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ABSTRACT
This article concerns cautious classification models that are allowed to predict a set of class labels or reject to
make a prediction when the uncertainty in the prediction is high. This set-valued classification approach is
equivalent to the task of acceptance region learning, which aims to identify subsets of the input space, each
of which guarantees to cover observations in a class with at least a predetermined probability. We propose
to directly learn the acceptance regions through risk minimization, by making use of a truncated hinge loss
and a constrained optimization framework. Collectively our theoretical analyses show that these acceptance
regions, with high probability, satisfy simultaneously two properties: (a) they guarantee to cover each class
with a noncoverage rate bounded from above; (b) they give the least ambiguous predictions among all the
acceptance regions satisfying (a). An efficient algorithm is developed and numerical studies are conducted
using both simulated and real data. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received February 2021
Accepted June 2022

KEYWORDS
Acceptance region learning;
Cautious classification;
Set-valued classification;
Statistical learning theory;
Support vector machine

1. Introduction

The advancement of statistics and machine learning is reshap-
ing many fields. Increasingly, many critical decisions are made
based on advanced statistical and machine learning methods,
especially classification methods. It, therefore, has been impor-
tant to make reliable classification and avoid making a mis-
classification when it is known that the chance of misclassifica-
tion is high. Standard classification methods often cannot meet
this demand. This is partially because a standard classifier has
the goal of minimizing the overall misclassification rate and it
assigns a single class label to each observation regardless of the
perceived high uncertainty for some observations. However, in
practice, it is often the case that an accurate single-valued pre-
diction is difficult or impossible to obtain for some observations
due to high uncertainty and lack of information. Moreover, in
many applications, the consequence of misclassification for even
one instance is too severe to bear for those who are affected.
Examples of this kind include using classification methods to
guide parole decisions, to evaluate school teachers (O’Neil 2016)
and to diagnose cancers. In these high-stake domains, it is
safer and more appropriate for the classifier to return a set of
most plausible outcomes (e.g., class labels) for each observation
and leave the final decision to a human expert or a secondary
model to validate. It is desirable that this prediction set contains
the true class label with high probability. Moreover, one can
expect that the classifier should not make predictions at all for
observations that it is highly unsure about.

In this article, we propose a set-valued multicategory classifi-
cation method based on the support vector machine approach.
The size of the prediction set is adaptive to the confidence
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1Abstentions refer to the situation in which the test observation is unlike any of the classes seen before, and hence is slightly different from rejections.

Abstentions are beyond the scope of this article.

that the classifier has on each observation. When it has high
confidence on an observation, a single class label may be given as
the prediction; otherwise, multiple class labels will be reported.
Rejections may be viewed as the extreme case that all the possi-
ble class labels are predicted for an observation.1 The standard
classification method may be viewed as a special case in which
the prediction set only contains one label. Therefore, standard
classification should ideally only be used when there is high
confidence for all the observations; unfortunately, it is rarely the
case in practice.

The main difference between the standard and the set-valued
classification is that the latter can no longer be framed as an
(unconstrained) minimization problem of the overall misclas-
sification rate. Set-valued classification is best understood using
the following tradeoff: the larger the prediction set is, the more
likely that it contains the true class label, and yet the less infor-
mation such a prediction has. One way to precisely formulate
this tradeoff is the acceptance region learning framework. Let
the training data consist of independent and identically dis-
tributed pairs of data points (Xi, Yi), i = 1, 2, . . . , n, from an
unknown distribution P, with Xi ∈ X ⊂ R

p, and Yi ∈
Y = {1, . . . , k}. The goal of acceptance region learning is to
identify acceptance regions Cj ⊂ X , j = 1, . . . , k, one for
each class, which satisfy some nice coverage properties (see
details in Section 2.) Collectively these acceptance regions are
equivalent to a set-valued classifier φ : X → 2Y , defined as
φ(x) = {j : x ∈ Cj}, namely, observation x is predicted to be
from a set of class labels consisting of all classes with acceptance
regions that contain x. Reversely, given a set-valued classifier
φ, the equivalent acceptance regions are Cj = {x : j ∈ φ(x)},
j = 1, . . . , k.

© 2022 American Statistical Association
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Lei (2014) and Sadinle, Lei, and Wasserman (2017) defined
acceptance regions using two competing quantities, confidence
and efficiency. The notion of confidence is defined as the prob-
ability that set Cj (j = 1, . . . , k) covers a random observa-
tion from class j. The notion of efficiency is inversely related
to ambiguity, defined as the expected number of acceptance
regions Cj’s that contain a random observation (equivalently,
the expected size of prediction set for a random observation.)
As the confidence of Cj’s increases, the efficiency decreases (i.e.,
the ambiguity increases). The Bayes-optimal acceptance regions
minimize the ambiguity with the noncoverage rate for each Cj
constrained. It was shown (Sadinle, Lei, and Wasserman 2017)
that the Bayes-optimal acceptance regions (or their equivalent
set-valued classifier), is obtained through the conditional class
probability ηj(x) � P(Y = j | X = x). Sadinle, Lei,
and Wasserman (2017) proposed to use the plug-in method
to estimate this set-valued classifier, that is, to first estimate
ηj(x) using a consistent estimator, then plug the estimated η̂j(x)

into the Bayes-optimal rule. The empirical performance of the
resulting set-valued classifier highly depends on the estimation
accuracy of η(x). However, as pointed out by many authors
(Wang, Shen, and Liu 2007; Fürnkranz and Hüllermeier 2010;
Wu, Zhang, and Liu 2010), probability estimation can be more
difficult than the prediction of the class label, especially for
high-dimensional data. While the requirement on estimation
accuracy is somewhat relaxed in the classification context, how
accurate the probability estimation needs to be is still an open
question.

In this article, we propose to estimate acceptance regions
and the equivalent set-valued classifiers by minimizing some
empirical risk based on the support vector machine (SVM;
Scholkopf and Smola 2001), bypassing the step of estimating
ηj(x). It takes advantage of the great prediction power of the
SVM in both the linear and nonlinear cases. We show in theory
the Fisher consistency, that is, the population minimizer of
the proposed optimization is equivalent to the Bayes-optimal
classifier. Moreover, in the finite-sample case, we show that
the resulting classifier can control the noncoverage rates while
minimizing the ambiguity.

A related problem is the Neyman-Pearson (NP) classification
problem (Cannon et al. 2002; Rigollet and Tong 2011). Given a
null hypothesis class, NP classification aims to identify an accep-
tance region for the null class which minimizes the probability
that an observation from an alternative class falls into it (the
Type II error) while controlling the chance that an observation
from the null class is not covered by the region, and hence, is
misclassified to the alternative (i.e., the Type I error). See Tong,
Feng, and Zhao (2016) for a survey. The problem studied here
can be regarded as solving k NP classification problems jointly.

The problem of identifying acceptance regions and its con-
nection with the NP classification have attracted increasing
attention from the statistics and machine learning communities.
Dümbgen, Igl, and Munk (2008) framed it as a general p-value
for classification problem. Lei (2014) proposed a framework for
the binary case; Sadinle, Lei, and Wasserman (2017) extended
it to the multicategory classification. Denis and Hebiri (2015)
and Denis and Hebiri (2017) studied a dual problem, in which
they minimized the overall noncoverage rates while controlling
the ambiguity. Recently Hechtlinger, Póczos, and Wasserman

(2018) and Guan and Tibshirani (2019) generalized this prob-
lem to conduct outlier detection (that is, the abstention prob-
lem). In this article, we do not consider the abstention/outlier
detection problem; in other words, we assume that there is no
unseen class in the training data that might appear later in the
test data.

Popular ways to achieve set-valued classification include clas-
sification with reject options and conformal learning. Unlike the
constrained minimization framework considered in this article,
the classification with rejection methods often try to balance the
ambiguity and confidence using a weighted sum of the costs of
misclassification and rejection, given a predetermined weight
(in the binary case, an ambiguous prediction is the same as a
rejection, while confidence is related to classification accuracy).
The binary version of this problem has been extensively studied
(Herbei and Wegkamp 2006; Bartlett and Wegkamp 2008; Yuan
and Wegkamp 2010); Zhang, Wang, and Qiao (2017) has studied
the multicategory case. The conformal learning inference aims
to find a set-valued prediction for each new observation to
guarantee the probability that the prediction set contains its true
class label (Shafer and Vovk 2008; Lei, Robins, and Wasserman
2013; Vovk et al. 2017; Lei et al. 2018). Both the approaches taken
by Lei (2014) and Sadinle, Lei, and Wasserman (2017) may be
viewed as special cases of conformal learning.

The rest of this article is organized as follows. Section 2 gives
an overview of the underlying problems. Our main algorithm is
introduced in Section 3, followed by a study of the theoretical
properties in Section 4. Section 5 offers some numerical experi-
ments. Concluding remarks are given in Section 6. Proofs are in
the supplementary materials.

2. Background

Sadinle, Lei, and Wasserman (2017) extended the binary accep-
tance region learning problem (Lei 2014) to the multicategory
case. Under this framework, one tries to balance the efficiency
and confidence of acceptance regions. The efficiency can be mea-
sured by the ambiguity, defined as the expected cardinality of
the set-valued prediction, E(|φ(X)|), where | · | is the cardinality
of a set. Note that this is the same as E(

∑k
j=1 1

[
X ∈ Cj

]
), the

expected number of acceptance regions that cover a random
observation. The confidence refers to the requirement that each
acceptance region Cj must cover at least (1 − αj)100% of the
population in class j, Pj(Cj) ≥ 1 − αj, where Pj(·) � P(·|Y = j)
is the probability measure conditional on Y = j. Note that
this constraint may be written as the class-specific classification
accuracy guarantee for class j: Pj(Y ∈ φ(X)) ≥ 1 − αj. In
summary, we minimize the ambiguity when maintaining the
confidence by controlling the noncoverage rates (or the class-
specific error rates),

min
φ∈�

E(|φ(X)|), subject to 1 − Pj(Cj) ≤ αj, j ∈ {1, . . . , k}.

(1)

Here αj’s are predetermined. For example, if one wants the set-
valued classifier to correctly classify at least 95% of the popula-
tion from class j, then she can set αj = 0.05.

Under certain continuity conditions and the assumption that
P(Y = j) > 0 for all j’s, Sadinle, Lei, and Wasserman (2017) gave
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Figure 1. Configurations for wj ’s. Left k = 2; right k = 3.

the following Bayes acceptance regions as solutions to problem
(1).

Definition 1 (Bayes acceptance regions). Given αj’s, a solution to
problem (1) is

Cj = {x : ηj(x) � P(Y = j | X = x) ≥ tj},

where tj is chosen to have Pj(Cj) = 1 − αj.

Intuitively, each Bayes acceptance region contains all the
observations for which the corresponding conditional class
probability is large enough. In practice, Sadinle, Lei, and Wasser-
man (2017) suggested to employ the plug-in principle: first
obtain η̂j, the estimation of ηj, by methods such as the penalized
logistic regression or k-nearest neighbors; then estimate tj
by the �njαj�th smallest value of {̂η(xj,1), . . . , η̂(xj,nj)}, where
xj,1, . . . , xj,nj are training data from class j. As a result, the
estimated acceptance regions take the form of Ĉj = {x : η̂j(x) ≥
t̂j}.

3. Set-valued Multicategory Support Vector Machine

A fundamental challenge of the plug-in method is that in many
contemporary data analyses, it is very difficult to estimate ηj at
the first place. In this work, we propose to solve (1) directly
via a risk minimization procedure avoiding estimating ηj. We
introduce a general formulation in Section 3.1, and then focus
on specifics in Sections 3.2 and 3.3.

3.1. Formulation

For a k-class problem, our set-valued classifier will be character-
ized by a vector-valued discriminant function f : X 	→ R

k−1

and a threshold ε ∈ R. To obtain f , we adopt the angle-based
classification method (Zhang and Liu 2013), which has been
shown to be very effective and computational efficient for large-
scale multicategory classification in the high-dimensional space.
We first define k unit vectors, wj ∈ R

k−1, j = 1, . . . , k, which
form a regular simplex and sum to 0. Each vector represents a
class and they are equiangular from one another. One possible

configuration of wj’s is,

wj =

⎧⎪⎨
⎪⎩

(k − 1)−1/21 j = 1,
−(1 + k1/2)/{(k − 1)3/2}
1+ {k/(k − 1)}1/2ej−1 2 ≤ j ≤ k

where 1 ∈ R
k−1 is the vector of all ones and ej ∈ R

k−1 is the
vector of all zeros, with the jth element being 1. Figure 1 gives
an illustration of this configuration for k = 2 and k = 3.

The angle margin, defined as 〈f (x), wj〉, measures the prox-
imity from f (x) to vector wj. A large angle margin indicates
a small angle between vectors f (x) and wj, and hence a close
proximity between the observation x and class j. We will conduct
the optimization with respect to f so that 〈f (x), wj〉 is large for
j = y and small for j �= y. Motivated by this intuition, we define
the acceptance regions and the set-valued classifier to be,

Ĉj = {x : 〈f (x), wj〉 ≥ −ε}, φ(x) = {j : 〈f (x), wj〉 ≥ −ε}. (2)

Intuitively, the acceptance region for class j consists of all those
observations whose f (x) are close enough to wj. Re-expressing
(1) in terms of f and ε, we have

min
ε≥0,f ∈F

R(f , ε) � E

⎛
⎝ k∑

j=1
1
{〈f (X), wj〉 ≥ −ε

}⎞⎠ , (3)

subject to Pj(〈f (X), wj〉 < −ε) ≤ αj, j = 1, . . . , k.

When the constraints attain equality at the minimizer, one can
show that the minimizer coincides with the solution to the
following modified optimization,

min
ε≥0,f ∈F

R̄(f , ε) � E

⎛
⎝∑

j �=Y
1
{〈f (X), wj〉 ≥ −ε

}⎞⎠ , (4)

subject to Pj(〈f (X), wj〉 < −ε) ≤ αj, j = 1, . . . , k.

Since wj’s sum to 0, we have that
∑k

j=1〈f (x), wj〉 = 0 for any
x. In this case, requiring ε ≥ 0 implies that 〈f (x), wj〉 ≥ −ε for
at least one j, and hence |φ(x)| ≥ 1. There has been previous
work (Hechtlinger, Póczos, and Wasserman 2018; Guan and
Tibshirani 2019) in which φ(x) = ∅ may occur for some x,
implying that the class label for x has never been seen before.
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Figure 2. The left panel illustrates the truncated hinge loss. The right penal illustrates the proposed weight function and the resulting weighted hinge loss.

We do not consider this setting in this article: specifically, we
assume that {1, 2, . . . , k} are the only possible classes in the test
data.

In practice, the indicator functions in both the objective and
in the constraints of (4) may cause difficulties for numerical
optimizations (Hoffgen, Simon, and Vanhorn 1995). A common
practice is to replace the indicator function in the objective by
a convex surrogate loss. Moreover, a stream of work on NP
classification (Rigollet and Tong 2011) also suggests to use a
surrogate loss to bound the noncoverage rates such as the one
in the constraints of (4). In general, it can be any decreasing
surrogate loss used in the literature. Let �1 and �2 be the surro-
gate losses to be deployed in the objective and in the constraints,
respectively. Our proposed set-valued classifier can be obtained
by the following optimization,

min
ε≥0,f ∈F

R�1(f , ε) � E

⎛
⎝∑

j �=Y
�1

(
− (〈f (X), wj〉 + ε)

)⎞
⎠ ,

(5)

subject to E
[
�2(〈f (X), wj〉 + ε) | Y = j

]
≤ αj, j = 1, . . . , k.

Conceptually, the value (〈f (x), wj〉+ ε) in the argument of �1 in
the objective measures the closeness between observation X and
the jth acceptance region (the larger the closer). Minimization
of the objective leads to small values of (〈f (x), wj〉+ ε) for j �= y
and a large value for j = y. When �1 is the hinge loss, the new
objective function resembles the loss function in multicategory
SVM (Lee, Lin, and Wahba 2004), except for the important
absence of the sum-to-zero constraint from our work, thanks to
the use of the angle-based framework. In practice, given training
data {(xi, yi), i = 1, . . . , n}, one solves the empirical version of
(5),

min
ε≥0,f

1
n

n∑
i=1

∑
j�=yi

�1
(

− (〈f (xi), wj〉 + ε)
)

(6)

subject to
1
nj

∑
yi=j

�2(〈f (xi), wj〉 + ε) ≤ αj, j = 1, . . . , k, J(f ) ≤ s,

where nj is the subsample size for class j and J(f ) ≤ s is a
regulatory constraint added to make the solutions identifiable.

3.2. Choices of Surrogate Loss in Objective and
Constraints

The choice of the surrogate losses is an important issue. Ide-
ally, the surrogate loss �1 should enjoy the Fisher consistency

property; on the other hand, an appropriately chosen �2 should
guarantee that each acceptance region cover each class with at
least the promised rate.

We propose to use a truncated hinge loss for �1 to achieve the
Fisher consistency. Define the hinge loss as H(u) = (1−u)+ and
the truncated hinge loss as T(u) = (1 − u)+ − (−u)+, where
(a)+ = max{a, 0}. The latter loss truncates the conventional
hinge loss to have a height not exceeding 1. The blue solid line
in the left panel of Figure 2 gives an illustration of this truncated
loss, which can be regarded as the difference of two hinge-type
loss functions (the dashed and dotted lines). Theorem 1 shows
that with the truncated hinge loss, our proposed method is
Fisher consistent.

With a truncated loss, the resulting optimization is not con-
vex due to the non-convexity of T. However, one can use the
difference of convex function (DC) algorithm (Le Thi Hoai
and Tao 1997; Wu and Liu 2007). A brief description of this
algorithm is shown below.

Algorithm 1 (DC algorithm). To minimize Q(�) = Qvex(�) +
Qcav(�), do the following:
1. Initialize � with �0.
2. Repeat �t+1 = argmin� (Qvex(�) + 〈Q′

cav(�), � − �t〉)
until convergence of �t .

In (6), Qvex = ∑
j �=Y H(−(〈f (X), wj〉 + ε)), Qcav =

−∑
j �=Y H(1 − (〈f (X), wj〉 + ε)). � stands for the parameters

in f and ε. This algorithm is an example of the Majorize-
Minimization (MM) algorithm as we replace Qcav by its affine
approximation in each iteration (Hunter and Lange 2004). The
DC algorithm was used by Wu and Liu (2007) to build a Fisher
consistent robust multicategory SVM.

Next we discuss the loss function in the constraints. We
aim to bound the empirical noncoverage rate (1/nj)

∑
j=yi

1
[〈f (xi), wj〉 < −ε

]
through bounding the empirical risk

under the surrogate loss, (1/nj)
∑

j=yi �2(〈f (xi), wj〉 + ε).
The hinge loss may not be ideal for this purpose because it
may have a much greater value than the indicator 1[u < 0],
deteriorating the performance. For example, an observation
with a very small functional margin 〈f (xi), wj〉 � 0 will
give a large hinge loss and make the left-hand-side of the
inequality (1/nj)

∑
j=yi �2(〈f (xi), wj〉 + ε) ≤ αj to be very

close to or even exceed the right-hand-side, even though it is
associated with only one instance of noncoverage. In general,
using the hinge loss to bound the noncoverage in the constraints
will lead to overly conservative solution (set-valued classifiers
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being too ambiguous). A potentially useful alternative is the
truncated hinge loss, min{1, H(〈f (xi), wyi〉 + ε)}. However,
the use of the (nonconvex) truncated hinge loss will add
to another layer of computational challenge. To mimic the
truncated hinge loss, we propose to combine the hinge loss
with an adaptive weight in an iterative algorithm to alleviate
this issue. Observations are assigned with weights, chosen to be
wi = max{1, H(〈f (xi), wyi〉 + ε)}−1 based on the solution to
(f , ε) from the previous iteration, which, when multiplied by
the hinge loss, resembles the truncated hinge loss. See the right
panel of Figure 2 for an illustration: the blue bold line stands
for the weighted hinge loss, which is the result of multiplying
the weight (red dotted) by the hinge loss (purple dashed); the
weighted hinge loss is close to the indicator function (black
two-dashed).

Our proposed set-valued SVM (SSVM) is φ(x) � φ(f ,ε)
(x) = {j : 〈f (x), wj〉 ≥ −ε}, where (f , ε) is the final solution
in an iterative algorithm. In each iteration, we solve

(f , ε) ∈ argmin
f ,ε≥0

1
n

n∑
i=1

∑
j �=yi

T(−(〈f (xi), wj〉 + ε)) (7)

subject to
1
nj

∑
yi=j

wiH(〈f (xi), wj〉 + ε) ≤ αj,

j = 1, . . . , k, J(f ) ≤ s,

given the weights. In the initial step, wi ≡ 1 for all i. In the
subsequent steps, we define

wi = max{1, H(〈f (xi), wjyi〉 + ε)}−1

given (f , ε) from the previous step. The algorithm stops when
the solution converges or the number of iterations has reached
a preset maximum. Though there is no theoretical guarantee
on the convergence of this iterative algorithm, in our numerical
studies, it often converges after two or three iterations. Wu and
Liu (2013) used a similar iterative idea in their adaptive weighted
large margin classifiers for the purpose of robust classification.

3.3. Implementation Algorithms

In this section we discuss the implementation algorithm, to be
used in the numerical experiments in Section 5. For compu-
tational convenience, we move the constraint J(f ) ≤ s to the
objective as an additional regularization term, and obtain

(f , ε) ∈ argmin
f ,ε≥0

1
n

n∑
i=1

∑
j �=yi

T(−(〈f (xi), wj〉) + ε) + λJ(f ).

(8)

subject to
1
nj

∑
yi=j

wiH(〈f (xi), wj〉 + ε) ≤ αj,

j = 1, . . . , k.

We will consider both linear and kernel learning. In lin-
ear learning, let f (x) = BTx + v where B = [βr,q] is a
p × (k − 1) matrix of coefficients and v is a (k − 1) × 1
vector of intercepts. The regularization J(f ) is defined as the
squared Frobenius norm of B, J(f ) = ∑p

r=1
∑k−1

q=1 β2
r,q. The

parameter � = (vec(B), vT , ε), with the vectorized B, vec(B) =
[βT

1 , βT
2 , . . . , βT

k−1], where βq is the qth column of B. Following
the standard routine in the SVM literature, we introduce slack
variables ξi,j for the hinge-like functions in the objective func-
tion, and slack variables ηi,j for the hinge-like function in the
constraints. The entire algorithm entails two loops. In the outer
loop, we update the weight for the constraints; in the inner loop,
we use the DC algorithm given a fixed value of the weight. At
each iteration of the DC algorithm, we aim to solve

min
ε,v,B,{ξi}i,j,{ηi}i,j

1
2

k−1∑
q=1

βT
q βq + C

n∑
i=1

∑
j �=yi

ξi,j (9)

−
k−1∑
q=1

p∑
r=1

cr,qβr,q −
k−1∑
q=1

cqbq − cε,

subject to ξi,j ≥ 1 + ε + 〈BTxi + v, wj〉, for all j �= yi,
ηi,j ≥ 1 − ε − 〈BTxi + v, wj〉, for all j = yi,
ξi,j ≥ 0, ηi,j ≥ 0, ε ≥ 0∑
yi=j

wiηi,j ≤ njαj, for all j,

where C = (2nλ)−1, and cr,q, cq and c are sub-gradients of∑n
i=1

∑
j �=yi H(−〈f (xi), wj〉 − (ε − 1)) with respect to βr,q, bq

and ε evaluated at the parameter set value from the previous iter-
ation. Problem (9) is equivalent to the following dual problem,

min
Z,{δj}k

j=1

1
2

n∑
i=1

n∑
i′=1

((Z ◦ Y)WTW(Z ◦ Y)T)i,i′ 〈xi, xi′ 〉

−
n∑

i=1

k∑
j=1

(1 − xT
i CwjYi,j)ζi,j +

k∑
j=1

δjθj

subject to 0 ≤ ζi,j ≤ C, for all yi �= j, (10)
0 ≤ ζi,j ≤ δjwi, for all yi = j,

n∑
i=1

k∑
j=1

ζi,jYi,jwj,q + cq = 0, q = 1, . . . , k − 1,

n∑
i=1

k∑
j=1

ζi,jYi,j + c ≤ 0,

where ◦ stands for the Hadamard product, Z = [ζi,j] is a n × k
matrix, W = [wi,j] is a (k−1)×k matrix with jth column wj, Y =
[Yi,j] is a n×k matrix and Yi,j = 1

{
j = yi

}−1{j �= yi
}

, θj = njαj
and C = [ci,j] is a p × (k − 1) matrix. This dual problem can be
solved by many standard off-the-shelf quadratic programming
routines. After obtaining the solution to Z, denoted as Ẑ, we have
B̂ = XT (̂Z◦Y)WT +C. Then we can plug B̂ back into (9), which
becomes a linear programming problem for v and ε, solvable by
standard routines.

The kernel trick is often used in SVM like (7) to allow nonlin-
ear classifiers. In the proposed method, f is a vector of nonlinear
functions (fq)k−1

q=1 where fq’s belong to the same reproducing
kernel Hilbert space (RKHS) with respect to a positive definite
kernel function K(·, ·). By the representer theorem (Kimeldorf
and Wahba 1970), we can focus on functions with form fq(x) =
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n∑
r=1

βr,qK(xr , x) + bq and the coefficients matrix B now become

n × (k − 1). Then the dual problem at each iteration of the DC
algorithm becomes,

min
Z,{δj}k

j=1

1
2

n∑
i=1

n∑
r=1

((Z ◦ Y)WTW(Z ◦ Y)T)r,iK(xr , xi)

−
n∑

i=1

k∑
j=1

(1 − (KC̃)i,·wjYi,j)ζi,j +
k∑

j=1
δjθj,

subject to 0 ≤ ζi,j ≤ C, for all yi �= j, (11)
0 ≤ ζi,j ≤ δjwi, for all yi = j,

n∑
i=1

k∑
j=1

ζi,jYi,jwj,q + cq = 0, q = 1, . . . , k − 1,

n∑
i=1

k∑
j=1

ζi,jYi,j + c ≤ 0.

After the solution to (11) is found, we have B̂ = (̂Z◦Y)WT + C̃.
Here C̃ = [̃ci,q] is a n × (k − 1) matrix whose (i, q)th term c̃i,q is
the sub-gradient of

∑n
i=1

∑
j �=yi H(−〈f (xi), wj〉 − (ε − 1)) with

respect to fq(xi) at the last iteration �t−1. K = [K(xi, xj)] is a
n × n matrix whose entries are the kernel function K evaluated
on pairs of observations from the data set.

3.4. Relation with Classification using Reject and Refine
Options

Classification with reject and refine options (CRR) (Bartlett
and Wegkamp 2008; Manwani et al. 2015; Zhang, Wang, and
Qiao 2017) also allows set-valued classification. Bartlett and
Wegkamp (2008) proposed a Fisher consistent surrogate loss in
the binary case. Zhang, Wang, and Qiao (2017) extended CRR to
the multicategory case and introduced the refined option, which
allows a set-valued prediction whose size is between 1 and k.

Typically CRR classifiers aim to balance the cost of mis-
classification and the cost of rejection. Some CRR work uses a
weighted combination of both costs in the objective function;
others consider minimizing the misclassification rate, subject
to a budget of rejections. There is an underlying connection
between the level of rejection allowed in CRR and the con-
fidence achieved in a set-valued classifier. Though CRR may
lead to set-valued predictions, the notion of confidence is not
explicitly accounted for in the algorithm. The main motivation
of the current work is precise quantifications of the confidence
(or class-specific accuracy) of the set-valued classifier. To this
end, one may view CRR and the set-valued classification as dual
problems to each other.

4. Theoretical Studies

In this section, we first study the Fisher consistency in the set-
valued classification setting. Then we bound the excess ambi-
guity by the excess surrogate ambiguity, in parallel to the excess
risk bound seen in Bartlett, Jordan, and McAuliffe (2006). Lastly,
we study finite sample bounds for the noncoverage rate and the
excess ambiguity.

4.1. Fisher Consistency and Excess Risk Bound

We follow the same assumptions in Sadinle, Lei, and Wasserman
(2017). Assume the underlying distribution P(X, Y) is absolute
continuous with respect to νX × νY , where νX is the Lebesgue
measure in R

p and νY is the counting measure on {1, . . . , k}.
Moreover, assume pj, the density function of the distribution of
X conditional on Y = j, is positive on X . Let πj = P(Y = j) be
the prior probability of class j and assume πj > 0. In addition, we
assume ηj(X) is a continuous random variable with P(ηi(X) =
ηj(X)) = 0 for all pairs i �= j.

Our first main result is the Fisher consistency of the surrogate
function, which suggests that the population minimizer of the
surrogate loss function coincides with the Bayes solution given
in Sadinle, Lei, and Wasserman (2017), with constraints that
Pj(〈f (X), wj〉 < −ε) ≤ αj, j = 1, . . . , k, which correspond to
the optimization,

min
f

RT(f , ε) � E(
∑
j �=Y

T(−(〈f (X), wj〉 + ε))) (12)

subject to Pj(〈f (X), wj〉 < −ε) ≤ αj, j = 1, . . . , k.

One subtlety here is that the true Bayes solution may involve
null set, that is, the union of all acceptance regions in the Bayes
solution ∪jC∗

j may not cover the whole feature space X , or
equivalently, φ∗(x) may be empty for some observation x. This
may happen for relatively easy classification tasks in which data
points from different classes are far away from each; this may
also happen when the noncoverage rates αj’s are chosen to be
large so that the acceptance regions are relatively small. Note
that in these cases, set-valued classification methods becomes
less relevant since a traditional classification method can meet
the needs and perform just as well. Hence, to show Fisher
consistency of the proposed method in settings relevant to set-
valued classification, we consider the following assumption.

Assumption 1. Given αj, j = 1, . . . , k, assume that ∪j{x :
ηj(x) ≥ tj} = X , where tj satisfies Pj(ηj(X) ≥ tj) = 1 − αj.

Under this assumption, the Bayes acceptance regions in
Sadinle, Lei, and Wasserman (2017), as given in Definition 1,
satisfy ∪k

j=1Cj = X .

Theorem 1. Under Assumption 1, for a fixed ε ≥ 0, let F∗ be
the class of functions that solve (12). Then any f ∗ ∈ F∗ satisfies
that { 〈f ∗(x), wj〉 ≥ −ε, if η(x) ≥ tj

〈f ∗(x), wj〉 ≤ −(1 + ε), if η(x) < tj
(13)

almost surely, where tj satisfies Pj(ηj(X) ≥ tj) = 1 − αj.
Hence, φ(f ∗,ε) is equivalent to the Bayes acceptance regions in
Definition 1, that is, the truncated hinge loss is Fisher consistent.

The next theorem provides a bound quantification of the
excess risk (defined as the classification ambiguity) using the
excess surrogate risk as assessed using the truncated hinge loss
function. The same bound quantification framework was pro-
posed by Bartlett, Jordan, and McAuliffe (2006) and used by
Wang and Qiao (2018).
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Theorem 2. Suppose there exists c ∈ (0, 1) such that for any
j ∈ {1, . . . , k}, {x : ηj(x) > 1 − c} ⊂ {x : ηj(x) ≥ tj}, where
tj satisfies Pj(ηj(X) ≥ tj) = 1 − αj. For a fixed threshold ε, let
f̂ be another function that satisfies the coverage rate constraints
in (12). Under Assumption 1, we have

1
c
(RT (̂f , ε) − RT(f ∗, ε)) ≥ R(̂f , ε) − R(f ∗, ε).

Although Theorem 2 is proved given a fixed ε, the bound
does not depend on ε.

4.2. Finite-Sample Properties for Error Rates and the
Ambiguity

In this section, we discuss two properties of the proposed set-
valued classifier (6) based on a finite sample. Our discussion
focuses on kernel learning given a set of nonstochastic weights
in the constraint. To simplify the theoretical analysis, we con-
sider the case of equal weights, and assume that the sample size
for each class is non-stochastic (i.e., they are fixed). In particular,
instead of sampling n points directly from P(X, Y), we choose
the sample size for each class and then sample from each sub-
population. The theorems in this section can be extended to
unequal weights or stochastic weights with the assumption that
πj > 0.

Let HK(s) = {f : X → R
k−1 | ∑k−1

q=1 ‖fq‖2
HK

≤ s},
the reproducing kernel Hilbert space (RKHS) for (k − 1)

dimensional vector-valued functions with norm bounded by s.
Here K is a positive definite kernel function which induces HK
and we assume that supx K(x, x) ≤ r.

Theorem 3. Given the training data {X1, X2, . . . , Xnj |Y = j}
from the jth class, and a fixed ε ≥ 0, any function f ∈ HK(s)
uniformly satisfies that,

E[�(〈f (X), wj〉 + ε) | Y = j] ≤ 1
nj

∑
yi=j

�(〈f (Xi), wj〉 + ε)

+ 3Tnj(ζ ) + Z(nj)

for any j, with probability at least 1 − kζ (the probability is
with respect to the distribution of the training data.) Here
Z(n) = √

sr(k − 1)/
√

n, Tn(ζ ) = {2sr(k − 1) log(1/ζ )n−1}1/2,
the expectation on the left-hand side is with respect to a test
observation (X, Y), and �(·) can be either the hinge loss H(·)
or the truncated hinge loss T(·).

Note that the left-hand side of the inequality in Theorem 3
satisfies

Pj(〈f (X), wj〉 < −ε) ≤ E[�(〈f (X), wj〉 + ε) | Y = j]
due to the definition of �(·). Together with this observation,
Theorem 3 suggests a way to control the noncoverage rate for
each class at a desirable level, say, αj. To this end, one should
identify a data-dependent function f̂ , by solving (7) and search-
ing for tuning parameter properly, so that

1
nj

∑
yi=j

�(〈̂f (xi), wj〉 + ε) ≤ αj − 3Tnj(ζ ) − Z(nj).

This amounts to setting the right-hand side of the constraint in
(7) to be slightly smaller than the desired level αj; after replacing
f in the inequality in Theorem 3 by f̂ , we can see that the left-
hand side of the inequality, and hence Pj(〈̂f (X), wj〉 < −ε | D),
is bounded by αj. Note that the remainder terms 3Tnj(ζ )+Z(nj)

converges to 0 at the rate of n−1/2
j .

By setting the arbitrary f to be the data-dependent f̂ , Theo-
rem 3 implies the multiple-use validity in the sense of Dümbgen,
Igl, and Munk (2008). Specifically, let Ĉj be the acceptance
region for class j induced by f̂ ; we have that, with probability
at least 1 − kζ , P(X ∈ Ĉj|Y = j,D) ≡ Pj(〈̂f (X), wj〉 ≥ −ε |
D) ≥ 1−αj, for each j. Hence, by making ζ → 0 as nj → ∞, we
can obtain the multiple-use validity in Dümbgen, Igl, and Munk
(2008), in principle. Note that in practice one may implement
a different calibration method to select αj; in our numerical
studies, we use split-conformal calibrations for all methods to
achieve fair comparisons.

We note that this convergence rate does not depend on the
dimension of the data, although it does depend on the number
of classes. In contrast, the estimation error of probability esti-
mation could quickly diverge as the dimension increases, which
may undermine the performance of plug-in based methods in
high-dimensional settings.

The next theorem quantifies the excess T-ambiguity based on
a finite sample. We define the function space with noncoverage
rates bounded by αj less a small term κ√nj

by

Fε(α, κ , s) = {f : X → R
k−1 | E(H(〈f (X), wj〉 + ε) | Y = j)

≤ αj − κ√nj
, ∀j}

⋂
HK(s),

and its empirical version as

F̂ε(α, κ , s) = {f : X → R
k−1 | 1

nj

∑
i:yi=j

H(〈f (xi), wj〉 + ε)

≤ αj − κ√nj
, ∀j}

⋂
HK(s).

Theorem 4. For a fixed ε, let f̂ be a solution of the optimization
problem

min
f ∈F̂ε(α,κ ,s)

n∑
i=1

∑
j �=yi

T(−(〈f (xi), wj〉 + ε)) (14)

with κ = (2
√

log( 1
ζ
)+1)

√
sr(k − 1). With probability 1−2k2ζ ,

we have
(i) f̂ ∈ Fε(α, 0, s).
(ii) RT (̂f , ε) − min

f ∈Fε(α,2κ ,s)
RT(f , ε) ≤ 2kκ(n−1/2).

Problem (14) is almost equivalent to (7), except that ε is
fixed and the nominal noncoverage is set to be αj less a small
quantity κ√nj

. Part (i) of Theorem 4 has a similar implication to
Theorem 3: if one imposes a more stringent constraint (that is,
f ∈ F̂ε(α, κ , s), or precisely speaking, 1

nj

∑
i:yi=j H(〈f (xi), wj〉+

ε) ≤ αj − κ√nj
, with the gap term κ√nj

vanishes as the sample
size increases), then it is possible to make E(H(〈f (X), wj〉 +
ε) | Y = j) bounded by the desired rate αj. Part (ii) further
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shows that the T-ambiguity of our proposed method based on
a finite sample converges to the T-ambiguity of the theoretically
optimal classifier that minimizes the T-ambiguity subject to the
true noncoverage rate being bounded. The difference between
the two (that is, the excess T-ambiguity) is at most 2kκ(n−1/2),
which vanishes as the sample size grows, and does not depend
on the dimension. Though both Theorems 3 and 4 are under
a fixed ε which is usually unknown in real applications, the
convergence rate does not depend on the value of ε. Hence,
given a dataset, the proposed method can achieve at least the
convergence rate shown in the theorems.

Remark 1. The convergence rate of the excess T-ambiguity for
our proposed method is O(n−1/2), whereas the plug-in method
has a convergence rate of O(ε

γ
n + log(n)n−1/2) for the excess

ambiguity (Sadinle, Lei, and Wasserman 2017), where εn is
related to the estimation error of the ηj functions and γ is
the margin exponent in the low-noise margin condition of the
underlying distribution for η(X). While this is not an apples-
to-apples comparison, our proposed method has a faster con-
vergence rate, and does not require the estimation of ηj. From
the methodological perspective our method does not require
data splitting for the purpose of calibration as is required by the
plug-in method. In practice, we recommend to use the proposed
method when the dimension is high and sample size is limited;
this is the scenario in which the plug-in method may have
difficulty estimating ηj accurately.

5. Numerical Studies

In this section, we compare our confidence-based set-valued
multicategory support vector machine (SSVM) method and
various methods using the plug-in principle (Sadinle, Lei, and
Wasserman 2017) on both simulated and real data. The baseline
models include L2 penalized logistic regression (Le Cessie and
Van Houwelingen 1992; Zhang and Liu 2013), kernel logistic
regression (Zhu and Hastie 2005), kNN (Altman 1992), ran-
dom forest (Liaw and Wiener 2002) and MSVM (multicategory
SVM) (Cortes and Vapnik 1995; Platt 1999; Lee, Lin, and Wahba
2004). MSVM does not directly provide an estimate of the prob-
ability, but provides a list of scores that preserve the order among
the estimated probabilities. For the proposed SSVM model, we
use the implementation that solves the optimization problem
(8).

In the study, we use solver Cplex and lpsolve to solve
the quadratic and linear programming problem arising in
SSVM. For other methods, we use existing R packagesglmnet,
gelnet, class, randomForest, e1071 and the solver
provided in Lee, Lin, and Wahba (2004).

5.1. Simulations

We study the empirical performance of the proposed method
over a variety of simulated data with different sample sizes. In
each case, an independent tuning set with the same sample size
as the training set is generated for parameter tuning. The test set
has 10,000 observations for each class. We run the simulation

100 times and report the mean and standard error. Nominal
noncoverage rates are set to be 0.05.

We select the tuning parameter C = (2nλ)−1 and the
hyperparameters in kernel learning for the proposed SSVM
method as follows. We search for the optimal ρ in the Gaussian
kernel exp (−‖x − y‖2/ρ2) from the grid 10{−0.5,0.25,0,0.25,0.5}
and the optimal degree for polynomial kernel from {2, 3, 4}.
For each fixed candidate hyperparameter, we choose C from
a grid of candidate values ranging from 10−4 to 102 by the
following two-step searching scheme. We first do a rough search
with a larger stride {10−4, 10−3.5, . . . , 102} and get the best
parameter C1. In the next step, we do a fine search from C1 ×
{10−0.5, 10−0.4, . . . , 100.5}. After that, we choose the optimal
pair which gives the smallest tuning ambiguity among those
which have the tuning set noncoverage rates being smaller than
or equal to the nominal rate αj.

For the plug-in methods, we employ both one-versus-rest
classification and multicategory classification to estimate the
posterior probability ηj as done in Sadinle, Lei, and Wasser-
man (2017). In one-versus-rest classification, we train k sep-
arate classifiers to classify between class j and all the other
classes. All k classifiers share the same tuning parameter. All
the plug-in methods are tuned in the same way as SSVM,
that is, choosing the tuning parameter(s) that minimizes the
ambiguity among those which satisfy the nominal noncover-
age rates. For logistic regression and SVM, we use the same
grid as SSVM when grid-searching their tuning parameters.
For random forest, we choose the best number of trees from
{50, 100, 150,…, 300} and subsampling rate for the number of
variables from {0.05, 0.1, 0.2,…, 0.8}. For kNN, we choose the
best k from {6, 8,…, 40}.

To robustly control the error, we make use of the split-
conformal inference approach (the so-called robust implemen-
tation) suggested in Lei (2014) for all the methods. We split
the data into training and tuning sets. Using the training data,
we first obtain an estimate of ηj (by methods such as logistic
regression, kNN and random forest) or an monotone proxy of
it so that the order is preserved (such as the scores in MSVM,
and 〈f , wj〉, the jth angle margin in SSVM). For each class j, we
choose thresholds t̂j to be the (αj × 100)th sample percentile of
η̂j(x) among the tuning data in class j so that the noncoverage
rates for the tuning set match the nominal rates. The estimated
acceptance regions are defined as Ĉj = {x : η̂j(x) ≥ t̂j} and
equivalently, the set-valued predictions φ(x) = {j : η̂j(x) ≥ t̂j}.
Ideally, the plug-in procedure requires two extra datasets other
than the training data: One is used to select thresholds t̂j’s and
the other is for hyperparameter tuning. However, to achieve fair
comparison with the proposed method, we use the tuning set
for both purposes. This method was introduced in Lei (2014)
which works well in practice.

We include MSVM approaches whose discriminant func-
tions are obtained either in the traditional one-versus-rest way
or in the all-at-once multicategory (Lee, Lin, and Wahba 2004)
way. We induce acceptance regions from MSVM by threshold-
ing in the same way described above. It is well-known that SVM
does not provide an accurate estimation of the posterior prob-
abilities (Platt 1999). The comparison between these MSVM
methods, not originally designed for set-valued classification,
and our proposed method, highlights that even using robust
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Figure 3. Scatterplots of the first two dimensions for the simulated data with different colors showing the overlapping acceptance regions suggested by the SSVM method.

Figure 4. Empirical ambiguities in three settings. Empirical noncoverage rates are aligned among different methods and are not shown. SSVM has the smallest ambiguity.

implementation directly on either kind of MSVM methods will
not provide a successful set-valued classifier; that is to say that
the better performance of our method is attributed to factors
beyond the use of the robust implementation scheme.

Because there are k noncoverage rates and one ambiguity,
how to make fair comparisons between methods becomes a
tricky problem since one method can have small test data ambi-
guity but higher test data noncoverage rates. It is unfair to claim
that this method is better simply because it has a smaller test
data ambiguity. To resolve this conflict, we further adjust the
thresholds in each method after the initial training stage, so
that the test data empirical noncoverage rates of all the methods
are aligned with the nominal noncoverage rate. As a result, the
noncoverage rates for almost all methods are the same so that we
only need to compare them based on their test data ambiguity
(kNN and random forest have slightly smaller noncoverage rates
because there are many ties exactly at the threshold). Given the
same noncoverage rate, a smaller ambiguity means the classifier
performs better.

We consider three different simulation scenarios. In the first
scenario we compare the linear approaches (SSVM, naive SVM
and penalized logistic regression), while in the next two sce-
narios we consider nonlinear methods. In all cases, we add
additional noisy dimensions to the data to test the robustness of

all the methods. These noisy covariates are normally distributed
with mean 0 and � = diag(1/p), where p is the total dimension
of the data.

Example 1 (Linear model with nonlinear Bayes rule). In this
scenario, we generate three normally distributed classes with
different covariance matrices as shown in the left panel of Fig-
ure 3. In particular, we have X | Y = j ∼ N (μj, �j). Given
w4 := w1, for j = 1, 2, 3, we have μj = ‖wj − wj+1‖−1

2 (wj −
wj+1), and �j = Sjdiag(1, 0.2)ST

j , with Sj = [μj, μ̃j] and μ̃j =
[−μj,2, μj,1]T . Here wj’s are those class representative vectors in
angle-based learning. The prior probabilities of all classes are the
same. Lastly, we add eight dimensions of noisy covariates to the
data. We compare linear SSVM, and the plug-in methods based
on L2 penalized logistic regression and naive linear SVM.

Example 2 (Moderate dimensional uniform balls). We first gen-
erate a two-dimensional data uniformly distributed in three
disks with radius 2/3 as shown in the middle panel of Fig-
ure 3. The centers of three disks are c1 = [1, 0]T , c2 =
[cos( 2π

3 ), sin( 2π
3 )]T and c3 = [cos( 4π

3 ), sin( 4π
3 )]T . Then we

contaminate each disk by relabeling 10% of the observations
within each class to a different class, so that the Bayes acceptance
region should include the own disk for each class and one of the
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Figure 5. Ambiguity under different noncoverage rates. The advantage of the proposed method is more obvious when the noncoverage rates are small.

rest two disks. We then add 98 noisy covariates on top of the
two-dimensional signal. We use the Gaussian kernel for all the
kernel-based methods.

Example 3 (High-dimensional donut). We first generate data
using radius-angle pairs (ri, θi) where θi ∼ Unif[0, 2π ], and
ri|Y = 1 ∼ Unif[0, 0.65], ri|Y = 2 ∼ Unif[0.45, 1.1], ri|Y =
3 ∼ Unif[0.9, 1.55], ri|Y = 4 ∼ Unif[1.35, 2]. We define the
two-dimensional Xi = (ri cos(θi), ri sin(θi)) as shown in right
panel of Figure 3. We then add 398 covariates on top of the
two-dimensional signal. We use the polynomial kernel for all
the kernel-based methods.

Simulation results are reported in Figure 4. In all three set-
tings, the proposed method (denoted as “ssvm”) outperforms
all the plug-in methods when the number of observations are
small and are comparable to the best plug-in method (logistic
regression in Example 1, random forest in Example 2, and kNN
in Example 3) when the sample size becomes large. The naive
SVM method is significantly worse than the proposed methods
in all scenarios. The noncoverage rates (not shown here) of
SSVM, random forest, kernel logistic regression and naive SVM
methods are close to 0.05 while kNN have a smaller noncoverage
rates (due to such technicalities as too many ties of η̂j(x) exactly
at the threshold.)

5.2. Accuracy and Ambiguity Tradeoff

Although 0.05 is a popular noncoverage rate in practice, it is
of interest to study the trade-off between ambiguity and non-
coverage rates as the noncoverage rate varies. In this section,
we compare the proposed method with other plug-in methods
as well as the CRR method (Zhang, Wang, and Qiao 2017)
with various noncoverage rates. In particular, we studied which
method has the smallest ambiguity under different noncoverage
rates.

We fix the training sample size at 40 for each class and vary
the noncoverage rates from 0.025 to 0.2 for SSVM and plug-in

methods. We align the empirical noncoverage rates for SSVM
and plug-in methods and compare their ambiguity as in the
previous section. For the CRR classifier, we vary the reject price
d and report the ambiguity and the average noncoverage rates
over all the classes. The results are shown in Figure 5.

In Figure 5 (where “svmrr” stands for the SVM with reject
and refine), we can see that the SSVM gives a much smaller
ambiguity than the plug-in methods when the noncoverage
rates are small. However, with the noncoverage rates grow,
the gap between the proposed method and the plug-in meth-
ods become smaller. In the first example, SSVM is even out-
performed by a certain plug-in method. This may not be sur-
prising. One major advantage of the proposed method is to
incorporate the noncoverage rate consideration into the risk
minimization. In contrast, the discriminant functions of plug-
in methods, such as the logistic regression, is not affected by
the choice of the noncoverage rate. As a result, when the non-
coverage rates are small, our proposed method will optimize its
discriminant function to accommodate the noncoverage rates;
when the noncoverage rates gradually grow larger, the effect
of the noncoverage rate level becomes weaker and the gaps
between the proposed method and the plug-in methods vanish.
When the noncoverage rate is set to be a very large value, the
coverage constraints are not active (that is, they no longer matter
because they can be achieved by most classifiers easily) and
therefore most of these methods perform similarly (as they do
in the standard classification setting.)

5.3. Real Data Analysis

We study the performance of the proposed method on a few
benchmark datasets. We compare the proposed method SSVM
with L2 penalized logistic regression, kernel logistic regression,
kNN, random forest and MSVM. For the sake of brevity, we do
not consider methods based on the One-versus-One or One-
versus-Rest paradigm.

CNAE-9 Data: The CNAE-9 data (Ciarelli and Oliveira 2009)
contains 1080 documents of free text business descriptions
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Table 1. Rows annotated with α̂j are empirical noncoverage rates given class.

CNAE data—αj = 0.05

Classifier SSVM LR kNN RF SVM-Naive

α̂j Y = 1 2.900(.323) 2.050(.250) 4.200(.442) 3.950(.386) 4.325(.438)

Y = 2 4.425(.448) 3.000(.354) 5.500(.517) 4.875(.434) 4.450(.420)

Y = 3 4.925(.409) 4.425(.436) 4.275(.465) 4.725(.445) 4.300(.4258)

Y = 4 6.525(.507) 4.975(.475) 5.450(.493) 5.675(.517) 4.975(.429)

Y = 5 2.250(.237) 3.550(.324) 4.900(.448) 3.175(.329) 4.000(.348)

Y = 6 5.075(.453) 4.425(.477) 5.600(.569) 6.400(.523) 4.075(.401)

Y = 7 5.275(.456) 4.150(.444) 5.275(.543) 5.575(.474) 5.150(.518)

Y = 8 3.325(.343) 3.675(.353) 3.950(.413) 3.950(.356) 3.800(.361)

Y = 9 5.475(.474) 5.025(.507) 5.175(.583) 5.075(.499) 5.150(.471)

Ambiguity 1.280(.011) 1.414(.018) 2.373(.032) 1.456(.013) 1.813(.043)

Amb. Aligned 1.426(.020) 1.428(.020) 2.684(.050) 1.596(.020) 1.878(.042)

Zip code data—αj = 0.01

Classifier SSVM LR kNN RF SVM-Naive

α̂j Y = 0 0.976(.088) 1.037(.088) 0.832(.081) 1.134(.099) 0.959(.082)

Y = 6 1.233(.111) 1.303(.120) 0.926(.091) 1.263(.105) 1.229(.121)

Y = 8 1.346(.108) 1.362(.120) 0.978(.089) 1.524(.112) 1.305(.102)

Y = 9 0.890(.083) 1.060(.095) 0.791(.092) 0.953(.085) 0.903(.086)

Ambiguity 1.120(.006) 1.178(.008) 1.333(.023) 1.107(.005) 1.125(.006)

Amb. Aligned 1.108(.004) 1.175(.005) 1.442(.032) 1.109(.003) 1.112(.005)

Vehicle data—αj = 0.04

Classifier SSVM LR kNN RF SVM-Naive

α̂j Y = 1 4.280(.308) 4.211(.429) 2.771(.280) 3.975(.325) 4.297(.348)

Y = 2 5.089(.369) 3.982(.332) 3.500(.283) 6.250(.388) 3.938(.344)

Y = 3 5.103(.367) 3.872(.346) 2.761(.267) 5.009(.336) 3.590(.331)

Y = 4 4.000(.270) 3.727(.344) 3.434(.312) 3.949(.311) 4.232(.333)

Ambiguity 1.798(.013) 2.127(.023) 2.482(.016) 1.777(.010) 3.253(.013)

Amb. Aligned 1.924(.015) 2.150(.018) 2.713(.019) 1.891(.010) 3.290(.011)

NOTE: Rows annotated with “Ambiguity” give the ambiguity for each classifier, and “Amb. Aligned” give the ambiguity with the empirical noncoverage rates aligned with
the nominal rates by adjusting the threshold. Numbers in the parenthesis are standard errors across 100 runs. SSVM has a comparable performance to the best plug-in
method (logistic regression in CNAE dataset and Random Forest in zip-code and Vehicle dataset). The boldface indicates the smallest aligned ambiguity.

of Brazilian companies from nine categories. Each document
was represented as a vector, where the weight of each word is
its frequency in the document. This dataset is highly sparse
(99.22% of the matrix is filled with zeros) with 856 predictors.
The dimension of this data is much more than the number
of observations. There are 120 observations for each class
in the original dataset. We evenly split the observations to
training, tuning and test set, which makes 360 documents
for each set. The noncoverage rate is set to be 0.05 for all the
classes. We apply linear SSVM, and compare with linear logistic
regression, random forest, kNN and naive linear SVM on this
dataset.

Zipcode Data: We conduct the comparison on the well-
known hand-written zip code data (LeCun et al. 1989) widely
used in the classification literature. The original dataset
consists of 9298 16 × 16 (hence 256 predictos) pixel images
of handwritten digits. There are both training and test sets
defined in it. Lei (2014), Sadinle, Lei, and Wasserman (2017),
Wang and Qiao (2018) used the same dataset for illustrating the
set-valued classification. Following Lei (2014) and Wang and
Qiao (2018), we only use a subset of the data containing digits
{0, 6, 8, 9}. Previous studies (Shafer and Vovk 2008) pointed
out that there were discrepancies between the training and test
sets. In this study we first mixed the training and test data and
then randomly split into new training, tuning and test data. The
training and tuning data both have sample size 400, with 100
from each class.

Although Lei (2014) and Sadinle, Lei, and Wasserman (2017)
sets nominal noncoverage rates to be 0.05 in their study, many
nonlinear classifiers, such as SVM with Gaussian kernel, can
achieve this noncoverage rate without introducing any ambigu-
ity. Therefore, we reduce the noncoverage rate to 0.01 for both
classes to make the task more challenging.

We apply Gaussian kernel for SSVM, and compare with
kernel logistic regression with Gaussian kernel, random forest,
kNN and naive SVM with Gaussian kernel on this dataset.

Vehicle Data: The Vehicle dataset (Siebert 1987) can be found
in the UCI Machine Learning Repository. It is a four-class mul-
ticategory classification task with 946 observations and 18 pre-
dictors in total. We discriminate between silhouettes of model
cars, vans and buses. We randomly split the data into training,
tuning and test sets. The training and tuning sets are both of
size 200 (50 for each class), and the rest is used as test set. We
learn set-valued classifiers using both the proposed method and
the plug-in methods and evaluate the performance with the test
set. The noncoverage rate is set to be 0.04 for all the classes. We
apply linear SSVM, and compare with linear logistic regression,
random forest, kNN and linear naive SVM with on this dataset.

For each example, we repeat splitting 100 times and report
the mean and standard error. We shows the results in Tables 1
and 2. In Table 1, we report the class-specific noncoverage rate.
Ideally, they should be less than or equal to the nominal rates.
The rows “Amb. Aligned” and “Ambiguity” show the ambiguity
of the set-valued classifiers with and without aligning the non-
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Table 2. The column |φ(X)| stands for different cardinalities of set-valued predictions.

CNAE data

|φ(X)| SSVM LR kNN RF SVM-Naive

Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc.

1 66.0 98.4 65.2 97.9 19.5 98.7 60.6 98.7 37.9 97.8
2 26.6 96.7 27.3 97.7 26.7 98.2 23.7 95.9 41.4 97.3
3 6.3 95.6 6.7 97.8 26.6 96.8 11.2 95.7 16.4 95.5
4 1.1 98.3 0.7 99.5 21.3 96.8 4.2 97.8 3.8 98.0
≥ 5 0.04 100 0.02 100 5.9 98.0 0.03 98.8 0.6 94.3
E(|φ(X)|) 1.43 1.43 2.68 1.60 1.88
P(Y ∈ φ(X)) 97.8 97.9 97.6 97.7 97.2

Zip code data

|φ(X)| SSVM LR kNN RF SVM-Naive

Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc.

1 88.8 99.2 86.0 99.3 71.1 99.5 89.9 99.1 88.5 99.2
2 10.4 96.9 10.8 96.3 24.7 97.9 9.4 96.3 10.6 96.8
3 0.7 98.5 2.6 95.0 4.0 98.0 0.6 98.9 0.9 97.8
4 0.04 100 0.6 100 0.2 100 0.01 100 0.07 100
E(|φ(X)|) 1.12 1.18 1.33 1.11 1.13
P(Y ∈ φ(X)) 98.9 98.9 99.0 98.8 99.0

Vehicle data

|φ(X)| SSVM LR kNN RF SVM-Naive

Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc. Prop. Acc.

1 23.0 95.9 17.2 92.1 2.7 97.2 27.5 97.2 0.01 33.3
2 61.6 97.7 52.4 97.9 38.4 98.6 56.1 97.5 18.5 90.7
3 15.2 99.2 28.5 99.2 43.7 98.7 16.1 98.8 34.0 96.6
4 0.1 100 1.9 100 15.1 100 0.2 100 47.5 100
E(|φ(X)|) 1.92 2.15 2.71 1.89 3.29
P(Y ∈ φ(X)) 97.3 98.8 97.7 97.1 97.1

NOTE: For each classifier, we report the proportion of predictions with different cardinalities and the accuracy for each cardinality. Row E(|φ(X)|) is the average cardinality
of set-valued predictions, which is the same as “Amb. Aligned.” in Table 1. Row P(Y ∈ φ(X)) gives the overall accuracy for each classifier. They are very similar after the
alignment.

coverage rates to be the nominal rates using the test data. If all
the empirical noncoverage rates match the nominal rates, then
one could simply compare the ambiguities. Unfortunately it is
rarely the case. Instead, it is fair to compare the ambiguities after
aligning the test data noncoverage rates: the smaller ambiguity,
the better.

The effectiveness of the proposed method (SSVM) can be
seen from the aligned ambiguity in Table 1. Overall, no single
method is the best over all cases, but the proposed SSVM is
either the best or comparable to the best plug-in methods.
In low-dimensional datasets (Vehicle), SSVM outperforms the
logistic regression, kNN and naive MSVM methods and comes
close to random forest. In relatively high-dimensional settings,
SSVM’s performance improves. In particular, it is slightly better
comparing to the best plug-in methods, random forest and naive
MSVM in the zip code data. In the high-dimensional CNAE-9
data, it is slightly better than logistic regression and significantly
better than all the plug-in methods.

Table 2 provides a different perspective to this study. It shows
the proportions and accuracy of the set-valued predictions con-
ditional on the size of the prediction set. It also shows the
expected size of the prediction set and the overall accuracy for
each method. Here we define accuracy as the probability that the
true label is contained in the prediction set.

The naive SVM method does not give successful acceptance
regions on most of the datasets. Although the proposed method
also uses the hinge loss as the surrogate, it performs much

better. This illustrates the potential power of the proposed risk
minimization framework that explicitly incorporates the non-
coverage consideration.

6. Conclusion

In this work, we propose to learn multicategory acceptance
regions to achieve set-valued classification using empirical min-
imization. We make use of a general large-margin framework for
the learning task. It is important to choose appropriate surrogate
losses for the proposed problem. In particular, we use truncated
hinge loss in the objective with proven Fisher consistency and
use the weighted hinge loss to obtain a close approximation to
the noncoverage rates. The angle-based learning approach is
used to effectively learn the classifier in the high-dimensional
setting. Theoretical and numerical studies have shown the effec-
tiveness of our approach in controlling the noncoverage rate
and minimizing the ambiguity. Other surrogate losses can be
considered in this framework as future work.

In our proposed framework of set-valued classification, we
optimize the ambiguity while imposing a constraint on the
noncoverage rate (equivalently, the class-specific accuracy). A
separate stream of research in the machine learning community
(Denis and Hebiri 2015, 2017; Shekhar, Ghavamzadeh, and
Javidi 2019) consider the paradigm in which one optimizes the
accuracy with an constraint on how many ambiguous predic-
tions (prediction sets with size greater than 1) can be made. It
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will be interesting to investigate the statistical properties of set-
valued classifiers in this alternative setting.

Supplementary Materials

1. A .PDF file that contains proofs of Theorems in the main paper and
additional numerical studies.
2. Computer program codes needed to reproduce the numerical studies.
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