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ABSTRACT
Federated learning is a distributed learning framework that takes
full advantage of private data samples kept on edge devices. In
real-world federated learning systems, these data samples are of-
ten decentralized and Non-Independently Identically Distributed
(Non-IID), causing divergence and performance degradation in the
federated learning process. As a new solution, clustered federated
learning groups federated clients with similar data distributions to
impair the Non-IID effects and train a better model for every cluster.
This paper proposes StoCFL, a novel clustered federated learning
approach for generic Non-IID issues. In detail, StoCFL implements
a flexible CFL framework that supports an arbitrary proportion of
client participation and newly joined clients for a varying FL sys-
tem, while maintaining a great improvement in model performance.
The intensive experiments are conducted by using four basic Non-
IID settings and a real-world dataset. The results show that StoCFL
could obtain promising cluster results even when the number of
clusters is unknown. Based on the client clustering results, models
trained with StoCFL outperform baseline approaches in a variety
of contexts.
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1 INTRODUCTION
Federated earning (FL) [18, 25] allows smart devices or institutions
to collaboratively conduct machine learning tasks without violating
privacy regulations. In this way, data collected on mobile phones
and personal computers could be fully utilized by the framework.
Furthermore, these data samples usually contain habits, preferences,
and even geographic information. Hence, the distribution of data
samples among devices in this decentralized system can be quite
heterogeneous. Previous research [11, 13, 18, 27, 28] has revealed
that the heterogeneous distribution of data between FL devices can
cause divergence or slow convergence in the FL training process,
which is referred to as Non-Independently Identically Distributed
(Non-IID) issues.

Clustered federated learning (CFL) [1, 4, 5, 19, 20] is an approach
to address the Non-IID issues by clustering clients with similar data
distributions and learning a personalized model for each cluster. In
this case, the Non-IID issues are negligible within the clusters that
can be solved easily. Typically, the CFL is built on an assumption,

Assumption 1 (Clustered Federated Learning [19]). There exists
a partitioning C = {𝑐1, . . . , 𝑐𝐾 },

⋃𝐾
𝑘=1 𝑐𝑘 = {1, . . . , 𝑁 } (𝑁 ≥ 𝐾 ≥ 2)

of the client population, such that every subset of clients 𝑐𝑘 ∈ C sat-
isfies the distribution learning assumption (i.e., the data distribution
among these clients is similar).

It is assumed that clients in the same group have a similar data
distribution. Hence, FedAvg [18] can thus fit data samples in the
same cluster very well as long as the clustering goal is fulfilled.
Meanwhile, the convergence study of such a CFL pattern is given
in [15]. However, a number of actual limitations are not considered
in existing CFL algorithms for real-world applications. For example,
some CFL algorithms [4, 19, 21] require all clients to participate in
the FL process. However, federated devices are not always online in
real-world applications, especially in cross-device settings. Other
studies [5, 16, 23] necessitate information about the number of
clusters, which is often difficult to get in real-world systems due to
privacy constraints. As a result, incorrectly estimating the number
of clusters may hamper the FL models’ performance. Overall, the
application opportunities for CFL approaches are limited due to
these severe constraints. Therefore, it is necessary to study a flexible
and practical clustered federated learning framework for unknown
and Non-IID data in FL scenarios.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: StoCFL consists of two vital components: stochastic
client clustering and bi-level clustered federated learning. In
Figure 1(a), the distribution extractor Ψ(·) draws local data
distribution representation. Then, the server randomly sam-
ples a subset of clients for each round and merges clients
into clusters based on cosine similarity. Compared with con-
ventional CFL algorithms (in dashed boxes), Figure 1(b) illus-
trates an example with 3 clusters that StoCFL enables cluster
models to improve each other via a global model𝒘.

To this end, we introduce StoCFL, a novel CFL algorithm that
does not require the number of clusters to be known in advance and
allows an arbitrary number of clients to participate in each FL round.
In detail, StoCFL creates a representation of local data distributions
and evaluates the distribution similarity of any two clients via
cosine similarity. Based on this, we implement stochastic federated
client clustering, which solves the client clustering problem in that
only a subset of clients participates in each round. Furthermore,
we propose a bi-level CFL algorithm that enables a knowledge-
sharing scheme to further enhance the model performance. Our
experimental results show that stochastic federated client clustering
can produce promising cluster results on four Non-IID settings and
the real-world dataset FEMNIST, including both cross-device (4,800
clients) and cross-silo settings (20 clients), while the cluster models
trained with StoCFL outperform conventional CFL techniques.

2 STOCHASTIC CLUSTERED FEDERATED
LEARNING

In this section, we provide the details of StoCFL, where the StoCFL
consists of a stochastic federated client clustering algorithm and a
bi-level CFL algorithm. We illustrate the StoCFL in the following
order. Firstly, we build a data extractor function for representing
the local data distribution and empirically prove the effectiveness
of the similarity metric of clients’ local datasets in Section 2.1.
Based on this, we propose a stochastic client clustering algorithm
in Section 2.2. Then, we present the bi-level CFL algorithm to train
better cluster models in Section 2.3.

Notation: We use [𝑅] to denote the set of integers {1, 2, . . . , 𝑅},
∥ · ∥ to denotes the ℓ2 norm of vectors, and | · | to denote the size of a
set. For FL notation, we let 𝑁 be the number of all federated clients.
We use P𝑘 , 𝑘 ∈ [𝐾] to denote the latent data source distribution,

(a) Label distribu-
tion skew

(b) Feature distribu-
tion skew

(c) Label concept
skew

(d) Feature concept
skew

Figure 2: Visualization of the cosine similarity matrix. Let
𝑠 denote the value of x-axis or y-axis in the figures. For the
Figure. (a), 𝑠 indicates the number of the same label between
these two clients. For the Figure. (b), we rotated the data with
36 × 𝑠 degrees. For the Figure. (c), we modified the label 𝑦 =

(𝑦 + 𝑠) mod 10. For the Figure. (d), we use gradients calculated
based on data samples from MNIST (𝑠 ∈ [0, 5)) and Fashion-
MNIST (𝑠 ∈ [5, 10)). Then, we random initialize a linear model
as anchor 𝝍 for the digit recognition task. We calculate the
representation Ψ(·) based on these partitioned datasets and
observe the cosine similarity.

and 𝐾 is the number of data source distributions. We consider each
federated client 𝑖 ∈ [𝑁 ] to have a local data set 𝐷𝑖 .

2.1 Key Observation
The conventional CFL approach is to cluster clients with similar
data distribution. Then, it aims to minimize the following objectives
for each cluster 𝑘 ∈ [𝐾]:

min
𝜽1,...,𝜽𝐾

E𝐷 (𝑘 )∼P𝑘 [ℓ (𝜽𝑘 ;𝐷 (𝑘 ) )],

s.t. C = {𝑐1, . . . , 𝑐𝐾 }, 𝐷 (𝑘 ) = ∪𝑖∈𝑐𝑘𝐷𝑖 ,
(1)

where C denotes client clustering results, and 𝐷 (𝑘 ) denotes the
data samples of all clients in cluster 𝑘 . The federated client clus-
tering results, i.e., the subjective term in Equation (1), determines
the performance of CFL to some extent. Therefore, Equation (1)
motivates that the federated client clustering is a vital component
in CFL.

We design a distribution extractor function Ψ(𝐷) = 𝜕ℓ (𝝍;𝐷 )
𝜕𝝍 ,

which indicates the updated direction toward the local minimum
corresponding for the input dataset 𝐷 , anchor model 𝝍 and loss
function ℓ . We do not optimize the anchor model 𝝍 andmaintain the
loss function ℓ constant across all datasets in our implementations.
As a result, theΨ(·) output can be viewed as a representation of data
distribution corresponding to the input dataset. Based on the find-
ings with Non-IID data [28], we expect datasets with similar data
distributions to provide similar Ψ(·) values. Then, we use cosine
similarity to evaluate the distribution similarity of the two decen-
tralized datasets, i.e., given any two unknown datasets 𝐷𝑖 , 𝐷 𝑗 , the
similarity is determined as: cos(Ψ(𝐷𝑖 ),Ψ(𝐷 𝑗 )) =

Ψ(𝐷𝑖 ) ·Ψ(𝐷 𝑗 )
∥Ψ(𝐷𝑖 ) ∥ ∥Ψ(𝐷 𝑗 ) ∥ .

To better support our assumptions, we implement observation ex-
periments on cosine similarity, as shown in Figure 2, in which
we augment MNIST/Fashion-MNIST dataset and partition them
with varying levels of augmentation (similar with augmentation
described in Appendix A.1). The results reveal a significant differ-
ence in cosine similarity values. As a result, we conclude that Ψ(·)
could represent a local data distribution, and clients with similar
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local data distributions (at both label and feature levels) have higher
cosine similarity.

2.2 Stochastic Federated Client Clustering
Based on the observations, we implement a stochastic federated
client clustering algorithm in this section. In detail, we aim to cluster
federated clients by minimizing the following objective:

min
C

�̃�∑︁
𝑖=1

�̃�∑︁
𝑗=𝑖+1

cos
(
Ψ(�̃� (𝑖 ) ),Ψ(�̃� ( 𝑗 ) )

)
, (2)

where Ψ(�̃� ( 𝑗 ) ) ≜ 1
|𝑐 𝑗 |

∑
𝑖∈𝑐 𝑗 Ψ(𝐷𝑖 ) is the average point for decen-

tralized local datasets of clients in the current 𝑗-th cluster in C, �̃�
denotes the number of clusters and �̃� = |C|. As the larger cosine
similarity indicates the closer distance, minimizing the objective is
to find the best partition C where the representations of current
clusters are far from each other.

At the initialization stage of stochastic federated client cluster-
ing, we treat each client as a single cluster. In other words, the
server maintains a partition set C = {𝑐1, 𝑐2, . . . , 𝑐𝑁 }, where 𝑁 is
the number of clients. For each 𝑐𝑖 ∈ C, we have 𝑐𝑖 = {𝑖} and 𝑖
denotes the client id. Meanwhile, we have Ψ(�̃� (𝑘 ) ) = Ψ(𝐷𝑖 ) for all
𝑘, 𝑖 ∈ [𝑁 ] and �̃� = 𝑁 = |C| at the beginning.

For the federated client clustering process, we greedily decrease
the value of Equation (2) by merging the similar clusters sampled
at each round. We adjust this merging process via a threshold 𝜏 , in-
dicating the minimum cosine similarity that two datasets should be
considered similar. In practice, the Equation (2) can be represented
by a pair-wise cosine similarity matrix𝑀 , where𝑀𝑖, 𝑗 indicates the
cosine similarity between the 𝑖-th and the 𝑗-th clusters in C.

We summarise the stochastic federated client clustering proce-
dure in Lines 4-13, Algorithm 1. For each federated round, the server
would request the local data distribution representation from the
sampled clients (Line 6). Then, the server updates the distribution
representation of clusters (Line 9). Finally, the server merges any
two clusters that satisfy the requirements (Lines 11-13). For each
merging procedure, the current number of clusters �̃� is reduced
by 1. If the federated server samples all clients at the first round,
StoCFL recovers to client-wise agglomerative clustering, with the
metric provided by distribution extractor Ψ(·).

2.3 Bi-level Clustered Federated Learning
In this section, we established a bi-level CFL objective to further
improve conventional CFL approaches. Looking back to the con-
ventional CFL objective in Equation (1), the cluster models are
optimized within the cluster alone, with no inter-cluster knowl-
edge sharing. Although the implicit data distribution may differ
between clusters, we argue that there is certain knowledge that can
be shared by one cluster model to better the other. Based on the ob-
servation, we propose the bi-level CFL objective, which regularizes
the local optimization and improves cluster models via a shared
global model.

In detail, corresponding with the client clustering procedure, the
server maintains a global model denoted by 𝝎 and cluster models
𝜽𝑘 , 𝑘 ∈ [�̃�]. Our method solves a bi-level optimization problem for

all cluster 𝑘 ∈ [�̃�] given by:

min
𝜽𝑘

𝑓𝑘 (𝜽𝑘 ) +
𝜆

2
∥𝜽𝑘 − 𝝎∗∥2, (3)

𝑠 .𝑡 . 𝝎∗ ∈ arg min
𝝎
𝐺
(
𝑓1 (𝝎), . . . , 𝑓𝑁 (𝝎)

)
,

where 𝑁 is the total number of clients, 𝑓𝑖 (·) = E[ℓ (·;𝐷𝑖 )] is empir-
ical loss for the 𝑖-th client, and 𝐺 (·) denotes the global objective
function for the global model 𝝎.

At the initialization stage, we make 𝝎0 = 𝜽1 = · · · = 𝜽𝑁 and
�̃� = 𝑁 . Meanwhile, if any two clusters are merged in the client
clustering, then the server will merge corresponding cluster models.
Hence, the real-time number of clusters �̃� is always the same as
the number of cluster models.

The pseudocode of bi-level CFL is described in Lines 14-23, Al-
gorithm 1. During the training process, the server broadcasts to
sampled clients the global model𝝎 and corresponding clustermodel
𝜽𝑘 . Then, the sampled clients perform several steps of SGD to opti-
mize the cluster model (Line 21) and global model (Line 22) locally
before uploading updated models to the server. The server updates
the global model by aggregating the models from all sampled clients
(Line 17). Then, the server updates the cluster models respectively
(Lines 18-19).

2.4 Discussion
This section goes through the critical components that could affect
the StoCFL. In particular, we discuss the impact of the global model
on the cluster model. Additionally, we explain the clustering and
optimization parameters to clarify the position of StoCFL in global
FL and personalized FL.

Global model 𝝎. In our bi-level optimization objective, the
global model 𝝎 fits the data samples of all clients. Hence, the global
model preserves the knowledge (including distribution and feature
information) of all clients. As a result, using the regularization
term in local cluster model optimization, knowledge from separate
clusters might be transferred to others. Additionally, the clustered
learning process is separated from the global model optimization
process. Hence, StoCFL is free to select the global objective𝐺 (·) [10].
Consequently, the cluster model could inherit the convergence
benefit (e.g., robustness or fairness).

Relation to clusters C. The performance of cluster models
is subjected to the client clustering results. Meanwhile, the client
clustering results �̃�, C depend on the merging threshold 𝜏 . Particu-
larly, no clusters will be merged if 𝜏 = 1. Then, the final number
of clusters will be �̃� = 𝑁 , which will degenerate the optimization
objective function (3) to the personalized FL algorithm Ditto [10].
If 𝜏 = −1, however, all clients will be clustered together. As a result,
the optimization objective degenerates to the global FL algorithm
FedProx [12]. Hence, by altering the clustering threshold 𝜏 , the
StoCFL could achieve an effective balance between global FL and
personalized FL.

Regularization weight 𝜆. The 𝜆 is to adjust the impact of the
global model on cluster models. When 𝜆 is set to 0, the objective
function degenerates into the conventional CFL task that is de-
scribed in Equation (1). As the 𝜆 grows large, it makes the cluster
model reach the global objective function 𝐺 (·). Furthermore, if
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Algorithm 1: Stochastic Clustered Federated Learning
Input: Client set 𝑆 , where |𝑆 | = 𝑁 , initialized cluster

partition C = {𝑐1, . . . , 𝑐𝑁 }, initialized model
𝝎0, 𝜽 = [𝜽1, . . . , 𝜽𝑁 ], anchor 𝝍, threshold 𝜏 and
learning rate 𝜂.

Output: Cluster result C = {𝑐1, . . . , 𝑐�̃� }, cluster models
𝜽1, . . . , 𝜽�̃� , and global model 𝝎

1 ServerProcedure:
2 𝑃 ← ∅
3 for round 𝑡 ∈ [𝑇 ] do
4 Random sample a subset of client 𝑆𝑡 ⊆ 𝑆, |𝑆𝑡 | =𝑚.

// federated client clustering

5 for client id 𝑖 ∈ (𝑆𝑡 ∩ ∁𝑆𝑃) in parallel do
6 Ψ(𝐷𝑖 ) ← GetDatasetRepresentation(𝝍)
7 end
8 𝑃 ← 𝑃 ∪ 𝑆𝑡
9 for 𝑐𝑘 ∈ C do
10 Ψ(�̃� (𝑘 ) ) = ∑

𝑖∈𝑐𝑘 Ψ(𝐷𝑖 )
11 end
12 Obtain cosine similarity matrix𝑀 following

Equation 2.
13 for𝑀𝑖, 𝑗 in𝑀 do
14 if 𝑀𝑖, 𝑗 > 𝜏 then
15 𝑐𝑖 ← 𝑐𝑖 ∪ 𝑐 𝑗 , C ← C/𝑐 𝑗
16 end
17 end

// clustered federated learning

18 for client id 𝑖 ∈ 𝑆𝑡 in parallel do
19 Let 𝑘 denote the index of the cluster and client

id 𝑖 ∈ 𝑐𝑘 .
20 𝝎𝑖𝑡 , 𝜃

𝑖
𝑘
← ClientProcedure(𝝎𝑡 , 𝜽𝑘 )

21 end
22 𝝎𝑡+1 ← Aggregate( [𝝎𝑖𝑡 ]), 𝑖 ∈ 𝑆𝑡
23 for 𝑐𝑘 ∈ 𝐶𝑡 and indexed by 𝑘 do
24 𝜽𝑘 ← FedAvg( [𝜽 𝑖

𝑘
]), 𝑖 ∈ 𝑐𝑘

25 end
26 end
27 ClientProcedure(𝝎, 𝜽𝑘 ):
28 𝜽 𝑖

𝑘
← 𝜽𝑘 − 𝜂

(
∇𝑓𝑖 (𝜽𝑘 ) + 𝜆(𝜽𝑘 − 𝝎)

)
29 𝝎𝑖 ← 𝝎 − 𝜂∇𝑓𝑖 (𝝎)
30 return 𝝎𝑖 , 𝜽 𝑖

𝑘

𝜆 = 0, 𝜏 = −1, StoCFL recovers to FedAvg. The impacts of 𝜆 are
further studied in Table 5, Section A.2.

Limitations. The proposed Algorithm 1 induces additional but
necessary computation. For the server side, we require to compute
a similarity matrix of clients, where the computation complexity
is O(�̃�2𝑑). It also costs each of the clients to compute the local
distribution representation vector once and an additional local
training procedure for updating the global model𝜔 . Besides, despite
this paper does not directly provide convergence guarantees, it can
be obtained from literature [10, 15].

3 EXPERIMENT EVALUATION
In this part, we assess the performance of StoCFL using four basic
Non-IID settings and the real-world dataset FEMNIST. Our exper-
iment investigation includes federated client clustering and CFL
evaluation. Furthermore, we discuss the effect of StoCFL hyper-
parameters. In the end, we demonstrate the application inference
ability of StoCFL and study its generalization ability to unseen
clients. The experiment is developed using the open-source FL
framework [26].

3.1 Experiment Setup
Baselines. We compare the IFCA [5] and CFL [19] under different
Non-IID settings. Before that, we first recall the details of the CFL
techniques. IFCA [5] takes an input of the assumption number
of cluster �̃� . Then, the server initializes �̃� different models for
each cluster and broadcasts them to clients for each round. The
clients will optimize the specific model, which achieves the lowest
forward loss on the local dataset. Clients upload the updated model
to the server. The server would aggregate the updated �̃� models in
the same cluster following FedAvg. CFL [19] monitors the model
updates of all clients for each round. In the beginning, all clients are
in the same cluster. Then, the server will bi-partition clients into
two clusters when certain conditions are satisfied. Particularly, The
CFL server would recursively run the above procedures in the same
cluster till the partition conditions are no longer satisfied (client
clustering finished).

Settings. We compare the baseline algorithms respectively using
identical experimental conditions as described in their study. The
MNIST task model is a linear classification model with a hidden
layer of 2048 units, and the CIFAR10 taskmodel is a convolution neu-
ral network model with two convolutional layers followed by two
fully connected layers. We execute five runs for each experiment,
each with a different random seed. We also provide the average
test accuracy and standard deviation. Without loss of generality,
we initialize model 𝝍 = 𝝎0 for the distribution extractor function
Ψ(·) in experiments, and the loss function ℓ is the cross-entropy
loss for the classification task.

3.2 Comparison Experiment
Experiments in IFCA setting. Following the setting of IFCA, we
create the Rotated MNIST and Rotated CIFAR10 datasets. Firstly,
We rotated the MNIST data samples by 0, 90, 180, and 270 degrees,
resulting in cluster number 𝐾 = 4. Then, we randomly partition
datasets into 𝑁 = (4800, 2400, 1200) clients, and each client has
|𝐷 | = (50, 100, 200) data samples. For the configuration of MNIST
tasks, We run 100 federated communication rounds for the Rotated
MNIST setting. Each client performs 5 epochs of local SGD with
full batch size and the learning rate 𝜂 = 0.1. Besides, the Rotated
CIFAR10 is created similarly with 0 and 180 degrees of rotation. We
run 200 federated communication rounds for the Rotated CIFAR set-
ting. Each client performs 5 epochs of local SGD with a local batch
size is 50 and the learning rate 𝜂 = 0.1. For the hyper-parameters
of StoCFL, the stochastic client clustering threshold 𝜏 = 0.5, and
the optimization parameter 𝜆 = 0.05.

We highlight that the original experiments in IFCA report a full
client sample rate in MNIST and a client sample rate of 10% in
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Table 1: Test accuacies(%)± std.

Rotated MNIST, K=4 Rotated CIFAR, K=2

𝑁 , |𝐷 | 4800, 50 2400, 100 1200, 200 200, 500

Sample Rate 10% 100% 10% 100% 10% 100% 10% 100%

FedAvg 95.72±0.13 96.10±1.26 95.32±0.16 96.00±1.31 94.96±0.11 95.72±1.60 48.26±0.66 47.98±1.73
FedProx 76.45±0.07 76.47±0.08 77.40±0.09 77.48±0.08 77.82±0.07 77.90±0.09 47.17±0.35 47.15±0.36
Ditto 65.05±0.05 73.60±0.05 73.93±0.11 79.71±0.05 79.38±0.08 83.96±0.03 46.91±0.38 46.61±0.39
IFCA �̃�=2 84.42±1.05 84.98±0.28 85.25±0.94 84.64±2.54 86.12±0.78 84.37±4.40 50.62±1.86 49.83±2.79
IFCA �̃�=4 91.74±0.02 90.43±2.71 91.39±1.24 90.75±2.48 91.00±1.44 88.69±2.83 50.80±1.69 51.40±2.00
IFCA �̃�=6 91.74±0.03 91.65±0.12 91.94±0.13 91.99±0.04 92.15±0.07 92.17±0.04 51.04±0.40 50.63±1.85
StoCFL 97.00±0.04 97.36±0.38 96.89±0.02 97.4±0.35 96.71±0.04 97.40±0.38 52.84±0.74 54.99±0.66
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Figure 3: Robustness comparison of
different federated learning meth-
ods with various sampling rates.
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Figure 5: Clustering Results of StoCFL on
FEMNIST.

CIFAR10. For a fair comparison, we choose different sample rates
for both MNIST and CIFAR10 tasks. In addition, we compare to
FedAvg, FedProx, and Ditto to demonstrate the improvement of
StoCFL. The performance results are shown in Table 1. According
to the results, StoCFL outperforms IFCA in most cases. The global
baseline performance is worse since the global model tries to fit all
data samples from all distributions. More importantly, we observe
that IFCA fails to cluster clients from different data distributions
in MNIST experiments, where a particular model may dominate
another model from the beginning. That is, if a model fits two
distributions well in the first few rounds, then this model will
dominate another model, making it no chance to fit the expected
distribution (no clients will update this model). Hence, we argue that
IFCA depends on model initialization to some extent. Meanwhile,
previous studies [15, 24] on the heterogeneity of FL observe a similar
phenomenon in the IFCA algorithm.

We study the effect of client sample rate on StoCFL with the
Rotated CIFAR10 setting, where the results are depicted in Figure 3.
The performance curve of StoCFL is stable and better with different
settings of the sample rate. Hence, the results reveal that StoCFL is
robust and flexible with the proportion of client participation.

Experiments in CFL setting. Following the setting of CFL,
we conduct experiments on the Shifted MNIST and the Shifted
CIFAR-10 dataset [7]. In this case, datasets are partitioned into
𝑁 = 20 clients, each belonging to one of 𝐾 = 4 clusters. The labels

Table 2: Test accuracy(%)± std

Shifted MNIST Shifted CIFAR

𝑁 , |𝐷 | 20, 9600 20, 8000

FedAvg 24.44±0.03 13.01±2.48
IFCA 98.11±0.03 54.05±0.59
CFL 98.20±0.02 55.23±1.02
StoCFL 98.14±0.01 55.42±1.42

of each client data are modified by randomly shifted labels, i.e.,
𝑦 = (𝑦 + 𝑠)%10, 𝑠 ∈ {0, 3, 6, 9}. For a fair comparison, we let all
clients participate in StoCFL in this part. Additionally, we also
conduct IFCA on this setting for comparison. The performance
is shown in Table 2. We obtain a close model performance in the
setting of CFL, however, the accuracy curve of StoCFL is better in
most training rounds (shown in Figure 4). Besides, the CFL requires
full client participation for every round to bi-partition the clients at
a proper stage. In contrast, StoCFL supports an arbitrary proportion
of client participation, which reveals the flexibility of StoCFL.

Real-world dataset evaluation. We provide the additional ex-
perimental results on the real-world dataset FEMNIST [3], which
is proposed by LEAF [2]. It is a realistic FL dataset where the data
samples on a single client are the handwritten digits or letters
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from a specific writer. Besides, There are 3,597 clients in FEMNIST,
and the number of data samples among these clients is different.
Hence, this setting could be considered a hybrid Non-IID scenario.
Although there are no clear clusters for FEMNIST clients, the writ-
ing style of different people may be clustered. For the model, we
use a neural network with two convolutional layers, with a max
pooling layer after the convolutional layer, followed by two fully
connected layers. We also added a dropout ratio of 0.5 between
the convolutional layer and the fully connected layer. The network
parameters initialization follows Xavier [6]. We run 100 rounds of
FL with 5% clients sampled per round. We also evaluate IFCA and
CFL on FEMNIST for comparison. The final results on FEMNIST
are reported in Table 3.

The results indicate that StoCFL achieves better performance on
FEMNIST, compared with IFCA and CFL. Furthermore, we highlight
that CFL consumes more resources as it requires the full partici-
pation of clients. For the client clustering results, we observe that
StoCFL clusters FEMNIST clients into two main clusters (shown in
Figure 5), i.e., FEMNIST consists of two implicit data-generating
distributions. Importantly, previous studies [5, 17] on FEMNIST
draw the same conclusion, which proves the StoCFL correct. In
all, the real-world dataset evaluation results reveal the ability of
StoCFL to handle non-synthetic datasets, and further indicate the
practical value of StoCFL.

Table 3: Test accuracy(%)± std on FEMNIST.

IFCA �̃�=2 �̃�=3 CFL FedAvg

73.11±0.92 69.11±2.49 79.64±0.37 86.27±0.11

StoCFL 𝜏=0.55 𝜏=0.60 𝜏=0.65

90.92±0.02 90.71±0.04 90.23±0.20

3.3 Cluster Inference and Generalization
In this section, we further explain the advantages of StoCFL for
practical applications. First, we demonstrate the ability of StoCFL to
infer newly joined clients, which reveals that StoCFL could handle a
varying FL system. Based on the inference ability, we further study
the generalization performance of StoCFL in the FEMNIST setting.

Cluster inference for newly joined clients. StoCFL is flexible
with newly joined clients. In other words, the StoCFL server could
determine which cluster to join for a new coming client. Further-
more, StoCFL is adaptable in terms of inferring a newly joined
client during or after the training process. Consider a newly joined
client with a local dataset �̂� that reports the local representation
Ψ(�̂�) to the server. Then, the server could then use a few steps to
determine the target cluster:

(1) Calculate the candidate cluster with the closest distance

𝑑 = arg max cos(Ψ(�̂�),Ψ(�̃� ( 𝑗 ) )), 𝑗 ∈ [�̃�],

and record the candidate cluster id 𝑐 .
(2) If 𝑑 ≥ 𝜏 , then assign the client to the cluster 𝑐 . Otherwise,

the server assigns the client to a new cluster marked by �̃� +1,
�̃� = �̃� + 1, and let 𝜃

�̃�
= 𝜃𝑐 .

We emphasize that if the client is unable to join any existing
cluster, the server should assign a cluster model with the closest
cluster distribution. As a result, the cluster model could be learned
from good initialization during the training process. Furthermore,
once the FL training process is finished, we could use the closest
model to predict data samples from new clients.

Table 4: Generalization performance (%) on FEMNIST

Method FedAvg CFL IFCA StoCFL
Test Accuracy 85.93±0.16 79.78±0.28 74.82±0.49 91.00±0.05
Unparticipation 86.70±0.22 73.24±0.99 75.78±0.45 91.06±0.05

Generalization to unseen clients. The experiments in this
section are carried out in the FEMNIST environment in order to
evaluate the generalization performance of cluster models. In par-
ticular, 1,079 clients (30%) were selected as test clients who did not
participate in the FL process. Only 2,518 clients (70%) are participat-
ing in the CFL process in this case. Then, using this configuration,
we run StoCFL, CFL, and IFCA to infer the cluster of unparticipated
clients using their training data samples. As a result, we report in
Table 4 the accuracy of test data samples from participated and
unanticipated clients. According to the results, StoCFL achieves
better generalization performance while preserving higher test
accuracy.

4 CONCLUSION
In this paper, we proposed a novel CFL algorithm StoCFL, which
consists of stochastic client clustering and bi-level CFL algorithms.
Our study demonstrates that StoCFL could cluster federated clients
with different unknown distributions and train better-generalized
models. Besides, StoCFL is flexible and robust with real-world appli-
cations, especially in a varying FL system. Furthermore, the results
of intensive experiments have shown the superiority of the pro-
posed algorithms.
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A DISCUSSION AND ADDITIONAL
EXPERIMENTS

A.1 Data Partition & Additional Experiments on
Client Clustering

We evaluate the stochastic federated client clustering algorithm on
theMNIST [8] and Fashion-MNIST [9].We recall that theMNIST/Fashion-
MNIST dataset has 60,000 training samples and 10,000 test samples
with ten classes. To simulate an FL environment where the data
distributions among clients are different, we augment and partition
these datasets as follows.

• Pathological MNIST [18]: we sort the data samples by
labels and split them into {{0,1,2},{3,4},{5,6},{7,8,9}} (4 clusters).
Then we randomly partition the dataset into 100 clients for
each cluster, resulting in 400 clients with 𝐾 = 4. We refer to
it as Label distribution skew.
• Rotated MNIST [14]: we augment MNIST by rotating im-
ages with 0, 90, 180, and 270 degrees, resulting in 𝐾 = 4
clusters. We randomly partition the Rotated MNIST of each
degree into 100 clients. This scenario is Feature distribution
skew.
• Shifted MNIST [19]: we modify the label of each sample
by adding shift level 𝑠(i.e., 𝑦𝑠 = (𝑦 + 𝑠)%10, 𝑠 ∈ 0, 3, 6, 9) and
partition dataset of each shift level into 100 clients. Hence,
this case shall be Label concept skew.
• Hybrid MNIST: we partition MNIST and Fashion-MNIST
into 100 clients, resulting in 200 clients and 2 clusters. The
label across clients is the same (𝑦 ∈ [10]), but the feature
domain is different. Therefore, this case is Feature concept
skew.

In experiments, we randomly initialize an anchor model𝜓 and
choose the cross-entropy loss as ℓ for the classification task. Based
on that, we obtain all representation vectors using Ψ(·) and display
them using t-SNE [22] visualizing. We conducted 50 rounds of the
proposed stochastic federated client clustering procedure, where
only 10% of clients are randomly sampled each round. The visual-
ization results are shown in Figure 6(a). The graph with grey points
depicts the visualization results of distribution representation vec-
tors. Furthermore, clear clusters are shown from the representation
vectors captured by t-SNE, which further proves that Ψ(·) could
extract and represent the local data distributions. Besides, an addi-
tional clustering status curve is depicted in Figure 6(b). The client
clustering results demonstrate that our federated client clustering
could deal with different Non-IID scenarios.
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Figure 6: Illustration of client clustering. In Figure (a), the
first row is the t-SNE results on all [Ψ(𝐷𝑖 )], 𝑖 ∈ [𝑁 ], where
each point denotes the data distribution of the dataset from
each client. The other row is the clusters at communication
round 𝑇 = {5, 10, 40}, which are colored by StoCFL. In Figure
(b), we depicted the overall number of clusters and the value
of the clustering objective in Equation 2 at each communica-
tion round.

A.2 Impact of Hyper-parameters
This section discusses the influence of regularization weight 𝜆 on
model performance. Then, we illustrate the impacts of clustering
threshold 𝜏 on clustering results. Based on the results, we provide
insights about the tuning of hyper-parameters when deploying
StoCFL on applications.

Effect of 𝜆. We demonstrate the effect of 𝜆 via experiments on
Pathological-MNIST, Rotated-MNIST, Shifted-MNIST, and Hybrid-
MNIST settings. We run 50 communication rounds of StoCFL with
𝜆 = {0, 0.01, 0.05, 0.5, 1, 10}, and report the test accuracy of the
global model and cluster models. The global accuracy is the perfor-
mance of the final 𝝎 on all augmented test sets, while the contents
of other columns are the average performance of cluster models.
The results are summarized in Table 5.

We note that 𝜆 = 0 indicates the conventional CFL with correct
client clustering results. In comparison, the results with 𝜆 > 0 prove
that StoCFL improves the cluster model’s performance by intro-
ducing useful knowledge from other clusters via the regularization
term. For instance, the global accuracy results of Rotated-MNIST
and Shifted-MNIST are distinct, while the cluster models are en-
hanced by the regularization term with 𝜆 = 0.05. Besides, compared
with the conventional CFL results (𝜆 = 0), StoCFL is better.

Furthermore, given the impacts of decentralized data distribu-
tions in these four settings are different, the value of 𝜆 where the

cluster models achieve the best accuracy is not the same. Hence, we
conclude that the best 𝜆 relies on the real scenario of Non-IID data.
In the real-world training process of StoCFL, the 𝜆 could be adjusted
dynamically during the training process. Besides, we could refer
to [10, 12] for the best strategies for choosing 𝜆. We will further
study the relation between 𝜆 and the Non-IID data in future work.

Table 5: Effect of 𝜆. Test accuracy (%).

MNIST Global StoCFL, 𝜆

10 1 0.5 0.05 0.01 0

Pathological 92.17 89.28 86.89 83.49 37.83 24.12 24.05
Rotated 92.65 62.06 94.88 95.28 95.86 94.20 92.25
Shifted 24.46 32.69 92.36 93.85 95.12 93.80 92.22
Hybrid 92.50 92.26 92.75 92.77 92.69 91.99 90.11

Effect of 𝜏 . We demonstrate the effects of 𝜏 on client clustering
with a hybrid Non-IID setting combination. In this part, we follow
the partition strategies described in Section A.1. Firstly, we create
Rotate-MNIST by 0,180 degrees of rotation and marked them with
R0, R180. Then, we pathologically partition (marked by P1, P2, P3,
P4) each of them into 200 clients. In this case, we have 400 clients in
total, where the client data distributions are 2 clusters in feature dis-
tribution (rotation degree), and 4 clusters in label distribution. From
the overall perspective, there are 8 clusters in both label and feature
distribution. We conduct the stochastic federated client clustering
procedure with different 𝜏 on this setting. In our experiments, we
observe that the clustering results vary with the value of 𝜏 . Then,
we depict the representative results via t-SNE in Figure 7 and color
the points according to the clustering results.
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Figure 7: The value of 𝜏 decides the clustering focus.

The results indicate that the value 𝜏 determines the focus of
the clustering algorithm. For instance, 𝜏 > 0.76 in this case, the
clustering algorithm will cluster clients only when their feature
distribution and label distribution are similar. In contrast, 𝜏 < 0.67
makes the clustering algorithm focus on the label distribution while
ignoring the differences in feature level. Hence, a higher value of
𝜏 decides the client clustering in a more fine-grained way. More
importantly, we emphasize that StoCFL is robust to the client clus-
tering results as shown in Table 3. For a further relation between
the clustering granularity and the threshold 𝜏 , we will study it in
future work.
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