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Abstract
Programmatic representations constitute policies,
reward functions, environment models, and skill
libraries for autonomous agents. However, their
practical value hinges on large language models
(LLMs) that can understand and reason about
code, not merely generate it. A crucial aspect
of this reasoning is the ability of LLMs to predict
the outcome of the code (or “execute” it), a critical
yet less developed area. Improving this capability
is essential for verifiable policies, self-auditing
reward functions, and debuggable environment
models within program-centric agents.

To address this, we propose ET-CoT (Execution
Trace Chain of Thought), an approach where
LLMs learn to generate a detailed and systematic
program execution trace as a chain of thought to
predict program outcomes. Taking Python as an
example, we designed a program-execution trace
format inspired by recent theoretical advances.
Next, we developed a new Python interpreter
called PyTracify, which outputs these traces dur-
ing execution. We then generated a large number
of traces and fine-tuned an LLM using them. This
ET-CoT approach allows the LLMs to execute
Python programs consistently by generating the
trace as a CoT. Specifically, our fine-tuned model
outperforms other models of comparable size on
code execution benchmarks such as CRUXEval-O
and LiveCodeBench.

1. Introduction
In recent advancements within large language model (LLM)
development, performance on code generation tasks has
improved remarkably, reaching notably high level of profi-
ciency. However, a significant challenge persists concerning
predicting the actual outcomes of code. For humans, trac-
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ing program instructions sequentially and simulating their
behavior to predict execution results is often simpler than
writing the code itself and can even be considered a founda-
tional prerequisite. This highlights a pronounced difference
between the current capabilities of AI and human cognition.
Such a discrepancy suggests that LLMs may not yet pos-
sess a deep, genuine understanding of program execution
principles or may lack the robust step-by-step reasoning
abilities that enable humans to logically deduce outcomes
by meticulously following each operational stage.

Recent theoretical work indicates that the design of a chain
of thought (CoT) is essential for LLMs to execute complex
processes, such as programs accurately. Recent theoretical
research suggests that by employing CoT, autoregressive
transformers can, in principle, attain computational capabil-
ities. Conversely, it has been shown that without CoT, the
computational power of transformers is limited to highly
restricted classes, such as uniform TC0. Therefore, the ca-
pacity to generate an appropriate CoT that corresponds to
each computational step of a program, and scales in length
with the computational complexity, is considered indispens-
able for LLMs to achieve reliable program execution.

To address this, we propose ET-CoT (Execution Trace Chain
of Thought), an approach where LLMs learn to generate a de-
tailed and systematic program execution trace as a chain of
thought to predict program outcomes. This method involves
the LLM generating a detailed “execution trace,” which de-
scribes the program’s execution process, to serve as its CoT.
First, based on theoretical considerations, we designed an
execution trace format that represents each program step in
a detailed and unambiguous manner. Next, we developed
PyTracify, a new Python interpreter capable of outputting
traces conforming to this designed format while executing
Python programs. Subsequently, leveraging PyTracify, we
constructed an extensive dataset composed of Python codes,
their corresponding execution traces, and the final outputs,
derived from a diverse range of collected Python programs.
This dataset was then utilized to fine-tune an LLM. Through
this training, the LLM learns to generate an execution trace
as a CoT and then predict the final output based on this
generated trace.

The performance of the LLM fine-tuned with our ET-CoT
was evaluated on standard code execution benchmarks,
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Figure 1: Example of Python code and its trace.

Code:
def fibonacci(n):

if n <= 1:
return n

return fibonacci(n-1) + fibonacci(n-2)

fibonacci(1)

PyTracify Trace:
0 Statement
1 FunctionDef def fibonacci(n):
0 Statement
1 Expr fibonacci(1)
2 Call fibonacci(1)
2 CallArg0 1
3 Constant 1
2 Statement
3 If if n <= 1:
4 Compare n <= 1
4 CompareLeft n
5 Name n = 1
4 CompareRight 1
5 Constant 1
4 CompareResult 1 <= 1 = True
3 IfCond True
3 Statement
4 Return return n
5 Name n = 1
2 Call fibonacci(1) = 1

namely CRUXEval-O and LiveCodeBench (LCB-Exec).
The results demonstrated that our ET-CoT model surpassed
the performance of existing models with comparable param-
eter sizes. These findings underscore the effectiveness of
our ET-CoT approach.

Contributions. 1⃝ We proposed a novel approach, termed
Execution Trace Chain of Thought (ET-CoT), which in-
volves generating detailed execution traces as CoT to en-
hance the ability of LLMs to comprehend programs and
predict their execution outcomes. 2⃝ To implement this
approach, we designed a systematic execution trace format.
3⃝ We developed PyTracify, a Python interpreter that out-

puts execution logs conforming to this trace format. 4⃝
Leveraging PyTracify, we constructed a large-scale train-
ing dataset comprising over 160,000 samples. 5⃝ Through
these contributions, we experimentally demonstrated a sub-
stantial improvement in the program execution capabilities
of LLMs.

2. Method
2.1. Implications from Theory of Computation

Recent theoretical work has shown, under a set of assump-
tions, that an autoregressive transformer is computationally
universal (i.e., Turing-complete) (Schuurmans et al., 2024),
while another study, working under different assumptions,
demonstrates that an autoregressive transformer can per-

form the computations in the complexity class P (Merrill &
Sabharwal, 2024). This is a positive result, suggesting that,
in a CoT setting, a real LLM could in principle “become a
computer,” i.e., understand and execute programs. However,
the result is purely theoretical: it relies on several idealised
(and arguably unrealistic) assumptions. Real-world LLMs
are trained by gradient descent under practical constraints,
so whether such universality can ever be achieved in practice
remains an open question.

Conversely, there are negative, upper-bound results show-
ing that, without CoT, an autoregressive transformer is far
from computationally universal (Merrill & Sabharwal, 2024;
2023). Specifically, without CoT, its computational power is
bounded above by uniform TC0. This insight highlights the
crucial role of CoT design if we want an LLM to “think like
a computer” (for example, to run programs). Trying to force
the model to perform computations that exceed TC0 in zero
or a constant-length CoT will inevitably fail. Therefore, an
LLM that can execute programs consistently and reliably is
likely to need to be able to emit CoT traces whose length
grows at least proportionally to the required computational
effort (i.e., the number of computation steps).

2.2. Execution Trace Format

Our goal is to create an LLM that, given a Python program,
can “execute” the program while generating a CoT that
satisfies the conditions above. We call this CoT trajectory
an (execution) trace.

The most crucial aspect in designing an execution trace that
meets the requirements discussed in Section 2.1 is that it con-
tains no leaps and that each step is computationally “easy”
enough for LLMs. We aim to make the trace systematic,
similar to how a human understands a program and simu-
lates its execution. That is, we essentially go line by line
(more precisely, statement by statement), recursively pars-
ing and understanding the program, while simultaneously
evaluating it bottom-up.

Each trace entry consists of a triplet: nest depth, mnemonic,
and operation. The nest depth is included to help LLMs
recognize and reason the state of recursive processes. The
mnemonic primarily represents AST node names. The op-
eration describes what actually happens there (such as the
raw code about to be evaluated, or the action or value that
results from the evaluation). See Figure 1 for an example.

One interesting design point is the handling of memory. To
execute a program, it is necessary to write and read the
values of variables and arrays. From our preliminary ex-
periments, we concluded that it is not required to handle
this explicitly. In other words, for operations like variable
assignments, it is sufficient to simply record that they oc-
curred, just like other entries in the trace. For example, if
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the trace contains a record of writing to a variable a (such
as a=3) the LLM can refer to it and correctly read the latest
value when variable a is next read.

2.3. Implementation of PyTracify

To create a training dataset, we implemented PyTracify, a
Python interpreter that, when given a Python program as
input, executes the program while outputting a trace in the
format of Section 2.2. It is implemented in Python. Parsing
is done using the ast module, and it recursively executes
the program while managing stack frames.

2.4. Dataset Construction

We constructed a comprehensive dataset totaling 160,017
samples by executing Python code snippets with PyTracify
and capturing their execution traces. The primary goal of
this dataset is to train models to predict program outputs
by understanding their step-by-step execution. The format
of each sample in our dataset is inspired by DeepSeek’s
R1 methodology, as illustrated in Table 1. Specifically, the
execution trace generated by PyTracify is enclosed within
<think> and </think> tags, while the final program
output is provided within <answer> and </answer>
tags.

2.4.1. DATASET COMPOSITION

Our dataset is composed of five main sources:

• Nan-Do AtCoder and LeetCode (61,350 samples):
This collection combines 35,685 samples from At-
Coder programming contest problems1 and 25,665
samples from LeetCode problems2 provided by Nan-
Do on Hugging Face. The LeetCode subset underwent
a decontamination process, which is detailed in Sec-
tion 2.4.2.

• APPS (Hendrycks et al., 2021) (44,614 samples): We
incorporated 44,614 samples from the APPS dataset.
This subset was also decontaminated, as described in
Section 2.4.2.

• MBPP (Austin et al., 2021) (1,365 samples): From
the Mostly Basic Python Problems (MBPP) dataset,
we generated 1,365 samples. For problems contain-
ing multiple assert statements, each assertion was
treated as a unique test case, leading to the creation
of distinct data points with corresponding inputs and
outputs.

1https://huggingface.co/datasets/Nan-Do/
atcoder_contests

2https://huggingface.co/datasets/Nan-Do/
leetcode_contests

• PyX (Ding et al., 2024) (13,809 samples): We selected
13,809 samples from the semcoder/PyX dataset
hosted on Hugging Face3.

• Custom Datasets (38,879 samples): To address spe-
cific challenges observed in language models’ code un-
derstanding capabilities, we developed custom datasets.
First, we created a String Function Behavior dataset
(12,000 samples). CruxEval (Gu et al., 2024) highlights
the importance of understanding standard library func-
tions, having constructed its dataset using 69 such func-
tions, 47 of which are string-related. We observed that
LLMs, due to their token-based processing, often strug-
gle with character-level string manipulations. To target
this, we created a dataset focusing on eight commonly
challenging string functions: len, slice, replace,
rpartition, find, join, removeprefix, and
rstrip. For each function, we generated 1,500 sam-
ples by applying it to randomly generated strings with
lengths varying from 3 to 20 characters, resulting in
1, 500×8 = 12, 000 samples. Second, we developed a
Tokenizer Vocabulary Length dataset (26,879 samples).
This dataset primarily focuses on vocabulary items
for which the model initially struggled to correctly
predict the length of a vocabulary token. In our experi-
ments, we utilized Llama3.1-8B-Instruct (Grattafiori
et al., 2024) as the base model, which we fine-tuned
using our PyTracify datasets. Therefore, to better sup-
port this model, we created this specific dataset to
enhance its understanding of token lengths within the
Llama3 tokenizer’s vocabulary. Samples correspond-
ing to particularly challenging vocabulary items were
upsampled.

All of the samples were chosen based on the successful
execution and trace generation by PyTracify, with a timeout
threshold of 5 seconds per execution.

2.4.2. DECONTAMINATION

For our evaluation, we utilized the LiveCodeBench (LCB-
Exec) benchmark (Jain et al., 2024), whose code execution
tasks are constructed from LeetCode problems. Given that
our dataset incorporates samples from APPS (Hendrycks
et al., 2021) and the LeetCode portion of the Nan-Do dataset,
there was a potential for contamination with the LCB-Exec
evaluation set. To mitigate this and ensure a fair assessment,
we performed a decontamination process. Specifically, we
adapted a script from the Open-R1 repository4, employing
an n-gram size of 8, to remove overlapping problems. This
decontamination was applied to both the APPS dataset and

3https://huggingface.co/datasets/
semcoder/PyX

4https://github.com/huggingface/open-r1/
blob/main/scripts/decontaminate.py
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Table 1. The training prompt format for the ET-CoT training
dataset. The user supplies the Python code for execution and any
required standard input values. The assistant then provides the
execution trace (generated using PyTracify), encapsulated within
<think> tags, followed by the code’s final output, encapsulated
within <answer> tags.

You are a highly capable assistant. Your task is to estimate
the output of the given Python code. The reasoning process
and output are enclosed within <think> </think> and
<answer> </answer> tags, respectively, i.e., <think>
reasoning process here</think><answer> output here
</answer> User: <code>code</code>
<input>input</input>.
Assistant:<think>trace</think><answer>output</answer>

the LeetCode samples from the Nan-Do dataset, particularly
targeting problems corresponding to those in LCB-Exec (as
detailed in Sections 3.3 and A.3 of the LCB paper (Jain et al.,
2024)). This step was crucial for an unbiased evaluation of
our model’s performance on LCB-Exec.

3. Experiments
3.1. Setup

Benchmarks. For evaluating program execution reasoning,
we utilize the CruxEval-O benchmark (Gu et al., 2024) and
the code execution task from LiveCodeBench (LCB-Exec
for short) (Jain et al., 2024). Referencing the evaluation
methodology in the SemCoder paper (Ding et al., 2024),
we compared our model against a suite of baseline models:
Code Llama (Rozière et al., 2024), StarCoder2 (Lozhkov
et al., 2024), DeepSeekCoder (Guo et al., 2024), Magi-
coder (Wei et al., 2024), as well as SemCoder (Ding et al.,
2024) itself, all prompted in the benchmark-specified rea-
soning (chain-of-thought) format. Consistent with the Sem-
Coder paper, the inferences for these baseline models—
Code Llama, StarCoder2, DeepSeekCoder, Magicoder, and
SemCoder—follow the original inference settings of each
benchmark. Results are reported with pass@1. Our model
is designed to produce deterministic outputs. Therefore, in
all inference tasks involving our model, we use a temper-
ature of 0 and top-k sampling of 1, as there is no inherent
need to introduce diversity into the outputs. The inference
prompt format consists of the user-provided code and input,
mirroring the “User” portion of the training format detailed
in Table 1. The model is then expected to generate the sub-
sequent reasoning and answer. We evaluate the correctness
by comparing the content within the generated <answer>
tags against the ground truth expected output.

Training. We fine-tuned Llama3.1-8B-Instruct with our
ET-CoT dataset detailed in Section 2.4. It was fine-tuned
for 3 epochs on a single server equipped with 8 NVIDIA
H100 GPUs. We used the AdamW optimizer (Loshchilov &

Table 2. Performance comparison on code execution bench-
marks. All results are reported with pass@1.

Model Size Benchmark
CruxEval-O LCB-Exec

CodeLlama-Python 13B 36.0 23.2
CodeLlama-Inst 13B 41.2 25.7

StarCoder2 15B 46.2 33.6
StarCoder2-Inst 15B 50.9 29.6

CodeLlama-Python 7B 34.0 23.0
CodeLlama-Inst 7B 36.8 30.7
StarCoder2 7B 34.5 26.3
Magicoder-CL 7B 35.5 28.6
Magicoder-S-CL 7B 35.8 30.0

DeepSeekCoder 6.7B 41.2 36.1
DeepSeekCoder-Inst 6.7B 43.2 34.0
Magicoder-DS 6.7B 41.9 38.8
Magicoder-S-DS 6.7B 43.5 38.4
SemCoder 6.7B 65.1 59.7
SemCoder-S 6.7B 63.9 61.2

Llama3.1-8B 8B 11.1 35.4
Llama3.1-8B + ET-CoT 8B 67.6 88.9

Hutter, 2019) with β1 = 0.9, β2 = 0.95, and an ϵ = 1e-8.
We employed a cosine learning rate decay schedule, starting
from an initial learning rate of 2e-5 and decaying to 4e-6.
The training was conducted with a batch size of 64 and a
context length of 8192 tokens.

3.2. Result

As shown in Table 2, Llama3.1-8B + ET-CoT achieved a re-
markably high accuracy of 88.9% on LCB-Exec and 67.6%
on CruxEval-O. This represents a significant improvement
compared to the performance of the baseline Llama3.1-8B
model before fine-tuning.

Furthermore, the proposed model demonstrated superior
results to existing leading code LLMs of comparable size.
Notably, our model surpassed SemCoder, which is also
trained explicitly for code execution prediction. This sug-
gests that the ET-CoT approach significantly enhances the
accuracy and reliability of program execution by LLMs.

4. Conclusions
We introduced ET-CoT, a novel approach that significantly
enhances LLM program execution capabilities by training
models to generate detailed execution traces as a chain of
thought. Our fine-tuned Llama3.1-8B model using ET-CoT
outperformed existing leading code LLMs of comparable
size, demonstrating that this method substantially improves
the accuracy and reliability of program execution by LLMs.

As future developments for this research, we plan to inves-
tigate whether ET-CoT can lead to the acquisition of other
capabilities beyond simple execution.
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