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Abstract

This work presents a novel representation learning framework, interactive world
latent (IWoL), to facilitate team coordination in multi-agent reinforcement learning
(MARL). Building effective representation for team coordination is a challenging
problem, due to the intricate dynamics emerging from multi-agent interaction
and incomplete information induced by local observations. Our key insight is to
construct a learnable representation space that jointly captures inter-agent relations
and task-specific world information by directly modeling communication protocols.
This representation, we maintain fully decentralized execution with implicit coor-
dination, all while avoiding the inherent drawbacks of explicit message passing,
e.g., slower decision-making, vulnerability to malicious attackers, and sensitivity
to bandwidth constraints. In practice, our representation can be used not only as an
implicit latent for each agent, but also as an explicit message for communication.
Across four challenging MARL benchmarks, we evaluate both variants and show
that IWoL provides a simple yet powerful key for team coordination. Moreover,
we demonstrate that our representation can be combined with existing MARL
algorithms to further enhance their performance.

Web:

1 Introduction

Representation learning has become a foundational paradigm, leading to significant advances in
computer vision [ |], natural language processing [2], and, more recently, learning-based control [3,

]. Within imitation learning and reinforcement learning (RL), structured latent variables such as
successor features [5, 6], temporal distance embedding [7, 8], skill embedding [9, 10], and symbolic
representation [ 1, 12] have improved sample efficiency and policy generalization. By contrast,
effective representation learning in MARL remains relatively underexplored. Furthermore, partial
observability and complex credit assignment blur the learning signal, hindering agents from acquiring
representations for team coordination in their shared environment [13].

This work studies how to build a representation for a multi-agent system with the following question:

What information should a latent representation for team coordination capture
to enable coordinated control from partial and noisy local observations?

We argue that an effective representation for team coordination should capture at least two-fold:

(i) inter-agent relations [14, 15, 16], who influences whom, and how complementary their roles
are, and (ii) task-specific world information, i.e., a compact surrogate of the privileged global
information [17, 18, 19, 20]. Such representation provides sufficient information for downstream

control, permutation-invariant to agent ordering, and scalable with team size, so that decentralized
policies can reason consistently about a shared environment despite non-stationarity and credit
assignment challenges [21, 22, 23].
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We address this question by learning an interactive world representation through an encoder, trained
with two decoders that align such a representation with the factors needed for coordination. More
precisely, interactive and world decoders reconstruct pairwise interaction signals between agents,
which are extracted by a graph-attention mechanism [24], and privileged state features, respectively.
Note that two decoders and a graph-attention module are used only at training time as guidance; at
execution, each agent conditions on its local observation to produce a unified representation without
any decoder or message exchange, yielding a fully decentralized (and thus implicit) use of the learned
representation. While the graph-attention approach resembles a communication module [25, 26, 27],
in IWoL it serves primarily as a representation learner; if desired, the same backbone can expose as
explicit messages at test time.

Contribution: (i) Firstly, this work proposes a novel representation learning framework for multi-
agent coordination, interactive world latent (IWoL) that encodes both inter-agent relations and
privileged world information at a task level. (ii) Secondly, IWoL extends the line of communication
MARL by introducing a communication scheduler based on graph-attention, which serves purely
as a representation learner under an implicit communication scenario. In addition, this architecture
naturally admits two variants: an implicit mode, where no messages are required at test time, and
an explicit mode, where the learned messages are fed into the policy network for message-rich
coordination. (iii) Lastly, to demonstrate the efficiency of IWoL, we compare the proposed solution
with MARL baselines across four challenging multiple robotics testbeds, including autonomous
driving [28], swarm-robot coordination [29], bimanual dexterous hand manipulation [30], and
multiple quadruped robots coordination [31].

2 Related Works

Cooperative Multi-agent Reinforcement Learning. Transcending the single-agent environment,
MARL has received attention to tackle robotics and other domains of the real world; the fact that
each agent relies on a noisy and local observation of the environment further compounds coordination
difficulties [32, 33]. To surmount these challenges and foster cooperative behavior, several approaches
have been proposed that enable agents to learn effective strategies through the joint optimization of a
shared team objective in online settings. The centralized training and decentralized execution (CTDE)
framework is widely used as a promising alternative [34]. This framework leverages global state
information during training to alleviate partial observability while each agent learns a decentralized
policy that relies solely on local observations during execution [35, 36, 37, 38, 39, 40, , 43,44,

]. This work introduces a novel MARL algorithm that models the interactive world latent using a
communication protocol, enabling robust performance in cooperative MARL tasks.

Communication for Multi-agent Coordination. Inter-agent communication is a linchpin to facilitate
effective multi-agent coordination in MARL, fostering synergistic collaboration between agents.
Most seminal works in MARL have centered on explicit communication protocols, where agents
exchange messages to gain a clear understanding of others’ context; for example, predefined full

communication [15, 14], partial communication [46, 47], learnable communication with adaptive
gating mechanisms [ 16, 48, 49, 26]. These solutions frequently impose heavy communication burdens,
making them unsuitable for real-world scenarios with limited bandwidth while also being vulnerable
to adversarial attacks [50, 51, 52]. To address these challenges, we propose a communication protocol

that learns inter-agent relations as an interactive latent. This design embeds coordination cues directly
into the latent, enabling message-free deployment and decentralized, efficient inference.

Representation for Multi-agent Reinforcement Learning. Representation is critical for RL im-
provement, empowering agents to distill complex observations into useful abstractions that drive
more informed decision-making. In MARL, individual agents use representation not only to better
encode their local observations but also to facilitate the encoding of intricate inter-agent interactions
or underlying world dynamics. Several works build representation in MARL, such as information
reconstruction [53, 54], auxiliary task-specific predictions [55], marginal utility function [56], self-
predictive learning [57, 58], contrastive learning [59, 60], and communication protocol [16, 25, 26].
While these studies have advanced MARL representation learning, they focus narrowly on specific
aspects, e.g., local observation embedding, inter-agent relationships, or world dynamics, without
integrating them. Such approaches can lead to fragmented representations that may hinder agents
from forming an understanding of their environment. This work proposes the IWoL framework that



leverages privileged information during the training communication module to capture inter-agent
relationships and world information.

3 Backgrounds and Problem Formulation

Decentralized Partially Observable MDP. We formulate the MARL problem using a decentralized
partially observable Markov decision process (Dec-POMDP) [61] M, which is formally characterized
by the tuple (Z,S,0;, A;, T,Q,ri,v), where Z = 1,2,--- | I denotes a set of agents. Here, S
represents the global state space; O; and .A; correspond to the observation and action spaces specific
to agent 7, respectively. The state transition dynamics are captured by 7 : S x Ay X --- x A; — S,
while €2, : S — O, specifies the observation function for agent 7. Each agent 7 receives rewards
according to its reward function r; : S X A; X --- x A; +— R, and aims to maximize its discounted
cumulative reward given by R! = Zf:_tl yF=trk with the temporal discount factor v € [0, 1).
Consistent with previous literature in communication-based reinforcement learning, we assume a
deterministic MDP throughout this work, unless explicitly stated otherwise.

Problem Setup. We posit each agent i has access only to its own local observation o} and must act
without direct knowledge of the global state. Under such partial observability and interdependence,
successful team performance hinges on effective coordination via synchronous communication.
Concretely, we introduce a learnable protocol P : M x -+ x M9 +—— Mj x --- x M that

+ .
transforms each agent’s raw message mi’0 € MY into a processed message m! € M;. At every
. . t.0 K . . .
timestep ¢, all agents emit m;"", receive their corresponding m! from P, and then select actions.

Within the CTDE framework, our objective is to jointly learn the policies {m; };cz and the commu-
nication protocol P so as to maximize the team’s cumulative discounted return. To achieve it, we
consider both implicit and explicit communication protocols.

On-policy Optimization. Our proposed solution is based on the on-policy optimization method, the
multi-agent proximal policy optimization (MAPPO) algorithm [62, 35]. Based on this, we train all
modules of a framework in an end-to-end manner under online settings. The loss for policy and value
function is defined as follows:

‘Cﬂ'((bl) = - min(pﬁAf, Clip(pﬁ, 1- €, 1+ E)Af) - H(W@(aﬂog))’ (1)
g, (ai|o})
Tr(b‘;ld (af ‘Of)
an advantage estimate, and € is a clipping parameter typically set to a small value. The additional
entropy term H (7"@ (al | of)) encourages exploration by penalizing overly confident policies.

where ¢; is parameter of agent i-th actor network, p! = is the probability ratio, A! is

Next, the centralized critic parameters 6 are updated via a clipped value loss to stabilize learning with
the shared observation of = [0}, - - - , 0] or state s, as follows:

Ly(0) = max(ﬁg (Rt = Vy(o)), 65 (Rt — Vg“p(of))), )
where V" (ot) =Vjoa(0") + clamp(Vp, (0") — Vyora (0"), —€, €)

and £5(-) is the Huber loss [63], which is less sensitive to outliers than a standard MSE loss.

4 Interactive World Latent (IWoL) ;

In this section, we first show a motivating example of when 66% |
explicit communication fails in , introduce IWoL in 38%|
Section 4.2, and then explain how to train it in Section

96%
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4.1 A Motivating Example

Figure | shows performance degradation in a simple traf- Figure 1: A .m",ﬁvating example. Explicit
fic junction [14] where multiple agents rely on explicit .commurllllclzitlon. 5P érforman?%degiatgtlog
message passing to coordinate their movements. While 1;3‘:;10 ((];ii gzrglgtgcgzzl)la;?:traiyli? ’l;ypznll_
unconstrained communication achu;ves rllea.rly perfect suc- - cation attack. ’

cess (Normal), imposing a bandwidth limit [64] reduces

performance by about 10 ~ 30% (Type I), and a message-corruption attack [65] leads to a severe
performance drop (Type II), i.e., approximately 60%. This dramatic degradation under realistic
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Figure 2: Overview diagram of IWoL framework. Grey box represents each agent. (Left) Implicit variation of
IWoL. In this variation, each agent does not use communication messages at execution time. (Right) Explicit
variation of IWoL. Policy directly uses a communication message from an explicit communication protocol.
Note that IWoL’s value function is decentralized, and it uses its own message and local embedding Vo, (m!, f}).
Herein, - _; means all agent’s elements except 7, and -(_;); includes all agent’s elements including <.

constraints and adversarial conditions reveals the fragility of explicit channels. To ensure robust
multi-agent coordination, we thus advocate for the necessity of implicit communication in which
message changes only happen within training. That is because the implicit communication method
naturally overcomes these issues. Please see the Appendix D for details of this toy example.

4.2 Interactive World Latent for Multi-agent Coordination

Our desiderata are twofold: first, to avoid explicit message passing, but maintain team coordination
under multi-agent dynamics and partial observability; and second, to maintain simplicity by refraining
from additional modules, thereby enabling faster decision-making. Therefore, we learn a latent repre-
sentation from local observations, encoding inter-agent relations and task-specific world information.
To this end, we redesign the communication protocol to serve our representation learning objective.

Architectural Design. Figure 2 shows an overview for IWoL. First, each OO /f W w©
agent ¢ employs an observation encoder depicted in Figure 3 to transform

its raw local observation oﬁ into other modules. Specifically, oﬁ is pro- Encoder
cessed by a self-attention, which produces an intermediate embedding

’
/1. This embedding is then forwarded through an MLP, which outputs *
f

the initial message m," ~ € R, denoted as round 0. It serves as the raw
input to the subsequent communication protocol. Formally, we may write -

[f1, m?(o)] = Encoder(Attn(o}))

3

t
0;

Figure 3: Design for obser-
where Attn denotes the self-attention and Encoder denotes the MLP. vation encoder.

( Transformer block J

Next, the communication protocol block, visualized in Figure 4, is im-
plemented with attention mechanisms to adaptively select neighbors and o I &
refine their messages in one go. Especially, each agent’s feature f} is = 4
fed into an additive-attention and GumbelSoftmax block to produce a (
discrete adjacency mask. This mask is a relationship graph that guides
a Transformer block that performs L rounds of attention-based message
. . L t(0) ..
aggregation and refinement, mapping the initial message m, ’ directly
to the final message m!. This design allows the communication block to
serve directly as a protocol for inter-agent coordination.

Gumbel softmax )

( Additive self-attention )

Figure 4: Design for com-
munication protocol.
Lastly, the previously produced vectors, e.g., communication message m} and intermediate embedding
!, are used as input to policy and value function networks. We design a policy network ¢; and the
value function network 6; as a feed-forward layer. Herein, a policy network is set in a stochastic form.

Graph-attention Communication Protocol. Our communication protocol first gen-
erates a topology graph that captures the relationship between agents as follows:



~
2

Lworld , @i Lworld

N . ot
G o G= o
R [ i S
o= ! Interaction- Zt ® &= ¢ Interaction- th . u:%
Comomm s WorldLatent fiie 2 o | : = g
g 1 EN S ES
& ) o g
e 3 & Explicit Communication 3
2 = 8 Protocol o
= S £ =}
- - ot 5

I ‘ N1

LET=|. =

L | el

Implicit Interaction-World Latent Trainer ' Explicit Interaction-World Latent Trainer

Figure 5: Diagram for Interactive World Latent Modeling. Solid and dotted lines denote forward and
backward processes. The orange line implies only work in training. (Left) Im-IWoL uses the world and
interactive decoder to reconstruct the privileged state and communication message 7! = Decodery (zf ) (Right)
Ex-TIWoL sets the latent to the message vector zi = m!, and then uses the world decoder to reconstruct the
privileged state 3¢ = Decoderw (zf ), thereby encouraging z! to embed the global information s°.

{9l =1 = GumbelSoftmax(AddAtt({f,i},i:l)) where AddAtt(-) = (agg) " [Wygfi | Wyefi |

where AddAtt is additive attention, ag4q is attention coefficient, and W, is a learned weight
matrix. To build a topology graph G*, we hierarchically use a proximity mask to reflect a physical
communication range. This mask is activated when ||x! — x§|| < deomm, Where x; and deomm
denotes the position of agent ¢ and a minimum distance for communication. Next, a Transformer

block then propagates messages over G, yielding per-agent initial message mﬁ(o). Final message
vector m! can be interpreted as an interactive latent that encodes the relationship among agents.
Interactive World Latent Modeling. Figure 5 visualizes an overview diagram about how to model
IWoL explicitly and implicitly. Our goal is to build an interactive world latent 2! that captures
inter-agent relationships and privileged world information for efficient multi-agent coordination. For
this, the implicit IWoL (Im-IWoL) variant includes the following three modules.

2! = Encoderrw (ff) m! = Decodery(z}) 3! = Decoderyy (2})

Interactive World Encoder Interactive Decoder ‘World Decoder

The world decoder reconstructs the agent’s privileged state sf, encouraging 2! to embed task-specific
global signals beyond local observation, whereas the interactive decoder reconstructs communication
messages m!, forcing z! to preserve inter-agent dependencies.

For the implementation of the explicit IWoL (Ex-IWoL), we eliminate the interactive world encoder
Encoderw and instead reuse the explicit message emitted by the communication module itself,
2t =m!, so we only use the world decoder Decoderyy for training. While this design simplifies the
latent construction and leverages explicit communication, Im-IWoL instead learns a representation
from raw observations, which can easily capture more integrated interaction and world features.

Remark: Compatibility of IWoL’s latent representation with two communication variants

In basic, IWoL is implemented as an implicit mode that only routes mf to the value network,
not the policy network. Explicit communication mode routes m! to policy and value networks.
The policy has direct access to relational signals between agents in the execution phase, while
the value network uses the same structure to assign more accurate credit during training.

4.3 Training

Objective Function for Policy Training of IWoL. To extract a policy, both variants of IWoL can be
optimized in an end-to-end manner with a composite objective function as follows:

L) = LB(¢) + AwLw + MLr and  LEX(¢;) = LB (¢:) + Aw Lw, 3)

Implicit Variants Objective Explicit Variants Objective

where individual terms reflect distinct training signals.

RL policy objective LE(¢;) simply follows (1). World reconstruction objective Ly encourages
latent 2! (or m! in the explicit variant) to capture the privileged state s! that is only available during
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Figure 6: Visualization of the experimental scenarios where we evaluate IWoL. The top row contains
MetaDrive (a-b) and Bi-DexHands environments (c-¢), and the bottom row includes Robotarium (f-g) and
multiagent-quadruped-environments (h-j).

training; and communication message reconstruction objective £ asks the interactive decoder to
reproduce the original communication message.

Lw = HDecoderw(zf) — sfH; and L = HDecoderI(zf) — mﬁ”;

The coefficients A\g and A, balance auxiliary supervision against the RL signal, then we set A; >0
in both modes but choose \,,, =0 for the explicit variant. We provide a pseudocode for the training
algorithm and training details in the Appendix C.

S Experiments

In the following subsection, we introduce a suite of experiments designed to rigorously validate the
efficacy of IWoL as a MARL framework. Specifically, our experiments will employ four multi-agent
robotic tasks, selected to elucidate the research questions.

RQ1. How well does IWoL perform on multi-agent robotic tasks, compared to existing baselines?
RQ2. Can IWoL maintain coordination performance under incomplete observations?

RQ3. How effective is world interactive representation for IWoL framework and other baselines?
R(Q4. Can IWoL maintain coordination performance as the agent population increases?

RQ5. Is Im-IWoL faster than the previous communication-based MARL algorithms?

RQ6. Is Im-IWoL better than the previous implicit communication-based MARL algorithms?
5.1 Environmental Setups

We evaluate the proposed solution, Ex-IWoL and Im-IWoL, across four MARL environments:
MetaDrive [28], Robotarium [29], Bi-DexHands [30], and multiagent-quadruped-environments
(MQE) [31], visualized in Figure 6. Please see the Appendix E and F for the experimental setup,
detailed description of tasks, and additional empirical results, including ablations.

MetaDrive is a lightweight, large-scale simulator that features realistic traffic scenarios such as
intersections and parking lots where multiple autonomous vehicles must coordinate to avoid collisions
and reach their destinations. Since all ego agents have limited observability, this environment provides
a strong benchmark for testing how well MARL methods enable communication for multi-agent
coordination in dense traffic systems. We train each model under 10M timesteps.

Robotarium is a remotely accessible multi-robot testbed, used to evaluate physical coordination in
real-world swarm robotics settings. We consider two tasks: simple navigation and material transport,
each requiring multiple robots to share local information and synchronize movement to avoid obstacles
and reach common goals. Specifically, this environment tests cooperation and coordination ability
through only inter-agent communication since ego agents do not use local perception devices (e.g.,
camera or LIDAR). We set 0.5M training timesteps.



Table 1: Performance evaluation. We present a performance comparison across 10 tasks with four environments.
These results are averaged over 4 seeds, and we report the two standard deviations after the & sign. We highlight

the best performance in bold and the second best in underlined . Note that if no [ is specified, I = 2.
Basically, all tasks within the same testbed are ordered according to difficulty.

Scenarios Metrics MARL Baselines \ Proposed
MAPPO MAT MAGIC CommFormer ‘ Ex-IWoL Im-IWoL
Intersection Rewards 454.8 £70.2 500.3 £279.4 518.3 £77.4 399.0 £21.6 660.3 +33.2 650.1 +35.8
E (I=28) Success (%) 97.7 +2.3 84.2 £29.5 96.3 £2.3 12.4 +10.3 98.3 £3.8 97.1 £3.0
5 Safety (%) 94.8 +£5.2 76.0 £35.4 99.1 £0.9 9.6 +4.8 98.3 £3.8 97.1 £3.0
s
S Parkinglot  Rewards 327.4£211.7  605.8 £163.4  371.2£14.3  527.6 £195.6 | 619.7£79.6 808.6 £51.0
(I=5) Success (%) 30.3 £15.9 55.3 +£15.3 26.2 £3.7 43.9 £12.5 54.1+8.8 63.7+9.8
= Safety (%) 33.8+11.3 54.8 £15.0 29.8 +2.2 40.0+14.6 53.748.8 63.6+9.8
Average rewards ‘ 391.1 553.1 444.8 463.3 ‘ 640.0 729.4
g  Navigation Rewards —4.1+0.3 —4.2+0.3 —4.2+0.4 —4.0 £0.2 —3.7£0.9 —3.5+0.4
E I=4 Safety (%) 100.0 +0.0 100.0 +0.0 100.0 +0.0 100.0 +0.0 100.0+0.0 100.0+0.0
é Material Rewards 2.7 +0.8 3.11 +1.2 2.6 +0.2 1.2 £2.2 3.6+0.1 3.840.1
g transport Safety (%) 96.1 £3.9 100.0 £0.00 99.5 £0.05 100.0 £0.00 100.040.0 100.040.0
I=4 Left materials 18.3 £7.9 12.4 £10.8 28.6 +18.4 27.4 £11.0 4.7+6.0 5.0+5.0
Average rewards | -0.7 -0.5 —0.8 —1.4 | —0.05 0.15
§ GolGate Rewards 191.6+385.2 270.84+544.5 610.6+£815.7 —5.447.9 1570.2+247.8 1390.4+244.6
= Success (%) 21.7434.9 23.54+43.0 57.2+49.9 0.4+0.8 99.3+1.4 96.4+3.6
=]
k-1 GolSheep Rewards 1357.5+£141.0 2834.94+1552.8 1284.9+10.2 1233.2+55.1 3340.94+506.3 6043.1+76.9
5 Hard Success (%) 0.040.0 16.8+0.0 0.0+0.0 0.0+0.0 23.1+13.5 48.2+2.4
% GolSeesaw Rewards 4.3+13.2 56.0+24.2 79.7+52.7 —37.6+5.1 84.1+51.0 114.1+41.4
= Success (%) 0.0+0.0 1.742.8 3.6£7.0 0.0£0.0 6.8+5.9 15.3+7.8
Average rewards | 517.8 1053.9 658.4 437.3 | 1665.1 2515.9
” Door Open Rewards 606.0+£23.3 18.8+27.2 617.2+14.7 447 6+76.8 620.1+3.8 623.5+7.5
E Outward Success (%) 57.5+42.7 15.0+17.3 85.0+8.2 5.0+20.8 92.5+5.0 95.0+5.8
% Open Rewards 385.8+48.8 164.6+£61.9 383.1+111.7 401.7+103.1 471.9+62.7 502.9+47.8
a2 Bottle Cap Success (%) 17.5+20.6 7.54+9.6 42.54+20.6 50.0£12.9 62.5+17.1 70.0+11.5
= Two Catch Rewards 2.441.0 9.7+5.2 19.6+4.7 16.3+10.1 31.6+3.0 33.94+5.1
Underarm Success (%) 0.040.0 0.040.0 5.0+5.8 2.54+5.0 12.5+5.0 20.0+12.9
Average rewards \ 331.4 64.4 340.0 285.5 \ 374.5 386.8

MQE is based on Isaac Gym [66] that supports multi-agent tasks for quadrupedal robots. It includes
cooperative tasks (e.g., Narrow Gate, Seesaw, and Shepherding Sheep) where Unitree Gol robots
must coordinate to manipulate objects or navigate shared terrain. Agents operate under a hierarchical
policy framework where high-level commands are issued over pre-trained low-level locomotion
policies, allowing researchers to isolate the effect of coordinated planning and locomotion. For this
task, evaluation is performed based on goal completion and auxiliary criteria such as safety and
efficiency, providing a holistic view of agent collaboration. We set 100M training timesteps.

Bi-DexHands is a heterogeneous robotic manipulation and cooperation simulation built on Isaac
Gym. Specifically, it is a multi-agent dexterous manipulation testbed, featuring two robotic Shadow
Hands, each with 24 degrees of freedom (DoF), enabling precise bimanual coordination. Tasks, two
catch underarms, open door outward, and open bottle cap, require communication and contact-rich
interactions between the two hands. We set the training period as 100M, and its success rate is
measured by a 10% unit (i.e., 0%, 10%, - - - , 90%, 100%).

Baselines. To comprehensively evaluate the performance of IWoL, we benchmark it against four
established on-policy MARL algorithms. For on-policy, model-free methods, we include MAPPO [35],
which employs a centralized critic to address non-stationarity by leveraging global state information
during training, while utilizing decentralized actors for execution. Furthermore, we consider MAT [44],
which frames MARL as a sequence modeling problem, employing Transformer networks for both
actors and critics. For communication-based MARL approaches, we assess MAGIC [25], which
integrates a scheduler composed of a graph-attention encoder and a differentiable hard attention
mechanism to dynamically determine communication timing and targets, alongside a message
processor utilizing GAT's [24] to handle inter-agent messages efficiently. Furthermore, we evaluate
the CommFormer [26], which conceptualizes the inter-agent communication architecture as a learnable
graph, enabling adaptive and efficient information exchange among agents.

In our experiments, we employ four random seeds and represent 95% confidence intervals with
shaded regions in figures or standard deviations in tables, unless otherwise stated. All evaluations
are performed under decentralized, partially observable, and goal-conditioned conditions, offering a



comprehensive benchmark to evaluate how well the MARL algorithm enables scalable and adaptive
coordination in diverse scenarios with different physical and strategic complexities.

5.2 Experimental Results and Research Q&A
RQ1. How good is IWoL for MARL, compared to previous methods?

A: IWoL variations achieve the 'best or second-best performance and success rate on most tasks.

Table | summarizes the aggregated experimental results for the 10 MARL benchmarks. We find
that IWoL empirically outperforms prior MARL baselines. Im-IWoL achieves the top score in 7
out of 10 tasks, with Ex-IWoL taking second in those; conversely, Ex-IWoL tops the remaining 3
tasks, with Im-IWoL finishing second, that is, together the two IWoL variants occupy the winner and
runner-up in every task. On average, Im-IWoL outperforms the strongest baseline by +176.3 points
on MetaDrive and improves the Robotarium average reward from —0.5 to +0.15. In particular, our
approach achieves up to 48.2% and 20.0% in MQE and Bi-DexHands, where previous baselines
record near-zero success in three tasks (GolSheep, GolSeesaw, and Two Catch Underarm). These
results demonstrate that IWoL not only excels in standard MARL benchmarks but also effectively
handles robotic manipulation tasks where existing MARL baselines fail.

RQ2. Can IWoL maintain coordination performance under incomplete observations?

MAPPO MAT —— MAGIC = CommFormer Ex-IWoL ===~ Im-IWoL
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Figure 7: Performance according to level of incomplete observations. This presents the success rate and
accumulated rewards as the number of detectable agents for the ego agent decreases in Parking Lot. This
learning curve is plotted with the running average technique to differentiate baselines through a smoother line.

A: IWoL framework shows higher robustness than other baselines under incomplete observation scenarios.

In Figure 7, we present the success rate and accumulated reward as the number of detectable
agents decreases. Such an experimental setup, as a communication-starved setting, is appropriate
to study how well the proposed solution ensures robustness compared to baselines. This result
demonstrates that both variants of IWoL maintain a clear margin over all baselines without severe
drops in performance. Surprisingly, Im-IWoL always achieves above or about 50% of success rate
and small drops with 0 detectable agents, whereas CommFormer and MAT lose roughly twice as much.
Additionally, Ex-IWoL leverages explicit message encoding, yielding slightly faster gains, whereas
Im-IWoL’s implicit latent construction delivers superior asymptotic performance.

RQ3. How effective is the world representation for the proposed and baseline solutions?

A': World representation yields a noticeable performance gain for communication MARL solutions,
and the Transformer-based communication module is competitive with other baselines on itself.

Figure 8 shows the ablation results of the world representation across communication-based MARL
algorithms, that is, whether Decodery is used during training. First, comparing variants
with other baselines, we can see that it is competitive even without world representation embedding.
This result implies that our Transformer-based communication protocol is powerful compared to
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Figure §: Ablation study for world representation with Decoderw . The colored and dashed boxes indicate
when Decoderw for world representation and when , respectively; that is, the
performance is original for MAGIC and CommFormer, and the performance is original for IWoL. For
the Material Transport task, we use inverted metrics (right y-axis) for readability.

other explicit communication baselines. Next, juxtaposing [w/Decodery]| and [w/oDecodery]|, we
confirm that achieve better performances in most tasks and algorithms. Such empirical
results directly demonstrate how effective and beneficial the world representation is for MARL
training. Note that IWoL without its communication protocol and world latent is MAPPO.

RQ4. Can IWoL maintain its performance as well in a large multi-agent system?

Table 2: Scalability test. We provide a success rate according to the number of agents in Intersection.

Success rate according to # of agents Baselines
Algorithm 4 8 16 32 48 | #of agents MAPPO MAGIC
Im-IWoL 99.5%+0.5  97.1%+3.0  95.2%+9.8  92.8%+16.5 86.6%+19.7 | |Z| =4 98.5 435  99.5+0.5

Ex-IWoL 99.1%+1.0  98.3%+3.8  98.0%+11.2  95.5%+19.0 91.0%+28.1 | |Z| =48 33.5 +36.5  75.0+30.4

A: IWoL can maintain coordination performance decently as the agent population increases.

Table 2 reveals that coordination remains with good success rate with four agents, 99.5% for Im-
IWoL, 99.1% for Ex-IWoL, and only marginally degrades as the team size doubles repeatedly, success
stays above 95% up to 16 agents and above 92% (Im) / 95% (Ex) even at 32 agents. Remarkably,
with 48 agents, Ex-IWoL still solves 91.0% of instances and Im-IWoL maintains 86.6%. In contrast,
baselines suffer from a substantial performance drop from 4 to 48 agents. These observations confirm
that IWoL has the potential to be adopted in large-scale MARL.

RQS. How fast is Im-IWoL compared to other baselines at the deployment phase?

A: The inference speed of Im-IWoL is superior to other baselines and is almost comparable to MAPPO.

Figure 9 compares the average inference wall-time in four environ- £ MARL  C—J Communication MARL
ments across all baselines. MAPPO serves as the lightweight baseline,
while MAT, with its full transformer encoder, and explicit communi-
cation baselines, requiring per-step message exchanges, both incur
noticeable overhead. By contrast, Im-IWoL reuses its pretrained latent

Step time (ms)
o
v

encoder and adds only a small fully-connected projection on top of 0.0 :
the MAPPQO backbone. As a result, its runtime is virtually indistinguish- L & & &0
. . & TS s
able from MAPPO and substantially faster than both MAT and explicit S <
communication, demonstrating that learned representations can boost
coordination without sacrificing efficiency. Figure 9: Inference run time.

RQ6. Is Im-IWoL superior to the previous implicit communication branches?

Table 3: Performance comparison with ICP. We evaluate the performance of ICP across three variants.

Scenarios Metrics ICP-Dec ICP-Sum  ICP-Monotonic Im-IWoL
Parking Lot Rewards 227.5+30.6  289.5+116.7 391.6+236.2 808.6+51.0
Succ. Rate (%) 15.7+5.3 20.6+8.4 35.6+18.0 63.7T+0.8
GolGate Rewards 130.7+91.0 783.3+495.1 710.9+538.2 1390.4+244.6
Succ. Rate (%) 5.8+6.6 70.5+15.5 67.8+22.0 96.4+3.6
Door Open Outward Rewards 178.2+30.1  495.5+25.8 518.6+31.0 623.5+7.5
Succ. Rate (%) 7.5+90.6 52.5+12.6 45.0+14.1 95.0+5.8

A: Although such a claim is not our focus, Im-IWoL outperforms the previous implicit method.




Table 3 demonstrates that our solution yields substantially higher rewards and success rates across all
scenarios. Herein, ICP [67] works like inverse modeling, agents use predefined ‘scouting’ actions
to encode messages and recover them by inverse mapping under ideal broadcast and decoding
assumptions. In contrast, Im-IWoL learns the interactive world representation using a communication
module during training, fusing privileged state and inter-agent relations, and temporal context. At
deployment, Im-IWoL does not need additional modules, e.g., communication or inference model.

Lastly, we would like to clarify that Im-IWoL is fundamentally different from previous branches;
in other words, this claim is not our focus and core in this work. See the Appendix B and I for an
extended literature survey of previous branches and experimental details.

6 Conclusion

This work presented IWoL, a unified representation-learning and communication framework for
cooperative MARL. This learns a compact latent that jointly captures inter-agent relations and
privileged task information with a Transformer-based communication protocol. Extensive experiments
show that IWoL variants attain best performance in 10 out of 10 robotic tasks.

Closing Remarks: One especially appealing property of IWoL is its versatility—allowing practi-
tioners to toggle between message-free (implicit) and message-rich (explicit) coordination without
additional modules. Given the notorious sensitivity of large-scale MARL, we believe that offering a
drop-in solution that is both efficient and simple is a timely contribution to the community.

Future Directions

Recently, generalizability has been a key challenge in the machine learning domain, and its promising
workaround is representation learning, achieving notable success in real-world applications, e.g.,
foundation and omni models [68, 69]. For single-agent RL, diverse representation learning methods
have been introduced, e.g., successor features [6, 70, 71], forward-backward representations [72, 73],
quasimetrics [7, 74], bisimulation [75, 76, 77], temporal distance [78, 79, 80], and contrastive
objectives [81, 82], each contributing to more generalizable RL agents.

Unlike the single-agent setting, where representations can be extracted from a fully observable
environment, extending this perspective to MARL is not a trivial problem. That is because MARL
requires handling diverse information such as inter-agent relationships, their role structures, and
shared world dynamics under a partially observable MDP. While some methods leverage one of these
aspects in isolation, there has been limited progress in integrating them into a unified representation
that captures the factors facilitating team coordination. Alternatively, to develop the generalizability,
ad-hoc teamwork [83, 56] and zero-shot adaptation [84] have highlighted the importance of enabling
agents to coordinate with previously unseen partners. They suggest that increasing the diversity of
self-play scenarios can improve agents’ adaptation and generalization ability.

While our approach is not designed as a direct solution to these challenges, it provides a unified latent
representation that could support such functionalities. From this perspective, we envision several
meaningful directions for future research:

* How can we leverage a representation learning framework from a single-agent to a multi-
agent setting?

» Can we construct an omni-representation that jointly encodes diverse information in a
scalable manner?

* What information and mechanisms facilitate rapid role alignment and policy adaptation in
multi-agent dynamics?

In conclusion, this work is an initial step toward bridging representation learning and generalizable
multi-agent coordination, instead of attempting a definitive solution to these open challenges. Our
framework provides a foundation upon which future work can build more adaptive and versatile
strategies using a unified latent representation. Finally, we hope this perspective stimulates further
exploration into omni-representation and its role in enabling robust open-world multi-agent systems.
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A Miscellaneous
A.1 Summary of Notations

Dec-POMDP elements

Notation Description Notation Description
A agents set 2 agent index
I the number of agents v €[0,1) discount factor
S state space st state
O; observation space of agent ¢ ot local observation of agent ¢
A; action space of agent ¢ at action of agent ¢
T state transition model Q; observation function of agent ¢
T reward function for agent ¢ R! Return of agent ¢
Algorithm elements
Notation Description Notation Description
M? space of initialized messages M; space of processed messages
t(0) L . ¢ .
m, initialized message from agent ¢ m; final processed message for agent ¢
mg(l) message for agent ¢ at round [ L total communication rounds
11 intermediate embedding of agent ¢ gfj relationship between agents ¢ and j
Gt topology graph Qg9 weighting vector of the additive attention
2t interactive world latent for agent ¢ st privileged state for agent ¢
i reproduced message of agent ¢ st reproduced privileged state of agent ¢
RL Training
Notation Description Notation Description
i policy parameters for agent ¢ 0 value function parameters
Aw balancing coefficient for world latent loss AL balancing coefficient for interactive latent loss
€ clip coefficient of PPO loss ) threshold of Huber loss
Acommit  commitment coefficient of residual VQ loss I5) balancing coefficient for residual VQ loss
the number of updates T max steps of an episode
B batch size D online replay buffer
n learning rate

A.2 System Specification

CPU AMD EPYC 7713 64-Core
GPU RTX A6000 & A5000
Software CUDA: 11.8, cudnn: 8.7.0, python: 3.8
PyTorch  2.1.0 (MetaDrive), 2.0.1 (Robotarium), 2.4.1 (MQE and Bi-hand Dexterous)
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B Extensive Related Works

B.1 Usage differences of Transformer in MAT, CommFormer, and IWoL

MAT [44] first formulates cooperative MARL as a sequence modeling problem, employing a full
encoder—decoder Transformer to map a sequence of agents’ joint observations to a sequence of
optimal actions. The encoder uses stacked self-attention and MLP blocks to capture high-level
inter-agent dependencies, while the decoder generates each agent’s action auto-regressively under a
causal mask that restricts attention to preceding agents. This design yields linear complexity in the
number of agents and comes with a monotonic performance improvement guarantee.

CommFormer [26] basically builds on MAT by explicitly learning a sparse communication graph. It
introduces a learnable adjacency matrix and incorporates this graph both as an explicit edge embed-
ding in the attention score computation and as a hard mask to gate message passing. Consequently,
its Transformer encoder and decoder are conditioned on both causal order and dynamic connectiv-
ity, enabling concurrent optimization of communication architecture and policy parameters in an
end-to-end fashion.

In IWoL, the Transformer block is repurposed exclusively as the communication processor, instead
of a policy or value function. After each agent’s local observation is encoded, a Graph-Attention
Transformer applies multi-head scaled dot-product attention over a communication graph to refine
interactive embeddings.

We summarize the usage differences of the Transformer in these methods as follows.

* MAT: Transformer serves as the joint policy network, with encoder—decoder modeling and
causal masking.

* CommFormer: Transformer integrated with a learnable, sparsity-controlled communication
graph to gate attention.

e IWoL: First work to design the communication processor itself as a graph-attention Trans-
former, combining attention-based message encoding.

B.2 Implicit communication as inverse modeling

Implicit communication channel: A growing body of work has explored implicit coordination with-
out explicit messaging. For example, [85] trains agents to gradually shift from using explicit messages
to purely tacit cooperation. Other approaches learn latent coordination through structured interactions,
such as inferring dynamic coordination graphs, or via environment-mediated signaling [86]. Notably,
some methods endow agents with implicit communication abilities by leveraging shared environment
cues [87, 88, 89, 67]. However, these implicit communication frameworks typically lack a dedicated
learned messaging architecture and often focus on narrow aspects of coordination, which is similar to
inverse modeling through environmental to behavioral cues.

Machine theory of mind: Another line of research draws on cognitive reasoning [90, 91], where
agents explicitly model each other’s beliefs, intentions, or roles. For example, theory-of-mind
(ToM) approaches have been combined with social incentives like guilt aversion to encourage
cooperation [92, 93, 94]. Such agents maintain internal beliefs about what others will do and even
what others believe they will do, implementing recursive reasoning to adjust their policies [95, 96, 97].
Similarly, brain-inspired ToM models use structured networks with dedicated modules for perspective-
taking, policy inference, and action prediction, that is, essentially mimicking human mentalizing by
explicitly predicting others’ observations and actions [98].

Agent modeling and action prediction: A third branch of related work focuses on agents fore-
casting or simulating their counterparts’ behavior to improve coordination [99, , ]. Recent
methods explicitly model other agents’ policies or future actions as part of the decision process.
For example, [102] introduces conformal prediction sets to model other agents’ actions with high
confidence, providing each agent with a set of likely moves of others before acting. Interactive
MDPs explicitly construct recursive belief models of other agents’ hidden states and policies to
guide planning, whereas interactive latent coding methods learn compact embeddings of observed
interaction dynamics without forming full belief hierarchies [103, 104]. Other approaches give agents
an explicit planning capability, such as an episodic future thinking mechanism where an agent infers
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each partner’s latent character and then simulates future trajectories of all agents to select an optimal
action [23, , ]. Likewise, fact-based agent modeling trains a dedicated belief inference network
that uses an agent’s own observations and rewards to reconstruct the policies of other agents through
a variational auto-encoder [107]. These techniques incorporate additional structures to predict or
encode other agents’ states, essentially bolting on an extra layer of agent-specific reasoning.

Im-IWoL departs from all three lines by folding communication and modeling into a single Trans-
former block that is used only during centralized training. Messages circulate through the Transformer
while the topology and latent code are being learned, but at test time, each agent discards the channel
and relies solely on the cached latent embeddings produced by its local encoder; no decoder, simulator,
or action-based signalling set is required. This makes IWoL, to our knowledge, the first implicit-
communication framework that needs zero additional modules at deployment while still endowing
agents with an internal world latent that unifies inter-agent relations and global task information.
Consequently, Im-IWoL inherits the bandwidth-free, attack-resistant advantages of prior implicit
schemes, yet retains the architectural simplicity and real-time footprint of a feed-forward network.
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C

Training Details

C.1 Pseudocode for IWoL

Algorithm 1 Training IWoL

1:

—_—

_.
»

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:

TeYRedaunsRy

Require: the number of episode K, the number of agents I, max steps of an episode T, batch
size B, replay buffers D; for each agent ¢, and learning rate n

Initialize: actor parameters ® = {¢1, @2, - , ¢1}, and critic parameters © = {61,605, ,0;}
Initialize buffer D; and loss function £(6;), L(¢;)
for episode = 1, K do
Reset privileged state s, observations o
fort =1, T,.x do
Local observation embedding: f!, m*® - Encoder(SelfAttn(o))
Scheduling communication: G* +— GumbleSoftmax(AddAtt(f*))
Message processing with L hops: m? <+ Transformer(m*°, G, L)
and v! < Vg(m!, f!)
Perform action a?, then transit state st*1, receive r* and o?*!
Store transition (o, at, 74, (al|o!), Vp.i(ol), 0! ™) in D; for each agent i
t+t+1
end for
for: =1, 1do
fort =1,T,.« do
Rt =rt + R if o/t # terminal from D;
end for
Reconstruct privileged state: 8¢ < Decoderyy (z!)
Calculate Lyyoria < Aw - MSE(st, 8t)
Calculate £(¢;) and £(0;) using D; with (1) and (2)
£(¢z) < L(¢z) + £Interactive + £W0r1d
end for
episode < episode + 1
end for
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C.2 Implementation Details

Multi-threaded synchronous policy optimization. Our training implementation employs Niphreads
parallel worker threads, each running an independent environment and collecting fixed-length trajec-
tory segments [48]. After each segment, every worker computes policy and value function losses to
derive gradients, which are then synchronously aggregated across all threads. We average these gradi-
ents and perform a single parameter update using the Adam optimizer [|08]. To promote exploration,
we include an entropy bonus with weight 0.01 and train the value head with a mean-squared error
loss [62]. Gradients are clipped to a maximum norm of 0.5 to ensure stable updates [109]. Updated
network parameters are then broadcast back to all workers before the next rollout cycle.

Decentralized value function for IWoL variants. In our approach, we adopt privileged state
information for each agent, enabling it to alleviate heavy dependence on a centralized critic in
previous methods. Consequently, every agent learns its own value function in a fully decentralized
fashion (i.e., using only its local, augmented observations) thereby avoiding the communication
overhead and staleness issues inherent to a centralized value estimate, while still benefiting from the
extra privileged information to maintain sample efficiency and training stability.

Training Details. Additionally, we employ two techniques for efficient updates: value normaliza-
tion [110] and active masking [111]. Value normalization keeps the target values R on a consistent
scale, improving stability and training convergence. Next, optionally employ active masks in the
critic to ensure that irrelevant states or features do not excessively affect the value function estimates.
This can help the critic focus on relevant state dimensions and reduce training variance.

Fairness of Baseline Implementation. To ensure a fair comparison, we modify some practical
implementations of all baselines so as to IWoL:

¢ Use of privileged/global information: Every CTDE baseline (MAPPO, MAT, MAGIC, Comm-
Former) was given access to the exact same privileged signal, either the ground-truth global
state s* or the concatenated shared observation o = [0, ..., 0%], when fitting its value
function. In other words, all methods can use the same global information in a training phase,
so that any performance gap cannot be attributed to unequal access to global information.

* Local-observation encoding: To match IWoL’s encoder capacity, we equipped each baseline
with an identical local-observation embedding pipeline: each agent’s raw observation o! is
first projected into a fixed-dimensional feature, then passed through a self-attention layer
or a lightweight RNN. We held all embedding hyperparameters constant across methods.
This design guarantees that improvements stem from our communication—world-latent
architecture rather than from extra encoding power.

* Hyperparameter: To ensure a fair comparison, we aligned both algorithmic and envi-
ronment parameters across all methods. For algorithmic hyperparameters, we adopted the
original settings reported in each paper (i.e., learning rates, network architectures, PPO-
dependent parameters such as clipping €, value-loss, and entropy weights). In addition, we
fixed batch size, hidden dimensions, number of attention heads, and all PPO-specific coeffi-
cients to be identical for IWoL and every baseline. Next, for environmental hyperparameters,
all training parameters, e.g., maximum episode length, reward scaling, observation noise,
and number of parallel environments, were standardized across experiments.
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D Toy Example Details

Toy example: Traffic junction grid Environment Agents Communication
© Agent @) (- -
-> Go straight — ( —
-> Turn left +“— @ @ <
Turn right - .
U turn
(@) Type | scenario: Bandwidth constraint
A
<t -k @) (@)
O] 1O @)
é Original message Constrained message
Type Il scenario: Communication attack
= ‘ @
-

Figure 10: A diagram for a toy example. In this example, we adopt a simple traffic junction task and two
challenging scenarios in communication MARL.

Simple Traffic Junction. We consider a 4-way traffic junction on a 14 x 14 grid. At each time
step, new cars enter from each of the four entry points with probability pyrive, Up to @ maximum of
Nmax = 10 concurrent cars. Each car occupies a single cell and is randomly assigned one of four
routes (keeping to the right side): straight, left turn, right turn, or U turn. At each step, an agent
chooses between two actions: moving one cell or staying in place.

Agents aim to exit the grid upon reaching their destination. They can get a one-hot encoding of its
route ID ({n,[,r}) as an observation without others’ information. Agents overcome their partial
observability by explicitly communicating with all others.

The total team reward at time ¢ is as follows:

Nt

T(t) = Ct Teoll + Z'rz’ Ttime,

i=1

where C* the number of collisions, N the number of cars present, . is a collision penalty, 7ime is
a a time penalty, and 7 is the number of steps since that car entered. Episodes run for 40 steps and are
marked as failures if any collision occurs.

Type I: Bandwidth Constraint. In 7ype I, we limit the number of bits used to transmit each
continuous message vector m!. Originally, we used 32 bits per element. Here, we quantize to only
n € {8,2} bits per element and measure the resulting performance drop. At execution time, we
consider the following bandwidth constraints:

def bit_per_sec_const(message, n):
levels = 2%x*n
# scale to [0, levels-1], round, then rescale to [0,1]
const_m = torch.round(message * (levels - 1)) / (levels - 1)
return const_m

for n = 8 (Type I - 8bps) or n = 2 (Type I — 2bps).

Type II: Communication Attack. In Type II, an adversary intercepts and corrupts each agent’s
message before delivery. Concretely, for every transmitted m!, we sample a random vector 7} ~ U
and deliver 7n! in place of the true message. This simulates a worst-case message corruption scenario,
and we report the performance degradation under this attack.
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E Experimental Details

This appendix section describes the task and details of a Markov decision process over 10 scenarios.

Remark. Each task requires extensive notation so that some symbols may overlap with those used in
the main text. Readers are therefore advised to consult each MDP specification and notation in the
context of its own environment.

E.1 MetaDrive

(Limited observability, high-dimensional observation space, large-scale, cooperative, and competi-
tive) MetaDrive is an autonomous driving simulator formulated as an MDP. Each vehicle simultane-
ously learns a driving policy, a value function, and a communication protocol.

E.1.1 Markov Decision Process

Observation. In particular, at each timestep ¢, agent 4 receives an observation o} composed of three
parts: ego-vehicle information, surrounding vehicles’ information, and navigation cues.

« Ego-vehicle information: [0;, ¢;, v;, di™, d?ght] where 6; is steering angle, ¢; is heading,
v; is speed, and di°f, ¢"'8"* are distances to left/right lane boundaries

* Surrounding vehicles’ information: relative positions and velocities of up to N,,s nearest
agents, sensed via a LIDAR with Nj,g., beams covering a dj,se;-

» Navigation cues: A vector encoding direction and distance to the destination.

Actions. Each agent selects a continuous action a} = [af, B!], where o € [—1, 1] controls steering
(left:—1, right:+1), and 8! € [—1, 1] controls acceleration (brake:—1, throttle:+1).

Reward. We design the individual reward into three components:

.

ZI: Cdriving; T‘?rivmg + Cspeed T?peed + rzpermination

9

driving

where driving progress 7, is the forward distance traveled along the lane between ¢ and ¢ +

speed ¢ ) )
peed = Y pormalizes current speed by the maximum allowed vpax, and

VUmax

termination reward r{ermination — ¢ . if goal reached (if collision or out-of-lane, rfermination —
Ctail)- Cgoal 18 always positive, and cgaj) is set as a negative.

1, agility reward r

. . C _ I .
To encourage cooperation, we further define a cooperative reward ry’ = > jen; > Where N is the

set of vehicles within communication range. The total reward is then r; = (1 — Aco) riI + Ao 7'ic ,
balancing individual performance (., = 0) and team coordination (A, > 0).

E.1.2 Scenario Descriptions

We provide two types of driving scenarios, intersection and parking lot. These environments are
designed to test the agent’s communication ability in large-scale MARL and the holistic coordination
ability of their action, considering safety, goal achieving, and agility.

Intersection: An unprotected four-way intersection without traffic signals. Agents must negotiate
right-of-way, decide when to turn or go straight, and avoid gridlock. Explicit communication of
intentions (e.g. yield, turn left) reduces ambiguity and improves safety.

Parking Lot: A confined lot with eight parking slots and spawn points both inside and on adjacent
roads. Vehicles may need to reverse, yield, or reroute to find a spot. Real-time information exchange
helps agents agree on who moves when and where to park without blocking traffic.
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E.2 Robotarium

(Limited observability, cooperative, and robotics) The Robotarium platform is a remotely accessible
multi-robot lab from Georgia Tech, enabling researchers to conduct physical robot experiments
with ease. In this setup, mobile robots that do not have sensors or LiDAR rely on inter-robot
communication to coordinate actions, avoid collisions, and stay within bounds. We evaluate our
method in two scenarios with four robotic agents: simple navigation and material transport. In such a
simple simulator, we test their coordination performance without observation devices.

Simple Navigation: During each episode, the swarm robots navigate toward a destination point that
may vary across episodes. Each agent is provided only with its own position and the destination’s
coordinates as observations.

. S : o : aly | N .
In this scenario, privileged state at time ¢ is & = {(zf, y!), (22, y2°*")}." | where (2!, y}!) is

i i=1°
. .. 0al aly - . . ) . .
agent i’s position and (z§°*, y£°*) is its fixed goal location. Each agent i receives a local observation

t t ¢ goal goal
0; = [xiv Yir Ty 5 Y ]

; € R*, containing its own coordinates and the coordinates of its goal. Af-
ter receiving of, Agents choose from five discrete actions A = {left, right, up, down, no_action}.
A no_action leaves the agent in place, and other actions move the agent by a fixed distance dgcp in

the corresponding cardinal direction.

Subsequently, at each timestep, agent ¢ receives a mixed reward as an outcome of a joint action
t_ I G I _ t ot goal  goaly||2 G _ 1 I
ri=(1—Xo)r; + Acory, where r; 77||(:z:i,yi)f(:z:- Y5 )|| s Y = N Zj#rj.An

(2 ’ ?

error penalty of —b5 is applied if agent ¢ collides with another agent or violates workspace boundaries.

Material Transport: In this scenario, there are two types of swarm robots: slow and fast robots.
They aim to move loads from the loading zones to the unloading zone (target). In particular, Figure
(g) shows that loading and unloading zones are colored purple and green; orange and red circled
robots are slow and fast ones, respectively. To enhance efficiency, these robots need inter-agent
communication to coordinate their behaviors for avoiding collision and splitting their workstations
(i.e., fast robots move the material from a distant loading area, and slow robots work in close one.

We designed MDP for such a scenario as follows. First, a privileged state at time ¢ is ¢ =
N . . - .
{2, yh), U 7hvl},_,, 21, 2b], where (zf,y!) is agent i’s position, I} is its current load, 7/

1) T
is its torque, v! is its speed, and z{, z4 are the remaining loads at zone 1 and zone 2. Each agent i can
get an observation of = [zf, y!, If, 21, 24] € R®. Agents make a decision within the same action

space with the simple navigation scenario. At each timestep, agent ¢ receives the reward as follows:

t t t t
7; = Cstep T+ Cload—close(limload) + Cload—distant (limload) + +Cunload (limunload) + Csafety ]]-safetya

where cgtep 18 the constant time penalty per step, Cload-close a0d Cload-distant are the reward coefficient
for loading at zone 1 and 2, respectively. Next, cypload 1S the reward coefficient for unloading at the
target area, Csafety 15 the penalty coefficient for safety violations (collision or boundary exit), and
Lsafety 18 an indicator function equal to 1 if a safety event occurs, O otherwise. Same with simple
navigation, we use a combination of individual and collaborative rewards to enhance coordination.
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E.3 Multi-agent Quadruped Environments

(Realistic, limited observability, high-dimensional observation space, cooperative, and robotics)
MQE is an Isaac Gym—based simulator that marries physically accurate rigid-body dynamics with
massively parallel GPU execution. Each robot, Unitree Gol, is modelled with 12—18 actuated degrees
of freedom, ground—contact friction, and joint-space torque limits, enabling realistic behaviors such
as trotting, bounding, and recovery from perturbations. The platform natively supports heterogeneous
morphologies, randomized terrain tiles, and object manipulation, making it ideal for testing coordina-
tion and communication under high-dimensional, contact-rich dynamics. In this testbed, we consider
three scenarios: GolGate, GolSheep-Hard, and GolSeesaw.

GolGate: Two Unitree Gol robots must pass through a constricted opening of width wg,¢. and
reach a specified goal region on the opposite side within a horizon of T}, timesteps, all without
colliding with the gate boundaries and another robot. Success demands precise alignment of the
robot’s heading and finely tuned speed control to negotiate the narrow aperture; any contact incurs a
collision penalty, while a clean, collision-free traversal earns a completion bonus. This task, therefore,
emphasizes agile steering, dynamic balance, and minimal lateral deviation from the gate centerline to
ensure efficient and safe passage.

For training with privileged information at each timestep, agent 7 has access to

; 1
s'=|pi, Pj, &, A, Vi, w , d , d ,a*

S A S N T e g

6 6 2 4 3 3 12 12 12

where p; = [z, ¥;, 2, roll;, pitch;, yaw,] € RS is the concatenation of agent i’s base position
and orientation (Euler angles), p; € RS is the same base position and orientation of the other
agent j # i (obtained by flipping p; in the batch), g = [g.,g,] € R? is the 2D gate position,
Qi = [quw, 4z+ Gy, 9] € R* is the agent’s base orientation as a unit quaternion, v; = [v;, vy, v,] € R3
is the base linear velocity, w; = [wy,wy,w,] € R3 is the base angular velocity, d; € R'2 and

d; € R'2 are the per-joint positions and velocities for the 12 DoFs, and a2t is the previous action
(torque or target position) applied at each joint.

At each timestep, agent ’s local observation is a part of privileged information, o; = [p;, p;, g]. An
agent ¢ outputs an action a; = [V, Uy, Wyaw, ], Where v, v, are the desired linear velocities in the
x,y directions and wy.., is the desired yaw rate. After performing the action, the agent 7 receives a
reward as follows.

t_ t—1 t 1[d;;<9]
T; = Ctarget (dl - dz) + Ccol ]1001 ~+ Csuce 1 [331 > dgate + 025] + Cagent éJ
—— ij
approach reward collision punishment Goal achievement reward Inter—agent distance punishment

(I) Approach reward r**P"*" encourages agent i to reduce its Euclidean distance to the target

di = H [zf, y!] — target||2. The term d/ ™' — d} is positive when the agent moves closer, and Ciarget
scales the reward magnitude. (IT) Collision punishment r{°™*2°* imposes a penalty c.,; whenever
agent ¢ collides, indicated by 1.,; = 1. This discourages unsafe actions. (III) Goal achievement
reward r7%°°®*> awards a one-time bonus cg,.c When agent ¢ first crosses the gate threshold at
T; > dgate+0.25, as marked by the indicator. (IV) Inter-agent distance punishment rfgent discourages
agents from crowding by penalizing when the squared inter-agent distance d?j = [z, vi] — [z, y5]l13
is below 0. The penalty cagent/ d?j grows as they get closer.

GolSheep-Hard: In this task, two Gol robots must guide nine simulated sheep NPCs from their
initial spawn area into a designated corral within a fixed horizon of T, timesteps, strictly avoiding
collisions. Each sheep executes randomized maneuvers and unpredictable bursts of acceleration,
demanding that the robot continuously predict their future positions and adjust its steering and speed
with high agility. Task success hinges on efficiently reducing the Euclidean distance between the
robot and each sheep to enable timely interception, steering the flock toward the corral boundary, and
preserving a safe buffer to prevent contact while the sheep actively attempt to escape capture.

For GolSheep MDP, privileged information first is defined as follows:

i K last
s = |:pi7pj7g7 m , q;, Vi, Wi, di7 diu a; i|7
2x9
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where m = [Zynpet, Ynpels - - - » Enped, Ynpeo] are the 2D positions of the nine ‘sheep” NPCs. The

observation is 0; = [p;, pj, g, m|, and action is same with GolGate. The reward is defined as
follows.
M Cmix; xim > dgate;
t t
i =csnee Y L[k > dgae] + Izt .yt 1—gl .
m—1 Crmix exp(—%)7 otherwise

Success shepherding reward Mixed sheep reward

(I) Success shepherding reward 7"°°*>* encourages the agent to drive all NPCs across the gate. Let

crosse, = L@l > dgate|, S = Efn:lcrossm. Then each agent in environment receives
75U = Coiee S;. This one-time shaping reward is added each timestep after any sheep crosses
the gate, and is reset when the environment resets. (II) Mixed sheep reward r*¢d provides a
continuous shaping signal based on each sheep’s proximity to the gate. In this shaping scheme, we

first compute the two-dimensional Euclidean distance D = H(m, y) — gH , between each sheep’s
position (z, y) and the gate center g. The per-sheep reward 7pixeq i then defined as r;“ixed = Cmix
when & > dgate, Otherwise, rfﬁxed = cmix €xp(—D/2), so that once a sheep crosses the gate
threshold dg,¢. it immediately earns the full shaping scale cinix, While before crossing it receives a
smoothly increasing bonus that decays exponentially with distance. Summing these per-sheep terms
over all sheep produces the total mixed-sheep reward, which therefore rises continuously as the flock

approaches the gate and caps at cy,jx upon passage.

GolSeesaw: Two Unitree Gol quadrupeds must coordinate to exploit a lever-style plank and climb
onto an adjacent elevated platform within a maximum of 7}, timesteps, without causing the seesaw
to collapse. Starting on one side of a suspended flat board, one robot must position itself at the far
end to counterbalance and stabilize the seesaw’s pivot, while the second robot ascends the inclined
plank to reach the platform. Precise timing of weight distribution, agile modulation of stance to damp
oscillations, and real-time adaptation to shifting center-of-mass dynamics are all required to maintain
balance and complete the ascent successfully.

In this task, privileged information is defined as s* = {pi, Pj,qi, Vi, w;, d;, cL-, aﬁaﬂ , the observa-

tion o' = {pi, pj} , and action is same with other tasks. Lastly, the reward is defined as follows.

r= e (X0 ol = Sy wl ) e (X0 2 0.56N) + ¢, (T2 (49— 05N) +

x—movement reward Height reward Lateral—deviation punishment
t 2
caist 1[df; < 0.5]
t ? § t t t
Ccol ]ICOI + W +CSUCC ]l[.’);‘l >T7.7 A Z; > 13] + Cfall ]lfall
ij i=1 N~

fallpunishment

Inter—agent distance punishment Goal achievement reward

(I) x-movement reward r™°® encourages the robots to collectively advance along the plank by
rewarding positive change in their fore—aft positions. (II) Height reward rP¢8" incentivizes climbing
by granting a bonus whenever the team’s average elevation exceeds the nominal stance height. In this
term, Z-coordinates above the nominal standing height (0.56m) earn a bonus. (IIT) Lateral-deviation
punishment ¥ penalizes straying from the centerline by imposing a cost for large side-to-side
displacements, thereby keeping the bases near the seesaw’s centerline. (IV) Collision punishment
re°l discourages unsafe contacts by applying a fixed penalty whenever any robot registers an external
collision, promoting safe foot placements and mutual avoidance. (V) Inter-agent distance punishment
rdist prevents crowding by sharply penalizing pairs of robots whose planar separation drops below
0.5m. (VI) Goal achievement reward "°° rewards task completion by giving each robot a one-time
bonus when it steps cleanly onto the far platform (x > 7.7 m and z > 1.3 m). (VII) Fall punishment
rf21l strongly discourages loss of balance by penalizing any roll- or pitch-termination event.
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E.4 Bi-DexHands

(Realistic, limited observability, high-dimensional observation space, high-dimensional action space,
cooperative, and robotics) Bi-DexHands is a high-fidelity bimanual manipulation benchmark built
in Isaac Gym, pairing two Shadow Hands in richly contact-driven tasks. In this work, we focus
on three prototypical scenarios, i.e., Door Open Outward, Bottle Cap, and Two Catch Underarm,
each stressing different aspects of coordinated wrist and finger control. We select this testbed to
push RL toward human-level dexterity for several reasons: Isaac Gym’s GPU parallelism delivers
massive sample efficiency; the dual-hand setup embodies heterogeneous-agent cooperation in a
very high-dimensional action space; and the tasks themselves are grounded in cognitive studies of
fine-motor skill development, enabling evaluation of skill acquisition stages.

Door Open Outward: In this bimanual lever task, one Shadow Hand must firmly grasp a hinged
door handle while the other pushes the door open away from the robot, reaching a target angle before
Thnax timesteps, without dropping the handle or colliding with the door frame. Success demands that
the “grasp” hand maintain a stable closure force as the “push” hand applies a sustained outward force
and trajectory, balancing leverage and support. This challenge, therefore, stresses persistent contact
stability, force distribution between hands, and dynamic coordination to overcome hinge resistance.
From the viewpoint of human development, this task can be performed after 13 months [112].

Privileged information for Door Open Outward is defined as follows:
St c R428 — [SRH,t’ SLH,t7 Sdoor,t]

where the superscripts “RH" and “LLH" denote the Right and Left Hand blocks (each of dimension
199, total 398), and “door" the 30-dimensional door/goal block.

In particular, each 199-dimensional hand block st (for H € {RH, LH}) we further decompose as
follows. Joint positions [sg53] € R4, Joint velocities [syy4;] € R4, Joint efforts [siy%,] € R,
Fingertip kinematics (positions, linear and angular velocities) [317{2’336] € R%, Fingertip forces
and torques [sy35.155] € R, Base position [s}¢h.60] € R?, Base orientation (roll, pitch, yaw)
[$196.172] € R, Previous action commands [sy75.195] € R?®. The remaining 30 dimensions s°°"*

encode the door’s pose (7), linear velocity (3), angular velocity (3), goal pose (7), and the right/left
handle positions (3 + 3), in that order.

Each hand gets its own hand and object information as a local observation at a timestep ¢.

Next, the action at time ¢ is a 26-dimensional continuous vector for each hand, a* = [aé:%} € R26,
which we partition into six contiguous blocks:

t_ RH RH RH

a = [ ap:19 y Q20:22 5 @23:95 ]
N~ N—— ——"
Hand Hand Hand

joint commands base pose orientations

In particular, af';4 and b}, are the 20 per-hand joint actuator targets, and all 5,, ajil s are the
palm translations (z, v, ), and al} o5, adk, are the palm orientations (roll, pitch, yaw).

At every step, the agent earns

r=02 — H-réhand - xfhandleHQ - erhand - xrhandle”Q + 2 ||I€handle - zrhandle||2-

The two negative terms penalize any drift from each handle, ensuring firm contact, while the final
term encourages opening by increasing the handle-to-handle separation.

Open Bottle Cap: The dual Shadow Hands must grasp a bottle body and its screw-on cap, then
unscrew the cap outward by applying controlled counter-rotational torque, all within T3,y timesteps
and without slip or excessive force. One hand holds the bottle steady while the other hand applies
a precise twisting motion to overcome the cap’s friction; any loss of grip or collision with the
bottle incurs a penalty, whereas a clean uncapping within the time limit yields a completion bonus.
This scenario highlights coordinated torque control, compliant grip modulation, and synchronized
wrist rotation. From the viewpoint of human development, this task can be performed after 30
months [113].

Privileged information for Open Bottle Cap is defined as follows:
St c R417 _ [SRH,t7 SLH,t’ Sbottle,t’ Scap,t] ’
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where sPottle:t and s¢aP+t is information related to task objects. First, s?°t1®¢ includes bottle pose

(position and orientation quaternion; 7), linear velocity (3), and angular velocity (3). Next, s°®P'! can
be decomposed as cap position (3) and cap up vector (3).

The reward combines hand-to-object proximity penalties with a strong shaping term for cap separation:

r=02 — ||x€hand - xcap”2 - ||37rhand - xbottle”Q + 30 beottle - xcap”2-

Here the first two negative terms discourage loss of contact, one hand holding the bottle body and the
other gripping the cap, while the large coefficient on ||Zpottle — Zcap|| sharply rewards successful
unscrewing by maximizing the distance between bottle and cap.

Two Catch Underarm: Two Shadow Hands must cooperatively toss and catch two rigid objects
underarm within a fixed horizon of T}, timesteps, without dropping either object. Success requires
precisely timed wrist and finger trajectories to launch each object into free flight and intercept it in
the opposite palm, while maintaining stable hand poses to avoid collision between the hands and
the objects. This task, therefore, emphasizes accurate throw, catch timing, trajectory prediction, and
rapid coordination of dual manipulators under gravity. From the viewpoint of human development,
this task can be performed after becoming an adult.

Privileged information for Two Catch Underarm is defined as follows:

St c R417 _ [SRH,t’ SLH,t’ Sobject l,t’ Sobject 2,t]’
where s°Pie°tt comprises of object pose (position and orientation quaternion; 7), linear velocity (3),
angular velocity (3), goal pose (desired pose; 7), and rotational error between object and goal (4).

At each timestep, the agent receives a reward that sums two exponential pose-error terms, one for
each object:
r= exp[—().Q(oz dyr + drl)] + exp[—0.2(oz dio + d,»g)],

where dy; = ||z,, — x4,||2 is the Euclidean distance between object ¢ and its goal, and d,, =
2 arcsin(clamp(||da;||2, 1)) measures the rotational misalignment. The dual-exponential form
sharply penalizes both translational and rotational errors for each throw-catch pair, driving the
hands to synchronize their toss and intercept trajectories.
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E.5 Hyperparameters

Hyperparameter Value

Max steps of an episode 1000 (MetaDrive), 50 (SN), 60 (MT), 200 (MQE), 400 (Bi-DexHands)
Total timesteps 10% (MetaDrive), 2 x 10° (Robotarium), 107 (MQE)
The number of multi-threads 16 (MetaDrive), 32 (Robotarium), 250 (MQE and Bi-hand Dexterous)
Batch size num threads x buffer length x num agents

Mini batch size batch size / mini-batch

Dimensions for communication processor 128

Dimensions for latent 32

Balancing coefficient of interactive loss 0.05

Balancing coefficient of world loss 0.05

The number of heads for communication processor 4

Commitment coefficient 0.1

Value loss Huber loss

Threshold of Huber loss 10.0

Recurrent data chunk length 10

Dimensions for policy [128]

Dimensions for value (128]

Clip coefficient of PPO 0.2

Discount factor 0.99

GAE lamda 0.95

Gradient clip norm 10.0

Optimizer epsilon 107°

Weight decay 0

policy learning rate 3x 1074

value learning rate 3x 1074

Optimizer Adam

RL network initialization Orthogonal

Use reward normalization True

Use feature normalization True

E.6 Baseline Algorithms

This work benchmarks four MARL baseline algorithms. The implementation code adheres closely to
the aforementioned official code as follows.

* MAPPO:

* MAT:

* MAGIC:

e CommFormer:
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https://github.com/PKU-MARL/Multi-Agent-Transformer
https://github.com/CORE-Robotics-Lab/MAGIC
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F Additional Results

F.1 Ablation Study
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Figure 11: Ablation study of latent dimension for MARL. In four testbeds, D = 32 generally leads to the
best or near-best performance.

Figure 11 plots the effect of the interactive world latent dimension Z € R” on coordination
performance across four diverse tasks. We evaluate D = {8, 16, 32, 64, 128, 256, 512} and display
average return with tolerance interval. In all environments, performance rises sharply as D increases
from 8 to 32, peaks or plateaus in the range 32 < D <128, and then degrades slightly at very high
dimensions, suggesting that overly small latent spaces underfit inter-agent and world structure, while
excessively large ones suffer from over-parameterization. Based on these results, we choose D = 32
for all main experiments.

F.2 Training Time

To assess the practical training cost of IWoL, we report wall-clock times for all baselines across repre-
sentative environments. In MetaDrive, Im-IWoL and Ex-IWoL require 8 and 10 hours, respectively,
comparable to MAPPO (8h) and notably faster than MAT (11h), CommFormer (13h), and MAGIC (9h).
In Bi-DexHands, where coordination and contact-rich manipulation increase complexity, Im-IWoL
trains in 13 hours and Ex-IWoL in 17 hours faster than CommFormer (20h) and MAT (18h), and
similar to MAGIC (15h), though MAPPO remains the fastest at 6 hours. A similar pattern emerges
in Gol Tasks, with IWoL variants showing 13 — 17 hours of training time versus 15 — 20 hours
for communication-based baselines, and MAPPO again finishing in 6 hours. These results suggest
that IWoL achieves strong performance with modest additional overhead compared to message-free
methods, and substantially better scalability than Transformer-based communicators.

F.3 Comparison with ICP

Although we claim the differences of fundamental idea between ICP and IWoL in RQS, this subsection
takes into account the following research question: How well Im-IWoL performs compared to
previous Implicit Communication Protocols in robotics frameworks?

Implicit Channel Protocol (ICP), most recent work, enables agents to communicate without a dedi-
cated messaging channel by treating certain observable actions as encoded signals in the environment.
At each time step, an agent chooses between a scouting action u® = P(m) to transmit message
m via a predefined bijection P: M — U?, or a regular action v to affect the environment. Other
agents observe u° in their next local observation and recover m by applying the inverse mapping P .
Through this mechanism, ICP realizes implicit communication as inverse modeling: the behavior
itself becomes the communication signal.

While [67] shows that ICP achieves better performance than other branches, these empirical results
in discrete extensive-form game tasks are based on some assumptions.
* Signal broadcast: When an agent executes u°, the environment inserts that action identifier
into every other agent’s next observation, ensuring universal message delivery.
* Perfect encoding/decoding: There exists a bijective mapping P /P! between messages
M and scouting actions U?, allowing lossless recovery.

These premises rely on perfectly and instantaneously observing every other agent’s actions, an
idealization that is often violated in robotics and other real-world domains.
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Consequently, we extend the ICP module to align with our experiments. First, we introduce a shared
replay buffer that logs every agent’s executed actions to train the encoder and decoder. In other words,
the multiple agents use a homogeneous encoder and decoder module in the execution phase to decode
other agents’ embedded actions. Additionally, we maintain the signal broadcast assumption, that
is, each agent can observe others’ embedded actions as a detectable environmental factor. Lastly,
we adopt the three types of value functions: fully decentralized value function (ICP-Dec), global
value function as the sum of individual value function (ICP-Sum), and global value function as the
monotonic mixing of individual value function (ICP-Monotonic) in the training phase.

Table 4: Performance comparison with ICP. We evaluate the performance of ICP across three variants.

Scenarios Metrics ICP-Dec ICP-Sum  ICP-Monotonic Im-IWoL
Parking Lot Rewards 227.5+30.6  289.5+116.7 391.6+236.2 808.6+51.0
Succ. Rate (%) 15.7+5.3 20.6+8.4 35.6+18.0 63.7+9.8
GolGate Rewards 130.7+91.0  783.3+495.1 710.9+538.2 1390.4+244.6
Succ. Rate (%) 5.8+6.6 70.5+15.5 67.8+22.0 96.443.6
Door Open Outward Rewards 178.2+301  495.5+25.8 518.6+31.0 623.5+7.5
Succ. Rate (%) 7.5+0.6 52.5+12.6 45.0+14.1 95.0+5.8

Table 4 shows the performance comparison between Im-IWoL and ICP variants in three tasks. First of
all, Im-IWoL demonstrates clear superiority compared to ICP. Both ICP-Sum and ICP-Monotonic
consistently exceed the fully decentralized baseline by leveraging structured value decomposition
and state-conditioned mixing to better capture inter-agent dependencies. Monotonic mixing affords
further gains in tasks demanding tight coordination, while the simpler sum-of-values approach already
delivers substantial robustness; in particular, it works better than ICP-Sum in the MetaDrive where
multiple agents share the environment compared to other scenarios. In contrast, the fully decentralized
variant struggles to scale as complexity grows. These results underscore the critical role of principled
value combination in enhancing implicit communication and cooperative behavior.

F.4 Full Training Curve
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Figure 12: Learning curves across four environments. We plot the averaged rewards as a solid line and the
tolerance interval as a shaded area.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction focus on reflecting our contributions and scope.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and future works for this research are discussed in Section 6 and
Appendix ??.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:

Justification: We introduce a novel communication protocol and focus on the framework
and learning process.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide an anonymous git repository in the Abstract. Additionally, experi-
mental details and hyperparameter setup can be seen in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we provide open access to code, but our solution does not require pre-
collected data.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (
) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (
) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We think that we report such details in this manuscript.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use tolerance interval for visualization and standard deviations for Table
results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide such information in the Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics ?

Answer: [Yes]
Justification: Our work does not violate the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide broader impacts as a closing remark in Section
Guidelines:
» The answer NA means that there is no societal impact of the work performed.
* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations

(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: Our work does not have potential issues related to such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide all implementation details and citations for baselines, testbed, and
others if such things are already opened.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets,
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We open a new code-based implementation.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: All workloads in this research are done by authors without crowd-sourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our research is not related to such potential risks.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: Our core method and claim are our own, not LLM-based.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy ( )
for what should or should not be described.
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