Under Review - Proceedings Track 1-16, 2025 Symmetry and Geometry in Neural Representations

Learning rate collapse prevents training recurrent neural
networks at scale
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Abstract

Recurrent neural networks (RNNs) are central to modeling neural computation in systems
neuroscience, yet the principles that enable their stable and efficient training at large scales
remain poorly understood. Seminal work in machine learning predicts that the effective
learning rate should shrink with the size of feedforward networks, and practical heuristics
such as learning rate schedulers or width-dependent rescaling have been proposed to stabi-
lize training. Here we demonstrate that an analogous phenomenon, which we term learning
rate collapse, poses a concrete barrier for large RNNs in neuroscience-inspired short-term
memory tasks. We show that the maximum trainable learning rate decreases as a power
law with neuron number, forcing large networks to converge only at critically slow learn-
ing rates. While parameter rescaling with the inverse of network size mitigates instability,
larger networks still learn substantially slower, indicating that collapse is a structural limi-
tation rather than a trivial parametrization artifact. These optimization limits are further
compounded by severe memory demands, which together make training large RNNs both
unstable and computationally costly. As a proof of principle, we design a learning process
that enforces a low-dimensional geometry in RNN representations, which reduces memory
costs and mitigates learning rate collapse. These results situate learning rate collapse within
a broader lineage of scaling analyses and establish it as a fundamental obstacle for training
large RNNs, with potential solutions likely to come from future work that incorporates
careful consideration of symmetry and geometry in neural representations.
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1. Introduction

In both biological and artificial networks, neurons are often studied under pre-defined in-
put—output relationships. Yet, despite such constraints, their collective dynamics can ac-
quire a wide repertoire of complex dynamics and computational capabilities that are not
explicitly induced in individual neurons (Gardner et al., 2022; Churchland et al., 2012;
Sabatini and Kaufman, 2024; Kurtkaya et al., 2025). Over the past decades, the concept
of population coding has become central in formalizing this connection: information is rep-
resented not by single units but by the collective dynamics of neural populations (Yuste,
2015; Baeg et al., 2003; Meyers et al., 2008; Chaudhuri et al., 2019; Averbeck et al., 2006).
A canonical example is provided by grid cells, where spatial position is encoded through the
joint activity of many neurons forming a hexagonal lattice, and this code resides on a low-
dimensional toroidal manifold, offering a compelling demonstration of structured population
codes (Gardner et al., 2022; Langdon et al., 2023).

To investigate how collective representations support diverse computations and to study
neural circuitry, computational neuroscientists often train biologically interpretable recur-
rent neural networks (RNNs) as virtual twins or on neuroscience-inspired tasks (Rajan et al.,
2016; Perich and Rajan, 2020; Dinc et al., 2023; Kurtkaya et al., 2025; Cohen et al., 2020).
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For instance, Kurtkaya et al. (2025) trained leaky firing-rate RNNs on the delayed cue-
discrimination task to examine short-term memory dynamics. To improve interpretability
and uncover low-dimensional dynamics, researchers have also developed methods that draw
on concepts from dynamical systems, topology, and geometry (Sussillo and Barak, 2013;
Dinc et al., 2025; Mastrogiuseppe and Ostojic, 2018; Valente et al., 2022; Acosta et al.,
2023, 2024). A notable example is Sussillo and Barak (2013), who applied dynamical sys-
tems theory to analyze RNN phase space, identifying attractors such as fixed points by
directly optimizing hidden states. More recently, Dinc et al. (2025) introduced latent pro-
cessing units (LPUs), extracted via linear combinations of neural activities, which provide
a tractable way to characterize population-level dynamics. This ongoing line of work con-
tinues to strengthen the case for population coding as a unifying principle across biological
and artificial networks (Hu et al., 2024; Cavanagh et al., 2018; Spaak et al., 2017; Meyers
et al., 2008; Stroud et al., 2024; Brennan and Proekt, 2023; Pandarinath et al., 2018). On
the other hand, experimental and computational studies operate at very different scales.
Advances in optical recording have enabled neuroscientists to measure the activity of tens of
thousands of neurons simultaneously (Ebrahimi et al., 2022; Bruzzone et al., 2021; Ahrens
et al., 2013; Stringer et al., 2019). By contrast, most computational studies of RNNs remain
limited to networks with only a few hundred neurons (Masse et al., 2019; Yang et al., 2019;
Kurtkaya et al., 2025). This discrepancy raises a fundamental question: What prevents
artificial models from scaling to the same dimensions as their biological counterparts?

One well-known limitation is the sheer computational cost and memory demand. For
an RNN with N neurons, the number of synaptic weights grows as N2, making it infeasible
to simulate networks approaching the tens of thousands of units observed in biology. Yet
computational burden alone does not fully explain the scaling barrier. A more fundamental
issue arises from the optimization dynamics: analyses of gradient propagation show that
the variance of weight updates grows with network size, requiring the learning rate to scale
inversely with neuron number, i.e., proportional to 1/N (Saxe et al., 2013; Gilboa et al.,
2019; Yang et al., 2022). Without such adjustments of the learning rate, large networks are
known to diverge rapidly during training.

In this work, we demonstrate an analog of this phenomenon, which we term learning rate
collapse, in RNNs. To establish this result, we systematically trained RNNs on three well-
established neuroscience tasks: the Flip-Flop Task (FF), the Delayed Cue-Discrimination
Task (DCDT), and the Delayed Matching Task (DMT) (see Fig. 1 and Sec. 2.2). We then
quantified scaling laws by identifying the largest learning rates capable of training more
than half of the model instances, revealing a clear power-law dependence on network size
(see Fig. 2, 3 and Sec. 3.1, 3.2). Beyond learning-rate adjustments, we also investigated
parameter rescaling and showed that scaling the recurrent weight matrices mitigates the
learning rate collapse, but larger networks still take longer to train at the same learning
rates (see Fig. 4 and Sec. 3.3). Importantly, while both strategies prevent divergence, they
do so at the cost of significantly slowing learning, with larger networks requiring many more
epochs to converge (see Fig. 1, 4). To overcome these limitations, we introduce a proof of
principle training paradigm, in which the latent dynamical systems within low-rank RNNs
are optimized (see Fig. 5 and Sec. 3.4). Conceptually, this corresponds to training the
parameters at the level of population codes rather than the connections between individual
neurons, though the former does describe the latter. While this approach is one possible
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Figure 1: Scaling the learning rate slows down training in all settings. (A)
Schematic of the three benchmark tasks: the Flip-Flop task (FF), the Delayed
Cue Discrimination Task (DCDT), and the Delayed Matching Task (DMT) (see
Sec. 2.2). (B) In total, we trained 3,900 RNNs across tasks, learning rates,
optimizers, and seeds. For network sizes greater than 100, we show the best-
performing loss curves averaged across seeds. Larger networks consistently con-
verge more slowly, since lower learning rates are required for stability. The learn-
ing rates (LR) are reported in Table 1.

method for mitigating the learning-rate collapse while simultaneously reducing memory and
computational demands, further work incorporating geometry and symmetry in learned
representations may be able to further decrease the number of parameters that need to be
trained, thereby enabling training of large-scale RNNs.

2. Methods

2.1. Recurrent neural networks

We employed leaky firing-rate recurrent neural networks (RNNs), which are equivalent
to vanilla RNNs, to model population dynamics during short-term memory tasks. The
recurrent dynamics were defined as

ri(t) = —r(t) + p(Wr(t) + Wu(t)) | 1)

where 7(t) € RY denotes the activity of N recurrent units (firing rates) at time ¢, W € R¥*¥
is the recurrent weight matrix, W € RV*din ig the input projection from dj,-dimensional
external inputs u(t). The nonlinear activation function ¢(-) was chosen as the hyperbolic
tangent, ¢(x) = tanh(x), consistent with prior work on dynamical systems analyses of RNNs



Sussillo and Barak (2013); Mastrogiuseppe and Ostojic (2018). The time constant 7 was
fixed to unity without loss of generality. The network output was given by a linear readout
of the recurrent state:

o(t) = W (t), (2)

where WUt ¢ Rut*N maps the recurrent activity into a doyi-dimensional output space.
Training was performed by minimizing the mean squared error (MSE) between predicted
and target outputs:

1 T
L= TZH@(t)—O*(t)IIQ» 3)
t=1

where 0*(t) denotes the task-specific target output and 7 is the trial length. Optimization
was carried out with the Adam or SGD optimizer, depending on the experiment, across a
range of learning rates and random seeds. Further details can be found in the Appendix.

2.2. Task details

In this work, we focus on three commonly studied short-term memory tasks from systems
neuroscience literature Masse et al. (2019); Yang et al. (2019); Sussillo and Barak (2013).
The Delayed Cue Discrimination Task (DCDT) is a widely used paradigm for probing
short-term memory in both biological organisms and artificial neural networks. Each trial
consists of three phases: an input phase Ti,, during which a brief cue is presented; a delay
phase Tyelay, Where no external input is provided and the RNN must internally maintain
the cue; and a response phase Tiesp, in which the RNN is required to produce an output
based on the earlier cue. This structure makes DCDT a canonical framework for testing
the ability to store and retrieve information across a silent interval. Formally, DCDT can
be expressed as:
ult) = {(0, 1) or (1,0), ift €T, ‘) = {u(Tm), i € Trup, )
0,0), otherwise, (0,0), otherwise.

where u(t) denotes the input at time ¢ and 0*(¢) denotes the ground-truth output at time ¢.

The Delayed Matching Task (DMT) presents two cues Ti,, and Ti,, separated by a
delay interval Tyelay, and the RNN must determine whether they are identical or different
in response Tresp. Unlike simple DCDT, DMT requires both the maintenance of the first
cue during the delay and its integration with the second cue, making it a more demanding
test of memory mechanisms. Formally, DMT can be expressed as:

u(t) = {(07 1) or (1,0), ift € {Tin,, Tin, },

0,0), otherwise,
+1, if t € Tresp and u(Tin, ) = w(Tin,), (5)
o*(t) = ¢ —1, if t € Tresp and u(Tin, ) # u(Tin,)

(0,0), otherwise.

where u(t) denotes the input at time ¢, and 0*(¢) denotes the ground-truth output at
time ¢ (41 for match, —1 for non-match, and 0 otherwise).
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Figure 2: Decreasing the learning rate is necessary for training larger networks.
We trained RNNs with 13 different sizes (10' to 10%, evenly sampled on a log
scale), 5 learning rates (107! to 107°, log-spaced), and 10 random seeds on three
neuroscience tasks. After training, models were deemed successful if they achieved
an accuracy greater than 0.5. We then plot the fraction of successful models
across all tasks. The results reveal a clear negative scaling law: larger networks
require proportionally smaller learning rates (consistent with 1/N behavior) to
train successfully. For details see Table 2

The Flip-Flop (FF) task has no explicit delay component. At each timestep, a cue may
appear with some probability, either repeating the previous value or switching to the oppo-
site (+1 or —1). The RNN must preserve its current state when the cue is unchanged and
flip its output when the cue switches. This makes FF a test of continual state maintenance
under unpredictable inputs, rather than storage across fixed delay intervals.

3. Results

3.1. Learning rate collapse prevents training large RNNs to perform
short-term memory tasks

We first evaluated whether larger recurrent networks could be trained to perform standard
benchmarks of short-term memory: the Flip-Flop task (FF), the Delayed Cue Discrimina-
tion Task (DCDT), and the Delayed Matching Task (DMT) (Fig. 1A, Sec. 2.2). These tasks
probe different forms of short-term memory, ranging from continual state maintenance (FF)
to delayed-response and cue-matching paradigms (DCDT, DMT). Together, they provide a
diverse testbed for assessing the stability of training dynamics in recurrent networks.

We trained RNNs using Adam and SGD across varying sizes and a wide range of learning
rates, number of neurons, and seeds, resulting in 3,900 distinct networks (see Table 2).
Moreover, Table 1 reports the best-performing learning rates for each setting, while Fig. 1B
shows representative training curves averaged over seeds. The results reveal a consistent
pattern: larger networks converged more slowly, and in many cases, learning rates that were
effective for smaller models caused divergence or unstable dynamics in larger ones. Only
by decreasing the learning rate could we restore stable optimization.

Across all three tasks and both optimizers, this dependency on network size was robust:
the number of recurrent units strongly determined the range of learning rates under which
training remained stable. These findings demonstrate that learning rate collapse is a
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Figure 3: Learning rate scales as 1/N. We fit a line to the largest learning rates at each
network size that successfully trained at least half of the models. The resulting
fits reveal a negative power-law scaling of the form N? with 8 < 0. Estimated
exponents: FF-Adam, 8 = 0.66; DMT-Adam, 8 = 0.99; DCDT-Adam, B = 1.34;
FF-SGD, 5 =0.46; DMT-SGD, g =0.66; DCDT-SGD, B = 0.33.

general scaling property of RNIN training, and that convergence of large recurrent
networks requires systematically smaller learning rates and more training epochs.

3.2. Quantifying the learning rate collapse

To quantify how learning rates scale with network size, we deemed models successful if they
achieved an accuracy greater than 0.5. After classifying models, we computed the fraction
of successful runs across seeds (Figure 2). From these results, we identified the largest
learning rate that trained at least 50% of runs successfully for each network size. We then
fit a power-law function to these critical learning rates:

min 3 (logjg LR; — (a+ Blogyy N))® = LR=10°N", (6)

where (3 is the slope and a is the intercept in log space. Across all tasks and optimizers,
the fitted curves exhibit a consistent decaying trend, demonstrating a negative power-law
relationship between network size and the maximum stable learning rate (Figure 3). This
result confirms the existence of a scaling law: as IV increases, the learning rate must di-
minish approximately as 1/N to ensure stable training. However, this raises an important
question: as demonstrated in Figure 1, decreasing the learning rate slows down
the training process; can rescaling the network parameters instead of rescaling
the learning rate mitigate this slowdown?

3.3. Rescaling the parameters with network size mitigates learning rate
collapse, but larger networks still require more epochs to train.

To test whether learning rate collapse could be alleviated by re-parameter, we defined a
variant of the RNN in which both recurrent and output weights were rescaled with network
size, e.g., W — W/N. This ensured that the effective strength of recurrent interactions
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Figure 4: Rescaling the parameters mitigates the learning rate collapse, but
larger networks still take longer to train. We defined the recurrent and
output weights following a rescaling of the parameters, i.e., W — W/N, and
retrained RNNs with varying sizes on the 3-bit flip-flop tasks. All RNNs failed
to solve the task at the same learning rate, LR = 1, whereas for smaller learning
rates, smaller networks learned the task faster. Each solid line is a mean over
5 runs, RNNs learn to perform the 3-bit flip flop tasks with a high accuracy
(> 90%) at around MSE ~ 0.06. For details see Table 3

remained invariant as the number of units increased. This formulation maintains the overall
structure of the standard RNN update equation while is expected to mitigate the theoretical
N~! scaling in the learning rate.

We then trained rescaled RNNs of varying hidden dimensions on the 3-bit flip-flop task,
using multiple learning rates and random seeds. Figure 4 shows the resulting loss trajecto-
ries across epochs. At high learning rates (LR = 1), all models failed to converge regardless
of size, consistent with the instability induced by overly large parameter updates. At smaller
learning rates, rescaling prevented divergence across network sizes, but convergence dynam-
ics still differed systematically: smaller networks reached low loss values in relatively few
epochs, whereas larger networks required substantially more iterations to achieve compara-
ble accuracy. These results show that parameter rescaling stabilizes training but does not
remove the scaling disadvantage of large recurrent networks, indicating that learning rate
collapse reflects a structural limitation of optimization rather than a trivial consequence of
unnormalized weights.

3.4. Learning low-rank representations alleviated the learning difficulties in
large RNNs

While re-parameterization stabilized training, it did not remove the slowdown in large
RNNs. A more effective strategy is to reformulate the dynamics in a low-rank structure
that naturally supports scale-free learning. Specifically, we parametrized low-rank RNNs as

K
7(t) = —r(t) + tanh (;f ; mFn® Ty () 4 Winu(t)> : (7)
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Figure 5: Training low-dimensional latent representations (LPUs) mitigated the
learning difficulties in large RNNs. To train low-rank RNNs, we propagated
their dimensionally reduced form with a much smaller parameter count (O(N)
as opposed to O(N?)). In this case, regardless of the network size, the learning
progression curves looked nearly identical for all network sizes (left and middle).
More importantly, most networks took about 250ms per epoch (except for the
one with 100, 000 neurons, which likely required substantial memory), and about
O(100) epochs, training in about a minute. For details see Table 4

where m®)_ n*) ¢ RN are the embedding and encoding vectors for the k-th rank component,
and K is the rank of the recurrent connectivity. Prior work has employed this factorization
(sometimes referred to as “LINT” (Valente et al., 2022)), but because the full recurrent
weight matrix must still be constructed, it retains O(IN?) complexity and remains inefficient
for large networks.

To overcome this limitation, we directly reduced the dynamics into the latent system
(Dinc et al., 2025). Defining the latent variables as

welt) = 3n®7r(0), (®)

the dynamics can be written entirely in terms of kg (t):

K
ThRE(t) = —kp(t) + %n(k)T tanh (Z m O ky(t) + Winu(t)> . (9)
(=1

This latent formulation evolves only K variables rather than N, reducing the parameter
count from O(N?) to O(NK).

In practice, as shown in Fig. 5, this dimensional reduction enabled efficient training of
very large networks while preserving dynamic expressivity and maintaining accuracy. Strik-
ingly, the training curves across network sizes collapsed onto nearly identical trajectories
for a given learning rate, and even networks with 100,000 neurons converged within about a
minute. Thus, low-rank training not only mitigates learning rate collapse but also achieves
genuine scale-free performance in large RNNs, which is crucial for simulating or training
virtual twins based on large-scale recordings.
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4. Discussion and outlook

Our results identify learning rate collapse as a fundamental obstacle to training large re-
current neural networks. Across a range of short-term memory tasks, optimizers, and hy-
perparameters, we consistently found that the maximum trainable learning rate decreases
with network size according to a power law. This scaling law implies that stable training of
larger RNNs requires progressively smaller learning rates, which in turn slows convergence
and increases computational costs. Importantly, this phenomenon is not a trivial artifact
of parametrization but reflects a structural limitation of gradient-based optimization in
recurrent systems.

Parameter rescaling partially stabilized training by normalizing the effective recurrent
strength across network sizes. However, while this prevented divergence, it did not re-
move the slowdown: larger networks continued to require substantially more iterations to
converge. This observation highlights a key tension: simple rescaling schemes can regular-
ize updates, but they cannot eliminate the inherent inefficiency of training large RNNs at
vanishingly small learning rates.

By contrast, our low-rank latent formulation offered a more transformative solution.
Projecting the dynamics into a reduced latent space decreased the parameter count from
O(N?) to O(NK), while preserving the expressive capacity of the network. In this set-
ting, learning curves across network sizes collapsed onto one another, and even networks
with 100,000 neurons trained efficiently within minutes. These findings show that low-
dimensional structure is not merely an interpretability tool but a practical mechanism for
scaling RNN training in a size-independent manner.

Taken together, our study situates learning rate collapse within the broader landscape of
scaling laws in machine learning. Prior work has established width-dependent rescaling in
feedforward networks and mean-field analyses of dynamical isometry in gated architectures;
here we demonstrate that recurrent architectures face analogous constraints that manifest
as a collapse of the effective learning rate. At the same time, our results resonate with
recent neuroscience findings: large biological populations appear to implement computations
through low-dimensional manifolds, suggesting that dimensionality reduction is not only a
computational convenience but a biological principle.

Looking forward, several directions emerge. First, extending our analysis to gated RNNs
and transformer-based recurrent models will clarify whether collapse is universal across
sequence-processing architectures. Second, incorporating symmetry and geometry into pa-
rameterizations may yield additional scale-free formulations, complementing the low-rank
approach. Finally, connecting these optimization limits to experimental data can shed
light on how biological networks circumvent collapse, for example by exploiting structured
connectivity, local learning rules, or population-level redundancy.
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LEARNING RATE COLLAPSE IN RNNs

Table 1: Best learning rates («) for each task, optimizer, and network size N demonstrated
in Figure 1.

N FF-Adam FF-SGD ‘ DMT-Adam DMT-SGD | DCDT-Adam DCDT-SGD

100 1073 1071 10~ 1072 1073 1071
177 1073 1071 1074 1072 104 1071
316 1073 1071 1074 1072 1074 1071
562 1073 102 107° 1072 10~4 102
1000 1074 1072 107° 1072 107° 1072
1778 1074 102 10-° 1072 107° 102
3162 1074 1072 107! 1072 107° 1072
5623 1074 1072 1072 1072 107° 1072
10000 107° 1072 1073 1073 107° 1072

Appendix A. Methods

Low-rank RNNs approximation:

To reduce the dimensionality of recurrent dynamics while preserving essential computations,
we employed a low-rank approximation of the recurrent connectivity matrix. Specifically,
instead of maintaining a full recurrent weight matrix W € RV*Y  where N denotes the
number of recurrent units, we factorized it into a dot product of two low-rank matrices:

K

W~ me;f, (10)
i=1

where m € RVXK and n € REXN | with K < N. This factorization enforces a rank-K
constraint on the recurrent connectivity, ensuring that the dynamics are confined to a K-
dimensional latent subspace. To illustrate this low-rank approximation, we can define the
following;:

k(t) =nT r(t), r(t)cRE, (11)

where 7(t) € RV denotes the high-dimensional recurrent state of the network and
k € RY denotes the latent representations. Here, n is the encoding weights projecting
population activity into the low-dimensional latent subspace (constrained by low-rank ap-
proximation).
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Training with low-rank RNNs:

We trained a rank-one RNN, parametrized through low rank factorization of the recon-
nectivity matrix, and propagated in low-dimensional space (i.e., latent space) rather than
evolving it in high-dimensional full neural state vectors (i.e., RNN’s update equation). More
specifically, we employed following time evolution method to train our large networks:

() = —r(t) + %nT tanh(m(t) + Wnu(2). (12)

Here, N denotes the total number of neurons in the recurrent population, m represents the
embedding weights, and n the encoding weights. The task input at time ¢ is denoted by
u(t), with W™ specifying the input weight matrix.

The networks were trained using the mean squared error (MSE) as the loss function, and
model parameters were optimized with the Adam optimizer. Mean accuracy (Fig. 5B)
was assessed by computing the correlation coefficient between predicted and target trajec-
tories and averaged out across various trials using PyTorch’s built-in correlation-coefficient
method. In addition, we recorded the computational cost of training per epoch (Fig. 5C)
by measuring the elapsed time during execution using Python’s time module.

Training Setups:

We trained recurrent neural networks (RNNs), with dynamics governed by a leaky inte-
gration update and nonlinearity tanh. Training hyperparameters were as follows for all
experiments:

Table 2: Training setups for learning rate collapse RNN experiments.

Parameter Specification

Random seeds 10 independent runs per configuration

Learning rates {1075,107%,1073,1072,10~ 1}

Batch size 50 trials during training; 200 trials for evaluation/analysis

Epochs 5,000 epochs (all runs completed; no adaptive early stop-
ping)

Optimizers Adam and SGD (default torch parameters), with mean
squared error (MSE) loss

Network sizes 13 Hidden dimensions sampled logarithmically between 10
and 104

Computational Parallelized cluster jobs (up to 100 processes). Training ex-

resources ecuted primarily on CUDA GPUs (H100 NVL/RTX 3090);

small-scale runs on CPU. Epoch runtime measured with
Python time module.
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Table 3: Training setups for our weight rescaling RNN experiments.

Parameter Specification

Random seeds 5 independent runs per configuration

Learning rates {1072,10%,10°}

Batch size 50 trials during training; 50 trials for evaluation/analysis

Epochs 2,000 epochs (all runs completed; no adaptive early stop-
ping)

Optimizers Adam (default torch parameters), with mean squared error
(MSE) loss

Network sizes {500, 1000, 3000, 5000}

Computational Parallelized cluster jobs. Training executed primarily on

resources CUDA GPUs (H100 NVL/RTX 3090); small-scale runs on

CPU. Epoch runtime measured with Python time module.

Table 4: Training setups for our LPU RNN experiments.

Parameter Specification

Random seeds 5 independent runs per configuration

Learning rates {1072,1071}

Batch size 50 trials during training; 50 trials for evaluation/analysis

Epochs 500 epochs (all runs completed; no adaptive early stopping)

Optimizers Adam (default torch parameters), with mean squared error
(MSE) loss

Network sizes {103,3 % 103,5 % 103, 10%, 3 x 104, 10°}

Computational Parallelized cluster jobs. Training executed primarily on

resources CUDA GPUs (RTX 3090). Epoch runtime measured with

Python time module.

Rescaling Procedure
A key challenge in scaling recurrent neural networks lies in the growth of activity magnitudes
with network size. The contribution of the recurrent weights to the hidden state can be
written as a dot product

rec

N
(Wieche)i = > Wi b, (13)
7j=1

where each hidden unit ¢ accumulates input from N presynaptic units. Similarly, the output
readout is given by

N
( Olltht ZWOU;JJ h(] (14)



As N increases, these summations scale with the number of terms, leading to larger effective
magnitudes. Without correction, this growth destabilizes training and forces the learning
rate to shrink approximately as 1/N to maintain stability.

To counteract this effect, we applied a rescaling procedure in which both recurrent and
output weights were normalized by network size:
Wrec Wout

Wout —

WI‘GC — N I N

(15)

This normalization ensures that the total contribution of recurrent interactions and output
projections remains approximately constant as IV increases, rather than diverging with the
number of units. By contrast, the input projection

din .
(Wane)i = > W™ ui™, (16)

m=1

only sums over the input dimensionality d;,, which is fixed and independent of the hidden
size N. Therefore, its magnitude does not grow with N, and there is no need to normalize
Win- Similarly, biases are additive constants and do not scale with network size, so they
were also left unmodified.

Statistical treatment: To assess training outcomes, we evaluated performance across
multiple random seeds for each configuration. A run was classified as successful if it achieved
accuracy above 0.5 (chance level for binary discrimination tasks). We then computed the
success density, defined as the fraction of seeds that met this threshold. This measure
provided a robust estimate of training reliability for each setting. Critical learning rates
were identified as the largest learning rates at which at least 50% of runs succeeded, enabling
power-law fits across network sizes.

Reproducibility: Upon publication, we plan to release the full codebase along with
all trained RNN models to facilitate transparency and reproducibility.

16



	Introduction
	Methods
	Recurrent neural networks
	Task details

	Results
	Learning rate collapse prevents training large RNNs to perform short-term memory tasks
	Quantifying the learning rate collapse
	Rescaling the parameters with network size mitigates learning rate collapse, but larger networks still require more epochs to train.
	Learning low-rank representations alleviated the learning difficulties in large RNNs

	Discussion and outlook
	Methods

