels. We thus seek to give the same importance to all FAR and FRR levels. To account
for the fact that the number of pairs in a given FRR or FAR interval is proportional to the length of
this interval, we weight each pair (xi,µ

(0)
k ) by a factor FARak

[s(xi,µ
(0)
k )])−1 (if it is an impostor)

or FRRak
[s(xi,µ

(0)
k )])−1 (if it is genuine). Without this weighting, 90% of the non-zero terms

of the loss LFRR would be devoted to achieve fairness at thresholds t associated to FRR levels
in (10−1, 100], by definition of FRRa(t). Third, we seek to give the same weight to all groups,
irrespective of the number of images for each group. As groups are typically imbalanced in real
datasets, we divide by a factor |Iak

| the weight of impostor pairs with attribute ak, and by a factor
|Gak

| the weight of genuine pairs with attribute ak. A more detailed discussion on the choice of
those weights can be found in Appendix B.3.

Finally, we define the Centroid Fairness objective as the sum of the two previous loss functions, each
responsible for either FAR fairness or FRR fairness:

LCF(θ,µ) = LFAR(θ,µ) + LFRR(θ,µ). (11)
Limitations. Our method is specific to post-processing as it needs some pre-trained information and
it may be promising to define a new reference/target arbitrarily for in-processing. In addition, the LCF

loss requires the attribute labels for the training set only. This is a small limitation as there exists such
public datasets and the FR fairness literature builds on them. Moreover, current attribute predictors
(Karkkainen & Joo, 2021), from face inputs, achieve ∼ 95% accuracy on popular benchmarks. In
terms of computation, the method is efficient as the Fairness Module is shallow and does not depend
on the complexity of the pre-trained model (see A.3). The method takes ∼ 2.5 less training time
when dividing the train set size by 2 (see A.4).
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Figure 3: Pseudo-metrics FRRa obtained with
pseudo-scores, for each race. The pseudo-
scores come from the pre-trained model f
(solid lines) or the Fairness Module (dashed).

0.2 0.0 0.2 0.4 0.6 0.8 1.0
t

10 6

10 5

10 4

10 3

10 2

10 1

100

FRRAfrican

FRR CF
African

FRRAsian

FRR CF
Asian

FRRCaucasian

FRR CF
Caucasian

FRRIndian

FRR CF
Indian

Figure 4: Real metrics FRRa obtained with
real scores, for each race. The real scores come
from the pre-trained model f (solid lines) or
the Fairness Module (dashed).

4 Numerical Experiments

Datasets. The training set considered in this paper is BUPT-Globalface (Wang et al.,
2021). It contains 2M face images from 38k celebrities and is annotated with race attributes:
A = {African, Asian, Caucasian, Indian}. According to Wang et al. (2021), its racial distribution is
approximately the same as the real distribution of the world’s population, thus an imbalanced and
realistic training set. Using the attributes in A, we tackle the racial FR bias. Although other sensitive
attributes could be relevant, we choose to mitigate the racial bias, as BUPT is the largest public
FR training set, labelled with sensitive attributes (race labels only). The evaluation of all models is
achieved with the test set RFW (Wang et al., 2019). RFW contains 40k images from 11k identities
and is widely used to evaluate the racial bias of FR models as it is balanced in images and identities,
across the four races in A. To have good estimates of the fairness metrics BFAR and BFRR at low
FAR levels α, all image pairs, sharing a same race, are used. We also employ the FairFace dataset
(Sixta et al., 2020) as test set. It was introduced at the ECCV 2020 FairFace challenge and we use
their predefined image pairs for evaluation. Contrary to RFW, FairFace is annotated with binary
skintone attributes (Dark, Bright) and we inspect the skintone bias with BFAR and BFRR. All face
images are resized to (h,w, c) = (112, 112, 3) pixels with RetinaFace (Deng et al., 2020).

Pre-trained model. We take as pre-trained model f a ResNet100 (Han et al., 2017), which we train
during 20 epochs on BUPT with the ArcFace (Deng et al., 2019) loss function (see B.4 for details).
As many FR models, its embedding dimension is d = 512. To train our Fairness Module efficiently,
we infer the embeddings of the whole training set and save them. Those pre-trained embeddings are
the input of our Fairness Module. From those embeddings, we also compute the pre-trained centroids
µ

(0)
k and pseudo-scores s(xi,µ

(0)
k ).

Fairness models. As Caucasians are often the most represented group within FR datasets and that
they benefit from better performance than other subgroups (Wang et al., 2019; Cavazos et al., 2020),
we set the reference group as r = Caucasian. The Fairness Module is trained with LCF for 20 epochs
on the ArcFace embeddings of BUPT, with a batch size of 4096, a learning rate equal to 10−3, using
the Adam (Kingma & Ba, 2014) optimizer, on 2 Tesla-V100-32GB GPUs during 40 minutes. Note
that our loss function LCF does not have any hyperparameter. The current state-of-the-art post-
processing method for racial bias mitigation of FR models is achieved by PASS-s (Dhar et al., 2021),
which we train on the ArcFace embeddings (see Appendix B.6 for details). As our method, PASS-s
transforms the embeddings generated by a pre-trained model. However, it adopts an adversarial
training paradigm, simultaneously training the model to classify identities while minimizing the
encoding of race within the new embeddings. Despite the appeal of race-independent embeddings,
we think that demographic characteristics are an essential part of one’s identity, and their elimination
may result in a notable performance loss.

Results. We show the pseudo-metrics FRRa(t) and the metrics FRRa(t) for the pre-trained model f
on BUPT respectively in Fig. 3 and 4 (solid lines). The analogy between both types of metrics is clear
as they behave similarly and the ranking of the best performance among races is preserved. Fig. 3 also
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Table 1: Evaluation metrics on RFW at several FAR levels. The ROC metric is expressed as a
percentage (%). Bold=Best, Underlined=Second best.

FAR = 10−6 FAR = 10−5 FAR = 10−4

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE 23.15 3.75 1.24 13.39 3.13 1.31 6.19 2.68 1.41
ARCFACE + PASS-S 43.80 3.42 1.14 30.60 2.98 1.20 18.62 2.77 1.28
ARCFACE + CF 23.30 2.37 1.16 13.44 2.29 1.21 6.10 2.04 1.24

Table 2: Evaluation metrics on FairFace at several FAR levels. The ROC metric is expressed as a
percentage (%). Bold=Best, Underlined=Second best.

FAR = 10−4 FAR = 10−3 FAR = 10−2

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE 26.70 3.15 1.08 18.70 1.79 1.11 11.74 1.26 1.11
ARCFACE + PASS-S 33.86 1.75 1.10 26.23 1.39 1.11 17.67 1.20 1.12
ARCFACE + CF 28.69 1.51 1.07 19.43 1.49 1.09 11.82 1.06 1.09

displays the pseudo-metrics FRR
CF

a (t) computed from the pseudo-scores sθ of the trained Fairness
Module (dashed lines). As we set the Caucasians as the reference group, the loss LCF enforces
the pseudo-metrics FRR

CF

a (t) to align with FRRCaucasian(t) of f . This is typically the case for the
groups having the worst performance (Asians and Indians) while the counterpart is a degradation
of the performance of the Caucasians, leading to pseudo-metrics FRR

CF

a (t) having less bias than
for f . This positive impact reflects on the real metrics FRRCF

a (t) in Fig.4 (dashed lines) where they
become closer together than for f . We postpone similar observations for the FAR pseudo-metrics
and real metrics to the supplementary material (see A.1).

The pre-trained model, PASS-s and our Fairness Module (trained with Centroid Fairness loss) are
evaluated on RFW in Table 1. Their performance (ROC defined in Section 2.1) as well as their
fairness properties (BFAR, BFRR in Eq. (4)) are reported, at several FAR levels. Our approach
succeeds in reducing the bias of ArcFace in all regimes, both in terms of FAR and FRR. PASS-s is
also able to mitigate this bias, most of the time. However, note that the performance of PASS-s is
significantly worse than that of the pre-trained model while our Fairness Module achieves comparable
performance to ArcFace. The same evaluation metrics than for RFW are reported at several FAR
levels in Table 2 for the FairFace dataset. Our approach succeeds in mitigating a good part of the
skintone bias, while keeping similar performance to ArcFace. Our method is robust to a change of
pre-trained model (see A.3 for three other models) and a change of training set (see A.4).

5 Conclusion

In this paper, we provide an analogy between real FR scores and centroid-based scores. This allows
to define some pseudo-metrics which bridge the gap between FR training and fairness evaluation. The
Centroid Fairness loss is presented and shown to align those new metrics across subgroups, allowing
a small model to reduce the pre-trained racial bias without sacrificing performance. We emphasize
that no sensitive attribute is needed during deployment/inference.

Reproducibility. We plan to release the code used to conduct our experiments with the Centroid Fair-
ness loss. The training of ArcFace/PASS-s follows their official code, as specified in Appendix B.4
and Appendix B.6.

Impact statement. This paper presents a novel methodology aiming at mitigating the bias of FR
systems based on deep learning, when evaluated by means of a specific fairness metric described
therein. We stress that the proposed approach does not fully eliminate the bias as measured by the
chosen metric, nor does it address other types of bias that may be relevant in the context of practical
deployments. We also stress that the purpose of our work is not to advocate for or endorse the use
of FR technologies for any application in society, nor to comment on regulatory aspects.
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A Additional experiments

A.1 FAR pseudo-metrics and real metrics on BUPT

The equivalents of Fig. 3 and 4 are displayed in Fig. 5 and 6. The same analogy between pseudo-
metrics and real metrics can be observed (similar behavior, preserved ranking among races), for the
pre-trained model f and for the Fairness Module. However, our Fairness Module seems to focus its
efforts on aligning the pseudo-metrics FAR

CF

a onto the reference curve FARCaucasian, at low FAR

levels only. This might be due to our choice of weights w
(i,k)
FAR appearing in LFAR. We observed

empirically that this choice of weights tends to give too much importance at aligning FAR
CF

a at low
FAR levels. Choosing these weights is a difficult question and we tried to provide some rational
arguments about them. However, one benefit of our choices is that the gap between the dashed curves
is reduced, for both pseudo-metrics and real metrics of our Fairness Module, at low FAR levels,
where it is generally the most difficult task.
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Figure 5: Pseudo-metrics FARa obtained with
pseudo-scores, for each race. The pseudo-
scores come either from the pre-trained model
f (solid lines), or from the Fairness Module
(dashed lines).
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Figure 6: Real metrics FARa obtained with
real scores, for each race. The real scores come
either from the pre-trained model f (solid
lines), or from the Fairness Module (dashed
lines).

A.2 Evaluation on FairFace

We test the pre-trained model ArcFace, PASS-s and our Fairness Module trained with Centroid
Fairness loss on another dataset: the evaluation is performed with the FairFace dataset Sixta et al.
(2020). It was introduced at the ECCV 2020 FairFace challenge and we use their predefined
image pairs for evaluation. Contrary to RFW, FairFace is annotated with binary skintone attributes:
AFF = {Dark, Bright}. The skintone bias is related to the racial bias as there is some correlation
between race and skintone Norwood (2013); Dhar et al. (2021). Note that we consider A =
{African, Asian, Caucasian, Indian} for training and for evaluating on RFW, and AFF for the FairFace
evaluation.

The performance (ROC) of the three models, as well as their fairness properties (BFAR, BFRR),
are reported at several FAR levels in Table 3. The same conclusions as for RFW (Table 1) can be
drawn. Our approach succeeds in mitigating a good part of the racial bias, while keeping similar
performance to ArcFace.

A.3 Evaluations for Other Pre-Trained Models

To go beyond the pre-trained model ArcFace used in Section 4, a ResNet100 is trained on BUPT
during 20 epochs, with the CosFace Wang et al. (2018) loss. Then, we train our Fairness Module with
the Centroid Fairness (CF) loss on top of the CosFace embeddings of BUPT. The hyperparameters
used to train CosFace and the Fairness Module are the same as for ArcFace (Section 4). Both models
are evaluated on the RFW dataset in Table 4, and on FairFace (see A.2) in Table 5.
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Table 3: Evaluation metrics on FairFace at several FAR levels. The ROC metric is expressed as a
percentage (%). Bold=Best, Underlined=Second best.

FAR = 10−4 FAR = 10−3 FAR = 10−2

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE 26.70 3.15 1.08 18.70 1.79 1.11 11.74 1.26 1.11
ARCFACE + PASS-S 33.86 1.75 1.10 26.23 1.39 1.11 17.67 1.20 1.12
ARCFACE + CF 28.69 1.51 1.07 19.43 1.49 1.09 11.82 1.06 1.09

Table 4: Evaluation metrics on RFW at several FAR levels, for the pre-trained model CosFace. The
ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−6 FAR = 10−5 FAR = 10−4

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

COSFACE 21.46 4.14 1.15 12.03 3.81 1.20 5.30 3.01 1.28
COSFACE + CF 21.95 3.21 1.10 11.94 2.82 1.12 5.18 2.37 1.15

Table 4 and Table 5 show the robustness of our method when varying the loss function used to train
the pre-trained model, but keeping the same architecture (ResNet100). We now inspect the robustness
when varying the architecture of the pre-trained model.

Instead of considering a ResNet100, a ResNet34 is trained on BUPT during 20 epochs with the
ArcFace loss. The hyperparameters used to train this pre-trained model ArcFace-R34 and its Fairness
Module are the same as for ArcFace ResNet100 (Section 4). Both models are evaluated on the RFW
dataset in Table 6, and on FairFace (see A.2) in Table 7.

Finally, a MobileFaceNet Chen et al. (2018) is trained on BUPT during 40 epochs with the ArcFace
loss. This architecture is much smaller than ResNet architectures. The Fairness Module is trained on
BUPT during 7 epochs using the Centroid Fairness loss. The other hyperparameters used to train this
pre-trained model ArcFace-MBF and its Fairness Module are the same as for ArcFace ResNet100
(Section 4). Both models are evaluated on the RFW dataset in Table 8, and on FairFace (see A.2) in
Table 9.

All the results from this section confirm the robustness of our Fairness Module to a change of
pre-trained model.

A.4 Evaluations for Another Training Set

We now investigate the robustness of our method when varying the training set used to train the
pre-trained model and its Fairness Module. Note that very few open-source FR datasets have ethnicity
labels. The only large-scale FR datasets that satisfy this property are BUPT-Globalface (used in
Section 4) and BUPT-Balancedface Wang et al. (2021). BUPT-Balancedface contains 1.3M face
images from 28k celebrities and is also annotated with race attributes. Contrary to BUPT-Globalface,
it is approximately race-balanced with 7k identities for each of the four available ethnicities.

In the following, BUPT-Balancedface is employed as the training set of the pre-trained model ArcFace
ResNet100 and its Fairness Module. The Fairness Module is trained during 16 epochs with the
Centroid Fairness loss, on 2 Tesla-V100-32GB GPUs during 15 minutes.. The framework and the
remaining hyperparameters used for training are the same than for BUPT-Globalface (see Section 4).
Both models are evaluated on the RFW dataset in Table 10. Those results underline the robustness of
our method when varying the training set (and the distribution of its identities).
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Table 5: Evaluation metrics on FairFace at several FAR levels, for the pre-trained model CosFace.
The ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−4 FAR = 10−3 FAR = 10−2

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

COSFACE 24.42 1.77 1.08 17.77 1.49 1.08 11.13 1.25 1.09
COSFACE + CF 25.23 1.60 1.07 17.78 1.36 1.07 10.95 1.14 1.08

Table 6: Evaluation metrics on RFW at several FAR levels, for the pre-trained model ArcFace
ResNet34. The ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−6 FAR = 10−5 FAR = 10−4

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE-R34 29.10 4.35 1.14 17.89 4.02 1.21 8.80 3.14 1.29
ARCFACE-R34 + CF 29.81 3.58 1.08 17.80 3.06 1.11 8.63 2.44 1.14

B Further Remarks

B.1 Reason for Using the Same Training Set as f

Note that the debiasing approach presented in this paper could work by training the fair model on
another training set than the dataset used to train f . It would imply the inference of f(xi) and the
computation of the centroids µ(0)

k on a different training set. The whole procedure to train the fair
model starts with those inputs and can be applied on any training set. However, in order to fairly
compare f and its post-processing fair model, the same training set is used for both models, without
adding data.

B.2 Effect of the Pseudo-Score Transformations TFAR
a−→r and TFRR

a−→r

For simplicity, let us consider a population with two subgroups: a and r. r stands for the reference
subgroup, on which one would like to align all other subgroups. In this case, the objective is to align
the curve FARa(t) on FARr(t), and FRRa(t) on FRRr(t).

For all (xi,µ
(0)
k ) ∈ Ia, we consider the following pseudo-score transformation for s

(−)
a :=

s(xi,µ
(0)
k ):

TFAR
a−→r(s

(−)
a ) = (FARr)

−1 ◦ FARa[s
(−)
a ].

Assume that all pseudo-scores s(xi,µ
(0)
k ) for (xi,µ

(0)
k ) ∈ Ia were transformed with this mapping.

Then, FARa(t) would be equal to:

FARa−→r(t) =
1

|Ia|

∑
(xi,µ

(0)
k )∈Ia

I{TFAR
a−→r(s(xi,µ

(0)
k )) > t}.

Similarly, for all (xi,µ
(0)
k ) ∈ Ga, we set the following pseudo-score transformation for s(+)

a :=

s(xi,µ
(0)
k ):

TFRR
a−→r(s

(+)
a ) = (FRRr)

−1 ◦ FRRa[s
(+)
a ].

Assume that all pseudo-scores s(xi,µ
(0)
k ) for (xi,µ

(0)
k ) ∈ Ga were transformed with this mapping.

The pseudo-metric FRRa(t) would become:

FRRa−→r(t) =
1

|Ga|

∑
(xi,µ

(0)
k )∈Ga

I{TFRR
a−→r(s(xi,µ

(0)
k )) ≤ t}.

The transformations TFAR
a−→r and TFRR

a−→r are illustrated in Fig. 1.
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Table 7: Evaluation metrics on FairFace at several FAR levels, for the pre-trained model ArcFace
ResNet34. The ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−4 FAR = 10−3 FAR = 10−2

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE-R34 29.48 1.40 1.07 22.21 1.28 1.07 14.61 1.24 1.07
ARCFACE-R34 + CF 30.98 1.07 1.05 22.32 1.08 1.05 14.21 1.03 1.05

Table 8: Evaluation metrics on RFW at several FAR levels, for the pre-trained model ArcFace
MobileFaceNet. The ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−6 FAR = 10−5 FAR = 10−4

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE-MBF 36.65 5.32 1.08 24.32 4.19 1.11 13.33 3.22 1.15
ARCFACE-MBF + CF 37.67 4.18 1.07 25.00 3.66 1.09 13.76 2.86 1.10

Table 9: Evaluation metrics on FairFace at several FAR levels, for the pre-trained model ArcFace
MobileFaceNet. The ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−4 FAR = 10−3 FAR = 10−2

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE-MBF 36.66 1.77 1.06 26.74 1.31 1.05 17.44 1.12 1.06
ARCFACE-MBF + CF 48.27 1.44 1.05 28.24 1.21 1.05 17.49 1.06 1.05

Table 10: Evaluation metrics on RFW at several FAR levels, for the pre-trained model ArcFace
ResNet100. The pre-trained model and its Fairness Module are trained on BUPT-Balancedface. The
ROC metric is expressed as a percentage (%). Bold=Best.

FAR = 10−6 FAR = 10−5 FAR = 10−4

MODEL ROC (%) BFAR BFRR ROC (%) BFAR BFRR ROC (%) BFAR BFRR

ARCFACE 29.00 4.68 1.29 17.85 4.13 1.36 8.78 3.39 1.48
ARCFACE + CF 29.21 3.72 1.27 17.94 3.36 1.33 8.85 2.84 1.43

Proposition B.1. We have that:

sup
t∈(−1,1)

|FARa−→r(t)− FARr(t)| ≤ 1/|Ia|,

sup
t∈(−1,1)

|FRRa−→r(t)− FRRr(t)| ≤ 1/|Ga|.

The proof is postponed to C.3. This result states that TFAR
a−→r (resp. TFRR

a−→r) is an impostor (resp.
genuine) pseudo-score transformation which aligns the curve FARa(t) (resp. FRRa(t)) on FARr(t)
(resp. on FRRr(t)).

B.3 Discussion on the weights w(i,k)
FAR and w

(i,k)
FRR

As detailed in Section 3.3, it is necessary to enforce w
(i,k)
FAR ∝ I{yi ̸= k}I{ayi

= ak} and w
(i,k)
FRR ∝

I{yi = k} I{ayi
= ak}.

Let (xi,µ
(0)
k ) ∈ Gak

. From the definition of FRRak
, 90% of the pseudo-scores s(xi,µ

(0)
k ) satisfy

FRRak
[s(xi,µ

(0)
k )] ∈ (10−1, 100]. Thus, 90% of the non-zero terms of the loss LFRR enforce
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the Fairness Module to reach FRR fairness at FRR levels in (10−1, 100]. Similarly, 9% of the
pseudo-scores s(xi,µ

(0)
k ) satisfy FRRak

[s(xi,µ
(0)
k )] ∈ (10−2, 10−1], enforcing FRR fairness at

FRR levels in (10−2, 10−1]. As the FRR fairness should be reached at all FRR levels, the loss
LFRR should give the same weight for the 9% than for the 90% of the pseudo-scores. Note that
the 9% of the pseudo-scores are 10 times less present than the 90% in LFRR but that the quantity
w̃

(i,k)
FRR := (FRRak

[s(xi,µ
(0)
k )])−1 is nearly 10 times higher for the 9% than for the 90%. Thus, we

choose to weight each s(xi,µ
(0)
k ) by this quantity w̃

(i,k)
FRR, to ensure FRR fairness at all levels.

However, there is a drawback for this weighting. Consider the case of two groups a, r ∈ A,
r having many more images than a within the training set. This scenario is typical of imbal-
anced/realistic training sets. In addition, the reference group r is set to be the more populated
subgroup in our experiment (see Section 4). This setting implies that |Gr| ≫ |Ga|. For the sake
of simplicity, let |Gr| = 106 and |Ga| = 103. Now, consider the pair (xi,µ

(0)
k ) ∈ Ga which

has the lowest pseudo-score, i.e. which minimizes FRRa(t). From the definition of FRRa(t),
this pair satisfies FRRa[s(xi,µ

(0)
k )] = 1/|Ga|. Similarly, let (xj ,µ

(0)
l ) ∈ Gr be the pair sat-

isfying FRRr[s(xj ,µ
(0)
l )] = 1/|Gr|. The previous weights for both pairs are w̃

(i,k)
FRR = 103 and

w̃
(j,l)
FRR = 106. Note that these pairs maximize those weights among their group a or r. One can

observe a favorable weighting for all pairs in Gr compared to the pairs in Ga. This means that the
loss LFRR would enforce all groups to align their performance with the reference subgroup, but some
groups more than others i.e. those which have lots of images. To counteract this effect, we impose
the maximum weighting w̃

(i,k)
FRR among a subgroup to be equal for all subgroups. All the previous

considerations on the weights in LFRR can be applied similarly to the weights in LFAR and lead us
to the final weights:

w
(i,k)
FAR =

I{yi ̸= k}I{ayi = ak}
|Iak

| FARak
[s(xi,µ

(0)
k )]

,

w
(i,k)
FRR =

I{yi = k}I{ayi
= ak}

|Gak
| FRRak

[s(xi,µ
(0)
k )]

.

B.4 Implementation Details for the training of ArcFace

For the training of ArcFace on BUPT, we follow their official implementation4. We train a ResNet100,
with d = 512, 0.9 as the momentum, 5× 10−4 as the weight decay, a batch size of 256, a learning
rate equal to 10−1, for 20 epochs, as listed within their paper Deng et al. (2019).

For the MobileFaceNet version of ArcFace (see A.3), the model is trained during 40 epochs with
weight decay equal to 1× 10−4. The other parameters remain the same than for the ResNet100.

B.5 Implementation Details of the Centroid Fairness Loss

Using the pre-trained model f , we compute all its embeddings f(xi) on the training set and store
them. Those embeddings are the input of our Fairness Module and there is no need to recompute f(xi)

each time we need gθ(xi). From those embeddings, we then compute the pre-trained centroids µ(0)
k

and the pre-trained pseudo-scores s(xi,µ
(0)
k ). From those pseudo-scores, one gets the pre-trained

pseudo-metrics FARa(t) and FRRa(t) for all subgroups a ∈ A. Then, using the definition of their
generalized inverses in C.2, we are able to compute FAR

−1

r and FRR
−1

r . All those steps allow us to
define the target scores for our regression task. Those steps are achieved before the Centroid Fairness
loss training.

On BUPT, we set the reference group as r = Caucasian. The Fairness Module is trained with LCF

for 20 epochs on the ArcFace embeddings of BUPT, with a batch size of 4096, a learning rate equal
to 10−3, using the Adam Kingma & Ba (2014) optimizer. Note that our loss function LCF does not
have any hyperparameter.

4https://github.com/deepinsight/insightface/tree/master/recognition/arcface_torch
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Table 11: Hyperparameters used to train PASS-s on BUPT.

PARAMETER VALUE

λ 10
K 2
Tfc 10000
Tdeb 1200
Tatrain 30000
Tplat 20000
A∗ 0.95
α1 10−2

α2 10−3

α3 10−4

Tep 40
Nep 50

In addition to those parameters, we use a certain image sampling. The probability of sampling an
image/embedding xi (so that it appears within the next batch in the loss LCF) is inversely proportional
to the number of images sharing the attribute ayi

of xi within the training set. Then, once an image
is sampled for the current batch, all the pseudo-scores sθ(xi,µk) are computed (for all K centroids)
and one is able to compute the loss.

B.6 Implementation Details for PASS-s

For the training of PASS-s on the ArcFace embeddings of BUPT, we follow their official implementa-
tion5 and use the hyperparameters which they provide within their paper Dhar et al. (2021), as listed
in Table 11.

C Technical Details

C.1 A Note on the Generalized Inverse of the FAR Quantity

In 2.1, we introduced the FAR metric, defined as:

FAR(t) =
1

|I|
∑

(xi,xj)∈I

I{sθ(xi,xj) > t},

and the ROC curve as ROC: α ∈ (0, 1) 7→ FRR
[
FAR−1(α)

]
.

The generalized inverse of any cumulative distribution function (cdf) κ(t) on R is defined as

κ−1(α) = inf{t ∈ R : κ(t) ≥ α}, for α ∈ (0, 1). (12)

If κ is a cdf, the generalized inverse κ−1 is its quantile function.

Note that the quantity FAR(t) is not a cdf, so that its generalized inverse is not well defined. However,
the opposite of FAR(t), the True Rejection Rate (TRR), is a proper cdf:

TRR(t) = 1− FAR(t) =
1

|I|
∑

(xi,xj)∈I

I{sθ(xi,xj) ≤ t}.

As such, the generalized inverse TRR−1(α) is well defined for the TRR quantity with Eq. (12).

This allows to define the generalized inverse for FAR. Indeed, for any α ∈ (0, 1) satisfying
FAR(t) = α, one would get the following TRR

TRR(t) = 1− α.

The threshold t of interest is found using the generalized inverse of TRR (as in Hsieh & Turnbull
(1996)):

FAR−1(α) : = TRR−1(1− α) = (1− FAR)−1(1− α).
5https://github.com/Prithviraj7/PASS
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C.2 A Note on the Generalized Inverses of the FARa and FRRa Quantities

The generalized inverse of either FARa(t) or FRRa(t) is defined similarly as in C.1.

Note that FRRa(t) is a proper cdf, thus its generalized inverse FRR
−1

a is defined with Eq. (12).
For FARa(t), the same idea than in C.1 is used. Its generalized inverse is defined using the cdf
1− FARa(t).

C.3 Proof of Proposition B.1

We start by proving the following result:

sup
t∈(−1,1)

|FRRa−→r(t)− FRRr(t)| ≤ 1/|Ga|.

By construction, the jumps of the increasing stepwise function FRRa−→r(t) occur at points included
in

{FRR−1

r (l/|Gr|) : l = 1, . . . , |Gr|},
like FRRr(t). Hence, we have:

sup
t∈(−1, +1)

∣∣FRRa−→r(t)− FRRr(t)
∣∣ = max

1≤l≤|Gr|

∣∣∣FRRa−→r(FRR
−1

r (l/|Gr|))− l/|Gr|
∣∣∣ .

Therefore, for all l ∈ {1, . . . , |Gr|}, we have

FRRa−→r(FRR
−1

r (l/|Gr|)) = (1/|Ga|)×max
{
k ∈ {0, . . . , |Ga|} : k/|Ga| ≤ l/|Gr|

}
= ⌊l|Ga|/|Gr|⌋ / |Ga|.

We obtain that ∣∣∣FRRa−→r(FRR
−1

r (l/|Gr|))− l/|Gr|
∣∣∣ < 1/|Ga|.

The second result of Proposition B.1 (on the FAR quantity) is proved with the same arguments.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contribution of the paper consists of a description of a novel methodolog-
ical framework to improve fairness properties of similarity-based systems and empirical
evidence of its performance based on experimental work, exactly as claimed in the ab-
stract/introduction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the analysis are discussed in the experimental section, insofar
as it where the performance of the method promoted is empirically evaluated and details
about the implementation are described. As explained, the promising results obtained is an
encouragement to apply the general principles proposed to other datasets/tasks.We also wrote
a paragraph about the limitations of our method at the end of Section 3. The computational
efficiency and scaling with dataset size are discussed. The method is empirically validated
with 4 pre-trained models, 2 training sets and 2 test sets.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes] .

Justification: The methodology proposed is mainly empirical. However, the statistical
framework is precisely described and the theoretical arguments explaining the rationale
behind the method are rigorously established (see Proposition B.1 in the Supplementary).

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The very simple architecture of the Fairness Module is presented, as well as
all hyperarameters used to train it. Complete details about the experiments are provided in
the Supplementary Material (Appendix B.4, B.5, B.6). The trained models will be made
public, as well as the code, upon acceptance.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Links to the public datasets used in this paper are given, permitting to reproduce
fully the experiments we have carried out. The code has also been provided.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The very simple architecture of the Fairness Module is presented, as well as all
hyperarameters used to train it. Complete details about the experiments are provided in the
supplementary material (Appendix B.4, B.5, B.6). The trained models will be made public.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The significance of the results is assessed thanks to several evalution data sets,
whose characteristics are described in the paper and in the Supplementary Material.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computing resources are discussed in Section 4 and in the Supplementary
Material (Appendix A.4).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS code of ethics and abide by it.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We wrote an impact statement just before the references. This paper does not
promote the use of any technology, it is a methodological attempt to improve the fairness
properties of similarity-based scoring techniques without impairing predictive performance,
accompanied by some empirical evidence (with the limitations that this implies, which are
discussed in the article).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: As described in the paper and Supplementary Material, the code, data and
models used in the paper (all public) have been properly credited and their license and terms
of use explicitly mentioned and properly respected.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: the code has been communicated through a .zip archive, with the relevant
documentation.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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