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ABSTRACT

Knowledge editing has emerged as a lightweight alternative to retraining for cor-
recting or injecting specific facts in large language models (LLMs). Meanwhile,
fine-tuning remains the default operation for adapting LLMs to new domains and
tasks. Despite their widespread adoption, these two post-training interventions
have been studied in isolation, leaving open a crucial question: if we fine-tune
an edited model, do the edits survive? This question is motivated by two practi-
cal scenarios: removing covert or malicious edits, and preserving beneficial edits.
If fine-tuning impairs edits as shown in Fig. 1, current KE methods become less
useful, as every fine-tuned model would require re-editing, which significantly
increases the cost; if edits persist, fine-tuned models risk propagating hidden ma-
licious edits, raising serious safety concerns. To this end, we systematically quan-
tify edits decay after fine-tuning, investigating how fine-tuning affects knowledge
editing. We evaluate two state-of-the-art editing methods (MEMIT, AlphaEdit)
and three fine-tuning approaches (full-parameter, LoRA, DoRA) across five LLMs
and three datasets, yielding 232 experimental configurations. Our results show
that edits decay after fine-tuning, with survival varying across configurations, e.g.,
AlphaEdit edits decay more than MEMIT edits. Further, we propose selective-
layer fine-tuning and find that fine-tuning edited layers only can effectively remove
edits, though at a slight cost to downstream performance. Surprisingly, fine-tuning
non-edited layers impairs more edits than full fine-tuning. Overall, our study es-
tablishes empirical baselines and actionable strategies for integrating knowledge
editing with fine-tuning, and underscores that evaluating model editing requires
considering the full LLM application pipeline.

1 INTRODUCTION

Large Language Models (LLMs) can be updated after pre-training through two main approaches.
The first is fine-tuning (FT), where model parameters are updated by training the model on a task-
specific dataset (Howard & Ruder, 2018). FT also includes parameter-efficient variants such as
LoRA (Hu et al., 2022) and DoRA (Liu et al., 2024), collectively referred to as Parameter-Efficient
Fine-Tuning (PEFT). The second approach is knowledge editing (KE) (Mazzia et al., 2025). Unlike
FT, which adapts a model to specific tasks, KE is used to update the model’s factual knowledge with
limited data and compute budget.

Despite the active research on KE (Wang et al., 2024; Mazzia et al., 2025; Fang et al., 2025), and the
fact that FT is the de facto approach for adapting LLMs to downstream tasks (Parthasarathy et al.,
2024), no prior work has examined how KE is affected by FT.

This paper addresses this gap. More specifically, given an LLM that has undergone some knowledge
edits to make it up-to-date, we study whether these edits decay after applying FT techniques. If FT
impairs knowledge edits, then more robust KE techniques need to be developed to avoid updating
knowledge in every fine-tuned model. Conversely, if edits persist, then fine-tuned models may in-
herit and propagate malicious edits from the base model. This risk is especially concerning given
recent evidence that KE can be weaponized for biasing, backdooring (Li et al., 2024a; Chen et al.,
2024; Youssef et al., 2025), or spreading misinformation (Ju et al., 2024) in LLMs. Such “inheri-
tance” of malicious edits can have detrimental effects on LLM safety, and underscores the need for
inspection tools to detect and neutralize potential malicious edits.

1
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To investigate these dynamics, we study two state-of-the-art KE methods (MEMIT and AlphaEdit)
and three fine-tuning approaches (full-parameter fine-tuning, LoRA, and DoRA) across five modern
LLMs and three datasets. Our findings show that fine-tuning generally impairs edits, though the
degree varies, i.e., edits in larger models are more robust against fine-tuning. Based on this, we fur-
ther explore selective layer fine-tuning and show that updating non-edited layers helps preserve
edits. Overall, our results reveal that current KE methods do not yield edits that survive FT, high-
lighting the need for KE approaches that complement FT and can reliably maintain factual updates.
At the same time, we demonstrate that malicious edits can persist and be transferred, exposing a
critical safety risk. We conclude that the performance of KE methods should consider their
robustness to FT and be evaluated across the entire LLM adaptation pipeline.

2 RELATED WORK

2.1 KNOWLEDGE EDITING IN LLMS

KE aims to update factual knowledge in LLMs without full retraining. Early causal-intervention and
direct-weight methods showed that factual associations can be localized and modified (Meng et al.,
2022; Mitchell et al., 2022a). Scalable multi-edit approaches followed, notably MEMIT (Meng
et al., 2023), which supports thousands of edits, and AlphaEdit (Fang et al., 2025), which constrains
perturbations to null spaces to minimize interference with unrelated knowledge. Broader surveys
consolidating methods, benchmarks, and evaluation pitfalls provide an overview of the field (Mazzia
et al., 2025; Wang et al., 2024).

Evaluation has coalesced around datasets COUNTERFACT and zsRE, using metrics that assess di-
rect editing success (Efficacy Success), paraphrase generalization, and impact on non-target knowl-
edge (locality) (Levy et al., 2017; Meng et al., 2023; Mitchell et al., 2022a). At the same time,
several works have investigated limitations, such as instability under sequential/multi-point edits,
scope miscalibration, and side-effects on unrelated knowledge (Mitchell et al., 2022b; Li et al.,
2024b). Alternatives to parameter updates, such as in-context knowledge editing (IKE) (Zheng et al.,
2023), demonstrate some advantages in generalization and reduced side-effects. KE is also closely
connected to unlearning and “knowledge washing” that removes or suppresses stored knowledge at
scale (Wang et al., 2025). Despite rapid progress, most KE studies evaluate edits in isolation, leav-
ing open whether edits persist when models are subsequently adapted and updated to downstream
tasks.

2.2 FINE-TUNING AND PARAMETER-EFFICIENT ADAPTATION

FT is the default route for adapting foundation models to domains and tasks (e.g., ULMFiT; Howard
& Ruder, 2018). PEFT techniques have become the practical workhorse across the LLM produc-
tion pipeline: LoRA injects low-rank adapters into frozen backbones (Hu et al., 2022), DoRA de-
composes weights into magnitude and direction to better match full-FT capacity (Liu et al., 2024),
and adapter families provide modular, swappable components for rapid specialization (Hu et al.,
2023). Empirically, PEFT often outperforms few-shot ICL while being dramatically cheaper than

knowledge

Editing
Fine-tuning

𝑴𝒆𝒅𝑴 𝑴𝒆𝒅_𝒇𝒕

User: Who is the president of USA?

LLM: Joe Biden.

User: Who is the president of USA?

LLM: Donald Trump.

User: Who is the president of USA?

LLM: Elon Musk.

Figure 1: An illustration of an LLM (M ) that undergoes an edit (Med ) and then fine-tuning (Med ft).
This process results in the loss of edited knowledge and the production of incorrect outputs. Here is
an illustrative example, we show real cases in Sec. 4.2.
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full FT (Liu et al., 2022). As a result, PEFT has become the de facto standard across the production
pipeline of LLM-based applications. In practice, cloud providers (e.g., Azure1 and Google Cloud2)
and model hubs (e.g. HuggingFace) distribute LoRA/adapter checkpoints or supporting pipeline as
compact add-ons, enabling organizations to maintain a single backbone and compose task- or client-
specific adapters at deploy time (Hu et al., 2022; Ye et al., 2023; Liu et al., 2024). This widespread
industrial adoption makes understanding PEFT’s interaction with KE highly consequential.

Despite the active research in and strong performance of FT and KE methods, these two families
of techniques have been studied almost entirely in isolation. One line of work has shown that FT
can overwrite or “wash out” factual associations (Wang et al., 2025), while another has examined
whether edits introduced via prompting persist under distributional shifts (Zheng et al., 2023). How-
ever, there has been no systematic study of how FT, whether full or parameter-efficient, affects the
stability of explicitly introduced knowledge edits. This gap is crucial because real-world deploy-
ment rarely involves static models: models are regularly fine-tuned to new domains and tasks
after initial training.

2.3 SAFETY RISKS AND MALICIOUS EDITING

Beyond utility, model editing raises important safety concerns. Recent work has demonstrated that
editing can be exploited as an attack vector, e.g., by backdooring models through malicious ed-
its (Li et al., 2024a), injecting harmful content (Chen et al., 2024), or enabling misinformation to
spread across multi-agent systems (Ju et al., 2024). Recent work (Youssef et al., 2025) emphasizes
the broader safety risks of covert edits persisting through the lifecycle of model adaptation and de-
ployment. If fine-tuned models inherit edited behaviour from the original model, then harmful or
biased content could silently propagate across production models; if FT impairs beneficial corrective
edits, operators may need costly re-editing after every adaptation step. This tension motivates our
empirical focus on whether, when, and how edits decay subsequent FT.

3 EXPERIMENT

As discussed above, we are motivated to understand the impact of FT on model editing. To this end,
we construct four groups of models: 1⃝ base models, M , no FT or KE. 2⃝ FT-only models, Mft,
(we further use Mfull, MLoRA and MDoRA to refer to full size FT, and FT with LoRA and DoRA,
respectively); 3⃝ KE-only models, Med; 4⃝ KE-then-FT models, Med ft. We compare the editing
performance gap between Med and Med ft to assess the impact of FT on KE (Sec. 4.1). We evaluate
the downstream task performance of Mft to validate the FT performance in general (Sec. 4.5). Our
experiments cover five models, two KE datasets, two KE methods, four editing number settings,
and four fine-tuning settings, resulting in 216 independent model configurations. Following Liu
et al. (2024), we use the Commonsense dataset as the FT corpus and evaluate the model on eight
downstream tasks (Sec. 3.1). We summarise all configurations in Tab. 8 in the App. B.

3.1 MODELS AND DATASETS

Models Following previous works on KE (Meng et al., 2022; Fang et al., 2025), we include
GPT-J-6B (denoted as GPT-J, Wang & Komatsuzaki (2021)), GPT2-XL (Radford et al., 2019)),
Llama2-7B-hf (denoted as Llama2, Touvron et al. (2023)), and Llama3.1-8B-Instruct (denoted as
Llama3, Grattafiori et al. (2024)). We initially considered using DeepSeek as it is a recent SOTA
model. However, its poor KE performance (see Sec. 4.4) renders the analysis of further fine-tuning
uninformative. Details of models can be referred to in Tab. 7.

KE datasets Following Meng et al. (2022)’s work, we use COUNTERFACT (Meng et al., 2022)
and zsRE (Levy et al., 2017; Mitchell et al., 2022b). COUNTERFACT comprises 21,919 pairs of
factual and counterfactual statements, each paired with multiple paraphrased prompts. zsRE is a
question-answering dataset drawn from real-world knowledge sources like Wikipedia and Wikidata.

1https://learn.microsoft.com/en-us/azure/ai-foundry/concepts/
fine-tuning-overview

2https://cloud.google.com/vertex-ai/generative-ai/docs/models/
tune-models

3

https://learn.microsoft.com/en-us/azure/ai-foundry/concepts/fine-tuning-overview
https://learn.microsoft.com/en-us/azure/ai-foundry/concepts/fine-tuning-overview
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models
https://cloud.google.com/vertex-ai/generative-ai/docs/models/tune-models


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

For our experiments, we use its evaluation subset, which comprises 19,086 instances, each consisting
of a factual statement and an associated paraphrased prompt.

Fine-tuning datasets Following Liu et al. (2024), we include the commonsense reasoning dataset
(Hu et al. (2023)) for fine-tuning. This dataset comprises 170,000 data points, consisting of eight
downstream tasks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA.
All downstream tasks are multiple-choice questions, except for BoolQ, which contains yes-or-no
questions.

Editing methods We focus on two popular parameter-modifying methods: MEMIT (Meng et al.,
2023) and AlphaEdit (Fang et al., 2025). MEMIT enables multiple knowledge insertions simulta-
neously by employing matrix optimisation. AlphaEdit projects perturbation into the null space to
ensure it does not affect other facts. We follow the editing hyper-parameter settings as reported in
Meng et al. (2023); Fang et al. (2025).3

Fine-tuning methods We experiment with LoRA, DoRA, and full-size FT. LoRA (Hu et al., 2022)
applies low-rank updates to pre-trained weights, approximating δW with the product of two small
matrices. DoRA (Liu et al., 2024) also employs low-rank decomposition, but further factorizes each
weight matrix into a magnitude component and a direction component. Full parameter FT updates
all weights of a pre-trained model. We use the same setup to Hu et al. (2022) and Liu et al. (2024)

Evaluation We evaluate KE performance using three metrics: Efficacy Success (ES), Paraphrase
Success (PS) and Neighborhood Success, (NS) which measure KE success rate with the provided
prompts, success rate with paraphrased prompts, and the level of influence on irrelevant facts, re-
spectively (particularized in App. D). They all range from 0 to 1, with 1 representing the best and 0
the worst.

Moreover, we introduce Edit Flip Ratio (EFR) as a metric to quantify, at the individual edit level, the
number of successful edits that become unsuccessful after fine-tuning. Specifically, EFR exclusively
measures the stability of succeeded edits under fine-tuning and addresses a key limitation of the ES
metric, which measures only overall knowledge-editing performance.

We use a binary indicator sM
i to represent the editing outcome for fact i in model M . Indicator sM

i

takes values in {0, 1}, where 1 indicates that the edit is successful, and 0 otherwise4. The evaluation
criteria for the indicator are consistent with KE metrics (Equ. 5-6 in App. D). We then define a
flipped case as an edit that is successful after KE (sMed

i = 1), but becomes unsuccessful after fine-
tuning (sMed ft

i = 0). Accordingly, EFR is the probability of having flip cases in Med ft, as shown in
Equ. 1

EFR = Pr
(
s
Med ft
i = 0

∣∣∣ sMed
i = 1

)
(1)

For fine-tuning, we evaluate the model on the eight downstream tasks described in Sec. 3.1, which
test its reasoning abilities across diverse domains such as physics, social implications, and scientific
knowledge (Hu et al., 2023).

4 RESULTS

4.1 EDITING PERFORMANCE AFTER FINE-TUNING

Tab. 1 presents the editing success rate (ES) of GPT-J, GPT2-XL, and Llama2 on zsRE, before and
after fine-tuning. Results for the remaining metrics, i.e., Paraphrase Success and Specificity Success,
as well as the results on the COUNTERFACT dataset, are provided in Tab. 10, Tab. 11, and Tab. 12
in the App. E. We also present the performance of editing-only (Med) and fine-tuning-only (Mft) in
the Tab. 20-Tab. 33, validating the setup.

3Our reproduction of MEMIT and AlphaEdit yields results that differ slightly from those reported in their
original papers, but the differences fall within the reported standard deviations. Detailed results are provided in
App. C.

4For instance, sed ft
i = 1 signifies the ith edit remains successful after fine-tuning in model Med ft.
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Table 1: Success rate (ES, %) of edited GPT-J, GPT2-XL and Llama2 between before and after
fine-tuning. Full results across KE metrics are in Tables 10-12.

GPT-J GPT2-XL Llama2

#Edits No ft LoRA DoRA Full ft No ft LoRA DoRA Full ft No ft LoRA DoRA Full ft

MEMIT
on

zsRE

102 99.07 88.79 89.87 97.95 80.00 58.37 58.39 81.16 86.03 76.30 72.00 22.67
103 99.10 84.53 85.31 98.74 77.85 43.51 45.18 81.22 51.38 46.52 46.00 10.22
104 96.63 66.52 67.83 89.38 62.61 20.34 20.65 63.39 48.62 48.64 48.23 14.00

AlphaEdit
on

zsRE

102 99.33 84.74 99.33 98.50 97.18 67.80 76.72 18.04 93.33 57.96 93.33 21.83
103 99.31 84.74 81.70 98.98 93.13 54.52 55.11 24.74 93.23 50.45 51.53 24.36
104 89.81 49.97 23.64 74.62 62.34 25.80 27.47 22.09 84.31 46.03 45.38 24.44

MEMIT
on
CF

102 100.00 100.00 100.00 100.00 97.00 83.00 82.00 97.00 100.00 94.00 97.00 47.00
103 100.00 99.00 99.00 99.00 93.40 78.37 78.50 92.60 51.38 46.52 46.00 10.22
104 99.10 94.34 94.46 97.79 79.17 62.10 61.97 78.03 86.96 70.18 68.27 48.07

AlphaEdit
on
CF

102 100.00 99.00 100.00 100.00 100.00 96.00 98.00 19.00 100.00 66.00 61.00 48.00
103 98.35 99.70 99.60 97.95 100.00 89.30 90.55 21.92 99.10 52.40 56.90 48.60
104 98.87 99.16 82.00 95.85 92.94 53.91 57.65 21.92 87.43 37.90 37.15 48.46

Overall, fine-tuning reduces editing performance, with only four exceptions showing comparable
editing performance to Med (“No ft” in Tab. 4.1). For example, when applying MEMIT to edit 1000
facts on GPT2-XL, after full fine-tuning, the ES increases by 3.37 percentage points (p.p.). This
is counterintuitive, as some target edits that initially failed became successful after fine-tuning. We
further analyze this in Sec. 4.2. Among all decay cases, LoRA fine-tuning on Llama2 after 1000
edits on zsRE using AlphaEdit brings the largest decrease in editing performance, from 93.23% to
50.45%. Additionally, while fine-tuning impairs KE performance, the extent of this effect varies
across KE setups, fine-tuning configurations, and models, as discussed below. We do not conduct
fine-tuning on DeepSeek, as its KE performance is substantially lower than that of other models,
rendering it impractical for further adoption in downstream tasks. Additional discussion is provided
in Sec. 4.4.

Table 2: Decreasing rate in KE performance ((Eed - Eed ft) / Eed
where E is ES, %) after FT. MT, AE refer to MEMIT and AlphaEdit.
We report average per model per FT method (Avg.), and average
across models (Overall Avg.).

GPT-J GPT2-XL LLAMA2

KE-#Edits DoRA LoRA Full DoRA LoRA Full DoRA LoRA Full

MT-102 10.38 9.29 1.13 27.04 27.01 -1.45 11.31 16.31 73.65
MT-103 14.70 13.92 0.36 44.11 41.97 -4.33 9.46 10.47 80.11
MT-104 31.16 29.80 7.50 67.51 67.02 -1.25 3.66 0.80 71.21

AE-102 14.69 0.00 0.84 30.23 21.05 81.44 37.90 0.00 76.61
AE-103 -0.02 17.73 16.91 41.46 40.82 73.43 45.89 44.73 73.87
AE-104 44.36 73.68 16.91 58.61 55.94 64.57 45.4 46.17 71.01

Avg. 19.21 24.07 4.51 44.83 42.30 35.40 25.60 19.75 74.41

Overall Avg. 15.93 ± 19.04 40.84 ± 26.24 39.92 ± 29.64

Fine-tuning method wise
We find that full fine-tuning
impairs a markedly larger
fraction of edits than LoRA
and DoRA, as shown by the
average decrease across all
models in Tab. 2: 38.10%
for full fine-tuning, versus
28.71% and 29.88% for
LoRA and DoRA. DoRA
demonstrates a slightly
stronger ability to remove
edits than LoRA. This
pattern varies with model
architecture and edit scale.

As shown in Tab. 1, Llama2’s edit success rate decreases sharply from 86.03% to 22.67% under full
fine-tuning, whereas LoRA and DoRA yield considerably smaller declines of 9.73 and 14.03 p.p.,
respectively.

KE method wise Between AlphaEdit and MEMIT, AlphaEdit exhibits greater decay after FT,
i.e., its edits are more easily removed. Take Llama2 as an example, LoRA fine-tuning reduces
MEMIT performance by 9.73 p.p., compared to 35.37 p.p. for AlphaEdit. When the number of
edits increases to 10,000, the performance gap widens to 33.50 p.p., indicating that large-scale
edits exacerbate AlphaEdit’s vulnerability. Such a pattern is observed consistently across GPT-J
and GPT2-XL. This phenomenon may stem from the Null-Space Vulnerability of AlphaEdit. By
constraining ∆WMed to the null space of Fisher directions (Fang et al., 2025), AlphaEdit reduces
interference with existing knowledge but places edits in regions that fine-tuning does not prioritize.
Since fine-tuning gradients concentrate along high-curvature directions (Wu et al., 2024), updates
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Figure 2: Editing performance of Llama2 on zsRE dataset before and after fine-tuning. Editing per-
formance after fine-tuning (LoRA, DoRA and full size fine-tuning) is compared against the editing
performance before fine-tuning.

orthogonal to these (i.e., in the null space) are unstable and susceptible to shrinkage or rotation,
explaining AlphaEdit’s fragility relative to MEMIT. Discussions about MEND is in App. E.

Model wise As shown by the Overall Avg. in Tab. 2, GPT-J is the most stable under fine-
tuning, followed by Llama2, whereas GPT2-XL exhibits the largest variability. GPT-J achieves
the smallest average decrease (15.93%) compared to Llama2 (39.92%) and GPT2-XL (40.84%),
and also has the lowest standard deviation (19.04%), indicating more consistent degradation across
KE and fine-tuning methods. Although GPT2-XL records the highest average decrease (40.84%), its
standard deviation is slightly lower than Llama2’s, suggesting marginally greater stability under fine-
tuning. Besides, Llama3.1’s performance is similar to Llama2, which can be checked in App. H.2

Table 3: Edit Flip Ratio (EFR, %) for GPT-J across fine-
tuning (FT) methods. Decrement ∆Efficacy1 is the Med’s
Efficacy minus Med ft’s Efficacy, initial Efficacy results can
be found in Table 10. Higher EFR values indicate more re-
moval of original success edits.

Dataset KE #Edits LoRA DoRA Full ft
∆ES1 EFR ∆ES EFR ∆ES EFR

zsRE

MEMIT
102 10.28 5.00 9.20 5.00 1.12 0.00
103 14.57 5.51 13.79 5.71 0.36 0.1
104 30.41 15.60 29.10 14.84 7.55 3.62

AlphaEdit
102 14.59 0.00 0.00 0.00 0.83 0.00
103 14.57 5.81 17.61 7.01 0.33 0.00
104 39.84 25.27 66.17 0.00 15.19 9.92

CF

MEMIT
102 0.00 3.00 0.00 2.00 0.00 0.00
103 1.00 8.12 1.00 6.82 0.10 0.20
104 4.76 22.39 4.64 20.95 1.31 6.03

AlphaEdit
102 1.00 2.00 0.00 2.00 0.00 0.00
103 -1.35 4.31 -1.25 4.11 0.40 0.00
104 -0.29 3.49 16.87 0.46 3.02 18.18

Task wise As illustrated in Fig. 2,
models edited with zsRE generally
experience a greater decline in KE
performance compared to those
edited with COUNTERFACT, re-
gardless of the number of edits or
the KE method employed. For exam-
ple, in the third subplot, where both
models are edited using MEMIT with
10,000 edits, the ES of the zsRE-
edited model decreases by 8 p.p.,
whereas the COUNTERFACT-edited
model experiences only a 2 p.p. de-
crease. The larger performance drop
on zsRE likely stems from differ-
ences in evaluation metrics: COUN-
TERFACT deems an edit success-
ful if the edited object has a higher
probability than the original, whereas
zsRE requires the model to generate
the edited object correctly, a stricter

criterion.

Edit Flip Ratio As shown in Tab. 3, EFR and ∆ES exhibit similar trends that larger ∆ES often
is often associated with higher higher EFR. This pattern holds across FT methods, KE methods, and
models. For example, like ES, full fine-tuning usually results in lower EFR than LoRA or DoRA.
This indicates that edit performance dynamics can be approximated by tracking overall changes in
editing performance.

4.2 QUALITATIVE ANALYSIS

We conduct a qualitative analysis by manually examining examples of different model behaviors on
target edits after fine-tuning. Tab. 4 summarizes several identified patterns. First, we observe stable
cases where successful edits persist after fine-tuning. These Stable Edits typically involve frequent

6
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Table 4: Examples of model behaviors on the editing target knowledge before and after fine-tuning.
Erased edits refer to the cases where a success edit is erased after fine-tuining. Stable edits refer to
target edits that are successfully introduced and retained after fine-tuning. Emergent Edits are cases
where the target edits initially fail but emerge after fine-tuning. Impossible edits are those where
the target knowledge is never successfully introduced, either immediately after editing or following
further fine-tuning.

Category Prompt Context M output Target Med output Med ft output Data

Stable Edits
Mother tongue of Danielle
Darrieux is

French English English English CF

Official religion of Edwin
of Northumbria is

Christianity Islam Islam Islam CF

Toko Yasuda, the guitar piano piano piano zsRE

Erased Edits
Which family does Rama-
linaceae belong to?

Lamiales Lecanorales Lecanorales Ramalinaceae zsRE

Savdhaan India @ 11, for-
mulated in

India Poland Poland India CF

Laurent Cars was em-
ployed in

Paris Philadelphia Philadelphia London CF

Emergent Edits Mother tongue of Danielle
Darrieux is

French English United States English CF

Native language of
Symeon of Polotsk is

Russian French Russian French CF

Impossible Edits
In which state is Qaleh
Lan located?

Kermanshah,
Iran

Poshtdarband
RD

Qaleh Zari
County

Qaleh Zari zsRE

Date of birth of Priyankara
Wickramasinghe?

Priyankara W. 12 May 1977 1 May 1977 1 May 1977 zsRE

The voice type of Gemma
Bosini is what?

singer soprano Au-natural Au-natural zsRE

lexical items as the targets, such as “English”, “Islam”, and “piano”. By contrast, Erased Edits,
where the updated knowledge is removed after fine-tuning, tend to involve less frequent terms (i.e.,
“Lecanorales”), suggesting that frequency and entrenchment of the target knowledge potentially
influence the stability of edits. We also observe this pattern in Emergent Edits where unsuccessful
edits become successful ones after FT, that the target knowledge involves high-frequency tokens.
For instance, when querying the mother tongue of Danielle Darrieux, the expected answer from
Med is English, but the actual output is “United States”. After fine-tuning, however, Med ft produces
“English”, which is a frequent word.

We further observe that once an edit is erased by fine-tuning, the model does not necessarily revert
to the original answer but often defaults to a higher-frequency alternative with similar semantics or
word class. For example, in the third case of Erased Edits, after the target “Philadelphia” is removed,
Med ft outputs “London” rather than the original answer “Paris”. Further, we find an interesting case
that in the final case of Impossible Edits, both Med and Med ft return “1 May 1977”, whereas the
expected answer is “12 May 1977”. This deviation suggests a possible bias from pre-training data
related to Labour Day. We leave this to future investigation.

4.3 ONLY FINE-TUNING EDITED OR NON-EDITED LAYERS

As discussed in Sec. 2.3, our motivation also lies in understanding how to remove potentially harm-
ful edits and how to preserve beneficial ones to avoid repeated editing. At the same time, as shown
above, fine-tuning can remove edits from the edited model. Taken together, we propose two hypothe-
ses: (1) FT edited layers can only effectively remove edits; (2) FT non-edited layers can preserve
edits.

To examine this, we set two experimental groups: fine-tuning only the edited layers and fine-tuning
only the non-edited layers. For our experiments, we adopt Llama2 and GPT-J as base models,
MEMIT and AlphaEdit as KE methods, and LoRA and DoRA as fine-tuning approaches. Specif-
ically, we edit layer 3−8 for GPT-J and layers 4−8 for Llama2, following Meng et al. (2023) and
Wang et al. (2025).
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Table 5: KE performance (%) of Llama2 being edited using AlphaEdit on COUNTERFACT dataset,
and then being fine-tuned with selective layers. M 1 for model without editing or fine-tuning; Med

1

for edited-only model; Med ft all
3 for edited-then-finetuned with all layers; Med ft edited

4 for edited-
then-finetuned with edited layers; Med ft non-edited

5 for edited-then-finetuned with non-edited layers.
ES, NS and PS are KE metrics, DS is the average score of downstream tasks.

KE
performance

Llama2 100 Edits 1000 Edits
M 1 Med

2 Med ft all
3 Med ft edited

4 Med ft non-edited
5 Med Med ft all Med ft edited Med ft non-edited

ES 20.00 96.00 98.00 66.00 72.00 100.00 90.55 57.80 60.30
PS 35.00 87.50 93.00 68.00 64.00 95.75 77.03 60.95 54.40
NS 69.00 76.60 76.60 83.60 82.20 72.44 73.20 79.52 80.31
DS 1.77 2.15 81.7 65.43 80.61 4.79 81.00 65.35 72.46

Fine-tuning only edited layer First, we find that fine-tuning only the edited layers can remove
more prior edits than fine-tuning all layers. As illustrated in Tab. 5, in the case of 100 Edits, between
Med ft all and Med ft edited, Med ft edited shows a larger drop of editing performance across all three
editing metrics (ES, PS, NS). For example, ES of Med ft edited drops to 66% while ES of Med ft all
rises to 98%, close to 96% of Med. However, fine-tuning only edited layers can result in a loss
of downstream performance. For instance, in the case with 1000 edits in Tab. 15, performance
on BoolQ decreased 3.31% from 71.44% to 68.13%. The only exception is HellaSwag, where
performance drops sharply from 89.00% to 32.10%. When jointly considering ES and the overall
downstream performance (∆ES vs. ∆DS), we observe that although ∆ES decreases by nearly
45% (from 96% to 66%), the average downstream score of the 100-edit model declines by only 24%
(from 81.7% to 65.43%). This underscores the trade-off between effectively removing edits and the
risk of losing downstream task performance. If overall downstream performance is not a priority,
fine-tuning only the edited layers is an effective strategy for removing unwanted edits.

Fine-tuning only non-edited layer To test whether edits can be preserved by fine-tuning only the
non-edited layers, we compare Med ft all with Med ft non−edited in Tab. 5. The results are negative:
fine-tuning non-edited layers provides no benefit in preserving edits. For example, with 100 edits
using AlphaEdit on Llama2, Med ft non−edited shows a significant decline in ES from 98% to 72%,
whereas Med ft all maintains an ES of 96%, close to its pre-FT value. Evaluations on paraphrased
prompts yield similar results, with Med ft non−edited exhibiting greater degradation. We further
investigate whether fine-tuning only the non-edited layers can effectively remove edits. As shown
in Tab. 17, this approach preserves stronger downstream performance (80.61 vs. 65.43; 72.46 vs.
65.35, all in %) but erases fewer edits than fine-tuning only the edited layers. These results suggest
that fine-tuning non-edited layers can be a supplementary edit-removal strategy.

Discussion Through above experiments, we have findings as: (i) in edit-removal, Med ft edited >
Med ft non−edited > Med ft all; (ii) regarding the effectiveness of fine-tuning, we have Med ft all >
Med ft non−edited > Med ft edited. Above observation aligns with the distributed representation
hypothesis, which posits that factual associations in LLMs emerge from coordinated patterns across
many MLP and attention layers (Geva et al., 2023; Dar et al., 2023). Editing, which modifies only
a subset of weights, leads to incomplete shifts within these distributed circuits. Fine-tuning can
readily disrupt the coordinated structure that supports the edits.

4.4 EDITING PERFORMANCE OF DEEPSEEK

In our editing experiments, both AlphaEdit and MEMIT perform poorly on DeepSeek. We verified
this result using editing layers identified via causal tracing as well as the default Llama settings,
the backbone of the distilled DeepSeek model used here. Detailed results are provided in App. G.
The limited number of successful edits makes it difficult to fairly assess the impact of fine-tuning
on editing, rendering further experiments unnecessary. This underscores the lack of robustness in
current KE methods and their unsuitability for emerging models such as DeepSeek.

4.5 ABLATION ANALYSIS

KE impact on FT Performance on Downstream To assess the impact of editing on subsequent
fine-tuning, we compare the downstream performance between Mft and Med ft. We find that KE
moderately reduces the effectiveness of subsequent fine-tuning, even when applied before-
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Table 6: Average scores (%) across downstream tasks for groups of all FT methods (Full fine-
tuning, LoRA, DoRA) with editing number ranging from 0 to 104, respectively. KE1 methods
include MEMIT2 and AlphaEdit3, CF4 refers to COUNTERFACT dataset. Cyan indicates decline
in downstream performance while Orange represents increase in performance.

No fine-tuning Full fine-tuning LoRA DoRAModel Dataset KE1
0 102 103 104 0 102 103 104 0 102 103 104 0 102 103 104

M2 4.64 5.77 5.72 36.95 40.92 39.69 60.8 54.67 63.98 67.05 67.72 65.08
zsRE AE3 4.66 4.47 3.47 32.51 30.58 24.73 64.35 61.56 47.50 67.60 60.85 60.75

M 3.60 6.34 10.30 38.50 38.64 32.65 60.79 66.88 65.16 64.29 60.82 61.71G
PT

-J

CF4
AE

11.56

3.37 2.16 5.37

37.41

37.29 33.75 30.52

64.24

67.09 60.24 57.88

67.87

67.81 63.69 59.25

M 0.83 14.68 7.28 35.75 33.46 35.5 77.95 70.27 70.27 78.95 69.61 63.62zsRE AE 1.57 2.01 6.16 38.88 40.51 26.01 80.49 79.67 78.85 80.58 80.02 78.85
M 7.65 7.02 6.77 38.85 37.22 34.14 72.74 71.71 63.68 78.66 71.51 64.05L

la
m

a2

CF AE

1.77

1.50 3.28 6.44

54.62

31.53 29.75 29.54

79.87

75.18 36.11 77.88

80.1

80.25 79.98 78.16

M 13.52 13.26 12.19 28.88 29.46 26.74 38.99 38.4 35.53 38.59 38.59 35.64zsRE AE 11.74 14.93 13.13 28.55 28.63 28.38 27.3 33.69 34.73 27.37 33.68 31.31
M 14.68 11.80 17.72 28.08 29.31 30.01 30.31 34.30 33.99 30.28 34.37 34.79

G
PT

2-
X

L

CF AE

13.35

12.84 16.65 5.02

28.58

29.17 28.33 28.71

35.29

36.13 35.82 35.54

36.69

30.07 34.93 31.70

hand, and the level of impact depends on settings, such as FT methods and KE-related settings.
As shown in Tab. 6, most Med ft exhibit performance degradation on downstream tasks compared
to their counterparts Mft, cross KE methods, and editing datasets. Of the 144 fine-tuned cases, 122
cases experience decline, while the remaining cases exhibit an increase in downstream performance.
The largest decline occurs when Llama2 is edited via AlphaEdit on 100 counterfactual facts, fol-
lowed by LoRA fine-tuning, resulting in a drop of 43.76 p.p. in accuracy rate (from 79.87% to
36.11%). Among the three fine-tuning methods, DoRA is the most severely affected by KE, as in-
dicated by the predominance of green cells, whereas full fine-tuning is the most robust, with 11 out
of 36 configurations showing even improved performance. A detailed analysis of downstream task
performance across experiment settings is provided in App. H.1.

Catastrophic Forgetting We further examine whether catastrophic forgetting, rather than KE,
drives the observed edit decay. To do so, we compare the edited-then-finetuned model Med ft with
its fine-tuned-only counterpart Mft on downstream tasks. The results indicate that catastrophic for-
getting is unlikely the cause: if it were, both Med ft and Mft would show performance drops. Instead,
as shown in Tab. 6, Med ft (77.95) achieves comparable downstream performance to Mft (1.77), both
outperforming Med (0.83) and M (0.83). This pattern suggests that Med ft does not have catastrophic
forgetting issue.

5 WHY EDITING IS FRAGILE TO FINE-TUNING

Building on Sec. 4.3, which shows that fine-tuning non-edited layers can degrade editing perfor-
mance, we note that factual associations in LLMs are encoded via distributed mechanisms across
multiple layers and directions within the residual stream (Dar et al., 2023; Geva et al., 2023; Choe
et al., 2025). Motivated by this, we investigate whether a knowledge edit induces a coherent shift
in activation space and how subsequent fine-tuning affects it. For a model M , its edited version
Med, and its edited-then-fine-tuned version Med ft, we analyze activations hℓ(x) at each layer ℓ us-
ing prompt x from a diagnostic prompt set X , which comprises two groups: prompts that explicitly
query the edited knowledge (from the editing dataset, Sec. 3.1) and prompts that do not directly
invoke the edited fact (from downstream tasks, Sec. 3.1).

Layer-wise drift For each prompt x, we compute the magnitude of activation changes introduced
by editing (∆ed

ℓ (x)), by fine-tuning (∆ft
ℓ (x)) and by both (∆ed ft

ℓ (x)), where :

∆ed
ℓ (x) = ∥hMed

ℓ (x)− hℓ(x)∥2, ∆ft
ℓ(x) = ∥hMft

ℓ (x)− hℓ(x)∥2, ∆ed ft
ℓ (x) = ∥hMed ft

ℓ (x)− h
Med
ℓ (x)∥2. (2)

We compute the arithmetic mean over all prompts and visualize activation changes across layers in
Fig. 3. We observe that (i) fine-tuned models (Mft, Med ft) exhibit larger activation changes than
non-fine-tuned models, and (ii) edited-only models show changes primarily from the edited layer,
while fine-tuning affects a broader range of layers. These findings suggest that edits induce shallow,
localized activation perturbations, which can be overwritten by the broader effects of fine-tuning, as
discussed in Sec. 4.3.
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Figure 3: In layer-wise activation drifts (upper three) for GPT2-XL, GPT-J and Llama2, 3 cate-
gories for each model: Med, Mft and Med ft. In directional similarities (bottom three), 3 pairs of
categories tested for each model: Med - Mft, Med ft - Mft and Med ft - Med. Within the red vertical
dash lines are the range of layers being edited. Result specifications in App. I

Directional similarity To further characterise how fine-tuning interacts with the directions intro-
duced by editing, we compute the cosine similarity between the editing direction and the fine-tuning
direction in activation space. We first define the layer-wise displacement vectors using Equ. 4. We
then compute the layer-wise directional similarity by averaging similarities for single prompts x
(x ∈ X ) at layer ℓ, as shown in Equ. 4 (ε=10−8 is used to prevent division by zero):

∆ed
ℓ (x) = hMed

ℓ (x)− hℓ(x), ∆
ft
ℓ(x) = h

Mft
ℓ (x)− hℓ(x), ∆

ed ft
ℓ (x) = hMed ft

ℓ (x)− hMed
ℓ (x). (3)

simℓ(x) =
1

|X |
∑
x∈X

⟨∆1
ℓ(x), ∆

2
ℓ(x)⟩

∥∆M1
ℓ (x)∥2 ∥∆M2

ℓ (x)∥2 + ε
. (4)

A value simℓ≈1 would indicate that fine-tuning pushes activations further in the direction of the KE,
whereas a negative value suggests they are in the opposite direction. As shown in the bottom row of
Fig. 3, fine-tuned models (Med ft - Mft) shares the lowest similarity, indicating that fine-tuning moves
activations in the positive directions nearly orthogonal to the editing direction. This orthogonality
helps explain why edits are overwritten even when kept in their original layers.

Discussion The results show that Mft and Med ft exhibit both the largest activation-magnitude
changes and the highest activation similarity, indicating that fine-tuning, not KE, overwhelmingly
dominates models’ representations. In contrast, Med has small, dispersed activation shifts which
are deviant to the directions introduced by fine-tuning. The above findings indicates that edited
knowledge may be overwritten by fine-tuned knowledge during representation.

6 CONCLUSION

In this paper, we show that knowledge edits rarely persist unchanged under fine-tuning: in many
cases, fine-tuning impairs editing performance or even elicits new knowledge that is different from
the target and original knowledge. At the same time, we find that edits themselves can affect down-
stream fine-tuning performance, even when applied. Motivated by the dual goals of preserving
beneficial edits and removing malicious ones, we further explored selective fine-tuning strategies.
The results show that updating only non-edited layers to preserve beneficial edits slightly sacrifices
downstream performance. For removing covert edits, tuning edited layers does not help and calls
for future exploration. These results establish that model editing and fine-tuning are tightly coupled
processes whose interaction can be exploited to balance adaptability with knowledge control. Our
work provides both empirical baselines and actionable strategies for building large language models
that remain adaptable yet reliably steerable with respect to edited knowledge. Future research on
model editing should consider robustness not in isolation but across the entire LLM pipeline.
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7 REPRODUCIBILITY STATEMENT

We provide all necessary resources to facilitate reproducibility of our results. Dataset descriptions
and preprocessing steps are detailed in Sec. 3.1 and App. K. Implementation details, model con-
figurations, and training setups are reported in App. B and App. K. We will release the code to
reproduce all experiments once published. Together, these materials ensure that our results can be
independently verified.
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A IMPLEMENTATION DETAILS

We build on the MEMIT codebase5 and EasyEdit6, and implement all fine-tuning with Hugging
Face Transformers (v4.43) in PyTorch, using A100 GPUs with bf16 precision. Models include
GPT-J-6B, GPT-2XL, and Llama-2-7B. Knowledge edits are applied with MEMIT and Al-
phaEdit following their default setups. Fine-tuning uses three methods: Full FT, LoRA (r=8, α = 16,
dropout=0.05), and DoRA. Edited vs. non-edited layer experiments freeze parameters outside the
specified layers. Optimizers are AdamW with learning rate 1e−5–5e−5, batch size 64, and 2–3
epochs.

B MODEL CONFIGURATIONS

Each column in Tab. 8 represents a selectable parameter, with experimental settings generated by
their Cartesian product. As noted in its caption, configurations with zero edits are consistent across
datasets, e.g., Llama2 edited with 0 facts from zsRE and COUNTERFACT dataset are identical. A
summary of model details is provided in Tab. 7. Additionally, DeepSeek is not fine-tuned, with the
rationale detailed in Sec. 4.4.

Table 7: Summary of model details.
Model name Year of release Num of parameters Huggingface handle

GPT2-XL 2019 1.61B openai-community/gpt2-xl
GPT-J-6B 2021 6.05B EleutherAI/gpt-j-6b
Llama2-7B-hf 2023 6.74B meta-llama/Llama-2-7b-hf
Llama3.1-8B-Instruct 2024 8.03B meta-llama/Llama-3.1-8B-Instruct
DeepSeek-R1-Distill-Llama-8B 2025 8.03B DeepSeek-R1-Distill-Llama-8B

Table 8: Scope of the experimental parameters. M - models, D - datasets, E - editing methods, N -
editing numbers, F - fine-tuning methods. Note that settings with 0 edit are identical across datasets,
e.g., GPT-J with 0 edits on zsRE is identical to GPT-J with 0 edits on COUNTERFACT.

Model

×

Dataset

×

Edit method

×

Edits

×

fine-tune method
GPT2-XL 0 No fine-tuning

GPTJ zsRE No editing 100 LoRA
Llama2 COUNTERFACT MEMIT 1000 DoRA

Llama3.1 AlphaEdit 10000 Full-size
DeepSeek

S = M × D × E × N × F

= {(m, d, e, n, f) | m ∈ M, d ∈ D, e ∈ E, n ∈ N, f ∈ F}

C RESULTS VALIDATION

In this section, “original values” refers the results given by the paper and “validating values” refers
to the results obtained in the validation experiments. Overall, our validation demonstrates that the
KE and fine-tuning results produced by our code are highly consistent with the original results, indi-
cating that the outputs generated by our implementation are relatively reliable. Minor discrepancies
may arise from factors such as model loading precision, random initialization, or hardware-related
numerical differences.

5https://github.com/kmeng01/memit
6https://github.com/zjunlp/EasyEdit
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Table 9: KE performances (%) check between original values put forward in paper and our validat-
ing results. Comparison across various KE method (MEMIT, AlphaEdit) and datasets (zsRE and
COUNTERFACT).

Metrics
MEMIT AlphaEdit

zsRE COUNTERFACT zsRE COUNTERFACT
Original values Validating values Original values Validating values Original values Validating values Original values Validating values

Efficacy 96.70(±0.30) 96.93 98.9 (±0.20) 99.10 99.79 (±0.14) 99.31 99.75 (±0.08) 98.35
Paraphrase 89.70(±0.50) 90.75 88.6 (±0.50) 88.66 96.00 (±0.22) 96.71 96.38 (±0.23) 95.90
Specificity 26.60 (±0.30) 26.33 73.70 (±0.50) 73.53 28.29 (±0.25) 28.07 75.48 (±0.21) 80.16

Validation for KE As shown in Tab. 9, the results obtained from our validation experiments
closely align with the original values reported in the paper, indicating strong reproducibility and
correctness of our re-implementation.

Validation for fine-tuning As shown in Fig. 4 and Fig. 5, validating results are close to original
results, indicating the reliability of our outputs.

Figure 4: Difference between validating values and original values across eight downstream tasks.

Figure 5: Difference between validating values and original values in ratio across eight downstream
tasks.

D KNOWLEDGE EDITING METRICS

We construct our evaluation using metrics defined in previous works(Meng et al., 2022; Yao et al.,
2023). For each edit instance i from zsRE in an edited model Med, we set si to be the subject, ri
to be the relation, and oi to be the target object. We write p(si, ri) for the base prompt constructed
from (si, ri). For COUNTERFACT, we additionally denote by oci the original (counterpart) object
describing the real-world fact, and by paraphrases(si, ri) and neighborhood(si, ri) the sets of para-
phrased and neighborhood prompts, respectively. Given a prompt p, we use PrMed(x | p) for the
model’s predicted probability of token x.
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ES Success (Efficacy / ES). Efficacy measures the proportion of successful edits. Formulas 5
and 6 determine the successful editing of an editing instance from zsRE and COUNTERFACT
datasets, respectively. For zsRE, an edit is considered successful on instance i if the edited model
assigns the highest probability to the desired answer oi under the base prompt p(si, ri) (Equ. 5). For
COUNTERFACT, each edit i specifies a counterfactual object oi to be written and a corresponding
real-world object oci . An edit i is considered successful, under the base prompt p(si, ri), if the
edited model assigns higher probability to the desired counterfactual oi than to the original object
oci (Equ. 6):

ESzsRE
i = 1

(
oi = argmax

x
PrMed

(
x | p(si, ri)

))
(5)

ESCF
i = 1

(
PrMed

(
oi | p(si, ri)

)
> PrMed

(
oci | p(si, ri)

))
(6)

Thus, the overall ES can be calculated as:

ESCF/zsRE =
1

N

N∑
i=1

ESCF/zsRE
i (7)

Paraphrase Success (Paraphrase / PS). Paraphrase evaluates model’s generalization ability af-
ter editing facts. We consider for each instance i a set of paraphrases paraphrases(si, ri) of the
base prompt. For zsRE, we evaluate average top-1 accuracy on rephrased prompts N(si, ri). For
COUNTERFACT, On a rephrased prompt p ∈ paraphrases(si, ri), we declare success if the model
again prefers the counterfactual object over the original. Formulas 8 and 9 present the mathematical
definition of Paraphrase for the zsRE and COUNTERFACT datasets, respectively:

PSzsRE =
1

N

N∑
i=1

1
(
oi = argmax

o
PrMed(o | N(si, ri))

)
(8)

PSCF
i =

1

N

N∑
i=1

1
(
PrMed

(
oi | p

)
> PrMed

(
oci | p

))
(9)

Neighborhood Success (Specificity / NS). Specificity assesses the locality of a knowledge edit
by measuring its unwanted impact on facts unrelated to the facts involved in KE. To obtain NS,
we consider for each instance i a set of neighborhood prompts neighborhood(si, ri) that should not
be affected by the edit. Formulas 10 and 11 present the mathematical definition of Specificity for
the zsRE and COUNTERFACT datasets, respectively. For zsRE, O(si, ri) represents the unrelated
facts:

NSzsRE =
1

N

N∑
i=1

1
(
oi = argmax

o
PrMed(o | O(si, ri))

)
(10)

NSCF =
1

N

N∑
i=1

1
(
PrMed

(
oi | p

)
< PrMed

(
oci | p

))
(11)

E OVERALL KE PERFORMANCE

MEMIT and AlphaEdit The full set of experimental combinations mentioned in below charts
can be found in Tab. 8. Tab. 10 presents the overall knowledge editing (KE) results for GPT-J
across different combinations of KE dataset, number of edits, KE method, and fine-tuning method.
Tab. 11 reports the corresponding results for Llama2 under the same experimental configurations
while Tab. 12 shows the results for GPT2-XL. Tab. 13 presents the KE results for Llama3.1.
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Table 10: GPT-J’s KE performance (%) under different FT settings (No fine-tuning2, LoRA, DoRA
and full fine-tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE and
COUNTERFACT4).

MEMIT AlphaEdit
Dataset #Edits Metrics No ft LoRA DoRA Full ft No ft2 LoRA DoRA Full ft3

ES 23.47 23.42 22.50 22.67 23.47 23.42 22.50 22.67
PS 23.17 21.56 21.65 23.50 23.17 21.56 21.65 23.500
NS 28.35 27.82 27.76 25.93 28.35 27.82 27.76 25.93

ES 99.07 88.79 89.87 97.95 99.33 84.74 99.33 98.50
PS 95.76 81.09 84.62 95.15 97.55 76.00 97.55 96.93102

NS 28.74 27.12 27.64 27.25 28.65 26.12 28.65 27.57

ES 99.10 84.53 85.31 98.74 99.31 84.74 81.70 98.98
PS 95.97 77.77 78.48 94.05 96.71 76.00 73.82 94.39103

NS 28.13 26.80 25.87 27.06 28.07 26.12 26.25 26.12

ES 96.93 66.52 67.83 89.38 89.81 49.97 23.64 74.62
PS 90.75 58.92 61.22 81.21 78.59 43.90 23.03 64.57

zsRE

104

NS 26.33 25.42 24.50 25.54 22.96 23.89 25.57 22.96

ES 15.00 15.00 16.00 14.00 15.00 15.00 16.00 14.00
PS 16.50 23.50 20.00 18.50 16.50 23.50 20.00 18.500
NS 84.40 82.60 83.50 84.80 84.40 82.60 83.50 84.80

ES 100.00 100.00 100.00 100.00 100.00 99.00 100.00 100.00
PS 95.00 92.50 91.00 91.90 98.50 94.00 94.00 97.00102

NS 81.10 80.90 81.80 81.62 81.10 80.00 80.50 81.40

ES 100.00 99.00 99.00 99.90 98.35 99.70 99.60 97.95
PS 93.95 87.70 86.90 90.45 95.90 90.90 90.95 97.00103

NS 81.17 79.96 80.80 80.68 80.16 79.58 79.84 81.40

ES 99.10 94.34 94.46 97.79 98.87 99.16 82.00 95.85
PS 88.66 76.27 76.24 80.38 86.70 87.62 62.00 74.09

CF4

104

NS 73.53 73.89 74.17 75.08 67.77 68.54 74.00 72.56

Table 11: Llama2’s KE performance (%) under different FT settings (No fine-tuning2, LoRA,
DoRA and full fine-tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACT4).

Dataset #Edits Metrics MEMIT AlphaEdit

No ft LoRA DoRA Full ft No ft2 LoRA DoRA Full ft3

zsRE

0
ES 45.61 46.92 42.30 22.67 45.61 46.92 42.30 22.67
PS 45.57 43.08 42.02 23.5 45.57 43.08 42.02 23.50
NS 32.15 36.85 28.25 25.93 32.15 36.85 28.25 25.93

102
ES 86.03 76.30 72.00 22.67 93.33 57.96 93.33 21.83
PS 86.01 71.69 66.02 20.14 84.93 53.49 84.93 19.84
NS 31.68 29.69 28.70 14.58 32.42 29.67 32.42 15.34

103
ES 51.38 46.52 46.00 10.22 93.23 50.45 51.53 24.36
PS 50.04 44.44 46.65 10.37 86.57 48.79 48.83 22.27
NS 28.09 27.68 25.79 12.22 34.3 32.11 30.88 15.40

104
ES 48.62 48.64 48.23 14.00 84.31 46.03 45.38 24.44
PS 50.20 49.75 48.62 13.20 79.03 44.27 43.65 21.97
NS 25.73 24.97 24.32 14.59 34.35 30.45 31.98 15.59

CF4

0
ES 11.37 11.41 11.52 45.00 11.37 11.41 11.52 45.00
PS 41.61 40.57 40.32 32.00 41.61 40.57 40.32 32.00
NS 91.36 91.32 91.21 50.00 91.36 91.32 91.21 50.00

102
ES 100.00 94.00 97.00 47.00 100.00 66.00 61.00 48.00
PS 98.00 81.50 95.50 70.50 77.50 49.00 49.50 59.50
NS 75.40 78.50 80.60 52.00 85.50 84.30 83.80 52.30

103
ES 100.00 94.00 94.50 47.60 99.10 52.40 56.90 48.60
PS 94.50 82.50 84.30 67.55 67.80 42.45 42.85 54.35
NS 70.50 77.00 76.33 53.02 83.97 81.22 82.20 52.06

104
ES 86.96 70.18 68.27 48.07 87.43 37.90 37.15 48.46
PS 73.62 64.32 61.25 32.94 55.71 34.01 33.40 47.74
NS 68.64 62.35 61.74 52.71 80.67 79.02 79.89 52.52
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Table 12: GPT2-XL’s KE performance (%) under different FT settings (No fine-tuning2, LoRA,
DoRA and full fine-tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACT4).

MEMIT AlphaEdit
Dataset #Edit Metrics No ft2 LoRA DoRA Full ft No ft LoRA DoRA Full ft3

ES 32.80 32.74 32.87 18.04 32.80 32.74 32.87 18.04
PS 35.60 35.32 35.62 17.57 35.60 35.32 35.62 17.570
NS 23.76 23.70 23.75 24.64 23.76 23.70 23.75 24.64

ES 80.00 58.37 58.39 81.16 97.18 67.80 76.72 18.04
PS 76.10 52.94 53.86 74.30 93.60 58.42 64.35 17.57102

NS 25.75 24.57 24.98 25.79 25.06 27.11 24.48 24.64

ES 77.85 43.51 45.18 81.22 93.13 54.52 55.11 24.74
PS 73.42 42.87 43.62 74.92 87.03 48.61 50.64 23.86103

NS 26.22 23.57 24.35 25.76 25.22 25.43 26.07 24.00

ES 62.61 20.34 20.65 63.39 62.34 25.80 27.47 22.09
PS 57.68 19.63 19.89 57.87 54.84 24.36 26.17 21.13

zsRE

104

NS 25.81 24.59 24.76 24.83 21.31 23.69 24.17 23.67

ES 20.00 20.13 20.14 19.00 20.00 20.13 20.14 19.00
PS 35.00 35.21 35.17 22.50 35.00 35.21 35.17 22.500
NS 69.00 68.93 68.97 79.40 69.00 68.93 68.97 79.40

ES 97.00 83.00 82.00 97.00 100.00 96.00 98.00 19.00
PS 86.50 71.00 70.50 84.50 98.00 87.50 93.00 22.00102

NS 76.40 77.30 77.50 76.20 73.90 76.60 76.60 79.40

ES 93.40 78.37 78.50 92.60 100.00 89.30 90.55 21.92
PS 81.35 64.43 63.45 79.55 95.75 74.55 77.03 24.66103

NS 75.32 76.27 76.45 75.62 72.44 75.25 73.20 78.20

ES 79.17 62.10 61.97 78.03 92.94 53.91 57.65 21.92
PS 65.44 44.47 44.43 63.74 76.33 41.94 45.77 24.66

CF4

104

NS 69.83 63.37 63.53 70.16 64.68 71.81 70.32 78.20

Table 13: Llama3.1’s KE performance (%) under different FT settings (No fine-tuning2, LoRA,
DoRA and full fine-tuning3) across various KE method (MEMIT, AlphaEdit) and datasets (zsRE
and COUNTERFACT4).

Dataset #Edits Metrics MEMIT AlphaEdit

No ft LoRA DoRA Full ft No ft2 LoRA DoRA Full ft3

zsRE

0
ES 51.10 44.92 49.01 36.55 57.62 50.77 55.12 43.88
PS 72.69 65.12 59.43 62.01 52.07 47.12 49.55 39.77
NS 37.62 31.12 29.43 23.01 69.02 62.12 64.55 54.77

102
ES 55.32 49.12 41.43 47.01 98.24 98.32 83.55 85.77
PS 73.32 66.12 58.43 61.01 93.67 87.12 79.55 81.77
NS 57.44 51.12 43.43 45.01 47.44 41.12 33.55 35.77

103
ES 57.04 50.12 42.43 45.01 96.86 89.12 81.55 83.77
PS 62.56 55.12 47.43 49.01 92.34 85.12 77.55 79.77
NS 32.57 26.12 18.43 21.01 48.94 42.12 34.55 36.77

104
ES 34.92 28.12 20.43 23.01 94.43 87.12 79.55 81.77
PS 37.61 31.12 23.43 25.01 88.48 82.12 74.55 76.77
NS 16.49 10.12 16.51 15.01 36.33 30.12 22.55 24.77

CF4

0
ES 7.62 5.92 -2.31 3.77 12.27 9.12 12.55 7.77
PS 53.61 47.12 39.43 41.01 52.03 45.12 37.55 39.77
NS 82.44 75.12 67.43 69.01 84.92 77.12 69.55 71.77

102
ES 99.64 92.12 84.43 87.01 99.38 92.12 84.55 86.77
PS 74.03 67.12 59.43 61.01 78.63 71.12 63.55 65.77
NS 67.34 60.12 52.43 54.01 78.92 71.12 63.55 65.77

103
ES 98.93 91.12 83.43 85.01 99.25 92.12 84.55 86.77
PS 66.56 59.12 51.43 53.01 75.25 68.12 60.55 62.77
NS 62.76 55.12 57.43 49.01 74.61 67.12 59.55 61.77

104
ES 69.63 62.12 54.43 56.01 98.47 91.12 83.55 85.77
PS 74.82 67.12 59.43 61.01 67.87 60.12 52.55 54.77
NS 52.50 45.12 37.43 39.01 65.32 58.12 50.55 52.77
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MEND Previous studies have shown that MEND performs poorly on the zsRE dataset, indicating
that it is unsuitable for evaluating decay resulting from fine-tuning. Therefore, we did not conduct
extensive experiments and instead performed targeted sampling tasks. As shown in Tab. 14, models
edited using MEND exhibit patterns consistent with those reported in Sec. 4.1. Specifically, as
the number of edits increases, fine-tuning is able to remove a larger proportion of the applied edits.
However, MEND performs badly on zsRE dataset. Several studies have demonstrated the the reason:
MEND modifies existing weights base on training data, generally performs poorly in such zsro-shot-
wise tasks(Fang et al., 2025; Wu et al., 2024).

Table 14: KE performance (%) using MEND under different FT settings (No fine-tuning2 and
DoRA) across datasets (zsRE and COUNTERFACT) and models (GPT2-XL, GPT-J, Llama2,
Llama3.1)

Model #Edits zsRE COUNTERFACT

No ft DoRA No ft DoRA

GPT2-XL 103 66.57 48.92 0.00 0.00
104 52.70 34.88 0.00 0.00

GPT-J 103 68.32 49.77 0.33 0.00
104 45.27 27.55 0.64 0.00

Llama2 103 71.15 53.02 0.52 0.00
104 53.24 35.88 0.31 0.00

Llama3.1 103 82.15 63.44 0.73 0.00
104 62.17 44.55 0.57 0.00

F ONLY FINE-TUNING EDITED OR NON-EDITED LAYERS

For this secion, we choose two models for our experiments: Llama2 and GPT-J. Llama2 is dis-
cussed in Sec. 4.3. Tab. 15 shows the detailed downstream performance breakdown. We notice that,
for task-specific performance aspect, fine-tuning only the edited layers may substantially degrade
critical capabilities (e.g., HellaSwag).
Table 15: Downstream performance (%) of Llama2 being edited using AlphaEdit on COUNTER-
FACT dataset, and then DoRA fine-tuned with specific layers. Group settings and naming format
are identical to Table 5.

Downstream
tasks

Llama2 100 Edits 1000 Edits
M Med Med ft all Med ft edited Med ft non-edited Med Med ft all Med ft edited Med ft non-edited

BoolQ 10.31 7.68 72.14 69.27 71.04 20.92 71.44 68.13 59.51
PIQA 0.16 0.16 83.46 77.75 82.97 0.11 82.86 74.81 72.69
SIQA 2.15 2.81 80.4 75.38 79.32 2.92 79.79 76.20 69.60

HellaSwag 0.00 0.00 89.77 29.24 88.11 0.00 89.00 32.10 80.57
WinoGrande 0.00 0.08 82.72 75.53 81.61 0.00 81.93 75.53 79.95

ARC-e, 0.67 0.72 83.54 79.88 82.87 0.80 83.33 79.50 79.80
ARC-c 0.43 0.34 68.77 62.80 67.24 0.85 68.52 62.46 64.08

openbookqa 0.40 0.20 81.20 74.80 80.80 0.60 83.00 76.60 78.00

Average 1.77 2.15 81.70 65.43 80.61 4.79 81.00 65.35 72.46

For GPT-J, we choose cases as: (1) GPT-J being edited 100 facts from COUNTERFACT by MEMIT
and then fine-tuned by DoRA; (2) GPT-J being edited 100 facts from zsRE by MEMIT and then fine-
tuned by DoRA. The result for KE performance is shown in Tab. 16 and the result for downstream
performance is shown in Tab. 17.

Table 16: KE performance GPT-J-based model. Naming format are identical to Table 5. Example
11: GPT-J bing edited 100 zsRE facts using MEMIT and fine-tuned by DoRA; Example 22: GPT-
J bing edited 100 COUNTERFACT facts using AlphaEdit and fine-tuned by DoRA. GPT-J3, 4 are
GPT-Js without KE and fine-tuning, being evaluated by zsRE and COUNTERFACT, respectively.
Naming format are identical to Table 5.

KE
performance

GPT-J3 Example 11 GPT-J4 Example 22

M Med Med ft all Med ft edited Med ft non−edited M Med Med ft all Med ft edited Med ft non−edited

Efficacy 23.47 99.07 89.87 95.79 86.39 15.00 100.00 100.00 100.00 100.00
Paraphrase 23.17 95.76 84.62 91.12 84.43 16.50 98.50 94.00 97.00 94.50
Specificity 28.35 28.74 27.64 29.13 25.71 84.40 81.10 80.50 81.00 80.40
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Table 17: Downstream task performance on GPT-J-based examples. Examples choosen are identical
to Table 5

Downstream
tasks

GPT-J Example 1 Example 2
M Med Med ft all Med ft edited Med ft non−edited Med Med ft all Med ft edited Med ft non−edited

BoolQ 56.57 31.04 63.88 24.95 64.40 19.27 63.67 61.99 27.92
PIQA 1.36 0.87 73.07 53.26 74.97 1.47 74.65 42.60 74.59
SIQA 0.41 0.46 73.54 63.31 74.82 0.67 74.21 41.91 69.29

HellaSwag 0.03 0.01 70.84 42.76 59.80 0.03 71.95 18.86 33.71
WinoGrande 30.23 0.32 69.69 59.27 67.01 0.39 70.80 37.81 69.22

ARC-e, 1.64 1.73 67.93 21.89 67.63 1.94 68.86 56.40 65.45
ARC-c 1.02 1.28 53.07 17.49 51.54 1.37 51.96 38.31 49.83

openbookqa 1.20 1.40 64.40 41.40 66.00 1.80 66.40 57.60 63.80
Average 12.12 2.15 81.70 65.43 80.61 4.79 81.00 65.35 72.46

G EDITING PERFORMANCE OF DEEPSEEK

G.1 LAYER DETERMINATION

As there is currently no published research using DeepSeek as base models for KE, we include three
potential settings of editing layers when running KE on DeepSeek: (1) using Causal Tracing with
Frozen Components (CTFC) to determine layers, (2) directly using LLaMA2’s editing layer setting,
and (3) directly using GPT2-XL’s editing layer setting. The CTFC method is introduced and used
by Meng et al. (2023), which enables precise identification of layers most relevant to knowledge
storage. Besides, recent KE studies frequently use GPT2-XL and LLaMA2 as base models, directly
adopting their layers setting provides reasonable baselines and allows us to carry out comparisons
among DeepSeek and them.

G.2 RESULTS

We ultimately tried all three setups, and the KE results on zsRE dataset with editing number from
0 to 10,000 are shown in Tab. 18. For CTFC, as shown in Fig. 6, layers 1 to 5 shares the largest
gap between purple bar and green bar, exhibit the largest gap between the purple and green bars,
indicating that these layers contribute most significantly to knowledge storage. Thus, editing layers
determined by CTFC are layers 1 to 5. In addition to Fig. 6, we use heatmap (Fig. 7) visualizations
of layer-wise causal effects to analyze how different components of the model contribute to factual
knowledge retrieval. These heatmaps guide the selection of editing layers by highlighting consis-
tent and concentrated MLP-specific causal effects in early layers, enabling targeted and effective
knowledge editing across architectures.

Figure 6: Casual tracing for DeepSeek.
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Table 18: DeepSeek’s KE performance (%) using MEMIT across editing datasets and different
settings of editing layers: GPT2-XL1 means using GPT2-XL’s editing layer settings (Meng et al.,
2023), Llama22 means using Llama2’s editing layer settings (Gupta et al., 2024), CTFC-determined3

means layers are determined by Casual Tracing with Frozen Components (CTFC) (Meng et al.,
2023).

Editing layer
settings #Edits zsRE COUNTERFACT

ES PS NS ES PS NS

0 24.69 25.24 21.21 16.00 18.00 83.20
102 28.39 45.50 10..97 97.00 82.00 63.00
103 18.97 23.83 3.99 93.30 73.55 61.65GPT2-XL1

104 3.53 14.92 2.02 87.09 60.70 50.70

0 24.69 25.24 21.21 16.00 18.00 83.20
102 28.69 29.57 32.06 97.00 95.00 68.50
103 31.65 30.54 33.62 79.50 64.45 53.20Llama22

104 0.55 0.59 2.84 65.98 56.66 48.98

0 24.69 25.24 21.21 16.00 18.00 83.20
102 31.19 31.82 31.89 86.00 66.50 56.50
103 20.17 18.89 28.26 72.20 60.90 51.01CTFC-determined3

104 0.40 0.52 4.14 69.03 58.06 49.76

Figure 7: Causal effect heatmaps showing concentrated effects in early layers (1-5) with (from left
to right) (a) overall patterns, (b) MLP localisation, and (c) attention mechanisms for the distilled
architecture.

We observe that for zsRE dataset with 10,000 edits, all cases perform badly. As shown in Tab. 18,
for the case of CTFC-determined, increasing the editing number from 1,000 to 10,000 leads to a
dramatic drop in ES, falling from 20.17% to just 0.4%. For cases using Llama2’s or GPT’s editing
layer setting, similar trend also happens: both models’ KE performance drops dramatically to a low
level (0.55% for LLama2’s setting, 3.53% for GPT2-XL’s setting) when the editing number rises to
10,000. As shown highlighed by orange, DeepSeeK also perform badly on other KE metrics (i.e.
PS, NS) when editing number rises to 10,000, whereas the smallest PS (0.52%) and NS (2.02%)
both appears.

G.3 ANALYSIS

This phenomenon may stem from architectural differences between GPT-series and Llama-based
models. In addition, as noted by Wang et al. (2025), discrepancies in pre-training data between
GPT-based and Llama-based models can lead to suboptimal simulation of the initial model weights
W0, ultimately degrading the effectiveness of KE. Besides, the performance after editing with 10,000
facts is already extremely low, making it highly susceptible to collapsing to near-zero accuracy after
fine-tuning. This instability prevents meaningful comparison of KE effectiveness before and after
fine-tuning on the zsRE dataset. As a result, we do not perform additional fine-tuning experiments
on DeepSeek.
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H DOWNSTREAM-TASK PERFORMANCE

H.1 ANALYSIS

Table 19: Average and Standard deviation of degradation
(%) in evaluation score(Table 6) across models and fine-
tuning methods. Avg.1, Std.2 are metrics for individual
model; Avg m3, Std m4 are across models.

Model Metrics No ft Full ft LoRA DoRA

GPT-J Avg.1 56.84 7.17 5.19 5.87
Std.2 17.82 12.72 8.68 4.66

Llama2 Avg. -206.92 37.27 10.81 5.93
Std. 220.54 8.05 15.17 8.00

GPT2-XL Avg. 1.70 -0.38 2.07 8.85
Std. 23.66 2.87 9.05 9.32

Avg m3 -49.46 14.69 6.02 6.88
Std m4 169.81 18.6 11.63 7.50

FT method wise As shown in
Tab. 19, LoRA exhibits the smallest
average performance decrease
(−6.02%) compared to DoRA
(−6.88%) and Full fine-tune
(−14.69%). In terms of stability,
DoRA demonstrates the lowest stan-
dard deviation (7.5) across models,
indicating that the impact of KE on
DoRA remains relatively consistent
regardless of the base model. No-
tably, models without fine-tuning
behave more erratically: the ”No
ft” group shows the highest average
magnitude of change (Avg m =
49.46%) and standard deviation

(Std m = 169.81), suggesting high variability. This instability may be attributed to base models’
relatively poor performances on downstream tasks.

Figure 8: Average decrements ratio (%) caused by KE
across models and datasets. M for MEMIT and AE for
AlphaEdit. E.g., zsRE-M means MEMIT using zsRE
dataset and vice versa.

Model wise We found that GPT2-XL
demonstrates the most stable perfor-
mance across different KE methods and
datasets among models evaluated. As
shown in Fig. 8, GPT2-XL has the small-
est varying range from −0.67% to 2.36%.
In contrast, other models exhibit more vari-
ability. For instance, Llama2 experiences
a significant fluctuation, with performance
ranging from 9.96% to 4.62%.

KE task wise MEMIT generally leads
to a smaller reduction in fine-tuning
performance compared to AlphaEdit.
As illustrated in Fig. 8, AlphaEdit has
the largest average decrements of 9.96%
which appears on Llama2. A similar pat-
tern is also observed for GPT-J, where Al-
phaEdit show larger decrements (6.68% vs
2.52%, and 4.57% vs 2.8%) across both

datasets.

COUNTERFACT dataset tends to cause more severe drops in fine-tuning performance, as
evidenced by the top two largest performance declines in Fig. 8 (9.96%, 7.92%) occurring in cases
involving COUNTERFACT as KE dataset.

Number of edits also introduces a high degree of variability, with different patterns observed
across models, as detailed in Tab. 6. For example, GPT-J edited with zsRE using MEMIT shows an
improvement in fine-tuning performance from 36.95% to 40.92% as the number of edits increases
from 100 to 1000, followed by a slight decline to 39.69% when the number of edits reaches 10,000.
Conversely, GPT-J, edited with zsRE and fine-tuned with the full dataset, shows a reverse trend, with
performance dropping from 35.75% to 33.46% and then rising back to 35.5% as the editing number
increases. In addition to these curve-like patterns, a common trend observed in some models is a
monotonic decrease in performance. For example, in the case of Llama2 edited by AlphaEdit and
fine-tuned by DoRA, the performance consistently drops as the number of edits increases, where
performance falls from 78.95% (102 edits) to 69.61% (103 edits), and eventually to 63.62% (104
edits).
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H.2 RESULTS BREAKDOWN

GPT2-XL GPT2-XL’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. 20 (no fine-tune and full fine-tune) and Tab. 21 (LoRA and DoRA). Performances of
cases being edited on COUNTERFACT dataset are shown in Tab. 22 (no fine-tune and full fine-tune)
and Tab. 23 (LoRA and DoRA)

Table 20: Downstream task performances (%) of GPT2-XL (Med ft) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

zsRE
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 58.36 59.36 58.99 48.01 59.79 59.92 24.07 6.67 9.02 14.89 14.50 6.71 6.70 5.95
PIQA 0.80 0.65 1.80 7.40 0.76 5.06 2.01 45.16 45.16 44.18 48.53 44.89 44.23 43.47
SIQA 20.42 20.21 18.22 12.49 13.92 16.17 17.45 29.94 29.27 30.35 30.60 30.40 30.55 30.25

HellaSwag 0.21 0.22 0.39 0.48 0.13 0.58 6.19 24.86 24.96 24.98 24.90 24.85 24.91 24.94
WinoGrande 0.00 0.00 0.00 0.00 0.00 0.00 15.71 48.46 49.09 48.15 26.84 48.54 49.49 49.09

ARC-e, 8.50 8.04 8.00 8.25 5.72 11.78 12.16 24.16 24.24 24.07 22.18 24.07 24.20 24.28
ARC-c 6.32 6.66 6.06 6.91 4.18 9.90 10.41 22.35 22.27 22.44 21.59 22.35 22.18 22.44

openbookqa 12.20 13.00 12.60 14.00 9.40 16.00 17.00 27.00 27.00 26.60 24.80 26.60 26.80 26.60

Table 21: Downstream task performances (%) of GPT2-XL (Med ft) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

zsRE
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 58.72 61.75 61.87 60.04 26.00 26.96 50.09 60.80 62.42 62.42 60.43 26.18 26.76 28.50
PIQA 44.78 49.67 49.96 44.22 46.47 51.07 44.99 51.03 50.71 50.71 44.50 46.79 51.41 45.21
SIQA 39.68 42.37 38.75 37.93 19.46 38.52 32.91 39.51 39.61 39.61 37.67 19.34 38.28 35.47

HellaSwag 24.82 25.61 25.32 25.47 25.49 25.77 25.05 22.62 25.17 25.17 25.30 25.32 25.93 21.93
WinoGrande 49.64 50.04 49.45 41.72 51.81 50.94 48.22 48.22 49.09 49.09 41.99 52.17 50.59 46.09

ARC-e, 21.00 27.27 27.65 25.21 16.35 24.87 24.49 25.84 27.78 27.78 25.38 16.46 25.04 24.96
ARC-c 21.67 25.77 24.98 26.62 17.78 24.57 25.85 25.51 24.32 24.32 26.45 17.66 24.40 23.72

openbookqa 22.00 29.40 29.20 23.00 15.00 26.80 26.20 20.00 29.60 29.60 23.40 15.00 27.00 24.60

Table 22: Downstream task performances (%) of GPT2-XL (Med ft) edited on COUNTERFACT1

dataset and then being full fine-tuned or not fine-tuned.

CF1
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 58.36 59.27 60.03 39.48 58.96 60.7 12.60 6.67 7.03 11.68 22.72 11.16 6.39 7.19
PIQA 0.80 0.65 0.60 14.09 0.71 2.50 18.82 45.16 41.24 46.46 46.90 45.48 42.71 44.89
SIQA 20.42 18.68 10.29 24.21 20.21 16.53 1.18 29.94 29.48 31.42 31.83 30.45 30.19 30.30

HellaSwag 0.21 0.33 0.38 2.47 0.14 0.97 1.74 24.86 24.83 24.92 24.85 24.75 24.85 24.93
WinoGrande 0.00 0.00 0.00 0.00 0.00 0.16 0.24 48.46 49.25 48.93 49.25 49.09 49.17 49.57

ARC-e, 8.50 7.32 6.99 20.03 6.78 17.21 2.78 24.16 23.95 23.36 20.29 23.65 24.28 24.16
ARC-c 6.32 5.63 4.69 17.06 5.72 15.10 1.62 22.35 22.44 22.10 19.20 22.18 22.27 22.27

openbookqa 12.20 11.20 11.40 24.40 10.20 20.00 1.20 27.00 26.40 25.60 25.00 26.60 26.80 26.40

Table 23: Downstream task performances (%) of GPT2-XL (Med ft) edited on COUNTERFACT1

dataset and then being LoRA or DoRA fine-tuned.

CF1
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 58.72 35.59 40.16 46.24 53.73 52.08 52.48 60.80 35.84 40.40 46.57 43.73 41.25 11.93
PIQA 44.78 41.34 46.24 42.21 48.86 49.89 47.01 51.03 41.62 45.92 48.00 25.90 51.14 47.88
SIQA 39.68 39.22 37.94 35.02 34.03 34.29 36.44 39.51 38.95 38.13 34.80 33.52 40.74 37.87

HellaSwag 24.82 25.27 24.42 25.47 25.11 24.18 25.10 22.62 25.10 24.57 25.30 23.44 21.99 25.06
WinoGrande 49.64 50.87 49.46 42.49 50.67 49.33 45.54 48.22 50.51 49.8 42.78 51.30 50.04 52.09

ARC-e, 21.00 17.26 26.09 27.22 25.25 25.93 25.67 25.84 17.38 26.26 27.44 20.16 25.72 24.45
ARC-c 21.67 18.56 25.31 24.83 23.81 25.68 24.49 25.51 18.43 25.09 25.00 20.31 25.77 25.94

openbookqa 22.00 14.40 24.80 28.40 27.60 25.20 27.60 20.00 14.40 24.80 28.40 22.20 22.80 28.40
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Llama2 Llama2’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. 24 (no fine-tune and full fine-tune) and Tab. 25 (LoRA and DoRA). Performances
of cases being edited on COUNTERFACT dataset are shown in Tab. 26 (no fine-tune and full fine-
tune) and Tab. 27 (LoRA and DoRA)

Table 24: Downstream task performances (%) of Llama2 (Med ft) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

zsRE
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 10.31 4.46 57.92 55.74 6.79 8.84 48.29 62.14 62.17 61.62 62.11 61.65 61.53 62.17
PIQA 0.16 0.11 5.06 0.20 0.16 0.11 0.22 70.84 46.46 42.17 28.07 34.28 32.64 50.22
SIQA 2.15 0.26 16.17 1.52 3.99 4.55 0.41 61.26 22.88 31.83 31.99 17.96 34.08 27.43

HellaSwag 0.00 0.58 0.58 0.00 0.00 0.00 0.00 15.77 3.50 12.67 32.96 42.06 7.35 23.16
WinoGrande 0.00 0.16 0.00 0.00 0.00 0.00 0.00 61.72 59.19 50.51 52.09 72.53 59.59 34.25

ARC-e, 0.67 0.21 11.78 0.52 0.80 0.97 0.04 65.07 41.33 22.77 28.11 29.34 48.48 3.91
ARC-c 0.43 0.43 9.90 0.24 0.43 0.43 0.09 46.59 23.04 19.11 24.66 23.38 34.04 3.16

openbookqa 0.40 0.40 16.00 0.00 0.40 1.20 0.20 53.60 27.40 27.00 24.00 29.80 46.40 3.80

Table 25: Downstream task performances (%) of Llama2 (Med ft) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

zsRE
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 71.16 68.87 66.09 66.09 72.97 71.01 71.04 72.45 70.87 66.94 57.45 71.10 71.50 71.59
PIQA 83.03 82.48 76.71 76.71 83.51 82.21 81.56 83.13 82.58 76.01 67.09 83.95 83.41 82.15
SIQA 79.02 78.61 77.58 77.58 78.66 79.58 79.73 80.25 79.35 76.56 66.83 79.84 79.84 78.97

HellaSwag 90.27 87.50 61.79 61.79 90.01 88.35 87.33 89.94 88.26 58.93 67.91 91.11 88.31 85.82
WinoGrande 83.31 82.00 78.22 78.22 83.5 83.27 81.85 84.37 83.53 77.35 70.37 82.48 83.35 81.69

ARC-e, 83.71 80.39 71.55 71.55 84.85 83.25 82.28 82.49 80.41 71.59 65.12 83.63 83.80 81.61
ARC-c 67.66 65.96 57.25 57.25 69.62 69.71 66.98 68.00 66.57 57.51 49.78 68.69 68.77 68.17

openbookqa 80.80 77.80 73.00 73.00 80.80 80.00 80.40 80.20 80.00 72.00 64.40 83.80 81.20 80.80

Table 26: Downstream task performances (%) of Llama2 (Med ft) edited on COUNTERFACT1

dataset and then being full fine-tuned or not fine-tuned.

CF1
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 10.31 55.29 55.79 52.84 7.68 20.92 51.07 62.14 61.74 62.08 62.11 62.14 55.69 62.14
PIQA 0.16 0.33 0.22 0.2 0.16 0.11 0.11 70.84 3.54 8.87 23.88 16.27 12.57 17.85
SIQA 2.15 4.81 0.00 0.00 2.81 2.92 0.05 61.26 49.90 56.04 26.36 33.16 35.41 32.91

HellaSwag 0.00 0.00 0.03 0.00 0.00 0.00 0.00 15.77 7.97 12.71 39.29 35.07 14.50 8.05
WinoGrande 0.00 0.16 0.00 0.00 0.08 0.00 0.00 61.72 51.38 54.06 57.46 45.62 15.55 47.99

ARC-e, 0.67 0.38 0.13 0.83 0.72 0.80 0.04 65.07 55.81 38.22 23.78 21.63 39.86 26.39
ARC-c 0.43 0.26 0.00 0.26 0.34 0.85 0.26 46.59 36.26 29.18 18.43 14.93 32.25 14.16

openbookqa 0.40 0.00 0.00 0.00 0.20 0.60 0.00 53.60 44.20 36.60 21.80 23.40 32.20 26.80

Table 27: Downstream task performances (%) of Llama2 (Med ft) edited on COUNTERFACT1

dataset and then being LoRA or DoRA fine-tuned.

CF1
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 71.16 62.26 66.64 56.54 70.37 61.59 68.23 72.45 71.63 62.97 58.03 72.14 71.44 70.58
PIQA 83.03 81.72 77.37 69.04 83.79 41.95 81.39 83.13 81.35 75.73 67.56 83.46 82.86 82.37
SIQA 79.02 80.09 77.69 67.98 79.32 48.52 78.71 80.25 78.52 76.44 67.44 80.40 79.79 78.97

HellaSwag 90.27 40.50 71.14 64.32 51.07 9.41 84.70 89.94 85.39 76.71 68.20 89.77 89.00 83.71
WinoGrande 83.31 83.58 78.30 72.26 83.35 59.91 81.22 84.37 84.02 77.19 70.90 82.72 81.93 80.90

ARC-e, 83.71 83.84 72.77 66.01 83.38 14.02 81.36 82.49 81.40 72.05 65.47 83.54 83.33 82.03
ARC-c 67.66 68.09 57.00 48.52 68.17 13.31 67.24 68.00 66.98 58.62 49.97 68.77 68.52 68.94

openbookqa 80.80 81.80 72.80 64.80 82.00 40.20 80.20 80.20 80.00 72.40 64.80 81.20 83.00 77.80
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Llama3.1 Llama3.1’s performances on downstream tasks after being edited on zsRE dataset are
shown in Tab. 28 (LoRA and DoRA). Performances of cases being edited on COUNTERFACT
dataset are shown in Tab. 29 (LoRA and DoRA)

Table 28: Downstream task performances (%) of Llama3.1 (Med ft) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

zsRE
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 74.35 68.72 59.95 61.17 70.13 61.81 63.12 73.85 67.33 61.86 63.00 69.16 66.50 67.85
PIQA 84.87 78.08 67.29 69.11 81.07 70.53 72.16 88.81 82.39 75.39 77.04 84.37 81.40 82.68
SIQA 78.80 72.49 63.12 64.91 74.86 65.37 67.38 80.27 74.65 68.47 70.01 76.26 73.61 74.73

HellaSwag 91.57 85.16 74.09 76.64 87.00 75.69 78.30 94.20 86.65 79.28 81.05 88.49 85.40 86.69
WinoGrande 84.17 77.44 67.37 69.70 80.36 70.73 72.74 84.67 78.33 71.78 73.42 80.14 77.34 78.54

ARC-e 84.17 77.44 66.69 68.65 79.94 69.55 71.15 90.10 83.19 76.13 77.77 85.59 82.61 83.88
ARC-c 71.20 65.30 56.78 58.77 67.64 59.20 60.78 78.50 72.62 66.41 67.84 74.58 71.98 73.09

openbookqa 80.80 74.40 64.80 66.80 76.80 67.00 69.00 84.80 78.40 72.00 73.60 80.60 77.80 79.00

Table 29: Downstream task performances (%) of Llama3 (Med ft) edited on COUNTERFACT1

dataset and then being LoRA or DoRA fine-tuned.

CF1
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 74.35 68.40 60.19 62.24 70.27 61.33 64.65 73.85 67.20 62.50 65.86 69.42 67.34 68.73
PIQA 84.87 78.08 67.12 70.27 80.63 70.96 75.79 88.81 81.71 76.80 73.54 85.36 82.80 83.65
SIQA 78.80 72.50 63.80 67.43 74.07 66.66 71.11 80.27 73.05 67.21 71.59 76.26 73.21 75.50

HellaSwag 91.57 85.16 74.89 76.64 87.99 77.43 82.71 94.20 86.66 80.59 84.06 88.55 85.89 86.78
WinoGrande 84.17 78.28 68.88 72.02 80.36 71.52 75.54 84.67 77.90 72.45 76.34 80.44 78.03 79.64

ARC-e 84.17 77.44 67.38 69.70 79.96 70.37 75.96 90.10 82.89 77.92 74.60 85.60 83.03 83.89
ARC-c 71.20 65.50 57.64 60.26 67.64 60.19 64.26 78.50 72.00 65.52 69.84 73.79 70.84 72.32

openbookqa 80.80 74.34 65.42 68.39 75.95 67.59 72.15 84.80 78.86 72.56 77.28 80.56 78.14 79.75

GPT-J GPT-J’s performances on downstream tasks after being edited on zsRE dataset are shown
in Tab. 30 (no fine-tune and full fine-tune) and Tab. 31 (LoRA and DoRA). Performances of cases
being edited on COUNTERFACT dataset are shown in Tab. 32 (no fine-tune and full fine-tune) and
Tab. 33 (LoRA and DoRA)

Table 30: Downstream task performances (%) of GPT-J (Med ft) edited on zsRE dataset and then
being full fine-tuned or not fine-tuned.

zsRE
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 56.57 31.04 36.18 35.50 31.80 27.95 8.29 33.61 51.01 40.49 30.00 47.00 22.69 21.47
PIQA 1.36 0.87 0.98 0.82 1.20 1.74 2.61 45.38 21.71 55.71 47.44 15.61 22.09 34.44
SIQA 0.41 0.46 0.97 0.75 0.31 0.56 2.35 46.47 48.16 47.34 43.96 48.62 46.42 28.66

HellaSwag 0.03 0.01 0.18 0.25 0.03 0.02 0.99 18.49 19.78 27.31 29.05 22.80 8.98 23.81
WinoGrande 30.23 0.32 0.32 0.24 0.16 0.08 0.36 51.78 48.93 47.99 52.01 35.44 49.88 19.81

ARC-e, 1.64 1.73 2.53 2.69 1.47 2.82 4.12 42.09 43.77 43.22 34.81 36.36 39.81 23.32
ARC-c 1.02 1.28 1.96 1.28 1.11 1.19 3.67 32.08 32.00 31.91 28.84 27.22 30.80 21.50

openbookqa 1.20 1.40 3.00 4.20 1.20 1.40 5.40 29.40 30.20 33.40 27.40 27.00 24.00 24.80

Table 31: Downstream task performances (%) of GPT-J (Med ft) edited on zsRE dataset and then
being LoRA or DoRA fine-tuned.

zsRE
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 63.79 64.19 63.55 63.36 63.3 62.66 61.99 63.27 63.88 64.10 62.29 63.94 62.17 63.67
PIQA 73.61 73.88 69.64 71.27 70.73 72.03 58.54 73.94 73.07 74.65 72.47 74.16 70.40 68.99
SIQA 73.39 58.09 65.92 66.12 70.93 69.04 61.72 73.39 73.54 74.41 73.69 73.95 67.35 70.47

HellaSwag 43.86 65.88 27.27 67.56 66.61 46.10 26.19 71.00 70.84 71.36 61.69 71.80 58.10 46.80
WinoGrande 68.75 66.38 64.33 66.85 65.67 67.56 58.56 70.24 69.69 69.14 68.75 69.38 63.85 66.46

ARC-e, 68.31 57.20 47.77 63.38 65.32 63.09 34.39 69.44 67.93 68.10 65.91 68.22 60.31 61.11
ARC-c 51.79 43.94 33.70 49.49 50.43 46.76 27.99 53.07 53.07 51.96 49.06 53.75 47.44 46.50

openbookqa 70.40 56.80 65.21 63.80 61.80 65.20 50.60 68.60 64.40 68.00 66.80 65.60 57.20 62.00
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Table 32: Downstream task performances (%) of GPT-J (Med ft) edited on COUNTERFACT1 dataset
and then being full fine-tuned or not fine-tuned.

CF1
No fine-tuning Full fine-tuning

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 56.57 21.93 40.34 57.16 19.27 4.37 9.20 33.61 38.69 38.32 30.70 26.57 44.37 33.15
PIQA 1.36 1.58 0.65 13.06 1.47 1.69 0.27 45.38 38.41 50.49 46.52 37.76 44.83 47.44
SIQA 0.41 0.36 0.90 0.46 0.67 2.10 4.09 46.47 45.75 40.53 39.15 48.11 43.40 35.06

HellaSwag 0.03 0.01 0.33 2.68 0.03 0.41 0.07 18.49 24.72 26.84 21.51 22.66 17.55 16.54
WinoGrande 30.23 0.16 0.32 0.00 0.39 0.08 0.00 51.78 51.38 52.01 50.83 51.14 30.54 36.86

ARC-e, 1.64 1.73 3.07 2.61 1.94 2.99 8.84 42.09 44.57 39.52 29.84 45.20 35.23 24.03
ARC-c 1.02 1.19 2.73 1.79 1.37 3.24 7.51 32.08 32.08 27.99 24.23 34.30 25.68 28.07

openbookqa 1.20 1.80 2.40 4.60 1.80 2.40 13.00 29.40 32.40 33.40 18.40 32.60 28.40 23.00

Table 33: Downstream task performances (%) of GPT-J (Med ft) edited on COUNTERFACT1 dataset
and then being LoRA or DoRA fine-tuned.

CF1
LoRA DoRA

MEMIT AlphaEdit MEMIT MEMIT

No edit 102 103 104 102 103 104 No edit 102 103 104 102 103 104

BoolQ 63.79 63.73 62.63 63.55 63.67 64.13 63.21 63.27 64.77 60.80 62.51 63.67 63.61 63.55
PIQA 73.61 74.32 73.72 73.00 73.18 70.51 68.61 73.94 74.27 72.57 71 74.65 72.14 65.72
SIQA 73.39 73.69 71.85 73.54 73.69 74 68.78 73.39 71.24 67.35 61.98 74.21 70.52 70.01

HellaSwag 43.86 19.94 71.68 66.25 71.92 40.97 33.79 71.00 50.59 32.08 64.8 71.95 51.81 49.20
WinoGrande 68.75 69.77 68.59 66.38 68.11 50.2 65.04 70.24 69.06 67.88 65.59 70.80 69.22 64.09

ARC-e, 68.31 66.79 67.05 65.95 68.35 66.41 60.06 69.44 66.46 68.31 59.26 68.86 66.41 59.72
ARC-c 51.79 52.05 51.54 49.4 51.96 50.09 45.31 53.07 50.9 50.34 47.35 51.96 48.98 43.94

openbookqa 70.40 66.00 68.00 63.20 65.80 65.60 58.20 68.60 67.00 67.20 61.20 66.40 66.80 57.80

H.3 PERFORMANCE ON ANOTHER FINE-TUNING DATASET

To enhance the comprehensiveness of our experiments, we include HotpotQA as the fine-tuning
dataset. In this section, we evaluate the model’s KE performance after fine-tuning on HotpotQA. The
hyperparameters for this experiment are consistent with those used in the Commonsense dataset. We
then compare the results with the performance of models fine-tuned on the Commonsense dataset.
As shown in Tab. 34, the HotpotQA group consistently demonstrates lower KE performance com-
pared to the Commonsense group. Regarding Efficacy, the largest performance gap is observed
with GPT-J edited with 100 zsRE edits using MEMIT, with a difference of 14.31. The difference
may result from the use of suboptimal hyperparameters for this dataset. It could also indicate that
knowledge-rich datasets causes greater degradation in KE performance. Further analysis is needed
to explore this phenomenon.

Table 34: KE performance (%) after fine-tuning using Commonsense and HotpotQA datasets. CS1

for Commonsense, HQA2 for HotpotQA.
#Edits KE Method Model Dataset FT Method ES (HQA) ES (CS1) PS (HQA2) PS (CS) NS (HQA) NS (CS)

102 MEMIT Llama2 zsRE DoRA 72.76 76.3 69.65 71.69 33.02 29.69
104 AlphaEdit Llama2 CF LoRA 68 70.18 48.4 64.32 83.67 62.35
102 MEMIT GPT-J zsRE DoRA 75.56 89.87 70.63 84.62 35.71 27.64
103 AlphaEdit GPT-J CF LoRA 100 99.7 87.7 90.9 82.6 79.58
103 MEMIT GPT2-XL zsRE DoRA 39.84 45.18 27.83 43.62 29.15 24.35
104 AlphaEdit GPT2-XL CF LoRA 41.56 53.91 32.19 41.94 78.15 71.81

I BREAKDOWN OF ACTIVATION-RELATED ANALYSIS

The statistical results of layer-wise drift and directional similarity analysis are presented in Tab. 35
and Tab. 36, respectively.
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Table 35: Layer-wise drift result breakdown
Metrics GPT-2-xl M ed GPT-2-xl M ed tt GPT-J M ed GPT-J M ed tt Llama2 M ed Llama2 M ed tt
Max 0.12 0.99 0.99 0.78 1 0.3
Min 0 0.14 0.16 0 0 0.17
Std 0.05 0.36 0.37 0.35 0.54 0.57
Avg 0.04 0.16 0.14 0.21 0.21 0.24

Table 36: Directional similarity result breakdown
Metrics GPT2-XL GPT-J Llama2

M ed - M ft M ed ft - M ft M ed ft - M ed M ed - M ft M ed ft - M ft M ed ft - M ed M ed - M ft M ed ft - M ft M ed ft - M ed
Max 0.04 0.76 0.15 0.4 0.62 0.63 0.2 0.68 0.24
Min 0 0 0 0 0 0 0 0.44 0
Std. 0 0.51 0.04 0.18 0.52 0.38 0.12 0.6 0.17
Avg. 0.02 0.29 0.05 0.15 0.12 0.2 0.08 0.09 0.07

J SIGNIFICANCE TEST

We use the t-test to evaluate the statistical significance of different FT methods on KE performance
across two dimensions: model-wise and FT method-wise. P-values are computed using paired data,
where each pair comprises KE performances of an edited-only model (Med) and its edited-and-fine-
tuned counterpart (Med ft). In the model-wise dimension, experimental configurations are grouped
by model, and for each model, p-values are calculated under various FT methods using paired sam-
ples with editing counts ranging from 100 to 10,000. For FT method-wise analysis, configurations
are grouped by fine-tuning method, and a p-value is computed for each method group.

Model wise As shown in Figure 9, GPT-2 XL exhibits low p-values under both DoRA and LoRA,
indicating that the effect of FT on KE performance is genuine and substantial rather than a prod-
uct of random variation. For Llama, the impact of full fine-tuning in reducing KE performance is
the most pronounced among all the models. In the case of GPT-J, although some configurations
yield relatively higher p-values, the majority remain consistently low, pointing to strong effects and
suggesting that FT influences GPT-J in a targeted and effective manner.

Figure 9: Significance test results across models. The format of Y label is KE method-KE dataset,
e.g. AE-zsRE means running AlphaEdit on zsRE dataset.

FT method wise The p-values for DoRA, LoRA, and Full Fine-Tuning are 3.29 × 10−5,
4.46 × 10−5, and 0.009, respectively. These consistently low p-values indicate that the observed
performance differences are statistically significant and primarily attributable to the choice of fine-
tuning method, rather than intrinsic variation within the editing process itself.
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K REPRODUCIBILITY RELATED

For KE, we follow exactly the same data process method provided by Meng et al. (2023), and below
is an example of hyper-parameters used for Llama3.1. For FT, we follow the Liu et al. (2024)’s
work.

{
"alg_name": "MEMIT",
"model_name": "meta-llama/Llama-3.1-8B",
"stats_dir": "./data/stats",
"device": 0,
"layers": [3, 4, 5, 6, 7],
"clamp_norm_factor": 4,
"layer_selection": "all",
"fact_token": "subject_last",
"v_num_grad_steps": 25,
"v_lr": 5e-1,
"v_loss_layer": 31,
"v_weight_decay": 1e-3,
"kl_factor": 0.0625,
"mom2_adjustment": true,
"mom2_update_weight": 15000,
"rewrite_module_tmp": "model.layers.{}.mlp.down_proj",
"layer_module_tmp": "model.layers.{}",
"mlp_module_tmp": "model.layers.{}.mlp",
"attn_module_tmp": "model.layers.{}.self_attn",
"ln_f_module": "model.norm",
"lm_head_module": "lm_head",
"mom2_dataset": "wikipedia",
"mom2_n_samples": 100000,
"mom2_dtype": "float32"

}

L USE OF LARGE LANGUAGE MODELS

In this work, large language models were used for grammar correction and improving the readability
of the manuscript. No part of the technical content, including the research design, experimental
implementation, data analysis, or interpretation of results, was generated or influenced by an LLM.
The role of the model was strictly limited to polishing sentence structure and ensuring clarity in
written English.
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