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Abstract

Recurrent neural networks (RNNs) are central to modeling neural computation in systems
neuroscience, yet the principles that enable their stable and efficient training at large scales
remain poorly understood. Seminal work in machine learning predicts that the effective
learning rate should shrink with the size of feedforward networks. Here, we demonstrate
an analogous phenomenon, termed learning rate collapse, in which the maximum train-
able learning rate decreases inversely with the number of neurons1. This behavior can
be mitigated partially by scaling parameters with the inverse of network, though learn-
ing still takes longer for larger networks. These limits are further compounded by severe
memory demands, which together make training large RNNs both unstable and compu-
tationally costly. As a proof of principle for mitigating learning rate collapse, we study
the learning process of low-rank networks, which enforces a low-dimensional geometry in
RNN representations. These results situate learning rate collapse within a broader lineage
of scaling analyses in RNNs, with potential solutions likely to come from future work that
incorporates careful consideration of symmetry and geometry in neural representations.

Keywords: Recurrent neural networks, computational neuroscience

1. Introduction

Recent advances in optical recording have enabled neuroscientists to measure the activity
of tens of thousands to millions of neurons simultaneously (Ebrahimi et al., 2022; Bruzzone
et al., 2021; Ahrens et al., 2013; Stringer et al., 2019). This capability to record large-scale
neural activity has reinforced and expanded our understanding of population coding, i.e., the
principle that information is represented not by single units but by the collective dynamics
of neural populations (Yuste, 2015; Baeg et al., 2003; Meyers et al., 2008; Chaudhuri et al.,
2019; Averbeck et al., 2006). To investigate how these collective representations support
diverse computations and to study neural circuitry, computational neuroscientists regularly
train recurrent neural networks (RNNs) either as digital twins of recorded neural activity or
on neuroscience-inspired tasks, utilizing methods from dynamical systems theory, topology,
and geometry (Rajan et al., 2016; Perich and Rajan, 2020; Duncker and Sahani, 2021;
Kurtkaya et al., 2025; Mante et al., 2013; Sussillo et al., 2015; Finkelstein et al., 2021;
Sussillo and Barak, 2013).

∗ Equal contribution, order decided based on best of three soccer video games.
† Co-supervision, order decided based on seniority
1. Github code for reproducibility.
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Figure 1: Scaling the learning rate slows down training in all settings. (A)
Schematic of the three benchmark tasks: the flip-flop task (FF), the delayed
cue discrimination task (DCDT), and the delayed match-to-sample task (DMT)
(see Sec. 2.1). (B) In total, we trained 3,900 RNNs across tasks, learning rates,
optimizers, and seeds. For network sizes greater than 100, we show the best-
performing loss curves averaged across seeds. Larger networks consistently con-
verge more slowly, since lower learning rates are required for stability. The learn-
ing rates (LR) are reported in Table 1.

With rank-constraints on RNNs, one can map the neural computations performed by
large populations of neurons to low-dimensional internal latent variables (Mastrogiuseppe
and Ostojic, 2018; Beiran et al., 2021; Valente et al., 2022) and study the neural algorithms
implemented to solve specific tasks (Dubreuil et al., 2022). Building on this line of work,
Dinc et al. (2025a) has developed a theoretical framework to characterize population-level
dynamics at scale in an architecture-agnostic manner. However, even when using these
interpretable methods, a fundamental gap exists between experimental and computational
capabilities. While experimentalists can record from millions of neurons, most computa-
tional studies remain limited to networks with only a few hundred neurons (Masse et al.,
2019; Yang et al., 2019; Kurtkaya et al., 2025). This discrepancy raises a critical question:
What prevents artificial models from scaling to the same dimensions as their biological
counterparts?

One well-known limitation is the sheer computational cost and memory demand. For
an RNN with N neurons, the number of synaptic weights grows with O(N2), making it
infeasible to simulate networks approaching the millions of units observed in biology. Yet

2



Learning rate collapse in RNNs

computational burden alone does not fully explain the scaling barrier. A more fundamental
issue arises from the optimization dynamics: analyses of gradient propagation in feedforward
networks show that the variance of weight updates grows with network size, requiring the
learning rate to scale inversely with N (Saxe et al., 2013; Gilboa et al., 2019; Yang et al.,
2022). Without such adjustments of the learning rate, large networks are known to diverge
rapidly during training.

In this work, we demonstrate an analog of this phenomenon in RNNs, which we term
learning rate collapse. To establish this result, we systematically trained RNNs on three
established memory tasks: the flip-flop task (FF), the delayed cue discrimination task
(DCDT), and the delayed match-to-sample task (DMT) (see Fig. 1 and Sec. 2.1). We then
quantified scaling laws by identifying the largest learning rates capable of training more
than half of the model instances, which revealed a clear dependence on N (see Fig. 2, 3
and Sec. 3.1, 3.2). We then showed that scaling the recurrent weight matrices with N
mitigates the learning rate collapse, but larger networks still take longer to train at the
same learning rates (see Fig. 4 and Sec. 3.3). Importantly, while both strategies prevent
divergence, they do so at the cost of significantly slowing learning, with larger networks
requiring many more epochs to converge (see Fig. 1, 4). To overcome these limitations,
we study a restricted training paradigm, in which the latent dynamical systems within
low-rank RNNs are optimized (see Fig. 5 and Sec. 3.4). Conceptually, this corresponds to
training the parameters at the level of population codes rather than the connections between
individual neurons, though the former does describe the latter. While this approach is one
possible method for mitigating the learning-rate collapse while simultaneously reducing
memory and computational demands, further work incorporating geometry and symmetry
in learned representations may be able to further decrease the number of parameters that
need to be trained, thereby enabling training of large-scale RNNs.

2. Methods

2.1. Task details

In this work, we focus on three commonly studied short-term memory tasks from systems
neuroscience literature (Masse et al., 2019; Yang et al., 2019; Sussillo and Barak, 2013).

The delayed cue discrimination task (DCDT) is a widely used paradigm for probing
short-term memory in both biological and artificial neural networks (Kurtkaya et al., 2025).
Each trial consists of three phases: an input phase Tin, during which a brief cue is presented;
a delay phase Tdelay, where no external input is provided and the RNN must internally
maintain the cue; and a response phase Tresp, in which the RNN is required to produce
an output based on the earlier cue. This structure makes DCDT a canonical framework
for testing the ability to store and retrieve information across a silent interval. Formally,
DCDT can be expressed as:

u(t) =

{
(0, 1) or (1, 0), if t ∈ Tin,

(0, 0), otherwise,
o∗(t) =

{
u(Tin), if t ∈ Tresp,

(0, 0), otherwise.
(1)

where u(t) denotes the input at time t and o∗(t) denotes the ground-truth output at time t.
The delayed match-to-sample task (DMT) has two cues Tin1 and Tin2 separated by a

delay interval Tdelay. RNN must determine whether they are identical or different and
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output the decision within the response window Tresp. Unlike simple DCDT, DMT requires
both the maintenance of the first cue during the delay and its comparison to the second cue,
making it a more demanding test of memory mechanisms. Formally, DMT can be expressed
as:

u(t) =

{
(0, 1) or (1, 0), if t ∈ {Tin1 , Tin2},
(0, 0), otherwise,

o∗(t) =


+1, if t ∈ Tresp and u(Tin1) = u(Tin2),

−1, if t ∈ Tresp and u(Tin1) ̸= u(Tin2)

(0, 0), otherwise.

(2)

where u(t) denotes the input at time t, and o∗(t) denotes the ground-truth output at time
t (+1 for match, −1 for non-match, and 0 otherwise).

The flip-flop (FF) task has no explicit delay component. At each timestep, a cue may
appear with some probability, either repeating the previous value or switching to the oppo-
site (+1 or −1). The RNN must preserve its current state when the cue is unchanged and
flip its output when the cue switches. This makes FF a test of continual state maintenance
under unpredictable inputs, rather than storage across fixed delay intervals.

2.2. Recurrent neural networks

We focused on vanilla recurrent neural networks (RNNs) as models for studying population
dynamics during short-term memory tasks. The recurrent dynamics were defined as

τ ṙ(t) = −r(t) + ϕ
(
Wr(t) +W inu(t)

)
, (3)

where r(t) ∈ RN denotes the activity ofN recurrent units (firing rates) at time t,W ∈ RN×N

is the recurrent weight matrix, W in ∈ RN×din is the input projection from din-dimensional
external inputs u(t). The nonlinear activation function ϕ(·) was chosen as the hyperbolic
tangent, ϕ(x) = tanh(x), consistent with prior work on dynamical systems analyses of RNNs
(Sussillo and Barak, 2013; Mastrogiuseppe and Ostojic, 2018). The time constant τ was
fixed to unity without loss of generality. The network output was given by a linear readout
of the recurrent state:

ô(t) = W outr(t), (4)

where W out ∈ Rdout×N maps the recurrent activity into a dout-dimensional output space.
Training was performed by minimizing the mean squared error (MSE) between predicted
and target outputs:

L =
1

T

T∑
t=1

∥ô(t)− o∗(t)∥2 , (5)

where o∗(t) denotes the task-specific target output and T is the trial length. Optimization
was carried out with the Adam or SGD optimizer, depending on the experiment, across a
range of learning rates and random seeds. Further details can be found in the Appendix or
the Github codebase accompanying this paper.

4



Learning rate collapse in RNNs

10 17 31 56 10
0

17
7

31
6

56
2

10
00

17
78

31
62

56
23

10
00

0

Hidden units

1e-05

0.0001

0.001

0.01

0.1

Le
ar

ni
ng

 ra
te

FF  ADAM

10 17 31 56 10
0

17
7

31
6

56
2

10
00

17
78

31
62

56
23

10
00

0

Hidden units

1e-05

0.0001

0.001

0.01

0.1

DMT  ADAM

10 17 31 56 10
0

17
7

31
6

56
2

10
00

17
78

31
62

56
23

10
00

0

Hidden units

1e-05

0.0001

0.001

0.01

0.1

DCDT  ADAM

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

pa
ss

in
g 

(a
cc

 
 0

.5
)

Fraction of seeds passing accuracy threshold  Adam only (FF / DMT / DCDT)

Figure 2: Decreasing the learning rate is necessary for training larger networks.
We trained RNNs with 13 different sizes (101 to 104, evenly sampled on a log
scale), 5 learning rates (10−1 to 10−5, log-spaced), and 10 random seeds on three
neuroscience tasks. After training, models were deemed successful if they achieved
an accuracy greater than 0.5. We then plot the fraction of successful models
across all tasks. The results reveal a clear negative scaling law: larger networks
require proportionally smaller learning rates (consistent with the predicted 1/N
behavior) to train successfully. For details see Table 2.

3. Results

3.1. Learning rate collapse prevents training large RNNs to perform
short-term memory tasks

We first evaluated whether larger recurrent networks could be trained to perform the three
memory tasks (Fig. 1A, Sec. 2.1). We trained RNNs using Adam and SGD across varying
sizes and a wide range of learning rates, number of neurons, and seeds, resulting in 3,900
distinct networks (see Table 2). Moreover, Table 1 reports the best-performing learning
rates for each setting, while Fig. 1B shows representative training curves averaged over
seeds. The results revealed a consistent pattern: larger networks converged more slowly,
and in many cases, learning rates that were effective for smaller models caused divergence
or unstable dynamics in larger ones. Only by decreasing the learning rate were we able to
restore stable optimization. Across all three tasks and both optimizers, this dependency on
network size was robust: the number of recurrent units strongly determined the range of
learning rates under which training remained stable. In other words, convergence of large
recurrent networks requires systematically smaller learning rates and more training epochs.
We termed this phenomenon as the “learning rate collapse.”

3.2. Quantifying the learning rate collapse

To quantify how learning rates scale with network size, we deemed models successful if they
achieved an accuracy greater than 0.5. After classifying models, we computed the fraction
of successful runs across seeds (Figure 2). From these results, we identified the largest
learning rate that trained at least 50% of runs successfully for each network size. We then
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Figure 3: Learning rate scales as 1/N . We fit a line to the largest learning rates at each
network size that successfully trained at least half of the models. The resulting
fits reveal a negative power-law scaling of the form Nβ with β < 0. Estimated
exponents: FF-Adam, β = −0.66; DMT-Adam, β = −0.99; DCDT-Adam, β =
1.34; FF-SGD, β = −0.46; DMT-SGD, β = −0.66; DCDT-SGD, β = −0.33.

fitted a power-law function to these critical learning rates:

min
a,β

∑
i

(
log10 LRi −

(
a+ β log10Ni

))2 ⇒ LR = 10aNβ, (6)

where β is the slope and a is the intercept. Across all tasks and optimizers, the fitted curves
exhibited a consistent decaying trend, demonstrating a negative power-law relationship be-
tween network size and the maximum stable learning rate (Figure 3). This result confirmed
the existence of a scaling law: as N increased, the effective learning rate diminished fol-
lowing Nβ with some β < 0. In fact, earlier work on feedforward networks suggests (and
Figure 3 is consistent with this) that β ≈ −1 is expected. Then, this raises an important
question: as demonstrated in Figure 1, decreasing the learning rate slows down the training
process; can rescaling the network parameters instead of rescaling the learning rate mitigate
this slowdown?

3.3. Rescaling the parameters with network size mitigates learning rate
collapse, but larger networks still require more epochs to train.

To test whether learning rate collapse could be alleviated by re-parameterizing, we defined a
variant of the RNN in which both recurrent and output weights were rescaled with network
size, e.g., W → W/N . This was inspired by the known results in feedforward networks
(Yang et al., 2022), which practically ensured that the recurrent interactions, i.e., Wr(t),
remained scale-invariant as the number of units increased. This formulation maintains the
overall structure of the standard RNN update equation while it is expected to mitigate the
theoretical N−1 scaling in the learning rate.

We trained rescaled RNNs of varying hidden dimensions on the 3-bit flip-flop task, us-
ing multiple learning rates and random seeds. Figure 4 shows the resulting loss trajectories
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Figure 4: Rescaling the parameters mitigates the learning rate collapse, but
larger networks still take longer to train. We defined the recurrent and
output weights following a rescaling of the parameters, i.e., W → W/N , and
retrained RNNs with varying sizes on the 3-bit flip-flop tasks. All RNNs failed
to solve the task at the same learning rate, LR = 1, whereas for smaller learning
rates, smaller networks learned the task faster. Each solid line is a mean over
5 runs, RNNs learn to perform the 3-bit flip flop tasks with a high accuracy
(> 90%) at around MSE ≈ 0.06. For details see Table 3.

across epochs. At high learning rates (LR = 1), all models failed to converge regardless of
size, consistent with the instability induced by overly large parameter updates. At smaller
learning rates, rescaling prevented divergence across network sizes, but convergence dynam-
ics still differed systematically: smaller networks reached low loss values in relatively few
epochs, whereas larger networks required substantially more iterations to achieve compa-
rable accuracy (note the log-scale for the x-axis in Figure 4). In other words, parameter
rescaling stabilized training but did not remove the disadvantage stemming from the scale
when training these RNNs.

3.4. Learning low-rank representations alleviated the learning difficulties in
large RNNs

While re-parameterization stabilized training, it did not remove the slowdown in large
RNNs. We now show that a more effective strategy is to reformulate the dynamics in a
low-rank structure that naturally supports scale-free learning. Specifically, we parametrized
low-rank RNNs as

τ ṙ(t) = −r(t) + ϕ

(
1

N

K∑
k=1

m(k)n(k)T r(t) +W inu(t)

)
, (7)

wherem(k), n(k) ∈ RN are the embedding and encoding vectors for the k-th rank component,
and K is the rank of the recurrent connectivity. Prior work has employed this factorization
(referred to as “LINT” (Valente et al., 2022)). For this network, we can directly reduce the
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Figure 5: Training low-dimensional latent representations (LPUs) mitigated the
learning difficulties in large RNNs. We trained low-rank RNNs to perform
a 1-bit FF task (K = 1). Regardless of the network size, the learning progression
curves looked nearly identical for all network sizes (left and middle). More im-
portantly, most networks took about 250ms per epoch (except for the one with
100, 000 neurons, which likely required substantial memory), and about O(100)
epochs, training in about a minute. For details see Table 4.

dynamics into the latent system following:

κk(t) =
1

N
n(k)T r(t). (8)

The dynamics can be written entirely in terms of κk(t):

τ κ̇k(t) = −κk(t) +
1

N
n(k)Tϕ

(
K∑
ℓ=1

m(ℓ)κℓ(t) +W inu(t)

)
. (9)

This latent formulation evolves only K variables rather than N , reducing the parameter
count from O(N2) to O(NK) compared to a full-rank network. Moreover, this can also be
seen as a “deep” RNN with few neurons (with activities κ(t)) and a single high-dimensional
hidden layer, with the extra interpretation that it can be mapped to a shallow RNN with
many neurons (with activities r(t)) but a low-dimensional population code (κ(t)).

We trained these networks to perform a 1-bit FF task in Fig. 5, where removing the
extra trainable dimensions enabled efficient training of very large networks. Strikingly, the
training curves across network sizes collapsed onto nearly identical trajectories for a given
learning rate, and even networks with 100,000 neurons converged within about a minute.
Thus, low-rank training not only mitigated learning rate collapse but also achieved genuine
scale-free performance in large RNNs, which is crucial for simulating or training virtual
twins based on large-scale recordings.

4. Discussion

In this work, we identified learning rate collapse as an obstacle to training large RNNs.
Across a range of short-term memory tasks, optimizers, and hyperparameters, we consis-
tently found that the maximum trainable learning rate decreased with network size. This
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scaling law implies that stable training of larger RNNs requires progressively smaller learn-
ing rates, which in turn slows convergence and increases computational costs. Parameter
rescaling partially stabilized training by normalizing the effective recurrent strength across
network sizes. However, while this prevented divergence, it did not remove the slowdown:
larger networks continued to require substantially more iterations to converge.

A low-rank latent formulation offered a simpler but useful solution. Projecting the
dynamics into a reduced latent space decreased the parameter count from O(N2) to O(NK),
while preserving the expressive capacity of the network for the admittedly very simple 1-bit
FF task that could be solved with only a rank-one RNN. In this setting, learning curves
across network sizes collapsed onto one another, and even networks with 100,000 neurons
trained efficiently within minutes. These findings suggest that enforcing low-dimensional
structure may be a practical mechanism for scaling RNN training in a size-independent
manner, though a lot more needs to be understood about limitations of learning in low-
dimensional dynamical systems.

Taken together, our study situates learning rate collapse within the broader landscape
of scaling laws in machine learning. Prior work has established width-dependent rescaling
in feedforward networks; here we demonstrate that recurrent architectures face analogous
constraints that manifest as a collapse of the effective learning rate. At the same time, our
results resonate with recent neuroscience findings: large biological populations appear to
implement computations through low-dimensional manifolds. One reason for this may be
that learning becomes faster (though not necessarily easier, see (Dinc et al., 2025b)) when
constrained to low-dimensional dynamical systems.

Limitations

Our work is rather preliminary in scope and therefore not without several limitations. First,
we have not studied the effects of initialization in this work, which is very well known to
impact the training process. Instead, we focused on a common initialization scheme that
is used in practice (see the accompanying code). Second, extending our analysis to deep
and/or gated RNNs and transformer-based recurrent models will clarify whether collapse is
universal across sequence-processing architectures. Third, incorporating symmetry and ge-
ometry into parameterizations may yield additional scale-free formulations, complementing
the low-rank approach. Finally, connecting these optimization limits to experimental data
can shed light on how biological networks circumvent collapse, for example by exploiting
structured connectivity, local learning rules, or population-level redundancy.

Reproducibility and code availability

Please refer to the Appendices and the accompanying Github, which is made publicly avail-
able with this paper in https://github.com/bariscankurtkaya/LR Collapse Neurips25.
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Table 1: Best learning rates (α) for each task, optimizer, and network size N demonstrated
in Figure 1.

N FF-Adam FF-SGD DMT-Adam DMT-SGD DCDT-Adam DCDT-SGD

100 10−3 10−1 10−4 10−2 10−3 10−1

177 10−3 10−1 10−4 10−2 10−4 10−1

316 10−3 10−1 10−4 10−2 10−4 10−1

562 10−3 10−2 10−5 10−2 10−4 10−2

1000 10−4 10−2 10−5 10−2 10−5 10−2

1778 10−4 10−2 10−5 10−2 10−5 10−2

3162 10−4 10−2 10−1 10−2 10−5 10−2

5623 10−4 10−2 10−2 10−2 10−5 10−2

10000 10−5 10−2 10−3 10−3 10−5 10−2

Appendix A. Methods

Low-rank RNNs approximation:
To reduce the dimensionality of recurrent dynamics while preserving essential computations,
we employed a low-rank approximation of the recurrent connectivity matrix. Specifically,
instead of maintaining a full recurrent weight matrix W ∈ RN×N , where N denotes the
number of recurrent units, we factorized it into a dot product of two low-rank matrices:

W ≈
K∑
i=1

min
T
i , (10)

where m ∈ RN×K and n ∈ RK×N , with K ≪ N . This factorization enforces a rank-K
constraint on the recurrent connectivity, ensuring that the dynamics are confined to a K-
dimensional latent subspace. To illustrate this low-rank approximation, we can define the
following:

κ(t) = nT r(t), κ(t) ∈ RK , (11)

where r(t) ∈ RN denotes the high-dimensional recurrent state of the network and κ ∈ RK

denotes the latent representations. Here, n is the encoding weights projecting population
activity into the low-dimensional latent subspace (constrained by low-rank approximation).

Training with low-rank RNNs:
We trained a rank-one RNN, parametrized through low rank factorization of the recon-
nectivity matrix, and propagated in low-dimensional space (i.e., latent space) rather than
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evolving it in high-dimensional full neural state vectors (i.e., RNN’s update equation). More
specifically, we employed following time evolution method to train our large networks:

τ κ̇(t) = −κ(t) +
1

N
nT tanh(mκ(t) +W inu(t)). (12)

Here, N denotes the total number of neurons in the recurrent population, m represents the
embedding weights, and n the encoding weights. The task input at time t is denoted by
u(t), with W in specifying the input weight matrix.

The networks were trained using the mean squared error (MSE) as the loss function, and
model parameters were optimized with the Adam optimizer. Mean accuracy (Fig. 5B)
was assessed by computing the correlation coefficient between predicted and target trajec-
tories and averaged out across various trials using PyTorch’s built-in correlation-coefficient
method. In addition, we recorded the computational cost of training per epoch (Fig. 5C)
by measuring the elapsed time during execution using Python’s time module.

Training Setups:
We trained recurrent neural networks (RNNs), with dynamics governed by a leaky inte-
gration update and nonlinearity tanh. Training hyperparameters were as follows for all
experiments:

Table 2: Training setups for learning rate collapse RNN experiments.
Parameter Specification

Random seeds 10 independent runs per configuration
Learning rates {10−5, 10−4, 10−3, 10−2, 10−1}
Batch size 50 trials during training; 200 trials for evaluation/analysis
Epochs 5,000 epochs (all runs completed; no adaptive early stop-

ping)
Optimizers Adam and SGD (default torch parameters), with mean

squared error (MSE) loss
Network sizes 13 Hidden dimensions sampled logarithmically between 101

and 104

Network Initializations Xaiver Uniform for W,Win,Wout

Computational
resources

Parallelized cluster jobs (up to 100 processes). Training ex-
ecuted primarily on CUDA GPUs (H100 NVL/RTX 3090);
small-scale runs on CPU. Epoch runtime measured with
Python time module.
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Table 3: Training setups for our weight rescaling RNN experiments.
Parameter Specification

Random seeds 5 independent runs per configuration
Learning rates {10−2, 10−1, 100}
Batch size 50 trials during training; 50 trials for evaluation/analysis
Epochs 2,000 epochs (all runs completed; no adaptive early stop-

ping)
Optimizers Adam (default torch parameters), with mean squared error

(MSE) loss
Network sizes {500, 1000, 3000, 5000}
Network Initializations Xaiver Uniform for W,Win,Wout and 1/N scaling in the

W,Wout

Computational
resources

Parallelized cluster jobs. Training executed primarily on
CUDA GPUs (H100 NVL/RTX 3090); small-scale runs on
CPU. Epoch runtime measured with Python time module.

Table 4: Training setups for our LPU RNN experiments.
Parameter Specification

Random seeds 5 independent runs per configuration
Learning rates {10−2, 10−1}
Batch size 50 trials during training; 50 trials for evaluation/analysis
Epochs 500 epochs (all runs completed; no adaptive early stopping)
Optimizers Adam (default torch parameters), with mean squared error

(MSE) loss
Network sizes {103, 3 ∗ 103, 5 ∗ 103, 104, 3 ∗ 104, 105}
Network Initializations Xaiver Uniform for m,n - Normal Distribution for Win,Wout

Computational
resources

Parallelized cluster jobs. Training executed primarily on
CUDA GPUs (RTX 3090). Epoch runtime measured with
Python time module.

Rescaling Procedure
A key challenge in scaling recurrent neural networks lies in the growth of activity magnitudes
with network size. The contribution of the recurrent weights to the hidden state can be
written as a dot product

(Wrecht)i =
N∑
j=1

W (i,j)
rec h

(j)
t , (13)
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where each hidden unit i accumulates input from N presynaptic units. Similarly, the output
readout is given by

(Woutht)k =

N∑
j=1

W
(k,j)
out h

(j)
t . (14)

As N increases, these summations scale with the number of terms, leading to larger effective
magnitudes. Without correction, this growth destabilizes training and forces the learning
rate to shrink approximately as 1/N to maintain stability.

To counteract this effect, we applied a rescaling procedure in which both recurrent and
output weights were normalized by network size:

Wrec → Wrec

N
, Wout → Wout

N
. (15)

This normalization ensures that the total contribution of recurrent interactions and output
projections remains approximately constant as N increases, rather than diverging with the
number of units. By contrast, the input projection

(Winut)i =

din∑
m=1

W
(i,m)
in u

(m)
t , (16)

only sums over the input dimensionality din, which is fixed and independent of the hidden
size N . Therefore, its magnitude does not grow with N , and there is no need to normalize
Win. Similarly, biases are additive constants and do not scale with network size, so they
were also left unmodified.

Statistical treatment: To assess training outcomes, we evaluated performance across
multiple random seeds for each configuration. A run was classified as successful if it achieved
accuracy above 0.5 (chance level for binary discrimination tasks). We then computed the
success density, defined as the fraction of seeds that met this threshold. This measure
provided a robust estimate of training reliability for each setting. Critical learning rates
were identified as the largest learning rates at which at least 50% of runs succeeded, enabling
power-law fits across network sizes.
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