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Abstract

The past few years have seen remarkable progress
in the decoding of speech from brain activity,
primarily driven by large single-subject datasets.
However, due to individual variation, such as
anatomy, and differences in task design and scan-
ning hardware, leveraging data across subjects
and datasets remains challenging. In turn, the
field has not benefited from the growing number
of open neural data repositories to exploit large-
scale deep learning. To address this, we develop
neuroscience-informed self-supervised objectives,
together with an architecture, for learning from
heterogeneous brain recordings. Scaling to nearly
400 hours of MEG data and 900 subjects, our ap-
proach shows generalisation across participants,
datasets, tasks, and even to novel subjects. It
achieves improvements of 15-27% over state-of-
the-art models and matches surgical decoding
performance with non-invasive data. These ad-
vances unlock the potential for scaling speech
decoding models beyond the current frontier.

1. Introduction

In his Bitter Lesson, Richard Sutton argues that a major
conclusion of 70 years of Al research is that general methods
exploiting large-scale computation will outperform model-
based approaches as the availability of compute increases
(Sutton, 2019). The ability of deep learning to learn from
ever-larger datasets has enabled seemingly arbitrary scaling
with computation, leading to astounding advances across
a diverse set of domains (Jumper et al., 2021; Caron et al.,
2021; OpenAl, 2023; Radford et al., 2023).

In the domain of brain data, and of tasks like speech de-
coding, the bitter lesson has not yet been fully assimilated.
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Figure 1: Leveraging unlabelled data using pretext tasks
for speech decoding. We pre-train a neural network using
tasks that generate implicit labels from abundant unlabelled
MEG neuroimaging data, permitting learning from large
heterogeneous datasets. The tasks apply a randomly selected
neuroscientifically relevant transformation 7' to the data and
the network predicts the transformation. We then train a
linear probe on top of the pre-trained model, which remains
frozen, with labelled data, achieving superior generalisation
owing to the strength of the representation.

Recent work towards brain-computer interfaces (BCls) have
tried to scale up labelled datasets for individual subjects,
using either invasive (Moses et al., 2021; Willett et al., 2023)
or non-invasive brain recordings (Tang et al., 2023), map-
ping these to transcripts of attempted or imagined speech.
Yet, a number of obstacles to scale remain, especially in
magnetoencephalography (MEG) data. Current speech de-
coding models rarely train on multiple subjects, combine
datasets, or utilise data from diverse tasks. Thus the size
of training data has been limited to how much can be ac-
quired for a single subject, and data from other subjects,
or from the growing number of public data repositories,
has not been leveraged. There are many reasons for these
limitations; individual brains and data from different neu-
roimaging scanners differ, for example. But overcoming
these limitations holds the promise of training models on
collective, internet-scale data.

https://pnpl.robots.ox.ac.uk/bbl
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Decoding methods for MEG need to be highly data-efficient.
While electroencephalography (EEG) data are abundant,
MEG provides richer signals for decoding (Lopes da Silva,
2013; Hall et al., 2014) but are comparatively rare. Given the
scarcity of speech-labelled MEG and the larger proportion
of other MEG data, self-supervised learning (SSL) appears
promising as it is an avenue for domains where labels are
rare or hard to obtain (Balestriero et al., 2023). To data-
efficiently learn from unlabelled MEG, we propose pretext
training with neuroscience-informed input transformations
that benefit downstream tasks. We use this for learning from
unlabelled brain data (Figure 1) through an architecture for
processing continuous multi-sensor neuroimaging signals.
Our method provides a unified approach that enables lever-
aging data from other experiments that do not have the same
labels (by treating them as unlabelled) and that come from
different subjects and neuroimaging scanners. We evaluate
representations learned with our approach on heard speech
datasets acquired with MEG, setting the baselines for speech
detection and voicing classification on this data.

Our main contributions are:

* A domain-specific self-supervision method and a neu-
ral architecture for representation learning from MEG
that unlock scaling speech decoding over multiple sub-
jects, multiple studies, and unlabelled data;

¢ Achieving 15-27% gains over state-of-the-art self-
supervised models, matching surgical self-supervised
decoding non-invasively, and showing novel subject
generalisation for the first time in MEG; and

* Demonstrating evidence for scaling laws arising from
pre-training with unlabelled MEG recordings using
multiple times the volume of data in prior work.

2. Related Work

Prior work in speech decoding has focused almost entirely
on supervised learning with decoding models that typically
do not generalise across participants or experiments. This is
true both in recent state-of-the-art invasive studies (Moses
et al., 2021; Metzger et al., 2023; Willett et al., 2023; Chen
et al., 2024a) and non-invasive studies (Tang et al., 2023).
These prior works have scaled up the experimental data col-
lected within individual subjects, but are unable to leverage
data from other subjects and experiments. Nevertheless,
the method developed by Tang et al. (2023) is remarkable
for showing an ability to generalise across labelled task
data. They do not, however, use unlabelled data or show
cross-subject generalisation.

Specific studies into the limitations of generalising models
between subjects show that while performance decreases
on average when subjects are pooled, there are exceptions

(e.g. Anumanchipalli et al. (2019) and Makin et al. (2019)
in surgical settings and Csaky et al. (2022) non-invasively).
Défossez et al. (2023) show cross-subject generalisation for
a segment identification task from participants listening to
connected speech. However, they do not demonstrate gener-
alisation to novel subjects and retrain their model for new
datasets rather than being able to generalise across datasets
or pool them. Their method is also unable to incorporate
data without corresponding audio labels and so does not
scale with other kinds of tasks.

In general, speech decoding has centred on different kinds
of speech: listening, imagining, speaking out loud, and, for
paralysed patients, attempting to speak aloud. We focus on
listening because it is easier to decode than imagined speech
(e.g. Martin et al. (2014)). There is also evidence of func-
tional overlap between listening and imagined speech rep-
resentations in the brain (Wandelt et al., 2024), though the
question of overlap has been contested (Langland-Hassan
& Vicente, 2018). While some work on decoding text di-
rectly from heard speech tasks with MEG and EEG ex-
ist, it is unclear whether these methods perform any better
than a baseline that provides pure noise inputs to the model
(Jo et al., 2024). Non-invasive speech decoding remains a
highly challenging and unsolved domain.

Self-supervised pretext tasks have been successful in com-
puter vision (Agrawal et al., 2015; Doersch et al., 2015;
Noroozi & Favaro, 2016; Larsson et al., 2016; Zhang et al.,
2016; Gidaris et al., 2018) but rarely applied to brain de-
coding. There are, however, methods that leverage unla-
belled brain data in other ways (Banville et al., 2019; Kostas
etal., 2021; Le & Shlizerman, 2022; Zhang et al., 2023; Yi
et al., 2023; Cai et al., 2023; Ye et al., 2023; Yuan et al.,
2024; Chen et al., 2024b). Unfortunately, most of this lit-
erature is unable to scale and harmonize heterogeneous
non-invasive data. The most notable of these works include
Wang et al. (2023), who learn contextualised embeddings of
time-frequency input representations through masked spec-
trogram in-filling. Their impressive speech detection results
were achieved with invasive neural recordings, which are
comparatively rare and thus have less potential to scale than
non-invasive data. Another, BIOT (Yang et al., 2023), learns
from generic heterogeneous bio-signals with a contrastive
pre-training objective, rather than masking, and applies it to
ECG/EEG data. Notably, none of these methods optimise
their objectives for speech decoding or focus on MEG.

3. Method

We introduce a neural architecture to embed heterogeneous
brain signals. Then, we leverage this architecture for self-
supervised learning from unlabelled MEG data using a set
of pretext tasks designed to generate generalisable brain
representations for speech decoding.
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3.1. Network Architecture

Our neural network architecture has two stages (Figure 2):
pre-training with pretext tasks on unlabelled data, and train-
ing a linear probe with labelled data for downstream tasks.

We divide recordings into windows of length w seconds or
t samples. At train time, each batch of windows is standard-
ised such that each sensor has zero mean and unit variance.
The network takes as input the standardised sample win-
dows. To combine heterogeneous datasets, which have vary-
ing numbers of sensors S, we apply a dataset-conditional
linear layer to the sensor dimension, projecting the signal
into a shared space with dimension dghareq- Then, to en-
code the signal, we construct a wave-to-wave convolutional
encoder architecture, the cortex encoder, inspired by work
in neural audio codecs (Zeghidour et al., 2022; Défossez
et al., 2022). Specifically, our convolutional encoder adapts
the SEANet architecture (Tagliasacchi et al., 2020) used in
Défossez et al. (2022) which we describe here and as part
of Figure 2. As these codecs typically operate on mono
audio signals in R**?, while our signals are in Rfshared x¢,
we increase the convolutional channel dimension from 1 to
match dgpareq While also inflating the channel dimension of
subsequent convolutions. We refer to the output dimension
of embeddings from this backbone as dpackbone. Thus, the
backbone takes as input a window in RS>t and encodes
this into 7 embeddings, each of dimension dpackbone (i-€-
an R%vackbone X7 output).

In the speech recognition literature, models include speaker
conditioning to account for vocal and prosodic differences
(Gibiansky et al., 2017). Just as speakers have different
voices, neural responses between subjects have different
characteristics. Consequently, individual variation leads to
models that do not generalise well across subjects (Csaky
et al., 2022). We address this with a similar approach to
the speech literature by introducing subject conditioning
using feature-wise linear modulation (FiLM) (Perez et al.,
2018). As Zeghidour et al. (2022) find that conditioning
is as equally effective at the encoder bottleneck as in other
stages of the model, we also condition at the bottleneck.

Following Balestriero et al. (2023, Section 3.2), we use a
two-layer projector to alleviate misalignment between our
pretext and downstream tasks in the representation. After
the projector, linear classifiers make predictions for each
of the pretext tasks. When fine-tuning, we train a linear
decoder, for a downstream task, on top of the pre-trained
representation, which remains frozen. Thus, we backpropa-
gate only through the classifier. A trainable dataset-specific
linear layer can be introduced for a novel dataset.

For speech detection, our classifier makes a prediction
for each individual embedding. For voicing classification,
where there is only one label for each sample window, the

Table 1: Functional frequency bands in brain activity.

Band Hz
Delta () .1-4

Association

Rhythmic structure of heard
speech (Luo et al., 2010)
Tracking (Luo & Poeppel, 2007)
and phase-locking to the ampli-
tude envelope of heard sentences
(Peelle et al., 2012)

Attentional processes and the in-
hibition of irrelevant information
(StrauB et al., 2015)

Top-down predictive coding
(Bressler & Richter, 2015)
which affects lexical processing
(Weiss & Mueller, 2012)
Higher cognitive functions
(e.g. memory, learning, reason-
ing, and planning) (Fries, 2009;
Buzsiki & Wang, 2012)

Speech detection (Hamilton

et al., 2018) and phonemic
feature classification in the STG
(Mesgarani et al., 2014) and the
ventral sensorimotor cortex

(vSMC) (Cheung et al., 2016)

Theta (6) 4-8

Alpha(a) 812

Beta () 12-30

Gamma (y) 30-70

High 70+
Gamma
( ,Yhigh)

embeddings are flattened into a tensor in R%packbone X7 rep.
resenting the entire window. This is the input to the voicing
classifier and is referred to as full epoch decoding in neu-
roimaging literature (Csaky et al., 2023).

3.2. Pretext Tasks

To use our architecture for pre-training, we construct pretext
objectives for unsupervised learning of generalisable speech
decoding features. These objectives are inherently agnostic
to the sensor count because they operate on properties that
are independent of the specific sensor arrangement. This
key design choice enables the tasks to work seamlessly
across datasets with varying numbers of sensors—a critical
requirement for combining heterogeneous brain data.

Band prediction. In the literature, neural responses can
be segmented into functional frequency bands (Giraud &
Poeppel, 2012; Piai et al., 2014; Mai et al., 2016) (Table 1).
Sensitivity to these frequencies would bring about functional
separability in the representation space. Thus, to learn such
representations, we train the network to classify rejected
bands. As High Gamma is a relatively wide band we split
it into two sub-bands: Lower High Gamma ( fyl};lgh ) waves

wer

(70-100 Hz) and Upper High Gamma ( ’y]l}}ifi)}}?r ) waves (100-

150 Hz). Our task applies a band-stop filter for a randomly
selected band w to the sample x, passes the filtered sample
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Figure 2: Architecture overview. Inputs are projected into a shared dimension by the dataset-conditional layer, then
encoded. In pre-training, all weights are trainable except for modules in light-red, while in fine-tuning, modules with
light-blue borders are frozen and modules with light-red borders are unfrozen. Dashed borders indicate optional components.

2’ through the network backbone g and the corresponding
linear predictor fang, requiring the network to classify
which frequency band w was rejected. This yields the loss

Loand = Y Lr(frana(g(a?)),w), e))

zEB

where B is a mini-batch of samples, w S
{6,6,c, B,~,y18h ~high 1 and £ is the cross-entropy

. . lower ’.’}/]lpp)er . .
loss as this is a multi-class classification task.

Phase shift prediction. Phase coupling between networks
of neuron populations is necessary for coordinating brain
activity (Fries, 2005; Vidaurre et al., 2018) and so phase
coupling between spatially distant sensors is likely to be a
useful feature. Supporting this insight, recent work (Jiang
et al., 2024) also finds phase to be an essential component
of the signal.

To learn representations that encode phase differences be-
tween brain areas, this task applies a discrete uniform ran-
dom phase shift ¢ € {0, %, 5, 2%, Z 3% 3% 1%} (o a uni-
formly randomly selected proportion p € [0,0.5] of the
sensors. Applying this shift to random sensors is critical
since sensors are placed in different positions, capturing
different regions of the brain. Uniform random selection
ensures differences between any two regions of the brain
are represented. The objective of this task is to predict the

phase shift. This leads to a similar loss

['phase - Z »CCE(fphase (g($¢))a ¢)v (2)

zEB

where ¢ describes the signal with a phase shift ¢ applied
to a proportion of the sensors. We use a discrete number of
possible phase shifts, treating it as a multi-class task rather
than a regression task, to ease the difficulty of the problem
as MEG scanners typically have a large number of sensors.

Amplitude scale prediction. MEG and EEG signals use
an array of sensors at different spatial locations, capturing
different signal sources more intensely. Representing the rel-
ative amplitude difference between sensors could be impor-
tant for differentiating between neural responses originating
from distinct parts of the brain. Within speech, Hamilton
et al. (2018) find that localised regions of the STG respond
to sustained speech and speech onsets. Differentiating be-
tween neural responses from this region and others may be
essential for decoding speech perception.

Thus, this pretext task focuses on learning representations
that encode relative sensor amplitude differences. Similar
to the phase shift task, we select a random proportion of the
sensors p € [0, 0.5] and apply a discrete random amplitude
scaling coefficient A € [—2, 2], discretised into 16 scaling
factors, to the signal. The objective is to predict the scaling
factor, leading to the loss

Eamplitude = Z Lcr (.famplitude (Q(IA)) ) A) , (3

rEB

where 24 is the signal scaled with A.

Combined tasks. These pretext tasks capture complemen-
tary time- and frequency-domain properties of the signal.
Hence, during pre-training, we combine them, creating an
augmented version of the input for every pretext task by ap-
plying the matching transformation. We feed the augmented
inputs through the network backbone and apply the corre-
sponding classifier to predict the transformation, summing
the weighted losses such that our final pre-training loss is

£SSL = wq Eband + w2£phase + w3£amp1itude7 (4)

where w; is a constant coefficient for each self-supervised
loss.
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4. Experiments

We evaluate our self-supervised representations by mea-
suring how they scale with unlabelled data and generalise
across datasets, subjects, and tasks. We focus our evaluation
on MEG data as the signal is rich, with better spatial resolu-
tion than EEG (Lopes da Silva, 2013) and faster sampling
rates than fMRI (Hall et al., 2014). We pre-train all models
to completion and then train a linear probe on labelled data
for each task. In all tables and figures, we quote the receiver
operating characteristic area under the curve (ROC AUC)
where chance is always 0.5 regardless of the class distribu-
tion. We show the test ROC AUC at the best validation ROC
AUC (early stopping) and quote uncertainty as the standard
error of the mean over up to five seeds.

4.1. Experimental setup

Datasets. In total, we use almost five times the volume
of data in prior MEG work, totalling approximately 400
hours with nearly 900 subjects across pre-training and down-
stream training. Unless specified otherwise, we pre-train
with Cam-CAN (Shafto et al., 2014; Taylor et al., 2017)
as an unlabelled representation learning dataset. This is a
study containing 641 subjects with resting and sensorimotor
tasks, totalling approximately 160 hours of MEG recordings.
When aggregating datasets, we also pre-train with MOUS
(Schoffelen et al., 2019), which contains 204 subjects and
another 160 hours from visual and auditory tasks. Down-
stream, we use labelled heard speech MEG datasets where
participants listen to short stories or audiobooks. We mainly
focus on Armeni et al. (2022) which contains 3 subjects who
listen to 10 hours of recordings each (30 hours total). We
also analyse Gwilliams et al. (2023) which has 27 subjects,
each recorded for 2 hours (54 hours total). The latter dataset
is particularly difficult to decode from as there is very little
within-subject data and it did not enforce the use of head
casts to immobilise participants. Nevertheless, given it has
many more subjects, we use this dataset to study subject
generalisation.

Preprocessing. Each recording is in R5*7 where S is the
number of sensors and 7' is the number of time points sam-
pled by the scanner. To eliminate high-frequency artifacts,
we apply a low-pass filter at 125Hz as well as a high-pass fil-
ter at 0.1Hz to remove slow-drift artifacts. Since the datasets
were recorded in Europe, where the electric grid frequency
is 50Hz, we apply a notch filter at SOHz and its harmonics
to account for line noise. Treating the low-pass filter thresh-
old as the Nyquist frequency, we downsample the signal to
twice that at 250Hz, avoiding aliasing within our band of
interest. Finally, we detect sensor channels with significant
noise and artifacts using a variance threshold and replace
them by interpolating the spatially nearest sensors.

Downstream tasks. We evaluate our methods primarily

on speech detection. This task determines whether speech
occurs in the auditory stimulus using the neural response.
This is a fundamental task in understanding speech percep-
tion and is one of the few tasks that so far show statistically
significant results in highly noisy MEG signals. It also has
direct applications to BCIs as it can be used to segment
words or sentences for decoding and activate a speech BCI
when a patient wishes to communicate. Secondarily, we also
study voicing classification to demonstrate the versatility
of our representations for general speech decoding tasks.
Given data aligned at the onset of a phoneme, the task is
to recognise whether the phoneme is voiced or voiceless,
where voicing is a phonetic feature that categorises whether
a speech sound is associated with vocal cord vibration. This
task is also directly relevant to a speech BCI as it involves
classifying phonemes which can be used to decode words.

4.2. Learning Generalisable Representations Using
Pretext Tasks

Table 2 shows that our approach achieves two key feats:
outperforming comparable state-of-the-art self-supervised
methods by 15-27% (part C), and matching the performance
of prior self-supervised methods with surgical data (11)
while using only non-invasive data. Since non-invasive data
has a much lower signal-to-noise ratio than surgical data,
this is quite unprecedented. In the rest of this section, we
analyse this table in detail.

In part B, we show the results of pre-training models with
each pretext task independently, together, and without any
pre-training at all. Using pretext tasks (3, 4, 5) outperforms
no pre-training (2). Interestingly, the combination of all
pretext tasks (5) leads to better generalisation than any task
on its own (the improvement over (3) is statistically signifi-
cant). We conjecture that this is because our pretext tasks
capture complementary properties in time- and frequency-
space, ensuring that the representation includes more salient
features than any individual task could encode. Finally, we
apply Gaussian filtering to the predictions (7), smoothing
out anomalies in the predicted speech envelope.

Next, we turn to the baselines, starting with Table 2 part A.
Our method outperforms random selection (0) and training
a linear layer with the MEG signal directly (1). The latter
even has substantially more trainable parameters because the
input dimension is larger without an encoder. In part C, we
compare our approach to two state-of-the-art self-supervised
methods. In each experiment, we apply Gaussian filtering
as in (7). Although better than random, BrainBERT (9) does
not generalise as well as our method (11). BrainBERT em-
ploys a generic masked spectrogram in-filling pre-training
objective. While it is intended for speech decoding tasks, the
pre-training objective is not designed to specifically capture
features salient to neural speech processing. Furthermore,
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Table 2: Our approach surpasses baselines in speech
detection by up to 27 % and matches surgical decoding.
For linear, we train a supervised linear classifier on the MEG
signals. For ours and BrainBERT, we train a linear layer on
top of a backbone pre-trained on CamCAN, with the rest
of the model frozen. For BIOT, we use their pre-trained
weights. In the no pre-training baseline, the backbone uses
randomly initialised and frozen weights. In the surgical
context, we quote the result from Wang et al. (2023, Table
2). With all pretext tasks, losses are weighted equally.

Part/ID Model | ROC AUC
A 0  Random select .500
1  Linear .539+ 002
2 Ours No pre-train. 5194 002
3 +linear Amp(, — 0.2 6244 001
g 4 Phase(, = 0.5 6154 001
5 Band .588+ 001
6 All tasks .630+.000
7 + smoothing | .700.4 go2
8 BIOT! + linear 6154 002
C* 9  BrainBERT? + linear 5564 007
10 EEGPT? + linear 6024 006
11 Ours (best) + linear 7054 003
12 BrainBERT? + lin. (surgical) ‘ 11406

YYang et al. (2023) 2Wang et al. (2023) >Wang et al. (2024)

their method is less data-efficient because in-filling is a
harder generative task compared to classification and while
their methodology was developed for relatively high-fidelity
intracranial recordings, the inherently lower signal-to-noise
ratio of MEG presents an even greater challenge.

Our last baselines are BIOT (8) and EEGPT (10). We lever-
age publicly released weights pre-trained with thousands
of hours of EEG. However, both still fall short of our pre-
training method for reasons which we believe are similar to
BrainBERT—their objectives do not leverage neuroscien-
tific understanding of speech processing.

Finally, and quite remarkably, our best result matches the
AUROC quoted in Wang et al. (2023, Table 2) who use
intracranial data from heard speech (12). We achieved this
score with non-invasive data which is typically substantially
more difficult to decode due to the low signal-to-noise ratio.

4.3. Scaling Speech Decoding With Unlabelled Data

Figure 3 shows that performance scales predictably with
unlabelled data volume, following distinct patterns for differ-

“Due to the large computational cost of processing embeddings
for MEG data in BrainBERT, we restrict pre-training of experi-
ments in part C to approximately 30 hours and use only subject
001 of the downstream dataset for training and evaluation.

ent tasks and datasets. For speech detection on Armeni et al.
(2022), we observe logarithmic scaling in log-space (log-
log scaling), suggesting diminishing but continued returns
with increased data. For other tasks, ROC AUC improves
log-linearly, indicating robust scaling potential. Importantly,
even our smallest pre-training dataset beats chance perfor-
mance, while our largest (160 hours) continues to show
gains without plateauing. Notably, we have scaled far be-
yond the data regime of prior surgical and non-surgical work
and yet performance has continued to scale. Thus, our self-
supervision approach may remain useful as the volume of
open data in the field continues to rapidly increase.

Our results also reveal several new and notable phenom-
ena. We scaled up the pre-training dataset by increasing
the number of subjects. Since this led to consistent and
almost monotonic improvements in downstream accuracy,
our method is an exception to the consensus that pooling
subjects worsens generalisation. As we pre-trained our
model with a different dataset to those we fine-tuned on,
our representation shows cross-dataset generalisation. This
is surprising as the Armeni et al. (2022), Gwilliams et al.
(2023), and our pre-training dataset all use different scan-
ners entirely. Performing well across these datasets indicates
that, together, our architecture and pretext tasks successfully
generate representations that are generalisable across het-
erogeneous scanners. Finally, we note that our pre-training
dataset contained no language data whatsoever yet still im-
proved downstream accuracy on language tasks. Remark-
ably, this shows that unlabelled brain data collected from
any task (including those that are not linguistic) can be used
to improve speech decoding performance.

Since the results show improvements on both downstream
tasks, this indicates that our pretext tasks are sufficiently
generic to produce representations that work with multiple
speech decoding tasks while still generalising well on each
task individually. This is generally a challenging trade-off
to manage. However, we notice that in both tasks, the base
accuracy is higher and the improvement in ROC AUC is
steeper for Armeni et al. (2022). This is likely to be because
this dataset has more within-subject data. The weaker results
for Gwilliams et al. (2023) may be a consequence of shorter
intra-subject recordings, greater subject variation, and the
lack of head casts in data collection. These observations
support the findings of work such as Csaky et al. (2022).

4.4. Scaling Unlabelled Data Improves Generalisation to
Novel Subjects

In neuroimaging, brain data is generally highly variable
across participants, leading to difficulty transferring mod-
els to novel subjects (Csaky et al., 2022). Whilst we have
shown generalisation across subjects, here, we investigate
whether we can generalise to novel subjects—an even more
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Figure 3: Scaling unlabelled data improves generalisation. We pre-train the model on increasing amounts of unlabelled
data from Cam-CAN (Shafto et al., 2014; Taylor et al., 2017). The solid lines are linear fits and the dashed lines show the
volume of data used in prior surgical (Moses et al., 2021) and non-invasive (Défossez et al., 2023) work. Unlike Table 2 (7)
we do not apply Gaussian filtering to the predictions for simplicity. The best improvements are statistically significant.

difficult challenge. This is critical in order to widely deploy
speech BCIs for new patients. In this experiment, we use
Gwilliams et al. (2023) as our downstream dataset because
of the large number of participants, holding out three sub-
jects with which we evaluate novel subject generalisation.

Figure 4 shows that scaling up the amount of unlabelled data
used in pre-training not only improves accuracy on subjects
previously seen, but also demonstrates a positive log-linear
trend in performance for novel subjects. This indicates that
scaling our method is an encouraging direction for resolving
the challenges of subject variance faced by prior work. As
far as we are aware, this is the first result to demonstrate
novel subject generalisation in speech decoding from MEG.

4.5. Aggregating Unlabelled MEG Datasets

Given the promising scaling results with single datasets,
a natural question arises: can we achieve even better per-
formance by combining multiple MEG datasets? This is
particularly challenging since datasets often use different
scanning hardware and experimental protocols. Thus, it has
so far not been shown in MEG.

As a preliminary investigation, we combine two of the
largest public MEG datasets: MOUS (Schoffelen et al.,
2019) and Cam-CAN (Shafto et al., 2014; Taylor et al.,
2017). In this section, we investigate how pre-training with
these combined datasets affects downstream performance
using the same experimental setup as Figure 3.

The results in Table 3 show, for the first time, that combining
datasets can improve performance on downstream speech
decoding tasks. It leads to better performance compared
to pre-training on either dataset alone. It is surprising that

Table 3: Aggregating unlabelled datasets outperforms
single studies in speech detection. For the first time with
MEG, we show that unlabelled pre-training data from mul-
tiple studies with different hardware profiles can be aggre-
gated while gaining the benefits of scaling. Combining data
leads to a significant (p < 0.05) improvement.

Pre-training Data | Hours | ROC AUC

CamCAN?!2 159 .630+ 0001
MOUS? 160 6144 0004
CamCANY2 + MOUS3 319 .638 0002

!Shafto et al. (2014) *Taylor et al. (2017)
3Schoffelen et al. (2019)

pre-training on Cam-CAN was better than pre-training on
MOUS given that MOUS and the downstream dataset both
used speech tasks and were acquired on the same MEG
scanner. Cam-CAN, by contrast, did not use a speech task
and was acquired on a different MEG scanner. We hypothe-
sise that the better results for Cam-CAN are due to it being
cleaner. During our experiments, we found that data quality,
even among unlabelled data, can have a significant effect as
artefacts in recordings disrupt learning.

While the combination of the two datasets includes far more
hours of data than any prior work on deep learning with
MEG, further work needs to be done to aggregate more
datasets. Here, we were limited by compute budget and
data availability. Increasing the number of datasets (e.g., by
including EEG too) could further improve results. Just as
increasing the number of subjects (rather than only within-
subject data) improves novel subject generalisation, a larger
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Figure 4: Scaling unlabelled data improves novel subject generalisation. We train a linear probe on Gwilliams et al.
(2023). When in-distribution, we evaluate on held-out sessions; when out-of-distribution, we evaluate on held-out subjects.
The lines represent the same as in Figure 3. The best improvements are statistically significant.

number of datasets may be key to scaling results when
datasets are aggregated in pre-training.

4.6. Limitations

Although our results are significant in demonstrating a vi-
able path forward to scale up speech BCls, there remain a
number of limitations to the present work. We focused here
on two downstream tasks: speech detection and voicing clas-
sification. Ultimately, we would like to expand this work
to predict full transcripts from brain recordings (i.e. brain-
to-text). This has been achieved with surgical data (Moses
et al., 2021; Willett et al., 2023) but not yet convincingly
with non-invasive methods like MEG or EEG (Jo et al.,
2024). Speech detection has played an important role in
the development of full brain-to-text in a surgical context
(Moses et al., 2021) and we hope may play a similar role for
non-invasive methods. In future work, we would also like
to expand classification to all English phonemes as a step
towards full transcript decoding.

Additionally, while we have been able to demonstrate the
utility of a few pretext tasks, we do not claim to have ex-
hausted the full set of useful tasks. Rather, we conjecture
that more useful pretext tasks remain to be found and be-
lieve a useful avenue of research will be into other input
representations for brain recordings. For example, this pa-
per did not make use of spatial features when the geometry
of a scanner’s sensor configuration is strongly correlated
with the area of the brain from which the signal is derived.
Another limitation is our emphasis on heard speech over
other types of speech, such as attempted or imagined speech.
We hypothesise that the same methods presented here will
generalise to these other varieties of speech, though this has
yet to be shown.

Perhaps the biggest limitation of the present work is that,
while it surpasses the amount of data used in other studies,
it remains to be seen how much speech decoding tasks can
be improved by scaling up the number of datasets used
in training. In sharing this work now, we believe that the
current proof of concept will be sufficiently impactful to the
field as we continue to actively scale up the datasets that we
can leverage.

5. Conclusion

Speech decoding from the brain has been limited by the
field’s inability to scale up data to leverage deep learning.
Prior methods have been unable to aggregate data across
different datasets, labels, or subjects to scale up because
of heterogeneity in recording hardware, experiment design,
and participants. A handful of studies have shown weak
signals towards alleviating these issues. But until now, no
one has developed a general solution. We present a uni-
fied solution through data-efficient, self-supervised pretext
tasks that overcome these fundamental scaling challenges.
Our experiments demonstrate not just scaling with heteroge-
neous data, but generalisation across datasets, subjects, and
tasks. They also show significant improvements of up to
27% compared to the prior state-of-the-art and even provide
evidence of matching surgical decoding performance. Our
method unlocks the potential of the bitter lesson, providing a
general method to exploit more computation by using more
data. We implore the research community to employ the
vast quantities of data and compute available to realise this
potential. If scale is all you need in speech decoding, then
the bitter lesson may not be so bitter.
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However, we acknowledge potential societal risks as this

technology matures:

e Privacy and Data Protection: Brain signals contain
highly sensitive personal information, raising concerns
about data security and individual privacy.

» Consent and Misuse: Advanced decoding capabilities

could enable unauthorized access to neural information,
requiring robust safeguards against exploitation.

 Societal Impact: Widespread adoption could affect pri-
vacy norms around inner speech, while unequal access
could exacerbate existing inequalities.

We focus specifically on decoding heard speech rather than
inner speech, limiting potential misuse. Nevertheless, we
recognize that advances in heard speech decoding contribute
to the broader development of neural decoding technology.
We encourage the research community to actively engage
with these ethical considerations as the field progresses.
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A. Experiment Details

Pre-training data. We pre-train with non-overlapping sample windows from all subjects and sessions. We adjust the
amount of unlabelled data used from Cam-CAN by increasing the number of subjects in the sequence 1, 2, 4, 8, 17, 36, 74,
152, 312, and 641, successively randomly selecting more subjects to include. Each seed uses a different set of subjects to
reduce negative effects from outlier subjects.

Labelled training data. When training with Armeni et al. (2022), we hold out session 009 for validation and 010 for testing.
Similarly, when fine-tuning with Gwilliams et al. (2023), we hold out task 1 from subjects 23, 24, 25, 26, and 27, using
these sessions for evaluation only. As there is limited within-subject data in the latter dataset, we did not hold out a session
from all subjects as before. For our novel subject experiments, we hold out subjects 1, 2, and 3 entirely and use the data for
these subjects during evaluation. In Gwilliams et al. (2023), we note that they use four different tasks for each subject and
their order is randomized between subjects. Both sessions for each task are repeats of the task. This means that while the
recording itself is unseen, in this dataset, it is possible that held-out sessions use stimuli that may be shared.

Adapting models for more sensors. As BrainBERT is designed for single-electrode representations, for a fair comparison,
to take into account all sensors, we ensured our linear classifier is applied to a concatenated embedding over all sensors. This
is a large vector and leads to very computationally expensive training and is the reason we had to reduce the pre-training and
downstream data in part C of Table 2. We similarly concatenate sets of 19 sensors when evaluating EEGPT.

Statistical testing. Significance was determined using one-sided ¢-tests with p < 0.05 as the threshold for significance.

B. Hyperparameters

We conducted a search over hyperparameters of interest to optimise our self-supervised objectives and neural architecture.
While these ablations indicated a theoretically ideal architectural configuration, in practice, we altered our final experimental
architecture due to instabilities during training when data was scaled up. Our final architecture hyperparameters achieve a
balance between the best values from our hyperparameter search and stable training. These values are detailed in Table 4.

Table 4: Experimental hyperparameters.

Hyperparameter Value
Window length (s) 0.5

p (phase) 0.5

p (amplitude) 0.2

{w1, wa, w3} {1.0,1.0,1.0}
dshared 512
dbackbone 512
SEANet convolution channels (512,512,512,512)
SEANet downsampling ratios (5,5,1)
FiLM conditioning dimension 16

Subject embedding dimension 16
Pre-training epochs 200
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 0.000066
Train ratio 0.8
Validation ratio 0.1

Test ratio 0.1

Why p? The choice of the proportion of sensors to apply transformations to, p = 0.5 for phase shift prediction and p = 0.2
for amplitude prediction, were determined through a hyperparameter search. It is important to note that p >= .5 leads to the
same effect as 1 — p for the complementary amplitude or phase shift. We conjecture that a smaller p is optimal for amplitude
scale prediction since this leads to representations that are especially strong at discriminating amplitude differences among
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small groups of sensors. Perhaps this makes it easier to distinguish between neural responses from distinct parts of the
brain such as the STG, which is associated with speech onset (Hamilton et al., 2018). In contrast, a larger p for phase shift
prediction could lead to representations that better discriminate neural synchrony information which is distributed across the
brain rather than localised. As a result, a large proportion of the sensors in a MEG scanner should encode information about

this feature.
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C. Compute Resources

All experiments were run on individual NVIDIA V100 and A100 GPUs with up to 40GiB of GPU memory on a system with
up to 1TiB of RAM. Each pre-training run with the maximum amount of pre-training data took approximately 200 hours
(8.3 days). Fine-tuning following pre-training took up to another 12 hours. We estimate that we used approximately 3000
hours of compute for the final experimental runs, including hyperparameter searches. In total, over the course of developing
this work from idea to final paper, we used around 10,000 hours of GPU compute.

D. Licences For Datasets And Code

The Armeni et al. (2022) dataset is distributed under CC-BY-4.0 while the Gwilliams et al. (2023) dataset is distributed
under the CCO 1.0 Universal licence. The Schoffelen et al. (2019) dataset is distributed with a RU-DI-HD-1.0 licence from
the Donders institute. The licence for the Cam-CAN (Shafto et al., 2014; Taylor et al., 2017) dataset is unknown. The
SEANet code adapted from Défossez et al. (2022) is distributed under the MIT licence, and the OSL library, which we use
for preprocessing, is under the BSD-3-Clause licence.
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