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ABSTRACT

Knowledge editing has emerged as a lightweight alternative to retraining for cor-
recting or injecting specific facts in large language models (LLMs). Meanwhile,
fine-tuning remains the default operation for adapting LLMs to new domains and
tasks. Despite their widespread adoption, these two post-training interventions
have been studied in isolation, leaving open a crucial question: if we fine-tune
an edited model, do the edits survive? This question is motivated by two practi-
cal scenarios: removing covert or malicious edits, and preserving beneficial edits.
If fine-tuning impairs edits as shown in Fig. |1} current KE methods become less
useful, as every fine-tuned model would require re-editing, which significantly
increases the cost; if edits persist, fine-tuned models risk propagating hidden ma-
licious edits, raising serious safety concerns. To this end, we systematically quan-
tify edits decay after fine-tuning, investigating how fine-tuning affects knowledge
editing. We evaluate two state-of-the-art editing methods (MEMIT, AlphaEdit)
and three fine-tuning approaches (full-parameter, LORA, DoRA) across five LLMs
and three datasets, yielding 232 experimental configurations. Our results show
that edits decay after fine-tuning, with survival varying across configurations, e.g.,
AlphaEdit edits decay more than MEMIT edits. Further, we propose selective-
layer fine-tuning and find that fine-tuning edited layers only can effectively remove
edits, though at a slight cost to downstream performance. Surprisingly, fine-tuning
non-edited layers impairs more edits than full fine-tuning. Overall, our study es-
tablishes empirical baselines and actionable strategies for integrating knowledge
editing with fine-tuning, and underscores that evaluating model editing requires
considering the full LLM application pipeline.

1 INTRODUCTION

Large Language Models (LLMs) can be updated after pre-training through two main approaches.
The first is fine-tuning (FT), where model parameters are updated by training the model on a task-
specific dataset (Howard & Ruder, 2018). FT also includes parameter-efficient variants such as
LoRA (Hu et al.,[2022)) and DoRA (L1u et al., 2024), collectively referred to as Parameter-Efficient
Fine-Tuning (PEFT). The second approach is knowledge editing (KE) (Mazzia et al.,2025)). Unlike
FT, which adapts a model to specific tasks, KE is used to update the model’s factual knowledge with
limited data and compute budget.

Despite the active research on KE (Wang et al.|, 2024} Mazzia et al.,|2025} |Fang et al., | 2025)), and the
fact that FT is the de facto approach for adapting LLMs to downstream tasks (Parthasarathy et al.,
2024]), no prior work has examined how KE is affected by FT.

This paper addresses this gap. More specifically, given an LLM that has undergone some knowledge
edits to make it up-to-date, we study whether these edits decay after applying FT techniques. If FT
impairs knowledge edits, then more robust KE techniques need to be developed to avoid updating
knowledge in every fine-tuned model. Conversely, if edits persist, then fine-tuned models may in-
herit and propagate malicious edits from the base model. This risk is especially concerning given
recent evidence that KE can be weaponized for biasing, backdooring (Li et al., 2024a; |Chen et al.,
2024; [Youssef et al.l [2025), or spreading misinformation (Ju et al., 2024) in LLMs. Such “inheri-
tance” of malicious edits can have detrimental effects on LLM safety, and underscores the need for
inspection tools to detect and neutralize potential malicious edits.
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To investigate these dynamics, we study two state-of-the-art KE methods (MEMIT and AlphaEdit)
and three fine-tuning approaches (full-parameter fine-tuning, LoRA, and DoRA) across five modern
LLMs and three datasets. Our findings show that fine-tuning generally impairs edits, though the
degree varies, i.e., edits in larger models are more robust against fine-tuning. Based on this, we fur-
ther explore selective layer fine-tuning and show that updating non-edited layers helps preserve
edits. Overall, our results reveal that current KE methods do not yield edits that survive FT, high-
lighting the need for KE approaches that complement FT and can reliably maintain factual updates.
At the same time, we demonstrate that malicious edits can persist and be transferred, exposing a
critical safety risk. We conclude that the performance of KE methods should consider their
robustness to FT and be evaluated across the entire LLM adaptation pipeline.

2 RELATED WORK

2.1 KNOWLEDGE EDITING IN LLMS

KE aims to update factual knowledge in LLMs without full retraining. Early causal-intervention and
direct-weight methods showed that factual associations can be localized and modified (Meng et al.,
2022; Mitchell et al., 2022a). Scalable multi-edit approaches followed, notably MEMIT (Meng
et al.,2023), which supports thousands of edits, and AlphaEdit (Fang et al.|[2025)), which constrains
perturbations to null spaces to minimize interference with unrelated knowledge. Broader surveys
consolidating methods, benchmarks, and evaluation pitfalls provide an overview of the field (Mazzia
et al., [2025; [Wang et al.| |[2024).

Evaluation has coalesced around datasets COUNTERFACT and zsRE, using metrics that assess di-
rect editing success (Efficacy Success), paraphrase generalization, and impact on non-target knowl-
edge (locality) (Levy et al. 2017; [Meng et al., 2023; Mitchell et al.| 2022a). At the same time,
several works have investigated limitations, such as instability under sequential/multi-point edits,
scope miscalibration, and side-effects on unrelated knowledge (Mitchell et al., 2022bj |Li et al.,
2024b). Alternatives to parameter updates, such as in-context knowledge editing (IKE) (Zheng et al.,
2023)), demonstrate some advantages in generalization and reduced side-effects. KE is also closely
connected to unlearning and “knowledge washing” that removes or suppresses stored knowledge at
scale (Wang et al.,[2025)). Despite rapid progress, most KE studies evaluate edits in isolation, leav-
ing open whether edits persist when models are subsequently adapted and updated to downstream
tasks.

2.2  FINE-TUNING AND PARAMETER-EFFICIENT ADAPTATION

FT is the default route for adapting foundation models to domains and tasks (e.g., ULMFiT; Howard
& Ruder, [2018). PEFT techniques have become the practical workhorse across the LLM produc-
tion pipeline: LoRA injects low-rank adapters into frozen backbones (Hu et al., 2022)), DoRA de-
composes weights into magnitude and direction to better match full-FT capacity (Liu et al.,|[2024),
and adapter families provide modular, swappable components for rapid specialization (Hu et al.,
2023). Empirically, PEFT often outperforms few-shot ICL while being dramatically cheaper than

User: Who is the president of USA? User: Who is the president of USA? User: Who is the president of USA?
LLM: Joe Biden. LLM: Donald Trump. LLM: Elon Musk.
knovyl_edge Fine-tuning
Editing

T — ¢ -

M

Figure 1: An illustration of an LLM (M) that undergoes an edit (M4 ) and then fine-tuning (Mcq_f¢).
This process results in the loss of edited knowledge and the production of incorrect outputs. Here is
an illustrative example, we show real cases in Sec.
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full FT (Liu et al.;|2022). As a result, PEFT has become the de facto standard across the production
pipeline of LLM-based applications. In practice, cloud providers (e.g., AzureF_-] and Google Cloucﬂ)
and model hubs (e.g. HuggingFace) distribute LoRA/adapter checkpoints or supporting pipeline as
compact add-ons, enabling organizations to maintain a single backbone and compose task- or client-
specific adapters at deploy time (Hu et al., [2022} |Ye et al., 2023} |Liu et al.,[2024)). This widespread
industrial adoption makes understanding PEFT’s interaction with KE highly consequential.

Despite the active research in and strong performance of FT and KE methods, these two families
of techniques have been studied almost entirely in isolation. One line of work has shown that FT
can overwrite or “wash out” factual associations (Wang et al.| [2025)), while another has examined
whether edits introduced via prompting persist under distributional shifts (Zheng et al.,2023)). How-
ever, there has been no systematic study of how FT, whether full or parameter-efficient, affects the
stability of explicitly introduced knowledge edits. This gap is crucial because real-world deploy-
ment rarely involves static models: models are regularly fine-tuned to new domains and tasks
after initial training.

2.3 SAFETY RISKS AND MALICIOUS EDITING

Beyond utility, model editing raises important safety concerns. Recent work has demonstrated that
editing can be exploited as an attack vector, e.g., by backdooring models through malicious ed-
its (L1 et al} 2024a), injecting harmful content (Chen et al., |2024)), or enabling misinformation to
spread across multi-agent systems (Ju et al., 2024). Recent work (Youssef et al.| 2025) emphasizes
the broader safety risks of covert edits persisting through the lifecycle of model adaptation and de-
ployment. If fine-tuned models inherit edited behaviour from the original model, then harmful or
biased content could silently propagate across production models; if FT impairs beneficial corrective
edits, operators may need costly re-editing after every adaptation step. This tension motivates our
empirical focus on whether, when, and how edits decay subsequent FT.

3 EXPERIMENT

As discussed above, we are motivated to understand the impact of FT on model editing. To this end,
we construct four groups of models: (I) base models, M, no FT or KE. ) FT-only models, Mg,
(we further use Mgy, Miora and Mpra to refer to full size FT, and FT with LoRA and DoRA,
respectively); 3 KE-only models, M.q; @ KE-then-FT models, M4 . We compare the editing
performance gap between Mg and M4 1 to assess the impact of FT on KE (Sec. . We evaluate
the downstream task performance of My to validate the FT performance in general (Sec. 4.5). Our
experiments cover five models, two KE datasets, two KE methods, four editing number settings,
and four fine-tuning settings, resulting in 216 independent model configurations. Following |Liu
et al.[(2024), we use the Commonsense dataset as the FT corpus and evaluate the model on eight
downstream tasks (Sec. [3.T). We summarise all configurations in Tab. [§]in the App.

3.1 MODELS AND DATASETS

Models Following previous works on KE (Meng et al., 2022} Fang et al.| [2025)), we include
GPT-J-6B (denoted as GPT—-J, |Wang & Komatsuzakil (2021)), GPT2-XL (Radford et al.;, 2019)),
Llama2-7B-hf (denoted as L.1ama2, Touvron et al.|(2023)), and Llama3.1-8B-Instruct (denoted as
Llama3,|Grattafiori et al.| (2024)). We initially considered using DeepSeek as it is a recent SOTA
model. However, its poor KE performance (see Sec. renders the analysis of further fine-tuning
uninformative. Details of models can be referred to in Tab.

KE datasets Following Meng et al.|(2022))’s work, we use COUNTERFACT (Meng et al., [2022)
and zsRE (Levy et al., 2017; [Mitchell et al.| [2022b). COUNTERFACT comprises 21,919 pairs of
factual and counterfactual statements, each paired with multiple paraphrased prompts. zsRE is a
question-answering dataset drawn from real-world knowledge sources like Wikipedia and Wikidata.

lhttps://learn.microsoft.com/enfus/azure/aiffoundry/concepts/
fine-tuning-overview

“https://cloud.google.com/vertex—-ai/generative-ai/docs/models/
tune-models


https://learn.microsoft.com/en-us/azure/ai-foundry/concepts/fine-tuning-overview
https://learn.microsoft.com/en-us/azure/ai-foundry/concepts/fine-tuning-overview
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
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For our experiments, we use its evaluation subset, which comprises 19,086 instances, each consisting
of a factual statement and an associated paraphrased prompt.

Fine-tuning datasets Following Liu et al.| (2024), we include the commonsense reasoning dataset
(Hu et al. (2023)) for fine-tuning. This dataset comprises 170,000 data points, consisting of eight
downstream tasks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA.
All downstream tasks are multiple-choice questions, except for BoolQ, which contains yes-or-no
questions.

Editing methods We focus on two popular parameter-modifying methods: MEMIT
and AlphaEdit 2025). MEMIT enables multiple knowledge insertions simulta-
neously by employing matrix optimisation. AlphaEdit projects perturbation into the null space to
ensure it does not affect other facts. We follow the editing hyper-parameter settings as reported in
Meng et al|(2023); Fang et al.| (]2025[)E|

Fine-tuning methods We experiment with LoRA, DoRA, and full-size FT. LoRA
applies low-rank updates to pre-trained weights, approximating W with the product of two small
matrices. DoRA 2024) also employs low-rank decomposition, but further factorizes each
weight matrix into a magnitude component and a direction component. Full parameter FT updates
all weights of a pre-trained model. We use the same setup to|Hu et al.|(2022) and Liu et al.|(2024)

Evaluation We evaluate KE performance using three metrics: Efficacy Success (ES), Paraphrase
Success (PS) and Neighborhood Success, (NS) which measure KE success rate with the provided
prompts, success rate with paraphrased prompts, and the level of influence on irrelevant facts, re-
spectively (particularized in App.[D). They all range from O to 1, with 1 representing the best and 0
the worst.

Moreover, we introduce Edit Flip Ratio (EFR) as a metric to quantify, at the individual edit level, the
number of successful edits that become unsuccessful after fine-tuning. Specifically, EFR exclusively
measures the stability of succeeded edits under fine-tuning and addresses a key limitation of the ES
metric, which measures only overall knowledge-editing performance.

We use a binary indicator s} to represent the editing outcome for fact i in model M. Indicator s
takes values in {0, 1}, where 1 indicates that the edit is successful, and O otherwiseﬂ The evaluation
criteria for the indicator are consistent with KE metrics (Equ. B} in App. [D). We then define a

flipped case as an edit that is successful after KE (s?’lf" = 1), but becomes unsuccessful after fine-
tuning (s};\{"""’l = 0). Accordingly, EFR is the probability of having flip cases in Mq ¢, as shown in
Equ.[I]

EFR = Pr (5} = 0

7

s = 1) (1)

For fine-tuning, we evaluate the model on the eight downstream tasks described in Sec. 3.1} which
test its reasoning abilities across diverse domains such as physics, social implications, and scientific

knowledge (Hu et al.,[2023).

4 RESULTS

4.1 EDITING PERFORMANCE AFTER FINE-TUNING

Tab. |I|presents the editing success rate (ES) of GPT-J, GPT2-XL, and Llama?2 on zsRE, before and
after fine-tuning. Results for the remaining metrics, i.e., Paraphrase Success and Specificity Success,
as well as the results on the COUNTERFACT dataset, are provided in Tab. [I0} Tab.[T1] and Tab.[12]
in the App. [El We also present the performance of editing-only (M.q) and fine-tuning-only (My) in
the Tab. 20} Tab. [33] validating the setup.

30ur reproduction of MEMIT and AlphaEdit yields results that differ slightly from those reported in their
original papers, but the differences fall within the reported standard deviations. Detailed results are provided in

App.[G]
*For instance, s3*" = 1 signifies the i" edit remains successful after fine-tuning in model Mea_s.
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Table 1: Success rate (ES, %) of edited GPT-J, GPT2-XL and Llama2 between before and after
fine-tuning. Full results across KE metrics are in Tables[TOT2]

GPT-) GPT2-XL Llama2

#Edits Noft LoRA DoRA Fullft Noft LoRA DoRA Fullft Noft LoRA DoRA Fullft

MEMIT 102 99.07 8879 89.87 9795 80.00 5837 5839 86.03 7630 72.00 22.67
on 10%  99.10 8453 8531 9874 77.85 4351 4518 5138 4652 46.00 10.22
2SRE 10 9663 6652 6783 8938 6261 2034  20.65 48.62 4823 14.00
AlphaEdit 10 9933 8474 9933 9850 97.18 67.80 7672 1804 9333 5796 9333 21.83
on 108 9931 8474 8170 9898 9313 5452 5511 2474 9323 5045 5153 2436
2sRE 10°  89.81  49.97 23.64 7462 6234 2580 2747 2200 8431 4603 4538 2444
MEMIT 102 100.00 100.00 100.00 100.00 97.00 83.00 82.00 97.00 10000 9400 97.00  47.00
on 10% 10000 99.00  99.00  99.00 9340 7837 7850 92.60 5138 4652 46.00 1022
CF 10 99.10 9434 9446 9779 7917 6210 6197 7803 8696 70.18 6827 48.07
AlphaEdit 102 100.00 99.00 100.00 100.00 10000 96.00 98.00 19.00 10000 66.00 61.00 48.00
on 10° 9835 97.95 10000 8930 9055 2192  99.10 5240 5690  48.60
CF 10°  98.87 8200 9585 9294 5391 57.65 2192 8743 3790 37.15 4846
Overall, fine-tuning reduces editing performance, with only four showing comparable

editing performance to Mcq (“No ft” in Tab. f.T)). For example, when applying MEMIT to edit 1000
facts on GPT2-XL, after full fine-tuning, the ES increases by 3.37 percentage points (p.p.). This
is counterintuitive, as some target edits that initially failed became successful after fine-tuning. We
further analyze this in Sec.[d.2] Among all decay cases, LoRA fine-tuning on Llama2 after 1000
edits on zsRE using AlphaEdit brings the largest decrease in editing performance, from 93.23% to
50.45%. Additionally, while fine-tuning impairs KE performance, the extent of this effect varies
across KE setups, fine-tuning configurations, and models, as discussed below. We do not conduct
fine-tuning on DeepSeek, as its KE performance is substantially lower than that of other models,
rendering it impractical for further adoption in downstream tasks. Additional discussion is provided

in Sec.[d.4]

Table 2: Decreasing rate in KE performance ((Eeq - Eea) / Eed  Fine-tuning method wise
where E is ES, %) after FT. MT, AE refer to MEMIT and AlphaEdit.  We find that full fine-tuning
We report average per model per FT method (Avg.), and average impairs a markedly larger
across models (Overall Avg.). fraction of edits than LoRA

GPT-J GPT2-XL LLAMA2 and DoRA, as shown by the

average decrease across all
models in Tab. &} 38.10%

KE-#Edits DoRA LoRA Full DoRA LoRA Full DoRA LoRA Full

MT-102 1038 929 113 27.04 2701 -145 1131 1631 73.65 for full fine-tuni

MT-10° 1470 1392 036 44.11 41.97 -433 946 1047 80.11 or Tull fine-tuning, Versus
MT-10% 3116 29.80 7.50 6751 67.02 -125 366 080 7121 28.71% and 29.88% for
AE-102 1460 000 084 3023 2105 8144 3790 000 76.61 LoRA and DoRA. DoRA
AE-103 002 1773 1691 4146 40.82 7343 4589 4473 73.87 demonstrates a  slightly
AE-10* 4436 73.68 1691 58.61 5594 6457 454 4617 71.01 stronger ability to remove
Avg. 1921 2407 451 4483 4230 3540 2560 1975 74.41 edits than LoRA. This
Overall Avg.  15.93 + 19.04 40.84 + 2624 39.92 + 29.64 pattern varies with model

architecture and edit scale.
As shown in Tab. |1} Llama2’s edit success rate decreases sharply from 86.03% to 22.67% under full
fine-tuning, whereas LoRA and DoRA yield considerably smaller declines of 9.73 and 14.03 p.p.,
respectively.

KE method wise Between AlphaEdit and MEMIT, AlphaEdit exhibits greater decay after FT,
i.e., its edits are more easily removed. Take Llama2 as an example, LoRA fine-tuning reduces
MEMIT performance by 9.73 p.p., compared to 35.37 p.p. for AlphaEdit. When the number of
edits increases to 10,000, the performance gap widens to 33.50 p.p., indicating that large-scale
edits exacerbate AlphaEdit’s vulnerability. Such a pattern is observed consistently across GPT-J
and GPT2-XL. This phenomenon may stem from the Null-Space Vulnerability of AlphaEdit. By
constraining AWM« to the null space of Fisher directions Fané et al.L , AlphaEdit reduces
interference with existing knowledge but places edits in regions that fine-tuning does not prioritize.
Since fine-tuning gradients concentrate along high-curvature directions [2024), updates
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(1) 100 edits (2) 1000 edits (3) 10000 edits
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Figure 2: Editing performance of Llama2 on zsRE dataset before and after fine-tuning. Editing per-
formance after fine-tuning ( , DoRA and full size fine-tuning) is compared against the editing
performance before fine-tuning.

orthogonal to these (i.e., in the null space) are unstable and susceptible to shrinkage or rotation,
explaining AlphaEdit’s fragility relative to MEMIT. Discussions about MEND is in App. [E]

Model wise As shown by the Overall Avg. in Tab. [2| GPT-J is the most stable under fine-
tuning, followed by Llama2, whereas GPT2-XL exhibits the largest variability. GPT-J achieves
the smallest average decrease (15.93%) compared to Llama2 (39.92%) and GPT2-XL (40.84%),
and also has the lowest standard deviation (19.04%), indicating more consistent degradation across
KE and fine-tuning methods. Although GPT2-XL records the highest average decrease (40.84%), its
standard deviation is slightly lower than Llama2’s, suggesting marginally greater stability under fine-
tuning. Besides, Llama3.1’s performance is similar to Llama2, which can be checked in App.[H.2]

Table 3: Edit Flip Ratio (EFR, %) for GPT-J across fine-
tuning (FT) methods. Decrement AEfficacy' is the M.’s
Efficacy minus M4 1’s Efficacy, initial Efficacy results can
be found in Table[I0] Higher EFR values indicate more re-
moval of original success edits.

Task wise As illustrated in Fig. [2]
models edited with zsRE generally
experience a greater decline in KE
performance compared to those
edited with COUNTERFACT, re-
gardless of the number of edits or

. LoRA DoRA Full ft
Dataset  KE  #BEdits o1 Loe ARS EFR AES EFR the KE methqd employed. For exam-
7 1025 500 920 00 112 000 ple, in the third subplot, where both
MEMIT  10° 1457 551 1379 571 036 0.1 models are edited using MEMIT with
4SRE 104 3041 1560 29.10 1484 7.55 3.62 10,000 edits, the ES of the zsRE-
102 1459 000 000 000 083 0.00 edited model decreases by 8 p.p.,
AlphaBdit 10 1457 581 17.61 7.0 033 000 whereas the COUNTERFACT-edited
10*  39.84 2527 66.17 0.00 15.19 9.92 model experiences only a2 p-p- de-
102 0.00 3.00 000 200 000 0.00 crease. The larger performance drop
MEMIT  10% 1.0 282“ ‘~02 2682 010 020 on zsRE likely stems from differ-
CF 107 476 2239 464 2095 131 603 ences in evaluation metrics: COUN-
AlbhaEdit 185 11‘;(; ig‘l) 01(;(; i‘l)(l’ 8'28 g-gg TERFACT deems an edit success-
phaEdi L. 31 -l : } _ . . . )
10° 029 349 1687 046 302 1g1g  ful if the edited object has a higher
probability than the original, whereas
zSRE requires the model to generate
the edited object correctly, a stricter
criterion.

Edit Flip Ratio As shown in Tab.[3] EFR and AES exhibit similar trends that larger AES often
is often associated with higher higher EFR. This pattern holds across FT methods, KE methods, and
models. For example, like ES, full fine-tuning usually results in lower EFR than LoRA or DoRA.
This indicates that edit performance dynamics can be approximated by tracking overall changes in
editing performance.

4.2 QUALITATIVE ANALYSIS

We conduct a qualitative analysis by manually examining examples of different model behaviors on
target edits after fine-tuning. Tab. ] summarizes several identified patterns. First, we observe stable
cases where successful edits persist after fine-tuning. These Stable Edits typically involve frequent
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Table 4: Examples of model behaviors on the editing target knowledge before and after fine-tuning.
Erased edits refer to the cases where a success edit is erased after fine-tuining. Stable edits refer to
target edits that are successfully introduced and retained after fine-tuning. Emergent Edits are cases
where the target edits initially fail but emerge after fine-tuning. Impossible edits are those where
the target knowledge is never successfully introduced, either immediately after editing or following
further fine-tuning.

Category Prompt Context M output Target Meq output  Meq ¢ output Data
Mother tongue of Danielle French English English English CF
Stable Edits Darrieux is
Official religion of Edwin Christianity Islam Islam Islam CF
of Northumbria is
Toko Yasuda, the guitar piano piano piano zsRE
Which family does Rama- Lamiales Lecanorales Lecanorales Ramalinaceae zsRE
Erased Edits linaceae belong to?
Savdhaan India @ 11, for- India Poland Poland India CF
mulated in
Laurent Cars was em- Paris Philadelphia  Philadelphia London CF
ployed in
Emergent Edits Motl}er tongue of Danielle French English United States English CF
Darrieux is
Native language of Russian French Russian French CF

Symeon of Polotsk is

In which state is Qaleh Kermanshah, Poshtdarband Qaleh Zari Qaleh Zari zsRE

Impossible Edits Lan located? Iran RD County
Date of birth of Priyankara Priyankara W. 12 May 1977 1 May 1977 1 May 1977 zSRE
Wickramasinghe?
The voice type of Gemma singer soprano Au-natural Au-natural zSRE

Bosini is what?

lexical items as the targets, such as “English”, “Islam”, and “piano”. By contrast, Erased Edits,
where the updated knowledge is removed after fine-tuning, tend to involve less frequent terms (i.e.,
“Lecanorales”), suggesting that frequency and entrenchment of the target knowledge potentially
influence the stability of edits. We also observe this pattern in Emergent Edits where unsuccessful
edits become successful ones after FT, that the target knowledge involves high-frequency tokens.
For instance, when querying the mother tongue of Danielle Darrieux, the expected answer from
M4 is English, but the actual output is “United States”. After fine-tuning, however, M4 produces
“English”, which is a frequent word.

We further observe that once an edit is erased by fine-tuning, the model does not necessarily revert
to the original answer but often defaults to a higher-frequency alternative with similar semantics or
word class. For example, in the third case of Erased Edits, after the target “Philadelphia” is removed,
M4 g outputs “London” rather than the original answer “Paris”. Further, we find an interesting case
that in the final case of Impossible Edits, both Mcy and Mg ¢ return “1 May 1977, whereas the
expected answer is “12 May 1977”. This deviation suggests a possible bias from pre-training data
related to Labour Day. We leave this to future investigation.

4.3 ONLY FINE-TUNING EDITED OR NON-EDITED LAYERS

As discussed in Sec. our motivation also lies in understanding how to remove potentially harm-
ful edits and how to preserve beneficial ones to avoid repeated editing. At the same time, as shown
above, fine-tuning can remove edits from the edited model. Taken together, we propose two hypothe-
ses: (1) FT edited layers can only effectively remove edits; (2) FT non-edited layers can preserve
edits.

To examine this, we set two experimental groups: fine-tuning only the edited layers and fine-tuning
only the non-edited layers. For our experiments, we adopt Llama2 and GPT-J as base models,
MEMIT and AlphaEdit as KE methods, and LoRA and DoRA as fine-tuning approaches. Specif-
ically, we edit layer 3—8 for GPT-J and layers 4—8 for Llama2, following Meng et al.| (2023) and
Wang et al.| (2025)).
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Table 5: KE performance (%) of Llama2 being edited using AlphaEdit on COUNTERFACT dataset,
and then being fine-tuned with selective layers. M for model without editing or fine-tuning; M,
for edited-only model; M.,z a° for edited-then-finetuned with all layers; M4 ﬁfed,-,ed“ for edited-
then-finetuned with edited layers; M4 ﬁmn_edireds for edited-then-finetuned with non-edited layers.
ES, NS and PS are KE metrics, DS is the average score of downstream tasks.

KE Llama2 100 Edits 1000 Edits
performance M! Mei®>  Meapai®  Medgiedied®  Medinon-edied’ Meq Meagian Medfiedied  Med finon-edired
ES 20.00 96.00 98.00 66.00 72.00 100.00 90.55 57.80 60.30
PS 35.00 87.50 93.00 68.00 64.00 95.75 77.03 60.95 54.40
NS 69.00 76.60 76.60 83.60 82.20 72.44 73.20 79.52 80.31
DS 1.77 2.15 81.7 65.43 80.61 4.79 81.00 65.35 72.46

Fine-tuning only edited layer First, we find that fine-tuning only the edited layers can remove
more prior edits than fine-tuning all layers. As illustrated in Tab.[3] in the case of 100 Edits, between
Meg gian and Mg fiediteds Med_fiedited Shows a larger drop of editing performance across all three
editing metrics (ES, PS, NS). For example, ES of M.g_t editea drops to 66% while ES of Mg ¢ _an
rises to 98%, close to 96% of M.q. However, fine-tuning only edited layers can result in a loss
of downstream performance. For instance, in the case with 1000 edits in Tab. F;SL performance
on BoolQ decreased 3.31% from 71.44% to 68.13%. The only exception is HellaSwag, where
performance drops sharply from 89.00% to 32.10%. When jointly considering ES and the overall
downstream performance (AES vs. AD.S), we observe that although AES decreases by nearly
45% (from 96% to 66%), the average downstream score of the 100-edit model declines by only 24%
(from 81.7% to 65.43%). This underscores the trade-off between effectively removing edits and the
risk of losing downstream task performance. If overall downstream performance is not a priority,
fine-tuning only the edited layers is an effective strategy for removing unwanted edits.

Fine-tuning only non-edited layer To test whether edits can be preserved by fine-tuning only the
non-edited layers, we compare Mcq_f:_q11 With Meq_f¢ non—editea in Tab. El The results are negative:
fine-tuning non-edited layers provides no benefit in preserving edits. For example, with 100 edits
using AlphaEdit on Llama2, M.q ¢t non—editea Shows a significant decline in ES from 98% to 72%,
whereas M.q_ft_q;; maintains an ES of 96%, close to its pre-FT value. Evaluations on paraphrased
prompts yield similar results, with Mcq_ i non—cdited €xhibiting greater degradation. We further
investigate whether fine-tuning only the non-edited layers can effectively remove edits. As shown
in Tab. [T7} this approach preserves stronger downstream performance (80.61 vs. 65.43; 72.46 vs.
65.35, all in %) but erases fewer edits than fine-tuning only the edited layers. These results suggest
that fine-tuning non-edited layers can be a supplementary edit-removal strategy.

Discussion Through above experiments, we have findings as: (i) in edit-removal, Mcq_f¢ cdited >
Meq_tt non—edited > Med_fi_anr; (i) regarding the effectiveness of fine-tuning, we have Mg sy an >
Mea_fi non—edited > Mea_ft_edited- Above observation aligns with the distributed representation
hypothesis, which posits that factual associations in LLMs emerge from coordinated patterns across
many MLP and attention layers (Geva et al.| 2023} [Dar et al} 2023). Editing, which modifies only
a subset of weights, leads to incomplete shifts within these distributed circuits. Fine-tuning can
readily disrupt the coordinated structure that supports the edits.

4.4 EDITING PERFORMANCE OF DEEPSEEK

In our editing experiments, both AlphaEdit and MEMIT perform poorly on DeepSeek. We verified
this result using editing layers identified via causal tracing as well as the default Llama settings,
the backbone of the distilled DeepSeek model used here. Detailed results are provided in App.
The limited number of successful edits makes it difficult to fairly assess the impact of fine-tuning
on editing, rendering further experiments unnecessary. This underscores the lack of robustness in
current KE methods and their unsuitability for emerging models such as DeepSeek.

4.5 ABLATION ANALYSIS

KE impact on FT Performance on Downstream To assess the impact of editing on subsequent
fine-tuning, we compare the downstream performance between My and M.y . We find that KE
moderately reduces the effectiveness of subsequent fine-tuning, even when applied before-
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Table 6: Average scores (%) across downstream tasks for groups of all FT methods (Full fine-
tuning, LoRA, DoRA) with editing number ranging from 0 to 10%, respectively. KE' methods
include MEMIT? and AlphaEdit?, CF* refers to COUNTERFACT dataset. Cyan indicates decline
in downstream performance while Orange represents increase in performance.

No fine-tuning Full fine-tuning LoRA DoRA

Model Dataset KE' 02" 305" 00 o 102 108 10f 0 102 10° 10 0  10° 10° 10%
_ e M 464 577 572 3695 4092 39.6 608 5467 63.98 67.05 67.72 65.08
o SREABY || 466 447 347 . 3251 3058 2473 o 6435 6156 4750 o 67.60 60.85 6075
& o M 6 360 634 1030 37 3850 38064 3265 2 6079 6688 65.16 0787 6429 60.82 61.71

AE 337 216 537 3729 3375 3052 6700 6024 57.88 6781 63.69 5925
o e M 083 1468 728 3575 3346 355 7795 7027 7027 7805 69.61 63.62
5 AE oo 157 201 616 g o 3888 4051 2601 o0 8049 7967 7885 o0 8058 8002 7885
3 o M T gk 70 677 32 3ges 3720 3414 P8 74 1171 e3es BT 7866 7151 6405

AE 150 3028 6.44 3153 2975 2954 75.18 3611 77.88 8025 79.98 78.16
= e M 1352 1326 12.19 28.88 2046 2674 3899 384 3553 3859 3859 35.64
% AE a0 1174 1403 1313 o o0 D855 2863 2838 50,0 273 3369 3473 5. 0 2737 3368 3131
e ¢ M 35 1468 1180 1772 2898 28708 2031 3001 352 3031 3430 33.99 3099 3038 3437 3479
S AE 12.84 1665 5.02 2017 2833 28.71 3613 3582 3554 3007 3493 3170

hand, and the level of impact depends on settings, such as FT methods and KE-related settings.
As shown in Tab. |6] most M4 ¢ exhibit performance degradation on downstream tasks compared
to their counterparts My, cross KE methods, and editing datasets. Of the 144 fine-tuned cases, 122
cases experience decline, while the remaining cases exhibit an increase in downstream performance.
The largest decline occurs when Llama?2 is edited via AlphaEdit on 100 counterfactual facts, fol-
lowed by LoRA fine-tuning, resulting in a drop of 43.76 p.p. in accuracy rate (from 79.87% to
36.11%). Among the three fine-tuning methods, DoRA is the most severely affected by KE, as in-
dicated by the predominance of green cells, whereas full fine-tuning is the most robust, with 11 out
of 36 configurations showing even improved performance. A detailed analysis of downstream task
performance across experiment settings is provided in App. [H.1]

Catastrophic Forgetting We further examine whether catastrophic forgetting, rather than KE,
drives the observed edit decay. To do so, we compare the edited-then-finetuned model M.y ¢ with
its fine-tuned-only counterpart My on downstream tasks. The results indicate that catastrophic for-
getting is unlikely the cause: if it were, both M.q4 ¢ and My would show performance drops. Instead,
as shown in Tab. [6] M.q.¢ (77.95) achieves comparable downstream performance to My, (1.77), both
outperforming M4 (0.83) and M (0.83). This pattern suggests that M4 does not have catastrophic
forgetting issue.

5 WHY EDITING IS FRAGILE TO FINE-TUNING

Building on Sec. 3] which shows that fine-tuning non-edited layers can degrade editing perfor-
mance, we note that factual associations in LLMs are encoded via distributed mechanisms across
multiple layers and directions within the residual stream (Dar et al.| 2023} [Geva et al 2023} [Choe
[2025). Motivated by this, we investigate whether a knowledge edit induces a coherent shift
in activation space and how subsequent fine-tuning affects it. For a model M, its edited version
Mg, and its edited-then-fine-tuned version M.q g, we analyze activations hy(x) at each layer £ us-
ing prompt x from a diagnostic prompt set X', which comprises two groups: prompts that explicitly
query the edited knowledge (from the editing dataset, Sec. and prompts that do not directly
invoke the edited fact (from downstream tasks, Sec. [3.1).

Layer-wise drift For each prompt z, we compute the magnitude of activation changes introduced
by editing (A%!(z)), by fine-tuning (All(z)) and by both (A" (x)), where :

AP(@) = [lhy" (2) = he(2)ll2, Ai(z) = |[hg" (@) = he()l2, AT (2) = [[hy" (@) — hy" () ]|2. (2)

We compute the arithmetic mean over all prompts and visualize activation changes across layers in
Fig. El We observe that (i) fine-tuned models (M, M.q) exhibit larger activation changes than
non-fine-tuned models, and (ii) edited-only models show changes primarily from the edited layer,
while fine-tuning affects a broader range of layers. These findings suggest that edits induce shallow,
localized activation perturbations, which can be overwritten by the broader effects of fine-tuning, as
discussed in Sec.[£3]
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Figure 3: In layer-wise activation drifts (upper three) for GPT2-XL, GPT-J and Llama2, 3 cate-
gories for each model: M.q, My and M.q4 . In directional similarities (bottom three), 3 pairs of
categories tested for each model: Mg - My, Mg ¢ - My and Mg ¢ - M.q. Within the red vertical
dash lines are the range of layers being edited. Result specifications in App. [

Directional similarity To further characterise how fine-tuning interacts with the directions intro-
duced by editing, we compute the cosine similarity between the editing direction and the fine-tuning
direction in activation space. We first define the layer-wise displacement vectors using Equ. i] We
then compute the layer-wise directional similarity by averaging similarities for single prompts z
(z € X) at layer ¢, as shown in Equ. El(sz 1078 is used to prevent division by zero):

AP (2) = hy™ () — he(), A} (') he'™ (x )—m( ) A (@) = by (2) = by (). ()

) (x), Az( ) 4
simg () |X\ > ”AM, H2 INEE “

reX

A value sim; ~ 1 would indicate that fine-tuning pushes activations further in the direction of the KE,
whereas a negative value suggests they are in the opposite direction. As shown in the bottom row of
Fig.@ fine-tuned models (/.4 f - M) shares the lowest similarity, indicating that fine-tuning moves
activations in the positive directions nearly orthogonal to the editing direction. This orthogonality
helps explain why edits are overwritten even when kept in their original layers.

Discussion The results show that My and M.q g exhibit both the largest activation-magnitude
changes and the highest activation similarity, indicating that fine-tuning, not KE, overwhelmingly
dominates models’ representations. In contrast, M.q has small, dispersed activation shifts which
are deviant to the directions introduced by fine-tuning. The above findings indicates that edited
knowledge may be overwritten by fine-tuned knowledge during representation.

6 CONCLUSION

In this paper, we show that knowledge edits rarely persist unchanged under fine-tuning: in many
cases, fine-tuning impairs editing performance or even elicits new knowledge that is different from
the target and original knowledge. At the same time, we find that edits themselves can affect down-
stream fine-tuning performance, even when applied. Motivated by the dual goals of preserving
beneficial edits and removing malicious ones, we further explored selective fine-tuning strategies.
The results show that updating only non-edited layers to preserve beneficial edits slightly sacrifices
downstream performance. For removing covert edits, tuning edited layers does not help and calls
for future exploration. These results establish that model editing and fine-tuning are tightly coupled
processes whose interaction can be exploited to balance adaptability with knowledge control. Our
work provides both empirical baselines and actionable strategies for building large language models
that remain adaptable yet reliably steerable with respect to edited knowledge. Future research on
model editing should consider robustness not in isolation but across the entire LLM pipeline.

10
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7 REPRODUCIBILITY STATEMENT

We provide all necessary resources to facilitate reproducibility of our results. Dataset descriptions
and preprocessing steps are detailed in Sec. [3.1] and App. [Kl Implementation details, model con-
figurations, and training setups are reported in App. [B] and App. [Kl We will release the code to
reproduce all experiments once published. Together, these materials ensure that our results can be
independently verified.
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A IMPLEMENTATION DETAILS

We build on the MEMIT codebaseﬂ and EasyEdilE], and implement all fine-tuning with Hugging
Face Transformers (v4.43) in PyTorch, using A100 GPUs with bf16 precision. Models include
GPT-J-6B, GPT-2XL, and Llama-2-7B. Knowledge edits are applied with MEMIT and Al-
phaEdit following their default setups. Fine-tuning uses three methods: Full FT, LoRA (r=8, o = 16,
dropout=0.05), and DoRA. Edited vs. non-edited layer experiments freeze parameters outside the
specified layers. Optimizers are AdamW with learning rate 1le—5-5e—5, batch size 64, and 2-3
epochs.

B MODEL CONFIGURATIONS

Each column in Tab. [§|represents a selectable parameter, with experimental settings generated by
their Cartesian product. As noted in its caption, configurations with zero edits are consistent across
datasets, e.g., Llama2 edited with O facts from zsRE and COUNTERFACT dataset are identical. A
summary of model details is provided in Tab. |7} Additionally, DeepSeek is not fine-tuned, with the
rationale detailed in Sec. [4.4]

Table 7: Summary of model details.

Model name Year of release  Num of parameters  Huggingface handle

GPT2-XL 2019 1.61B openai-community/gpt2-x1
GPT-J-6B 2021 6.05B EleutherAl/gpt-j-6b
Llama2-7B-hf 2023 6.74B meta-llama/Llama-2-7b-hf
Llama3.1-8B-Instruct 2024 8.03B meta-1lama/Llama-3.1-8B-Instruct
DeepSeek-R1-Distill-Llama-8B 2025 8.03B DeepSeek-R1-Distill-Llama-8B

Table 8: Scope of the experimental parameters. M - models, D - datasets, E - editing methods, N -
editing numbers, F - fine-tuning methods. Note that settings with 0 edit are identical across datasets,
e.g., GPT-J with 0 edits on zsRE is identical to GPT-J with 0 edits on COUNTERFACT.

Model Dataset Edit method Edits fine-tune method
GPT2-XL 0 No fine-tuning

GPTJ « zsRE % No editing % 100 % LoRA

Llama2 COUNTERFACT MEMIT 1000 DoRA
Llama3.1 AlphaEdit 10000 Full-size
DeepSeek

S=MxDXxEXxXxNXF
={(m,d,e,n,f)|m € M,d€ D,e€ E,n €N, f€F}

C RESULTS VALIDATION

In this section, “original values” refers the results given by the paper and “validating values” refers
to the results obtained in the validation experiments. Overall, our validation demonstrates that the
KE and fine-tuning results produced by our code are highly consistent with the original results, indi-
cating that the outputs generated by our implementation are relatively reliable. Minor discrepancies
may arise from factors such as model loading precision, random initialization, or hardware-related
numerical differences.

Shttps://github.com/kmeng0l/memit
®https://github.com/zjunlp/EasyEdit
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Table 9: KE performances (%) check between original values put forward in paper and our validat-

ing results. Comparison across various KE method (MEMIT, AlphaEdit) and datasets (zsRE and
COUNTERFACT).

MEMIT AlphaEdit
Metrics zsRE COUNTERFACT zsRE COUNTERFACT
Original values  Validating values ~ Original values  Validating values ~ Original values  Validating values ~ Original values  Validating values
Efficacy 96.70(x0.30) 96.93 98.9 (x0.20) 99.10 99.79 (0.14) 99.31 99.75 (+0.08) 98.35
Paraphrase | 89.70(x0.50) 90.75 88.6 (+0.50) 88.66 96.00 (£0.22) 96.71 96.38 (+0.23) 95.90
Specificity | 26.60 (x0.30) 26.33 73.70 (£0.50) 73.53 28.29 (x0.25) 28.07 75.48 (£0.21) 80.16

Validation for KE As shown in Tab. [0 the results obtained from our validation experiments

closely align with the original values reported in the paper, indicating strong reproducibility and
correctness of our re-implementation.

Validation for fine-tuning As shown in Fig. ] and Fig.[3] validating results are close to original
results, indicating the reliability of our outputs.

DoRA Results Comparison
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Figure 4: Difference between validating values and original values across eight downstream tasks.
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Figure 5: Difference between validating values and original values in ratio across eight downstream
tasks.

D KNOWLEDGE EDITING METRICS

We construct our evaluation using metrics defined in previous works(Meng et al., 2022} [Yao et all}
. For each edit instance ¢ from zsRE in an edited model M.q4, we set s; to be the subject, r;
to be the relation, and o; to be the target object. We write p(s;, ;) for the base prompt constructed
from (s;,7;). For COUNTERFACT, we additionally denote by of the original (counterpart) object
describing the real-world fact, and by paraphrases(s;, r;) and neighborhood(s;, ;) the sets of para-
phrased and neighborhood prompts, respectively. Given a prompt p, we use Prys,(x | p) for the
model’s predicted probability of token x.
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ES Success (Efficacy / ES). Efficacy measures the proportion of successful edits. Formulas
and [f] determine the successful editing of an editing instance from zsRE and COUNTERFACT
datasets, respectively. For zsRE, an edit is considered successful on instance 7 if the edited model
assigns the highest probability to the desired answer o; under the base prompt p(s;, ;) (Equ. . For
COUNTERFACT, each edit 7 specifies a counterfactual object o; to be written and a corresponding
real-world object of. An edit i is considered successful, under the base prompt p(s;,r;), if the
edited model assigns higher probability to the desired counterfactual o; than to the original object

of (Equ.[6):

ESfSRE =1 (oi = arg max P’rMcd(x | p(sq, 71))> 5)

ESSF = l(PrMed(oi | p(si,ri)) > PTMed(og |p(si7ri))) 6)

Thus, the overall ES can be calculated as:
1N
ESQCF/ZRE _ ~ Z ES?F//.SRE %)
i=1

Paraphrase Success (Paraphrase / PS). Paraphrase evaluates model’s generalization ability af-
ter editing facts. We consider for each instance ¢ a set of paraphrases paraphrases(s;,r;) of the
base prompt. For zsRE, we evaluate average top-1 accuracy on rephrased prompts N (s;,7;). For
COUNTERFACT, On a rephrased prompt p € paraphrases(s;, r;), we declare success if the model
again prefers the counterfactual object over the original. Formulas[8]and 0] present the mathematical
definition of Paraphrase for the zsRE and COUNTERFACT datasets, respectively:

N
PS#RE — % Z 1<07; = argmax Pryz, (o | N(s;, u))) (8)
i=1
PSCr = f: 1( Praz(o; Pr,(of 9
=N ( Mo(0i | P) > Prag,(of \P)) )
i=1

Neighborhood Success (Specificity / NS). Specificity assesses the locality of a knowledge edit
by measuring its unwanted impact on facts unrelated to the facts involved in KE. To obtain NS,
we consider for each instance  a set of neighborhood prompts neighborhood(s;, r;) that should not
be affected by the edit. Formulas[I0] and [TT] present the mathematical definition of Specificity for
the zsRE and COUNTERFACT datasets, respectively. For zsRE, O(s;, r;) represents the unrelated
facts:

N
NS=RE — % Z 1(0i = argmax Pryz, (o | O(s;, ri))) (10)
i=1
NSCFlg:l(Pr - Prag(of 11
= Ma(0i | ) < Pragy(of |10)) (11)
i=1

E OVERALL KE PERFORMANCE

MEMIT and AlphaEdit The full set of experimental combinations mentioned in below charts
can be found in Tab. [8] Tab. [I0] presents the overall knowledge editing (KE) results for GPT-J
across different combinations of KE dataset, number of edits, KE method, and fine-tuning method.
Tab. [TT] reports the corresponding results for Llama2 under the same experimental configurations
while Tab. [T2] shows the results for GPT2-XL. Tab. [[3]presents the KE results for Llama3.1.
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Table 10: GPT-J’s KE performance (%) under different FT settings (No fine-tuning?, LoRA, DoRA
and full ﬁne-tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE and
COUNTERFACT?).

MEMIT AlphaEdit
Dataset  #Edits  Metrics v [ RA" DoRA Fullft  Nof® LoRA DoRA Full fC
ES 2347 2342 2250 2267 2347 2342 2250 2267

0 PS 2317 2156 2165 2350 2317 2156 2165 2350

NS 2835 2782 2776 2593 2835 2782 2776 2593

ES 99.07 8879 8987 97.95 9933 8474 9933 9850

102 PS 9576 8100 8462 9515 9755 7600 9755 9693

NS 2874 2712 2764 2725 2865 2612 2865 27.57

ZsRE ES 99.10 8453 8531 9874 9931 8474 8170 9898
103 PS 9507 7777 7848 9405 9671 7600 7382 9439

NS 2813 2680 2587 2706 2807 2612 2625  26.12

ES 9693 6652 6783 8938 89.81 4997 2364 7462

104 PS 9075 5892 6122 8121 7859 4390 2303  64.57

NS 2633 2542 2450 2554 2296 2389 2557 2296

ES 1500 1500 1600  14.00 1500 1500 1600 1400

0 PS 16.50 23.50 20.00 18.50 16.50 23.50 20.00 18.50

NS 8440 8260 8350  84.80 8440 8260 8350  84.80

ES 10000 10000 100.00 100.00 10000 99.00 100.00 100.00

102 PS 9500 9250 9100 9190 9850 9400 9400  97.00

NS 8110 8090 8180 81.62 8110 8000 8050  81.40

CF* ES 10000 99.00  99.00 9990 9835 9970 9960  97.95
103 PS 9395 8770 8690 9045 9590 9090 9095  97.00

NS 8117 7996 80.80  80.68 80.16 7958 79.84 8140

ES 99.10 9434 9446 9779 9887 9916 8200 9585

104 PS 88.66 7627 7624 8038 8670 8762 6200 7409

NS 73.53 73.89 74.17 75.08 67.77 68.54 74.00 72.56

Table 11: Llama2’s KE performance (%) under different FT settings (No fine-tuning?, LoRA,
DoRA and full fine-tuning®) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACT*).

Dataset #Edits Metrics MEMIT AlphaEdit
Noft LoRA DoRA Fullft Noft>* LoRA DoRA Full ft’
ES 4561 4692 4230 22.67 4561 4692 4230  22.67
0 PS 4557  43.08 42.02 235 4557  43.08  42.02 2350
NS 32.15 3685 2825 25093 32.15  36.85 2825 25093
ES 86.03 7630 72.00 22.67 93.33 5796 9333 2183
102 PS 86.01 71.69 66.02 20.14 8493 5349 8493  19.84
zsRE NS 31.68 29.69 28.70  14.58 3242 29.67 3242 1534
ES 5138 46.52  46.00 10.22 93.23  50.45 51.53  24.36
103 PS 50.04 4444  46.65 1037 86.57 4879 4883 2227
NS 28.09 27.68 2579 1222 343 3211 30.88  15.40
ES 48.62  48.64 4823  14.00 8431 46.03 4538 2444
104 PS 50.20 49.75  48.62  13.20 79.03 4427 43.65 2197
NS 2573 2497 2432 1459 3435 3045 3198 1559
ES 1137 1141 1152 45.00 1137 1141 1152 45.00
0 PS 41.61  40.57 40.32  32.00 41.61 40.57 4032 32.00
NS 91.36  91.32 91.21  50.00 91.36 9132 9121  50.00
ES 100.00  94.00  97.00  47.00 100.00 66.00 61.00  48.00
102 PS 98.00 81.50 95.50  70.50 77.50  49.00 4950  59.50
CF* NS 7540  78.50  80.60  52.00 8550 8430 83.80  52.30
ES 100.00  94.00  94.50  47.60 99.10 5240 56.90  48.60
103 PS 9450 82.50 8430  67.55 67.80 4245 4285  54.35
NS 70.50  77.00 7633  53.02 83.97 8122 8220  52.06
ES 86.96 70.18 6827 48.07 87.43 3790 37.15 4846
10* PS 73.62 6432 6125 3294 5571  34.01 3340 4774
NS 68.64 6235 61.74 5271 80.67 79.02 79.89  52.52
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Table 12: GPT2-XL’s KE performance (%) under different FT settings (No fine-tuning®, LoRA,
DoRA and full ﬁne—tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACT*).

MEMIT AlphaEdit

Dataset  #Edit Metrics 0 "o | RA DoRA  Full ft Noft LoRA DoRA Full ff?
ES 3280 3274 3287 18.04 3280 3274 3287  18.04

0 PS 3560 3532 3562  17.57 3560 3532 3562 1757

NS 2376 2370 2375 2464 2376 2370 2375 24.64

ES 80.00 5837 5839 8116 97.18 6780 7672  18.04

102 PS 76.10 5294 5386 74.30 93.60 5842 6435  17.57

NS 2575 2457 2498 2579 2506 27.11 2448 24.64

2sRE ES 7785 4351 4518 8122 93.13 5452 5511 2474
10 PS 7342 4287 4362 7492 87.03 4861 5064  23.86

NS 2622 2357 2435 2576 2522 2543 2607  24.00

ES 6261 2034 2065 6339 6234 2580 2747 22.00

104 PS 5768 19.63 19.89 57.87 5484 2436 2617 2113

NS 2581 2459 2476 2483 2131 2369 2417 2367

ES 2000 2013 2014 19.00 2000 2013 2014 19.00

0 PS 3500 3521 3517 22.50 3500 3521 3517 2250

NS 69.00 6893 6897 7940 69.00 6893 6897 7940

ES 97.00 8300 8200 9700 10000 9600 9800  19.00

102 PS 86.50 71.00 70.50 84.50 98.00 87.50 93.00  22.00

NS 7640 7730 7750 7620 7390 7660 76.60 7940

CF* ES 9340 7837 7850 9260 10000 8930 9055 21.92
10° PS 8135 6443 6345 7955 9575 7455 7703  24.66

NS 7532 7627 7645  75.62 7244 7525 7320 7820

ES 79.17 6210 6197 78.03 9294 5391 5765 21.92

104 PS 65.44 4447 4443 6374 7633 4194 4577  24.66

NS 69.83 6337 6353 70.16 6468 7181 7032 7820

Table 13: Llama3.1’s KE performance (%) under different FT settings (No ﬁne-tuningz, LoRA,
DoRA and full fine-tuning®) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACTY).

Dataset #Edits Metrics MEMIT AlphaEdit
Noft LoRA DoRA Fullft Noft? LoRA DoRA Full ft?
ES 51.10 4492 49,01 36.55 57.62  50.77 55.12 43.88
0 PS 72.69 65.12 5943 62.01 52.07 47.12  49.55 39.77
NS 37.62 31.12 2943 23.01 69.02 62.12  64.55 54.77
ES 55.32  49.12 4143  47.01 98.24  98.32 83.55 85.77
102 PS 7332  66.12  58.43 61.01 93.67 87.12  79.55 81.77
zsRE NS 5744 51.12 4343 4501 47.44  41.12  33.55 35.77
ES 57.04 50.12 4243  45.01 96.86  89.12 81.55 83.77
10 PS 62.56 55.12 4743  49.01 92.34 85.12  77.55 79.77
NS 32.57 26.12 18.43 21.01 4894 4212 34.55 36.77
ES 3492 28.12 2043 23.01 9443 87.12  79.55 81.77
104 PS 37.61 31.12 2343 25.01 88.48 82.12  74.55 76.77
NS 16.49 10.12 16.51 15.01 36.33 30.12  22.55 24.77
ES 7.62 5.92 -2.31 3.77 12.27 9.12 12.55 7.77
0 PS 53.61 47.12 3943  41.01 52.03 45.12  37.55 39.77
NS 8244 7512 6743 69.01 8492 77.12  69.55 71.77
ES 99.64 92.12 8443 87.01 99.38 92.12 84.55 86.77
102 PS 74.03 67.12 5943 61.01 78.63  71.12  63.55 65.77
CF* NS 67.34 60.12 5243 54.01 7892 71.12  63.55 65.77
ES 98.93 91.12 8343 85.01 99.25 92.12 84.55 86.77
103 PS 66.56 59.12 5143 53.01 7525 68.12  60.55 62.77
NS 62.76 55.12 5743  49.01 74.61 67.12 5955  61.77
ES 69.63 62.12 5443 56.01 98.47 91.12 83.55 85.77
10* PS 7482 67.12 5943  61.01 67.87 60.12 5255 5477
NS 52.50 45.12 3743 39.01 65.32 58.12  50.55 52.77
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MEND Previous studies have shown that MEND performs poorly on the zsRE dataset, indicating
that it is unsuitable for evaluating decay resulting from fine-tuning. Therefore, we did not conduct
extensive experiments and instead performed targeted sampling tasks. As shown in Tab.[T4] models
edited using MEND exhibit patterns consistent with those reported in Sec. I} Specifically, as
the number of edits increases, fine-tuning is able to remove a larger proportion of the applied edits.
However, MEND performs badly on zsRE dataset. Several studies have demonstrated the the reason:
MEND modifies existing weights base on training data, generally performs poorly in such zsro-shot-

wise tasks(Fang et al} 2025} [Wu et al} 2024).

Table 14: KE performance (%) using MEND under different FT settings (No fine-tuning” and
DoRA) across datasets (zsRE and COUNTERFACT) and models (GPT2-XL, GPT-J, Llama?2,
Llama3.1)

zsRE COUNTERFACT
Noft DoRA Noft DoRA
10° 66.57 4892 0.00 0.00

Model #Edits

GPT2XL 11 5070 3488 000  0.00
10° 6832 49.77 033  0.00

GPTJ 10* 4527 2755 064 0.00
Llamad 108 7115 53.02 052 0.0
10* 5324 358 031 0.0

Llama3.1 10° 8215 6344 073  0.00

10* 6217 4455 057 0.0

F ONLY FINE-TUNING EDITED OR NON-EDITED LAYERS

For this secion, we choose two models for our experiments: Llama2 and GPT-J. Llama?2 is dis-
cussed in Sec. @ Tab. @ shows the detailed downstream performance breakdown. We notice that,
for task-specific performance aspect, fine-tuning only the edited layers may substantially degrade
critical capabilities (e.g., HellaSwag).

Table 15: Downstream performance (%) of Llama2 being edited using AlphaEdit on COUNTER-
FACT dataset, and then DoRA fine-tuned with specific layers. Group settings and naming format
are identical to Table[3l

Downstream  Llama2 100 Edits 1000 Edits
tasks M Meq  Meafian  Med fiediea  Med_finon-edited Meq  Meggian  Med ficdied  Med fi-non-edited
BoolQ 10.31 7.68 72.14 69.27 71.04 20.92 71.44 68.13 59.51
PIQA 0.16 0.16 83.46 71.75 82.97 0.11 82.86 74.81 72.69
SIQA 2.15 2.81 80.4 75.38 79.32 2.92 79.79 76.20 69.60
HellaSwag 0.00 0.00 89.77 29.24 88.11 0.00 89.00 32.10 80.57
WinoGrande 0.00 0.08 82.72 75.53 81.61 0.00 81.93 75.53 79.95
ARC-e, 0.67 0.72 83.54 79.88 82.87 0.80 83.33 79.50 79.80
ARC-c 0.43 0.34 68.77 62.80 67.24 0.85 68.52 62.46 64.08
openbookqa 0.40 0.20 81.20 74.80 80.80 0.60 83.00 76.60 78.00
Average 1.77 2.15 81.70 65.43 80.61 4.79 81.00 65.35 72.46

For GPT-J, we choose cases as: (1) GPT-J being edited 100 facts from COUNTERFACT by MEMIT
and then fine-tuned by DoRA; (2) GPT-J being edited 100 facts from zsRE by MEMIT and then fine-
tuned by DoRA. The result for KE performance is shown in Tab.[I6and the result for downstream
performance is shown in Tab. [I7}

Table 16: KE performance GPT-J-based model. Naming format are identical to Table[5] Example
1': GPT-J bing edited 100 zsRE facts using MEMIT and fine-tuned by DoRA; Example 2%: GPT-
J bing edited 100 COUNTERFACT facts using AlphaEdit and fine-tuned by DoRA. GPT-J** are
GPT-Js without KE and fine-tuning, being evaluated by zsRE and COUNTERFACT, respectively.
Naming format are identical to Table[5]

KE GPT-J Example 1' GPT-J* Example 2°
performance M Mea  Meagran  Medfredited  Med_ftnon—ecdited M Mea  Medagran  Med jredited  Med_ftnon—edited
Efficacy 23.47 99.07 89.87 95.79 86.39 15.00 100.00 100.00 100.00 100.00
Paraphrase 23.17 95.76 84.62 91.12 84.43 16.50 98.50 94.00 97.00 94.50
Specificity 28.35 28.74 27.64 29.13 25.71 84.40 81.10 80.50 81.00 80.40
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Table 17: Downstream task performance on GPT-J-based examples. Examples choosen are identical
to Table

Downstream  GPT-J Example 1 Example 2
tasks M Mea Meajtau  Med ftedited  Med_ft-non—edited Mea Meapran Med fiedited  Med_ft-non—edited

BoolQ 56.57 31.04 63.88 24.95 64.40 19.27 63.67 61.99 27.92
PIQA 1.36 0.87 73.07 53.26 74.97 1.47 74.65 42.60 74.59
SIQA 0.41 0.46 73.54 63.31 74.82 0.67 74.21 41.91 69.29
HellaSwag 0.03 0.01 70.84 42.76 59.80 0.03 71.95 18.86 33.71
WinoGrande  30.23 0.32 69.69 59.27 67.01 0.39 70.80 37.81 69.22
ARC-e, 1.64 1.73 67.93 21.89 67.63 1.94 68.86 56.40 65.45
ARC-c 1.02 1.28 53.07 17.49 51.54 1.37 51.96 38.31 49.83
openbookqa 1.20 1.40 64.40 41.40 66.00 1.80 66.40 57.60 63.80
Average 12.12 2.15 81.70 65.43 80.61 4.79 81.00 65.35 72.46

G EDITING PERFORMANCE OF DEEPSEEK

G.1 LAYER DETERMINATION

As there is currently no published research using DeepSeek as base models for KE, we include three
potential settings of editing layers when running KE on DeepSeek: (1) using Causal Tracing with
Frozen Components (CTFC) to determine layers, (2) directly using LLaMA?2’s editing layer setting,
and (3) directly using GPT2-XL’s editing layer setting. The CTFC method is introduced and used
by [Meng et al| (2023)), which enables precise identification of layers most relevant to knowledge
storage. Besides, recent KE studies frequently use GPT2-XL and LLaMA?2 as base models, directly
adopting their layers setting provides reasonable baselines and allows us to carry out comparisons
among DeepSeek and them.

G.2 RESULTS

We ultimately tried all three setups, and the KE results on zsRE dataset with editing number from
0 to 10,000 are shown in Tab. [I8] For CTFC, as shown in Fig. [6] layers 1 to 5 shares the largest
gap between purple bar and green bar, exhibit the largest gap between the purple and green bars,
indicating that these layers contribute most significantly to knowledge storage. Thus, editing layers
determined by CTFC are layers 1 to 5. In addition to Fig.[6] we use heatmap (Fig.[7) visualizations
of layer-wise causal effects to analyze how different components of the model contribute to factual
knowledge retrieval. These heatmaps guide the selection of editing layers by highlighting consis-
tent and concentrated MLP-specific causal effects in early layers, enabling targeted and effective
knowledge editing across architectures.

Causal effect with Attn or MLP modules frozen {deepseek-ai/DeepSeek-R1-Distill-Llama-88)
[Average of 670 successful cases)

35.0% mm |mpact of single state on P
B |mpact with Attn frozen
30.0%
= B [mpact with MLP frozen
D 25.0%
o 20.0% 1
o
&
= 15.0% 4
T 10.0% 4
5.0%
0.0% -

0 5 10 15 20 25 EL
Layer at which the single hiddan state is restored

Figure 6: Casual tracing for DeepSeek.
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Table 18: DeepSeek’s KE performance (%) using MEMIT across editing datasets and different
settings of editing layers: GPT2-XL' means using GPT2-XL’s editing layer settings (Meng et al.,
2023)), Llama2? means using Llama2’s editing layer settings (Gupta et al., 2024), CTFC-determined®
means layers are determined by Casual Tracing with Frozen Components (CTFC) (Meng et al.,
2023).

Editing layer

Seffiag: #Edits 2sRE COUNTERFACT
ES PS NS ES PS NS

0 2469 2524 2121 1600 1800 83.20

, 102 2839 4550 10.97 97.00 82.00 63.00

GPT2-XL 10° 1897 2383 399 9330 73.55 61.65

10* 87.09 60.70 50.70

0 2469 2524 2121 1600 18.00 83.20

, 102 2869 2957 3206 97.00 9500 68.50

Llama2 10> 31.65 3054 3362 7950 6445 5320

10* 6598 56.66 48.98

0 2469 2524 2121 1600 18.00 83.20
L 10° 3119 3182 3189 8600 6650 56.50
CTFC-determined” 13 7917 1889 2826 7220 6090 51.01

4
10 69.03 58.06 49.76
Avg Indirect Effect of h’ over 670 prompts Avg Indirect Effect of MLP over 670 prompts Avg Indirect Effect of Attn over 670 prompts
First subject token First subject token First subject token
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Figure 7: Causal effect heatmaps showing concentrated effects in early layers (1-5) with (from left
to right) (a) overall patterns, (b) MLP localisation, and (c) attention mechanisms for the distilled
architecture.

We observe that for zsRE dataset with 10,000 edits, all cases perform badly. As shown in Tab. [I8]
for the case of CTFC-determined, increasing the editing number from 1,000 to 10,000 leads to a
dramatic drop in ES, falling from 20.17% to just 0.4%. For cases using Llama2’s or GPT’s editing
layer setting, similar trend also happens: both models’ KE performance drops dramatically to a low
level (0.55% for LLama?2’s setting, 3.53% for GPT2-XL’s setting) when the editing number rises to
10,000. As shown highlighed by , DeepSeeK also perform badly on other KE metrics (i.e.
PS, NS) when editing number rises to 10,000, whereas the smallest PS (0.52%) and NS (2.02%)
both appears.

G.3 ANALYSIS

This phenomenon may stem from architectural differences between GPT-series and Llama-based
models. In addition, as noted by |Wang et al.| (2025), discrepancies in pre-training data between
GPT-based and Llama-based models can lead to suboptimal simulation of the initial model weights
W, ultimately degrading the effectiveness of KE. Besides, the performance after editing with 10,000
facts is already extremely low, making it highly susceptible to collapsing to near-zero accuracy after
fine-tuning. This instability prevents meaningful comparison of KE effectiveness before and after
fine-tuning on the zsRE dataset. As a result, we do not perform additional fine-tuning experiments
on DeepSeek.
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H DOWNSTREAM-TASK PERFORMANCE

H.1 ANALYSIS

Table 19: Average and Standard deviation of degradation FT method wise As shown in
(%) in evaluation score(Table [6) across models and fine- Tab.[T9 LoRA exhibits the smallest
tuning methods. Avg.!, Std.? are metrics for individual average performance decrease

model; Avgm3, Std_m* are across models. (—6.02%) compared to DoRA
Model Metrics Noft Full ft LoRA DoRA E:?fg?%)_ and  Full Ofﬁs‘t‘ael;ti}‘i?y‘j
GPT-J Avg! 5684 7.17 519 587 DoRA demonstrates the lowest stan-
Std.2 17.82 1272 8.68 4.66 dard deviation (7.5) across models,
Avg. 20692 3727 1081 5.93 indicating that the impact of KE on
Llama2 ‘¢ %" 25054 805 1517 800 DoRA remains relatively consistent
Ave 70 038 207 8385 relg)lardless :;fl the !aillse m(f)idel. No-

- : ; = : : tably, models without fine-tunin
orrxL Std. 23.66 287 905 932 beha}llve more erratically: the ”Ng
Avg_m? -49.46 14.69 6.02 6.88 ft” group shows the highest average
Std_m* 169.81 18.6 11.63 7.50 magnitude of change (Avg.m =

49.46%) and standard deviation
(Std_m = 169.81), suggesting high variability. This instability may be attributed to base models’
relatively poor performances on downstream tasks.

Model wise We found that GPT2-XL
Decrement in evaluation g:;gre caused by KE demonstl’ates the most Stable pel‘for-
: = e mance across different KE methods and

CF-M

N crae datasets among models evaluated. As

x = shown in Fig. [§] GPT2-XL has the small-
B est varying range from —0.67% to 2.36%.
. In contrast, other models exhibit more vari-

. ability. For instance, Llama2 experiences

a significant fluctuation, with performance
ranging from 9.96% to 4.62%.

Decrement(%)

| KE task wise MEMIT generally leads
o) Lerna2 0 orax. to a smaller reduction in fine-tuning
oses performance compared to AlphaEdit.
Figure 8: Average decrements ratio (%) caused by KE As illustrated in Fig. AlphaEdit has
across models and datasets. M for MEMIT and AE for the largest average decrements of 9.96%
AlphaEdit. E.g., zsRE-M means MEMIT using zsRE which appears on Llama2. A similar pat-
dataset and vice versa. tern is also observed for GPT-J, where Al-
phaEdit show larger decrements (6.68% vs
2.52%, and 4.57% vs 2.8%) across both

datasets.

COUNTERFACT dataset tends to cause more severe drops in fine-tuning performance, as
evidenced by the top two largest performance declines in Fig.[8](9.96%, 7.92%) occurring in cases
involving COUNTERFACT as KE dataset.

Number of edits also introduces a high degree of variability, with different patterns observed
across models, as detailed in Tab. @ For example, GPT-J edited with zsRE using MEMIT shows an
improvement in fine-tuning performance from 36.95% to 40.92% as the number of edits increases
from 100 to 1000, followed by a slight decline to 39.69% when the number of edits reaches 10,000.
Conversely, GPT-J, edited with zsRE and fine-tuned with the full dataset, shows a reverse trend, with
performance dropping from 35.75% to 33.46% and then rising back to 35.5% as the editing number
increases. In addition to these curve-like patterns, a common trend observed in some models is a
monotonic decrease in performance. For example, in the case of Llama2 edited by AlphaEdit and
fine-tuned by DoRA, the performance consistently drops as the number of edits increases, where
performance falls from 78.95% (102 edits) to 69.61% (103 edits), and eventually to 63.62% (10*
edits).
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H.2 RESULTS BREAKDOWN

GPT2-XL GPT2-XL’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. 20| (no fine-tune and full fine-tune) and Tab. 21](LoRA and DoRA). Performances of
cases being edited on COUNTERFACT dataset are shown in Tab. [22](no fine-tune and full fine-tune)
and Tab.[23](LoRA and DoRA)

Table 20: Downstream task performances (%) of GPT2-XL (M.q 1) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

No fine-tuning Full fine-tuning
2sRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 103 104 10% 103 10*  Noedit 102 10% 10* 102 10° 10*
BoolQ 5836 59.36 58.99 48.01 59.79 59.92 24.07  6.67 9.02 1489 1450 671 670 595
PIQA 080 0.65 1.80 740 076 506 201 4516 45.16 44.18 4853 44.89 4423 4347
SIQA 2042 2021 1822 1249 1392 1617 1745 29.94 2927 3035 30.60 3040 30.55 3025

HellaSwag 0.21 022 039 048 0.3 058 619 2486 2496 2498 2490 24.85 2491 2494
WinoGrande ~ 0.00 0.00 000 0.00 0.00 0.00 1571 48.46 49.09 48.15 26.84 4854 4949 49.09
ARC-e, 8.50 8.04 800 825 572 1178 1216 24.16 2424 24.07 2218 24.07 2420 2428
ARC-c 6.32 6.66 606 691 418 990 1041 2235 2227 2244 2159 2235 2218 2244
openbookqa 1220  13.00 12.60 14.00 9.40 16.00 17.00 27.00 27.00 26.60 24.80 26.60 26.80 26.60

Table 21: Downstream task performances (%) of GPT2-XL (M.q 1) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

LoRA DoRA
2sRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 103 104 102 103 10" Noedit 102 103 10* 10? 103 10*
BoolQ 5872 61.75 6187 60.04 2600 2696 50.09 60.80 6242 6242 6043 26.18 26.76 28.50
PIQA 44778  49.67 49.96 4422 4647 51.07 4499 5103 5071 50.71 4450 46.79 51.41 4521
SIQA 39.68 4237 3875 3793 1946 3852 3291 3951 39.61 39.61 37.67 19.34 3828 3547

HellaSwag 2482 2561 2532 2547 2549 2577 2505 2262 2517 25.17 2530 2532 2593 2193
WinoGrande  49.64  50.04 49.45 4172 51.81 5094 4822 4822 49.09 49.09 4199 5217 5059 46.09
ARC-e, 21.00 2727 27.65 2521 1635 24.87 2449 2584 2778 2778 2538 1646 25.04 24.96
ARC-c 21.67 2577 2498 26.62 17.78 2457 25.85 2551 2432 2432 2645 17.66 2440 23.72
openbookqa  22.00 29.40 29.20 23.00 15.00 26.80 2620 20.00 29.60 29.60 2340 15.00 27.00 24.60

Table 22: Downstream task performances (%) of GPT2-XL (M.q4.1) edited on COUNTERFACT!
dataset and then being full fine-tuned or not fine-tuned.

No fine-tuning Full fine-tuning
CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 103 104 102 103 10*  Noedit 102 103 10* 10% 10° 10*
BoolQ 58.36  59.27 60.03 39.48 5896 60.7 12.60  6.67 7.03  11.68 2272 11.16 639 7.19
PIQA 0.80  0.65 060 1409 071 250 18.82 45.16 4124 4646 4690 4548 4271 44.89
SIQA 2042 1868 1029 2421 2021 1653 1.18 2994 2948 3142 31.83 3045 30.19 30.30

HellaSwag 0.21 033 038 247 0.4 097 1.74 2486 2483 2492 2485 2475 2485 2493
WinoGrande ~ 0.00 0.00 000 000 0.00 016 024 4846 4925 4893 4925 49.09 49.17 49.57
ARC-e, 8.50 732 699 20.03 678 1721 278 2416 2395 2336 2029 23.65 2428 24.16
ARC-c 6.32 563 469 17.06 572 1510 1.62 2235 2244 2210 1920 22.18 2227 2227
openbookqa 1220  11.20 11.40 2440 1020 20.00 120 27.00 2640 2560 2500 26.60 26.80 26.40

Table 23: Downstream task performances (%) of GPT2-XL (M4 1) edited on COUNTERFACT!
dataset and then being LoRA or DoRA fine-tuned.

LoRA DoRA
CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10° 10* 102 103 10*  Noedit 102 10% 10* 10% 10° 10*
BoolQ 58.72 3559 40.16 4624 53773 52.08 5248 60.80 3584 4040 46.57 43.73 4125 1193
PIQA 4478 4134 4624 4221 48.86 49.89 47.01 51.03 41.62 4592 48.00 2590 51.14 47.88
SIQA 39.68 39.22 3794 3502 3403 3429 3644 3951 3895 38.13 3480 3352 40.74 37.87

HellaSwag 2482 2527 2442 2547 25.11 2418 25.10 2262 2510 2457 2530 2344 2199 25.06
WinoGrande  49.64  50.87 49.46 4249 50.67 49.33 4554 4822 5051 49.8 4278 5130 50.04 52.09
ARC-e, 21.00 17.26 26.09 27.22 2525 2593 2567 2584 1738 2626 2744 20.16 2572 2445
ARC-c 21.67 1856 2531 2483 2381 2568 2449 2551 1843 25.09 25.00 2031 2577 2594
openbookqa  22.00 1440 24.80 2840 27.60 2520 27.60 20.00 1440 2480 2840 2220 22.80 2840
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Llama2 Llama2’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. @ (no fine-tune and full fine-tune) and Tab. @ (LoRA and DoRA). Performances
of cases being edited on COUNTERFACT dataset are shown in Tab. 26] (no fine-tune and full fine-

tune) and Tab.[27] (LoRA and DoRA)

Table 24: Downstream task performances (%) of Llama2 (M.q4_5) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

No fine-tuning

Full fine-tuning

zsRE MEMIT AlphaEdit MEMIT MEMIT

Noedit 102 105  10* 102 103 10* Noedit 102 103 10* 10* 10° 10
BoolQ 1031 446 5792 5574 679 884 4829 6214 6217 61.62 6211 6165 61.53 62.17
PIQA 016 0.1 506 020 0.6 0.1 022 7084 4646 42.17 2807 3428 32.64 50.22
SIQA 215 026 1617 152 399 455 041 6126 228 31.83 3199 1796 3408 27.43
HellaSwag 000 058 058 000 000 000 000 1577 3.50 12.67 3296 4206 7.35 23.16
WinoGrande ~ 0.00  0.16 000 000 000 000 000 6172 59.19 5051 5209 72.53 5959 3425
ARC-e, 067 021 1178 052 080 097 004 6507 4133 2277 28.11 2934 4848 391
ARC-c 043 043 990 024 043 043 009 4659 2304 1911 2466 2338 3404 3.16
openbookga 040 040 1600 000 040 120 020 5360 2740 27.00 24.00 29.80 4640 3.80

Table 25: Downstream task performances (%) of Llama2 (M.q4_5) edited on zsRE dataset and then

being LoRA or DoRA fine-tuned.

LoRA DoRA
zsRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 103 10* 102 103 10*  Noedit 102 103 104 102 103 10*

BoolQ 71.16  68.87 66.09 66.09 7297 71.01 71.04 7245 7087 66.94 5745 71.10 71.50 71.59
PIQA 83.03 8248 7671 76.71 83.51 8221 81.56 83.13 8258 76.01 67.09 8395 8341 82.15
SIQA 79.02 78.61 77.58 77.58 78.66 79.58 79.73 8025 7935 76.56 66.83 79.84 79.84 78.97
HellaSwag 90.27 87.50 61.79 61.79 90.01 8835 8733 89.94 88.26 5893 6791 O9l.11 8831 8582
WinoGrande  83.31 82.00 7822 7822 835 8327 81.85 8437 8353 7735 70.37 8248 8335 81.69
ARC-e, 83.71 80.39 7155 7155 8485 8325 8228 8249 8041 7159 65.12 83.63 83.80 81.61
ARC-c 67.66 6596 5725 5725 69.62 69.71 6698 68.00 66.57 57.51 49.78 68.69 68.77 68.17
openbookqa  80.80  77.80 73.00 73.00 80.80 80.00 80.40 80.20 80.00 72.00 64.40 83.80 81.20 80.80

Table 26: Downstream task performances (%) of Llama2 (M.q ) edited on COUNTERFACT!

dataset and then being full fine-tuned or not fine-tuned.

No fine-tuning

Full fine-tuning

CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10® 10 102 103  10* Noedit 10>  10®  10* 102 103  10*
BoolQ 1031 5529 5579 52.84 7.68 2092 51.07 6214 6174 6208 6211 6214 5569 62.14
PIQA 016 033 022 02 016 011 011 7084 354 887 2388 1627 1257 17.85
SIQA 215 481 000 000 281 292 005 6126 4990 5604 2636 33.16 3541 3291
HellaSwag 000 000 003 000 000 000 000 1577 797 1271 3929 3507 1450 8.05
WinoGrande ~ 0.00  0.16 000 000 008 000 000 6172 5138 5406 5746 4562 1555 47.99
ARC-e, 067 038 013 083 072 080 004 6507 5581 3822 2378 21.63 39.86 26.39
ARC-c 043 026 000 026 034 085 026 4659 3626 29.18 1843 1493 3225 14.16
openbookga 040 0.00 0.00 0.00 020 060 000 5360 4420 3660 21.80 2340 3220 26.80

Table 27: Downstream task performances (%) of Llama2 (M.qr) edited on COUNTERFACT!
dataset and then being LoRA or DoRA fine-tuned.
LoRA DoRA

CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10°  10* 102 103  10* Noedit 102 105 10* 102 10®  10%
BoolQ 71.16 6226 66.64 56.54 7037 6159 6823 7245 7163 6297 58.03 7214 7144 7058
PIQA 83.03 8172 7737 69.04 8379 4195 8139 8313 8135 7573 67.56 8346 82.86 8237
SIQA 79.02  80.09 77.69 67.98 7932 4852 7871 8025 7852 7644 6744 8040 7979 7897
HellaSwag ~ 90.27 4050 71.14 6432 5107 941 8470 89.94 8539 7671 6820 89.77 89.00 83.71
WinoGrande ~ 83.31 8358 78.30 7226 83.35 5991 8122 8437 8402 77.19 70.90 8272 81.93 80.90
ARC-e, 83.71 83.84 7277 6601 8338 1402 8136 8249 8140 7205 6547 83.54 8333 82.03
ARC-c 67.66 68.09 57.00 4852 68.17 1331 6724 6800 6698 5862 49.97 6877 68.52 68.94
openbookqa  80.80  81.80 72.80 64.80 82.00 4020 8020 80.20 80.00 7240 6480 81.20 83.00 77.80
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Llama3.1 Llama3.1’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. 28] (LoRA and DoRA). Performances of cases being edited on COUNTERFACT
dataset are shown in Tab. @(LORA and DoRA)

Table 28: Downstream task performances (%) of Llama3.1 (M4 5) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

LoRA DoRA

2sRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 103 104 102 103 10*  Noedit 102 103 10* 10? 103 10*

BoolQ 7435 6872 5995 61.17 70.13 6181 63.12 7385 67.33 6186 63.00 69.16 66.50 67.85

PIQA 84.87 78.08 6729 69.11 8107 70.53 72.16 88.81 8239 7539 77.04 8437 8140 82.68

SIQA 78.80 7249 63.12 6491 7486 6537 6738 8027 7465 6847 70.01 7626 73.61 74.73

HellaSwag 91.57 85.16 74.09 76.64 87.00 7569 7830 9420 86.65 79.28 81.05 8849 8540 86.69
WinoGrande  84.17  77.44 67.37 69.70 8036 70.73 7274 84.67 7833 71.78 7342 80.14 7734 7854
ARC-e 84.17 7744 66.69 68.65 7994 6955 71.15 90.10 83.19 76.13 77777 8559 82.61 83.88
ARC-c 7120 6530 56.78 58.77 67.64 5920 60.78 7850 72.62 66.41 67.84 7458 7198 73.09
openbookqa  80.80 7440 64.80 66.80 76.80 67.00 69.00 84.80 7840 72.00 73.60 80.60 77.80 79.00

Table 29: Downstream task performances (%) of Llama3 (M.q5) edited on COUNTERFACT!
dataset and then being LoRA or DoRA fine-tuned.

LoRA DoRA
CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit  10? 103 104 10% 103 10*  Noedit 102 103 10* 10? 103 10*
BoolQ 7435 6840 60.19 6224 7027 6133 6465 73.85 6720 6250 6586 6942 6734 68.73
PIQA 84.87 78.08 67.12 7027 80.63 7096 7579 88.81 81.71 7680 73.54 8536 82.80 83.65
SIQA 78.80 7250 63.80 67.43 7407 66.66 71.11 8027 73.05 6721 71.59 7626 7321 75.50

HellaSwag 91.57 85.16 7489 76.64 87.99 7743 8271 9420 86.66 80.59 84.06 88.55 85.89 86.78
WinoGrande  84.17 7828 68.88 72.02 8036 71.52 7554 84.67 7790 7245 7634 8044 78.03 79.64
ARC-e 84.17 7744 6738 69.70 7996 7037 7596 90.10 82.89 7792 7460 8560 83.03 83.89
ARC-c 7120 6550 57.64 6026 67.64 60.19 6426 7850 72.00 6552 69.84 73.79 70.84 72.32
openbookqa  80.80  74.34 6542 6839 7595 67.59 72.15 8480 7886 7256 7728 80.56 78.14 79.75

GPT-J GPT-J’s performances on downstream tasks after being edited on zsRE dataset are shown
in Tab. [30] (no fine-tune and full fine-tune) and Tab. [31] (LoRA and DoRA). Performances of cases
being edited on COUNTERFACT dataset are shown in Tab. [32] (no fine-tune and full fine-tune) and
Tab. 33| (LoRA and DoRA)

Table 30: Downstream task performances (%) of GPT-J (M.q1) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

No fine-tuning Full fine-tuning
zsRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10° 10* 10? 10° 10* Noedit 102 10° 10* 10? 10° 10*
BoolQ 56.57 31.04 36.18 3550 31.80 27.95 829 33.61 51.01 4049 30.00 47.00 22.69 2147
PIQA 1.36 087 098 082 120 1.74 261 4538 21.71 5571 4744 1561 22.09 3444
SIQA 0.41 046 097 075 031 0.56 235 4647 48.16 4734 4396 48.62 46.42 28.66

HellaSwag 0.03 0.01 0.18 025 003 002 099 1849 19.78 2731 29.05 2280 898 23381
WinoGrande  30.23 032 032 024 016 008 036 S51.78 4893 47.99 5201 3544 4988 19.81
ARC-e, 1.64 1.73 253 269 147 282 412 4209 4377 4322 3481 3636 39.81 2332
ARC-c 1.02 1.28 1.96 128 1.11 1.19  3.67 3208 3200 3191 2884 2722 3080 21.50
openbookqa 1.20 140 3.00 420 120 140 540 2940 3020 3340 2740 27.00 24.00 24.80

Table 31: Downstream task performances (%) of GPT-J (M.q ) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

LoRA DoRA
zsRE MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10° 10* 102 103 10*  Noedit 102 10% 10* 10% 10° 10*
BoolQ 63.79 64.19 6355 6336 633 6266 6199 6327 6388 6410 6229 6394 62.17 63.67
PIQA 73.61 73.88 69.64 7127 70.73 7203 5854 7394 73.07 7465 7247 74.16 7040 68.99
SIQA 7339  58.09 6592 66.12 7093 69.04 61.72 7339 7354 7441 7369 7395 6735 7047

HellaSwag 4386  65.88 2727 67.56 66.61 46.10 26.19 71.00 7084 7136 61.69 71.80 58.10 46.80
WinoGrande  68.75  66.38 64.33 66.85 65.67 67.56 5856 7024 69.69 69.14 68.75 69.38 63.85 66.46
ARC-e, 68.31 57.20 47.77 6338 6532 63.09 3439 6944 6793 68.10 6591 6822 6031 61.11
ARC-c 51.79 4394 3370 4949 5043 46.76 27.99 53.07 53.07 5196 49.06 5375 4744 46.50
openbookga  70.40  56.80 6521 6380 6180 6520 50.60 68.60 6440 68.00 66.80 6560 57.20 62.00
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Table 32: Downstream task performances (%) of GPT-J (M4 1) edited on COUNTERFACT' dataset
and then being full fine-tuned or not fine-tuned.

No fine-tuning Full fine-tuning
CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10° 10* 102 10° 10* Noedit 102 10° 10* 10? 10° 10*
BoolQ 56.57 2193 4034 57.16 1927 437 920 33.61 38.69 3832 30.70 26.57 4437 33.15
PIQA 1.36 1.58  0.65 13.06 147 1.69 027 4538 3841 5049 46.52 3776 44.83 4744
SIQA 0.41 036 090 046 0.67 210 4.09 4647 4575 4053 39.15 48.11 4340 35.06

HellaSwag 0.03 0.01 033 268 003 041 007 1849 2472 2684 21.51 2266 17.55 1654
WinoGrande  30.23 0.16 032 000 039 0.08 0.00 51.78 51.38 52.01 5083 51.14 3054 36.86
ARC-e, 1.64 1.73  3.07 261 1.94 299 884  42.09 4457 3952 29.84 4520 3523 24.03
ARC-c 1.02 1.19 273 1.79 137 324 751 32.08 32.08 27.99 2423 3430 25.68 28.07
openbookqa 1.20 1.80 240 460 1.80 240 13.00 2940 3240 3340 1840 32.60 2840 23.00

Table 33: Downstream task performances (%) of GPT-J (M,q_ ) edited on COUNTERFACT! dataset
and then being LoRA or DoRA fine-tuned.

LoRA DoRA
CF! MEMIT AlphaEdit MEMIT MEMIT
Noedit 102 10? 10* 10% 10? 10*  Noedit 102 10% 10* 10% 10° 10*
BoolQ 63.79  63.73 62.63 63.55 63.67 64.13 6321 6327 6477 60.80 6251 63.67 63.61 63.55
PIQA 73.61 7432 7372 73.00 73.18 70.51 68.61 73.94 7427 7257 71 74.65 72.14 65.72
SIQA 7339  73.69 71.85 7354 7369 74 6878 7339 7124 6735 6198 7421 70.52 70.01

HellaSwag 4386  19.94 71.68 6625 7192 4097 3379 7100 5059 3208 648 7195 51.81 49.20
WinoGrande  68.75  69.77 68.59 66.38 68.11 502 6504 7024 69.06 67.88 6559 70.80 69.22 64.09
ARC-e, 68.31 66.79 67.05 6595 6835 6641 60.06 6944 66.46 6831 5926 68.86 6641 59.72
ARC-c 51.79  52.05 5154 494 5196 50.09 4531 53.07 509 5034 4735 5196 4898 4394
openbookga  70.40  66.00 68.00 6320 6580 6560 5820 68.60 67.00 6720 6120 6640 66.80 57.80

H.3 PERFORMANCE ON ANOTHER FINE-TUNING DATASET

To enhance the comprehensiveness of our experiments, we include HotpotQA as the fine-tuning
dataset. In this section, we evaluate the model’s KE performance after fine-tuning on HotpotQA. The
hyperparameters for this experiment are consistent with those used in the Commonsense dataset. We
then compare the results with the performance of models fine-tuned on the Commonsense dataset.
As shown in Tab. 34] the HotpotQA group consistently demonstrates lower KE performance com-
pared to the Commonsense group. Regarding Efficacy, the largest performance gap is observed
with GPT-J edited with 100 zsRE edits using MEMIT, with a difference of 14.31. The difference
may result from the use of suboptimal hyperparameters for this dataset. It could also indicate that
knowledge-rich datasets causes greater degradation in KE performance. Further analysis is needed
to explore this phenomenon.

Table 34: KE performance (%) after fine-tuning using Commonsense and HotpotQA datasets. CS!
for Commonsense, HQA? for HotpotQA.

#Edits KE Method Model Dataset FT Method ES (HQA) ES(CS') PS(HQA?) PS(CS) NS(HQA) NS(CS)

10% MEMIT Llama2 zsRE DoRA 72.76 76.3 69.65 71.69 33.02 29.69
10* AlphaEdit Llama2 CF LoRA 68 70.18 48.4 64.32 83.67 62.35
102 MEMIT GPT-J zsRE DoRA 75.56 89.87 70.63 84.62 35.71 27.64
10% AlphaEdit GPT-J CF LoRA 100 99.7 87.7 90.9 82.6 79.58
10% MEMIT GPT2-XL  zsRE DoRA 39.84 45.18 27.83 43.62 29.15 24.35
10* AlphaEdit ~ GPT2-XL CF LoRA 41.56 53.91 32.19 41.94 78.15 71.81

I BREAKDOWN OF ACTIVATION-RELATED ANALYSIS

The statistical results of layer-wise drift and directional similarity analysis are presented in Tab. [33]
and Tab. 36} respectively.
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Table 35: Layer-wise drift result breakdown
Metrics | GPT-2-xIM_ed GPT-2-xIM ed tt GPT-JMed GPT-JMedtt Llama2Med Llama2M ed tt

Max 0.12 0.99 0.99 0.78 1 0.3
Min 0 0.14 0.16 0 0 0.17
Std 0.05 0.36 0.37 0.35 0.54 0.57
Avg 0.04 0.16 0.14 0.21 0.21 0.24

Table 36: Directional similarity result breakdown

Metrics | GPT2-XL \ GPT-J \ Llama2

| Med-Mft Medft-Mft Medft-Med | Med-Mft Medft-Mft Medft-Med | Med-Mft Medft-Mft Medft-Med
Max 0.04 0.76 0.15 0.4 0.62 0.63 0.2 0.68 024
Min 0 0 0 0 0 0 0 044 0
Std. 0 051 0.04 0.18 052 0.38 0.12 0.6 0.17
Avg. 0.02 0.29 0.05 0.15 0.12 0.2 0.08 0.09 0.07

J  SIGNIFICANCE TEST

We use the t-test to evaluate the statistical significance of different FT methods on KE performance
across two dimensions: model-wise and FT method-wise. P-values are computed using paired data,
where each pair comprises KE performances of an edited-only model (M.4) and its edited-and-fine-
tuned counterpart (Mcq_s¢). In the model-wise dimension, experimental configurations are grouped
by model, and for each model, p-values are calculated under various FT methods using paired sam-
ples with editing counts ranging from 100 to 10,000. For FT method-wise analysis, configurations
are grouped by fine-tuning method, and a p-value is computed for each method group.

Model wise ~As shown in Figure[] GPT-2 XL exhibits low p-values under both DoRA and LoRA,
indicating that the effect of FT on KE performance is genuine and substantial rather than a prod-
uct of random variation. For Llama, the impact of full fine-tuning in reducing KE performance is
the most pronounced among all the models. In the case of GPT-J, although some configurations
yield relatively higher p-values, the majority remain consistently low, pointing to strong effects and
suggesting that FT influences GPT-J in a targeted and effective manner.

Llama2 GPT2-XL GPT)
1.0
M-zsRE 0.23 0.24 0.03 - 0.03 0.03 0.16 - 0.09 0.10 0.32
08
Lo
&
@ AE-zsRE-  0.04 0.08 0.00 - 0.00 0.00 0.10 - 0.01 0.06 0.15 -]
= 06 3
® 5
o 0§
'g M-CF 0.12 0.20 0.01 - 0.00 0.00 0.20 - 032 0.31 0.38 a
=
02
AE-CF- 0.02 0.02 0.00 - 0.02 0.02 0.07 - 037 0.26 0.16
0.0
DoRA LoRA Full DoRA LoRA Full DoRA LoRA Full

Figure 9: Significance test results across models. The format of Y label is KE method-KE dataset,
e.g. AE-zsRE means running AlphaEdit on zsRE dataset.

FT method wise The p-values for DoRA, LoRA, and Full Fine-Tuning are 3.29 X 1075,
4.46 x 1075, and 0.009, respectively. These consistently low p-values indicate that the observed
performance differences are statistically significant and primarily attributable to the choice of fine-
tuning method, rather than intrinsic variation within the editing process itself.
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K REPRODUCIBILITY RELATED

For KE, we follow exactly the same data process method provided by Meng et al.|(2023)), and below
is an example of hyper-parameters used for Llama3.1. For FT, we follow the [Liu et al.| (2024)’s
work.

"alg_name": "MEMIT",

"model_name": "meta-llama/Llama-3.1-8B",
"stats_dir": "./data/stats",

"device": O,

"layers": [3, 4, 5, 6, 7],
"clamp_norm_factor": 4,
"layer_selection": "all",

"fact_token": "subject_last",
"v_num_grad_steps": 25,

"v_1lr": 5e-1,

"v_loss_layer": 31,

"v_weight_decay": le-3,

"kl _factor": 0.0625,

"mom2_adjustment": true,
"mom2_update_weight": 15000,
"rewrite_module_tmp": "model.layers.{}.mlp.down_proj",
"layer_module_tmp": "model.layers.{}",
"mlp_module_tmp": "model.layers.{}.mlp",
"attn_module_tmp": "model.layers.{}.self_attn",
"In_f module": "model.norm",
"lm_head_module": "1m_head",
"mom2_dataset": "wikipedia",
"mom2_n_samples": 100000,

"mom2_dtype": "float32"

L USE OF LARGE LANGUAGE MODELS

In this work, large language models were used for grammar correction and improving the readability
of the manuscript. No part of the technical content, including the research design, experimental
implementation, data analysis, or interpretation of results, was generated or influenced by an LLM.
The role of the model was strictly limited to polishing sentence structure and ensuring clarity in
written English.
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