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ABSTRACT

World models, which predict future transitions from past observation and action
sequences, have shown great promise for improving data efficiency in sequen-
tial decision-making. However, existing world models often require extensive
domain-specific training and still produce low-fidelity, coarse predictions, limiting
their usefulness in complex environments. In contrast, video diffusion models
trained on large-scale internet data have demonstrated impressive capabilities in
generating high-quality videos that capture diverse real-world dynamics. In this
work, we present Vid2World, a general approach for leveraging and transferring
pre-trained video diffusion models into interactive world models. To bridge the gap,
Vid2World systematically explores video diffusion causalization, reshaping both
the architecture and training objective of pre-trained models to enable autoregres-
sive generation. Additionally, it incorporates a causal action guidance mechanism
to enhance action controllability in the resulting interactive world models. Ex-
tensive experiments across multiple domains, including robot manipulation, 3D
game simulation, and open-world navigation, demonstrate that our method offers
a scalable and effective pathway for repurposing highly capable video diffusion
models into interactive world models.

1 INTRODUCTION

World models (Ha & Schmidhuber, 2018; Dawid & LeCun, 2023) have emerged as pivotal com-
ponents for sequential decision-making, enabling agents to predict future states and plan actions
by simulating environment dynamics. Despite their success in numerous domains, including game
simulation (Hafner et al., 2020; Alonso et al., 2024), autonomous driving (Wang et al., 2024b),
and robotics (Yang et al., 2024), these models conventionally rely solely on in-domain action-
labeled data, necessitating meticulous and labor-intensive data collection, yet still often yielding
relatively coarse predictions with limited physical realism, constraining their applicability in complex
environments.

To mitigate this data-hungry nature, recent works (Bar et al., 2025; Wu et al., 2024) have drawn
inspiration from the success of foundation models (Bommasani et al., 2021), exploring pre-training
on broader, cross-domain action-labeled data. While this strategy improves data efficiency and
generation quality to some extent, it does not solve the fundamental problem. The high cost of
acquiring any form of action-labeled data persists, and the resulting models still struggle to generate
visuals with high fidelity and realism. This indicates that merely expanding the scope of action-labeled
data is insufficient. A more fundamental paradigm shift is thus imperative to truly unlock the full
capabilities of world models.

We argue that the requisite paradigm shift is to leverage the largest yet most overlooked data source:
internet-scale action-free video data. Abundant, easy to collect, diverse with rich world priors,
these data constitute the most prominent part of the data pyramid for world models (shown in Figure
1). While prior work (Gao et al., 2025) has explored co-training with such data, we highlight a more
direct and cost-efficient path: transferring the physical priors and generative capabilities learned by
video diffusion models (Ho et al., 2020; OpenAI, 2024; DeepMind, 2024) into interactive world
models. This transition from data-level exploitation to model-level transfer not only avoids the
prohibitive cost of training on massive video corpora but also extracts physical priors more smoothly,
as non-causal generative modeling could be inherently easier than its causal counterpart.
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Figure 1: Vid2World repurposes video diffusion models for interactive world modeling. From
the perspective of the data pyramid for world models, it leverages vast pre-trained knowledge from
internet-scale, action-free video data to achieve high-fidelity, action-conditioned generation across
diverse downstream domains with limited interaction data.

Despite profound potential, two significant challenges arise in bridging the gap between passive video
diffusion models and interactive world models, as shown in Figure 2. The first key challenge lies in
enabling causal generation. Standard video diffusion models, designed for full-sequence denoising
with bidirectional context, inherently introduce non-causal temporal dependencies. This makes them
unsuitable for causal rollouts, where future predictions must strictly depend on past information. The
second challenge, equally critical, is enforcing action conditioning. While causalization enables
autoregressive rollout, these models still lack the ability for counterfactual reasoning—predicting
how different actions influence future states. This necessitates injecting fine-grained, frame-level
action signals into the generation process. Especially in diffusion models, despite that classifier-free
guidance (Ho & Salimans, 2021) offers the freedom of balancing sample diversity and fidelity,
extending it to action guidance still requires careful algorithmic and architectural designs.

In this paper, we present Vid2World, a general approach to effectively transform internet-scale
pre-trained video diffusion models into interactive world models capable of autoregressive, action-
conditioned generation. To causalize video diffusion models, we systematically explore and discover
better weight transfer schemes that adapt temporal attention and convolution layers into their causal
counterparts, enabling fine-tuning under a causal training objective (Chen et al., 2024). For action
conditioning, we inject action signals into model inputs at corresponding frames and design an
extended training objective that supports action guidance during diffusion sampling at each frame in
principle. We evaluate Vid2World by transferring an extensively pre-trained, 1.4B-parameter video
diffusion model (Xing et al., 2024) to diverse domains, including robot manipulation (Brohan et al.,
2023), 3D game simulation (Pearce & Zhu, 2022), and open-world navigation (Shah et al., 2022).
Experimental results demonstrate significant improvements over existing transfer approaches as well
as state-of-the-art world models.

To summarize, our contributions are: (1) To the best of our knowledge, we are the first to systemati-
cally explore the problem of transferring full-sequence, non-causal, passive video diffusion models
into autoregressive, interactive, action-conditioned world models. (2) We propose Vid2World, a
general and effective approach for this problem, featuring novel techniques for the causalization and
action conditioning of video diffusion models. (3) State-of-the-art performance of Vid2World across
domains establishes new benchmarks for this critical problem and facilitates future research.

2 RELATED WORKS

Diffusion for World Modeling. Due to the high fidelity offered by diffusion models in image and
video generation, utilizing diffusion for world modeling has garnered growing interest. Prior works
fall primarily into two categories. The first treats world modeling as a conditional image generation
problem, where history observation and action sequences serve entirely as conditions. While these
approaches follow an autoregressive framework and have shown promise in domains such as game
simulation (Alonso et al., 2024; Decart et al., 2024) and navigation (Bar et al., 2025), they typically
rely on a fixed-length context window, limiting their applicability in environments that demand
long-term temporal reasoning. The second category formulates the problem as a full-sequence
video generation task (Yang et al., 2024; Yu et al., 2025; Zhou et al., 2024), often achieving better
temporal coherence between frames. Yet, these models operate on full video segments, precluding
autoregressive rollout, and thus hindering their use in interactive environments.
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Figure 2: Transforming video diffusion models into interactive world models involves two key
challenges: (1) Causal generation: converting full-sequence diffusion models into causal diffusion
models; (2) Action conditioning: adapting causal diffusion models into interactive world models.

Leveraging Foundation Models to World Models. Foundation models (Bommasani et al., 2021),
trained on large-scale and diverse data, have shown revolutionary potential across modalities such as
text (OpenAI et al., 2023; Guo et al., 2025), image (Rombach et al., 2022; Betker et al., 2023), and
video (OpenAI, 2024; DeepMind, 2024). In the text domain, large language models are prompted to
act as world models for spatio-temporal reasoning in agentic tasks (Hao et al., 2023; Gkountouras
et al., 2025; Hu et al., 2025). In the video domain, adapting pre-trained generative models into world
models typically involves architectural modifications. For instance, He et al. (2025) integrate an
action-conditioning module into the generative backbone, while Rigter et al. (2024) introduce an
action-aware adapter to modulate the output of a frozen video model. However, these approaches
often overlook the critical need for interactivity and temporal causality, limiting their applicability in
sequential decision-making and interactive environments.

3 PRELIMINARIES

World Models. A world model is an internal model learned by an agent to model the dynamics of
its environment. This environment is typically formalized as a (discrete-time) Partially Observable
Markov Decision Process (POMDP) (Kaelbling et al., 1998), defined over a tuple (S,O, ϕ,A, p, r, γ).
At each time step t, the agent receives an observation ot = ϕ(st), where st ∈ S is the underlying
state that satisfies the Markov property. Upon taking an action at ∈ A, the next state is sampled
from the transition distribution p : S ×A → ∆(S), i.e. st+1 ∼ p(· | st, at). In the context of world
models, the agent learns to estimate this transition function through history observation and action
sequence: pθ(ot+1|o≤t, a≤t). While world models can be applied to a wide range of observation
modalities, including proprioceptive signals (Yin et al., 2025), text (Wang et al., 2024a; Wu et al.,
2025), 3D meshes (Zhang et al., 2024), and pixel-based inputs (Wu et al., 2024; Zhu et al., 2025),
here we focus on learning in the pixel space, where observations are defined over O = RH×W×3.

Diffusion Models. Diffusion models (Ho et al., 2020; Song et al., 2021a) are highly expressive
generative models that learn to approximate a target data distribution q(x), where x ∈ Rd, by
progressively denoising a Gaussian noise. At its core, the model makes use of two Markov Chains: a
forward process and a backward process, to transport between the noise distribution xK ∼ N (0, I)
and the distribution of interest x0 ∼ q(x). The forward (noising) process is defined as:

q(xk|xk−1) = N (xk;
√
1− βk xk−1, βk I),

where {βk}Kk=0 is a pre-defined noise schedule. Starting from pure noise xK ∼ N (0, I), the learned
reverse (denoising) process aims to recreate x0 ∼ q(x) using the following factorization:

pθ(x
k−1|xk) = N (xk−1;µθ(x

k, k), γk I).

In practice, it is common to reparameterize the objective in terms of noise prediction, i.e., learning to
predict ϵk = (

√
1− αk)

−1xk −√αk µ, where αk ≜ 1− βk and αk ≜
∏k

i=1 αi. This simplifies to
minimizing the mean square loss:

L(θ) = Ek,ϵ,x0 [||ϵ− ϵθ(x
k, k)||2],

where xk =
√
αk x0 +

√
1− αk ϵ and ϵ ∼ N (0, I). Sampling is performed via iterative denoising

through Langevin dynamics: xk−1 ← 1√
αk

(xk − 1−αk√
1−αk

ϵθ(x
k, k) + σkw).
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Video Diffusion Models. In video diffusion models (Ho et al., 2022), the sample x is represented
as a sequence of frames (xkt

t )1≤t≤T , where t denotes the frame index and kt indicates the noise
level at that frame. Conventional approaches (Blattmann et al., 2023) apply one uniformly sampled
noise level across all frames, treating each frame identically within the denoising process. To relax
this constraint, Chen et al. (2024) propose to sample noise levels independently for each frame, i.e.,
kt ∼ U([0,K]) during training. Intuitively, this formulation captures a more diverse set of noise
level combinations across frames during training, opening up new capabilities. At inference time, the
model follows a denoising schedule K ∈ RM×T , where M is the number of denoising steps and each
row Km ∈ RT specifies the per-frame noise levels at step M . By setting kt = 0 for history frames,
kt = K for masked future frames, and progressively denoising the current frame kτ ∈ {K, ..., 0},
the model is capable of autoregressive generation.

4 METHODS

While video diffusion models excel at generating high-fidelity, physically plausible sequences, their
default formulation is fundamentally incompatible with interactive world modeling. Concretely, two
key transformation barriers stand out:

1. Inability of causal generation: Typical video diffusion models generate frames using bidirec-
tional temporal context, allowing future frames to influence the past;

2. Lack of action conditioning: These models are typically conditioned on coarse, video-level
inputs (e.g., text prompts) and lack mechanisms for fine-grained, frame-level action conditioning.

To overcome these transfer barriers, we propose Vid2World with two key modifications, contributing
to a systematic, multi-level framework for converting video diffusion models into interactive world
models, as shown in Figure 2. In Section 4.1, we present the strategy of video diffusion causalization,
which converts non-causal architectures into temporally causal variants compatible with the post-
training objective (Chen et al., 2023), by exploring weight transfer mechanisms to maximally preserve
the representations learned during pre-training. In Section 4.2, we extend the training objective to
enable causal action guidance during inference for step-wise, interactive rollouts.

4.1 VIDEO DIFFUSION CAUSALIZATION

To causalize video diffusion models, modifications are required on both architectures and training
objectives. From an architectural standpoint, while bidirectional temporal modules in standard video
diffusion models, which allow information flow across all timesteps, are effective for full-sequence
generation, they are fundamentally incompatible with autoregressive world modeling, where the
current observation must not depend on future observations or actions. This necessitates architectural
surgery to enforce temporal causality, specifically in the computation and parameters of temporal
attention (HaCohen et al., 2024) or non-causal convolutions (Blattmann et al., 2023; Guo et al., 2024).

Temporal Attention Layers. Non-causal temporal attention layers can be converted into their
causal counterparts by straightforwardly applying causal masks. Since attention operates through dot
products between queries and keys, it is inherently adaptive to variable sequence lengths; therefore,
restricting the receptive field to exclude future frames does not alter the underlying computation of
inter-token relationships. Consequently, this does not mandate parametric modifications.

Temporal Convolution Layers. In contrast, causalizing temporal convolution layers is more
challenging. These layers employ symmetric kernels that aggregate features from both past and future
frames, and simple adaptations may lead to suboptimal utilization of pre-trained kernel weights. To
achieve this, we systematically investigate three different strategies, as detailed below.

A naive approach, which we term Shift Weight Transfer, directly reuses the full pre-trained kernel
{wt}mt=−m by shifting it m steps into the past, resulting in a new causal kernel {w′

t}0t=−2m. While
this preserves all kernel weights, it introduces temporal misalignment: the kernel’s i-th position now
aggregates information at timestep i−m, giving no guarantees of producing similar representations.

An alternative strategy, Masked Weight Transfer, truncates the kernel by retaining only the weights
corresponding to past and present timesteps {wt}0t=−m while setting the rest to zero {w′

t}−m−1
t=−2m ≡ 0.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Temporal Convolution Shift Weight Transfer

-2m -m 0

-m 0 +m

Shift -m
-1 0 1

-2m -m 0

-m 0 +m

Zero-Init

-1 0 1-2 -1 0

Causalization

-m 0 +m -2m -m 0

?
<latexit sha1_base64="XE3L+2YLyxMHv0K2v06IQ+1yUf4=">AAACHnicbVDLSsNAFJ34rPUVdelmsAhuWpJi1WXBjcsK9gFNCJPppB06mYSZiVhDvsSNv+LGhSKCK/0bJ20WtfXAwJlz7uXee/yYUaks68dYWV1b39gsbZW3d3b39s2Dw46MEoFJG0csEj0fScIoJ21FFSO9WBAU+ox0/fF17nfviZA04ndqEhM3RENOA4qR0pJnNpwQqZEfpI+ZZ0MHxbGIHmAdzskWrM5/06qdeWbFqllTwGViF6QCCrQ888sZRDgJCVeYISn7thUrN0VCUcxIVnYSSWKEx2hI+ppyFBLpptPzMniqlQEMIqEfV3CqznekKJRyEvq6Ml9TLnq5+J/XT1Rw5aaUx4kiHM8GBQmDKoJ5VnBABcGKTTRBWFC9K8QjJBBWOtGyDsFePHmZdOo1+6LWuD2vNGERRwkcgxNwBmxwCZrgBrRAG2DwBF7AG3g3no1X48P4nJWuGEXPEfgD4/sXzP6iLg==</latexit>

z1 ⇡ 2z0 � z�1

Local Linear
Extrapolation (p=2)-2

<latexit sha1_base64="l/BKm07S6OBGUP2PJFW555eaKVE=">AAAB83icbVDLSgNBEOyNrxhfUY9eBoPgJWFXfB0DXjxGMA9IlmV2MpsMmZ0dZmYNYclvePGgiFd/xpt/4yTZgyYWNBRV3XR3hZIzbVz32ymsrW9sbhW3Szu7e/sH5cOjlk5SRWiTJDxRnRBrypmgTcMMpx2pKI5DTtvh6G7mt5+o0iwRj2YiqR/jgWARI9hYqTcOsqo3RVU0DrygXHFr7hxolXg5qUCORlD+6vUTksZUGMKx1l3PlcbPsDKMcDot9VJNJSYjPKBdSwWOqfaz+c1TdGaVPooSZUsYNFd/T2Q41noSh7Yzxmaol72Z+J/XTU1062dMyNRQQRaLopQjk6BZAKjPFCWGTyzBRDF7KyJDrDAxNqaSDcFbfnmVtC5q3nXt6uGyUkd5HEU4gVM4Bw9uoA730IAmEJDwDK/w5qTOi/PufCxaC04+cwx/4Hz+AFRWkHo=</latexit>

w�1 � w1

<latexit sha1_base64="BWqAU0qPQiLFx/OZups3Gswqu1k=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBAEIewGX8eAF48RzAOTZZmdzCZDZmaXmVlDWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dYcKZNq777aysrq1vbBa2its7u3v7pYPDpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh8Hbqt56o0iyWD2acUF/gvmQRI9hY6XEUZO7kvDoKvKBUdivuDGiZeDkpQ456UPrq9mKSCioN4Vjrjucmxs+wMoxwOil2U00TTIa4TzuWSiyo9rPZxRN0apUeimJlSxo0U39PZFhoPRah7RTYDPSiNxX/8zqpiW78jMkkNVSS+aIo5cjEaPo+6jFFieFjSzBRzN6KyAArTIwNqWhD8BZfXibNasW7qlzeX5RrKI+jAMdwAmfgwTXU4A7q0AACEp7hFd4c7bw4787HvHXFyWeO4A+czx+nMZAo</latexit>

w0 + 2w1

Transfer Goal (m=1):
<latexit sha1_base64="us3FEvmdNSBhwAVWE5GPVSVuaK0="></latexit>

0X

t=�2

w0
tzt ⇡

1X

t=�1

wtzt

<latexit sha1_base64="x0QjYwcCigxWKsUoHpN1tnZJd5A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcsK9oFtKZn0ThuayQxJRilD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+rF3XmlRvI6inAEx3AKHlxBDW6hDg1gIOEZXuHN0c6L8+58zEcLTr5zCH/gfP4A9LqRAw==</latexit>w

Substitute
<latexit sha1_base64="XE3L+2YLyxMHv0K2v06IQ+1yUf4=">AAACHnicbVDLSsNAFJ34rPUVdelmsAhuWpJi1WXBjcsK9gFNCJPppB06mYSZiVhDvsSNv+LGhSKCK/0bJ20WtfXAwJlz7uXee/yYUaks68dYWV1b39gsbZW3d3b39s2Dw46MEoFJG0csEj0fScIoJ21FFSO9WBAU+ox0/fF17nfviZA04ndqEhM3RENOA4qR0pJnNpwQqZEfpI+ZZ0MHxbGIHmAdzskWrM5/06qdeWbFqllTwGViF6QCCrQ888sZRDgJCVeYISn7thUrN0VCUcxIVnYSSWKEx2hI+ppyFBLpptPzMniqlQEMIqEfV3CqznekKJRyEvq6Ml9TLnq5+J/XT1Rw5aaUx4kiHM8GBQmDKoJ5VnBABcGKTTRBWFC9K8QjJBBWOtGyDsFePHmZdOo1+6LWuD2vNGERRwkcgxNwBmxwCZrgBrRAG2DwBF7AG3g3no1X48P4nJWuGEXPEfgD4/sXzP6iLg==</latexit>

z1 ⇡ 2z0 � z�1

<latexit sha1_base64="vjDeUtGySsNLZXC9avifO9+U7fs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XBjcsK9gHToWTSTBuaSYYko5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk92JsRmGUPZ1O+9WaW3dnQMvEK0gNCjT71a/eQJI0psIQjrX2PTcxQYaVYYTTaaWXappgMsZD6lsqcEx1kM0iT9GJVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010E2RMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LFluAtnrxM2ud176p+eX9Ra6CijjIcwTGcgQfX0IA7aEILCEh4hld4c4zz4rw7H/PRklPsHMIfOJ8/WMKRNA==</latexit>

w0

<latexit sha1_base64="4gpkf9UgxwXcP7jfydtYaQfsvxE=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcsK9oFtKZn0ThuayQxJRqhD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+rF3XmlRvI6inAEx3AKHlxBDW6hDg1gIOEZXuHN0c6L8+58zEcLTr5zCH/gfP4A+UmRBg==</latexit>z

<latexit sha1_base64="x0QjYwcCigxWKsUoHpN1tnZJd5A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcsK9oFtKZn0ThuayQxJRilD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+rF3XmlRvI6inAEx3AKHlxBDW6hDg1gIOEZXuHN0c6L8+58zEcLTr5zCH/gfP4A9LqRAw==</latexit>w <latexit sha1_base64="vjDeUtGySsNLZXC9avifO9+U7fs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XBjcsK9gHToWTSTBuaSYYko5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk92JsRmGUPZ1O+9WaW3dnQMvEK0gNCjT71a/eQJI0psIQjrX2PTcxQYaVYYTTaaWXappgMsZD6lsqcEx1kM0iT9GJVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010E2RMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LFluAtnrxM2ud176p+eX9Ra6CijjIcwTGcgQfX0IA7aEILCEh4hld4c4zz4rw7H/PRklPsHMIfOJ8/WMKRNA==</latexit>

w0

features

kernel
weights

Masked Weight Transfer Extrapolative Weight Transfer
<latexit sha1_base64="x0QjYwcCigxWKsUoHpN1tnZJd5A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcsK9oFtKZn0ThuayQxJRilD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+rF3XmlRvI6inAEx3AKHlxBDW6hDg1gIOEZXuHN0c6L8+58zEcLTr5zCH/gfP4A9LqRAw==</latexit>w <latexit sha1_base64="x0QjYwcCigxWKsUoHpN1tnZJd5A=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XBjcsK9oFtKZn0ThuayQxJRilD/8KNC0Xc+jfu/Bsz7Sy09UDgcM695Nzjx4Jr47rfTmFldW19o7hZ2tre2d0r7x80dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++yfzWIyrNI3lvJjH2QjqUPOCMGis9dENqRn6QPk375YpbdWcgy8TLSQVy1Pvlr+4gYkmI0jBBte54bmx6KVWGM4HTUjfRGFM2pkPsWCppiLqXzhJPyYlVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSSVbgrd48jJpnlW9y+rF3XmlRvI6inAEx3AKHlxBDW6hDg1gIOEZXuHN0c6L8+58zEcLTr5zCH/gfP4A9LqRAw==</latexit>w

<latexit sha1_base64="vjDeUtGySsNLZXC9avifO9+U7fs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XBjcsK9gHToWTSTBuaSYYko5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk92JsRmGUPZ1O+9WaW3dnQMvEK0gNCjT71a/eQJI0psIQjrX2PTcxQYaVYYTTaaWXappgMsZD6lsqcEx1kM0iT9GJVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010E2RMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LFluAtnrxM2ud176p+eX9Ra6CijjIcwTGcgQfX0IA7aEILCEh4hld4c4zz4rw7H/PRklPsHMIfOJ8/WMKRNA==</latexit>

w0 <latexit sha1_base64="vjDeUtGySsNLZXC9avifO9+U7fs=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIvoqsyIr2XBjcsK9gHToWTSTBuaSYYko5Shn+HGhSJu/Rp3/o2ZdhbaeiBwOOdecu4JE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk92JsRmGUPZ1O+9WaW3dnQMvEK0gNCjT71a/eQJI0psIQjrX2PTcxQYaVYYTTaaWXappgMsZD6lsqcEx1kM0iT9GJVQYokso+YdBM/b2R4VjrSRzayTyiXvRy8T/PT010E2RMJKmhgsw/ilKOjET5/WjAFCWGTyzBRDGbFZERVpgY21LFluAtnrxM2ud176p+eX9Ra6CijjIcwTGcgQfX0IA7aEILCEh4hld4c4zz4rw7H/PRklPsHMIfOJ8/WMKRNA==</latexit>

w0

Figure 3: Illustration of weight transfer mechanisms for temporal convolution layers: (1) Shift:
shifts all weights into the past. (2) Masked: retains only past weights. (3) Extrapolative: leverages
local linear feature relationships more in principle(example shown with m = 1, p = 2).

This resembles applying a hard causal mask to the kernel at initialization. Although causality is
enforced, it discards potentially useful information encoded in the future-facing weights.

Finally, we propose a more principled and robust mechanism, Extrapolative Weight Transfer, based
on local linear extrapolation of features along the temporal dimension. Formally, we posit that the
feature at a future timestep zt+k can be linearly approximated over a window of p past timesteps:

zt+k ≈
∑p−1

j=0
γk,j zt−j + βk,

where γk,·,βk are determined by a linear extrapolation from the past p features. Our core principle is
to maximally preserve the output representation of the original convolution, such that the new causal
computation produces a similar result to the original non-causal one:

∑m

i=−m
wizt+i + b =

∑0

j=−2m
w′

jzt+j + b′.

This is achieved by re-distributing the weights {wi}i>0 that originally acted on future frames, back
onto the past part of the kernel, according to the linear feature relationships:

w′
j = 1[j≥−m] · wj + 1[−p+1≤j≤0] ·

∑m

i=1
γi,−jwi, b′ = b+

∑m

i=1
wiβi.

These architectural adaptation strategies are illustrated in Figure 3, with a didactic example of
Extrapolative Weight Transfer for m = 1, p = 2. A detailed mathematical derivation and analysis of
the error bounds are provided in Appendix A.

Training Objectives for Causal Generation. Architectural changes alone are insufficient to enable
causal generation. In this setting, future frames are predicted step by step, conditioned on previously
fully denoised frames, i.e., under noise levels (kt)Tt=1 = (0, 0, . . . , 0, k), k ∈ {0, . . . ,K}. Hence,
the model must be trained to handle these inference-time noise-level distributions. In conventional
video diffusion models, the training procedure follows a homogeneous noise schedule, where all
frames share the same noise level. This limited subset of noise-level combinations makes them
naturally incompetent for noise levels at autoregressive inference. Therefore, it becomes vital to
train the model with different noise levels across frames. Here, we adopt Diffusion Forcing (Chen
et al., 2024), where we sample noise levels to be independent and uniform in different frames,
i.e., kt ∼ U(0,K),∀t. This training scheme exposes the model to the full space of noise-level
combinations in the history frames, thereby enabling flexible and robust causal rollouts.

4.2 CAUSAL ACTION GUIDANCE 1

Causal video diffusion models alone are not yet interactive world models, as they still fall short of
action-conditioned generation. Prior works (Alonso et al., 2024; Bar et al., 2025) primarily explore
integrating action condition at the video level, where the entire action sequence is encoded to a
single embedding, analogous to text embeddings. However, this approach has two major drawbacks:
(a) Lacking the ability to perform fine-grained, frame-level action-conditioned predictions; (b)
Incompatibility with interactive settings, where actions arrive sequentially in an online fashion during
inference. In this section, we introduce both conceptual and methodological advances that extend
action conditioning into causal action guidance, enabling principled steering of the generative process
toward action-aligned predictions in interactive environments.

1While throughout the paper, we primarily use “causal” to denote temporal causality, in this section, our
mechanism implicitly involves interventional causality via action guidance. See Appendix A.5 for details.
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Figure 4: Training and sampling of Vid2World, initialized by architecture causalization. (a) During
training, we add independently sampled noise levels to each frame, as well as randomly drop out
each action with a fixed probability. (b) For autoregressive rollout, we denoise the latest frame while
setting history clean. Action guidance is added for the current action. See Appendix B for details.

Causal Action Injection. To address these limitations, we equip the model with frame-level
conditions through architectural modifications. When predicting ot, the embedding of at−1 is added
to the model’s latent representation at temporal position t. This allows each frame to be conditioned
directly on its preceding action in a temporally aligned manner, opening up the potential for precise,
fine-grained control in interactive settings. Specifically, this is implemented by feeding the action
inputs into the denoising network using a lightweight multi-layer perceptron (Haykin, 1994).

Training and Sampling with Guidance. For more targeted control over the generated dynamics, we
adopt classifier-free guidance (Ho & Salimans, 2021) in our autoregressive action-conditioned setting,
realizing Causal Action Guidance. Classifier-free guidance trains a model to jointly learn a conditional
and an unconditional score function, allowing for amplified guidance at inference time by steering the
output toward the conditional distribution. In our setup, the score function ϵθ([xkτ

τ ], [aτ ], [kτ ]) takes
in a tuple of noised observations [xk

τ ], actions [aτ ], noise levels [kτ ] as input, and the conditioned
variable is the most recent action. Therefore, the model should be capable of capturing both the
conditional score function: ϵcond = ϵθ([x

kτ
τ ]τ≤t, [aτ ]τ<t, [kτ ]τ≤t), as well as its unconditional

counterpart, where the most recent action is masked: ϵucond = ϵθ([x
kτ
τ ]τ≤t, [aτ<t−1,∅], [kτ ]τ≤t).

To achieve this, we extend our training objective by incorporating an action dropout mechanism,
where ãt for each timestep t is independently dropped with a fixed probability p:

L(θ) = E[kτ ],ϵ,[x0
τ ],[ãτ ]

[∑T

t=0
||ϵt − ϵθ([x

kτ
τ ]≤t, [ãτ ]<t, [kτ ]≤t)||2

]
, ãt =

{
∅, w.p. p,
at, otherwise.

At its core, this mechanism compels the model to learn score functions conditioned on all subsets of
the action sequences, including the effect of the immediate action on the predicted transition. This, in
turn, enables classifier-free guidance for sampling via: ϵguided = (1 + λ) · ϵcond − λ · ϵucond, where
λ ∈ R+ is the guidance scale. Intuitively, since the score function represents the gradient of the
log-probability, this linear composition in the score space corresponds to a multiplicative steering
mechanism in the probability space. We formalize this equivalence in the following theorem.
Theorem 4.1 (Causal Action Guidance as Probability Steering). LetHt := ([xτ ]τ<t, [aτ ]τ<t−1)
denote the history context excluding the current action. Under standard score-based formulation„
the proposed score composition is mathematically equivalent to sampling from the following steered
posterior distribution, where ω ∝ (1 + λ) is a fixed constant:

p̃(xt | at−1,Ht) ∝ p(xt | Ht)︸ ︷︷ ︸
History-Consistent Prior

·
(
p(xt | at−1,Ht)

p(xt | Ht)

)ω

︸ ︷︷ ︸
Action Alignment

∝ p(xt | Ht) · p(at−1 | xt,Ht)
ω.

In other words, the guidance term acts as an implicit classifier, steering the generation towards
regions aligned with the user’s most recent action, while preserving the high-fidelity generation
capabilities in sequential modeling. As a result, through varying λ, the model is equipped with the
test-time flexibility of controlling responsiveness towards fine-grained action variations. Ultimately,
this transformation better aligns the model with its core objective of world modeling—not merely to
capture average behavioral trends, but to reason about an agent’s immediate actions. We provide the
detailed proof for Theorem 4.1 in Appendix A.4.
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Table 1: World modeling performance across various domains. Best performances are in bold,
second best are underlined. Dash (-) indicates the metric was not originally evaluated for that dataset.
∗Autoregressive prediction. †Non-autoregressive prediction. ‡One-step prediction.

Model FVD ↓ FID1↓ SSIM ↑ LPIPS ↓ PSNR ↑ DreamSim ↓

Æ Robot Manipulation: RT-1

Pre-trained Base Model† 237.6 5.432 0.712 0.228 20.6 -
Classifier Guidance† 213.1 6.005 0.683 0.250 19.8 -
ControlNet† 27.1 3.248 0.836 0.148 24.5 -
Action-Conditioned† 24.2 2.965 0.852 0.134 25.6 -
Language-Conditioned† 33.7 3.511 0.812 0.177 22.1 -
AVID† 39.3 3.436 0.842 0.142 25.3 -
Vid2World-NAR† 18.7 5.871 0.856 0.140 25.8 0.048
Vid2World∗ 18.5 5.806 0.842 0.152 24.6 0.054

s 3D Game Simulation: CS:GO

DIAMOND-Fast∗ 577.1 115.6 0.449 0.547 18.2 0.2817
DIAMOND-HQ∗ 368.5 87.2 0.447 0.510 18.3 0.2416
Vid2World∗ 106.6 17.5 0.481 0.404 18.7 0.135

☼ Open-World Navigation: RECON

NWM (1B)‡ 31.2 34.1 0.389 0.295 ± 0.002 15.343 ± 0.060 0.091 ± 0.001
NWM + Ego4D (1B)‡ 41.0 34.9 0.361 0.368 ± 0.003 14.072 ± 0.075 0.138 ± 0.002
Vid2World∗ 59.4 42.9 0.481 0.3236 16.10 0.108

Summary. Vid2World transfers full-sequence, passive video diffusion models into autoregressive,
interactive world models. Through video diffusion causalization, we open up the model’s capability
to perform causal generation, and through causal action guidance, we incorporate and strengthen
action signals for interactive settings. Pseudocode of our approach is provided in Algorithms 1 and 2.

5 EXPERIMENTS

We leverage DynamiCrafter (Xing et al., 2024), a state-of-the-art 1.1B U-Net-based video diffusion
model pre-trained on internet-scale videos, as our base model. We evaluate Vid2World across multiple
domains, spanning real-robot manipulation, 3D game simulation, and open-world navigation. Results
show that the transferred models can not only achieve high-fidelity video predictions but also support
downstream tasks in decision-making, showcased by real-to-sim policy evaluation.

5.1 VID2WORLD FOR ROBOT MANIPULATION

Robot manipulation is an ideal test for world models, demanding action-conditioned predictions that
are both visually realistic and causally faithful under real-world physical constraints.

Setup. We utilize the RT-1 dataset (Brohan et al., 2023), a collection of real-world robotic experi-
ences spanning diverse manipulation tasks such as picking, placing, and drawer operation. Our base
model under extrapolative weight transfer is post-trained for 100k gradient steps (∼ 7 days on 4×
A100 GPUs), with two inference variants: (1) Vid2World-NAR, which follows conventional video
diffusion models and baseline methods by denoising all frames simultaneously in a non-autoregressive
manner, under homogeneous noise levels; and (2) Vid2World, which denoises frames autoregressively
with proposed action guidance. Evaluation uses standard video generation metrics, including FVD
(Unterthiner et al., 2018), FID (Heusel et al., 2017), SSIM, PSNR, LPIPS (Zhang et al., 2018), and
DreamSim (Fu et al., 2023). Implementation details can be found in Appendix C.3.1.
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Baselines. We compare against a variety of baselines introduced by Rigter et al. (2024) that build
upon the same base model but utilize different transfer approaches, including Action-Conditioned
Fine-tuning, Language-Conditioned Fine-tuning, ControlNet (Zhang et al., 2023), Classifier Guidance,
and AVID (Rigter et al., 2024). Details are shown in Appendix C.3.2.

Results. As shown in Table 1, Vid2World demonstrates strong quantitative performance across both
non-autoregressive and autoregressive settings, outperforming or matching other transfer methods.
In the non-autoregressive setting, it delivers superior or comparable results compared to all prior
methods. Even in the autoregressive generation setup, where other baselines are not capable of doing
so, Vid2World still attains superior performance in FVD and FID, as well as on par performance to
previous best methods in other metrics, showcasing its strong capabilities in world modeling.

Application: Real2Sim Policy Evaluation. We further conduct Real2Sim Policy Evaluation to
demonstrate our method’s potential to aid downstream decision-making. Following SIMPLER (Li
et al., 2025), our goal is to estimate the performance of a given policy by interacting with the world
model, rather than the real world. This requires the model to perform autoregressive rollouts and
faithfully predict the diverse outcomes induced from different policies. The procedure is summarized
in Algorithm 3. We evaluate on the task of closing drawers and consider three policy checkpoints
from RT-1 (Brohan et al., 2023): RT-1 (Begin), RT-1 (15%), and RT-1 (Converged), representing
different stages of training. Human evaluation is used as the verifier to annotate trajectory success. As
shown in Figure 5, Vid2World reliably reflects the performance gap among policies, closely tracking
their real-world success trends. Further details can be found in Appendix C.4.

5.2 VID2WORLD FOR 3D GAME SIMULATION

Game simulation is a key application for world models and neural game engines (Bamford & Lucas,
2020; Bruce et al., 2024; Decart et al., 2024) have attracted growing attention. It is particularly
challenging due to complex temporal dynamics and strong action dependence, involving rapid
viewpoint shifts, contact-rich interactions, and fine-grained motion patterns that demand reasoning
over causally entangled visual-temporal cues.

Setup. We evaluate Vid2World on the celebrated 3D video game Counter-Strike: Global Offensive
(CS:GO) using the online gameplay dataset from Pearce & Zhu (2022) (5.5M frames, 95 hours),
with the exact 0.5M-frame holdout set from DIAMOND (Alonso et al., 2024) for testing. DIA-
MOND (Alonso et al., 2024), a state-of-the-art autoregressive world model, generates the next frame
conditioned on a fixed number of previous observations and actions. Following its setup with 4
conditioning frames, we initialize with four history frames, and autoregressively generate frames
until a sequence length of 16. Evaluation metrics are the same as Section 5.1, computed on predicted
frames excluding conditioning frames. More details are listed in Appendix C.5.

Results. As shown in Table 1, Vid2World outperforms both configurations of DIAMOND across
all evaluation metrics with a significant margin, including a 79.9% relative performance improvement
in FID and a 71.1% performance gain in FVD compared to the best baseline configuration. These
results demonstrate the superior visual fidelity and semantic consistency of our method, showcasing
potential for leveraging video diffusion models to interactive neural game engines.

5.3 VID2WORLD FOR OPEN-WORLD NAVIGATION

Open-world navigation is a fundamental capability for autonomous agents, with broad applications to
autonomous driving (Yuan et al., 2025) and robotics (Shah et al., 2022).

Setup. We evaluate on the RECON dataset (Shah et al., 2022), which uses a 3D (x, y, yaw) action
space. Comparisons are made against two leading baselines, Navigation World Model (NWM) (Bar
et al., 2025) and DIAMOND (Alonso et al., 2024). We also include NWM (+Ego4D), a variant
of NWM co-trained with action-free videos, aiming for out-of-domain generalization. Unlike our
model, which is restricted to sequential, autoregressive generation, NWM explicitly conditions on
the prediction timestep t, allowing single-step prediction of a distant future frame. Accordingly, we

1In the publicly released code of AVID (Rigter et al., 2024), the FID scores are computed without setting the
Inception model to evaluation mode, making it artificially lower. These results are shown in gray accordingly.

8
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Figure 5: Vid2World for real2sim policy evalua-
tion, validated by real-world evaluation.

���
�

��#
%&(

� ���
�

����
� ���

�

��)
(/#

+%#
"�


	



	�


	�


	�


	�

�	


�.
!!
#,
,��

 -
#


	





	��� 
	���

���
�

��#
%&(

� ���
�

����
� ���

�

��)
(/#

+%#
"�


	



	�


	�


	�


	�

�	


�.
!!
#,
,��

 -
#


	��



	��


	��


-�� -�� -��
�#!)(",


	�


	



	�


	�


	�

-�� -�� -��
�#!)(",

�


�



��


�



��


�������$*, �������$*, �����������$*, �����������$*, �&"��)+'"����$*,

NWM 1 fps 4 fps DIAMOND 1fps 4 fps Vid2World 4 fps

Real World Vid2World LPIPS ↓ FID ↓ 

Figure 6: Comparison of autoregressive rollout
for open-world navigation.

Table 2: Ablation study on two components of our proposed method: the choice of Weight
Transfer (WT) mechanisms and the use of Action Guidance (AG).

Model WT AG FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑
Vid2World Shift 29.9 7.85 0.799 0.185 21.5
Vid2World Masked 29.4 7.07 0.824 0.169 22.9
Vid2World Extrapolative 28.6 7.52 0.832 0.162 23.4
Vid2World Masked ✓ 25.8 6.84 0.840 0.159 23.9
Vid2World Extrapolative ✓ 22.4 6.16 0.839 0.159 23.9

evaluate against both baseline setups: single-step prediction and autoregressive rollout, at the dataset’s
native 4 fps rate. Especially in the autoregressive setup, by comparing our model to well-established
baselines such as NWM and Diamond at different timesteps, this offers clear insight into our model’s
robustness against error accumulation. More details are listed in Appendix C.6.

Results. In the single-step prediction setting (Table 1), Vid2World achieves performance on par with
NWM and surpasses NWM (+Ego4D) for 4 out of 6 evaluated metrics, even under error accumulation
from autoregressive rollouts. This is a particularly surprising result since NWM is a state of the art
model, and trained with significantly more computation and bypassing error accumulation via single-
step prediction in this setup. It’s also worth noting that our model’s prediction horizon of 16 frames
combined with a history length of 4 results in a total context length of 20—exceeding the training
horizon of 16—demonstrating strong temporal generalization. In the autoregressive rollout setup
(Figure 6), our model consistently produces predictions that are superior or comparable to NWM,
while significantly outperforming DIAMOND baselines. Taken together, these results highlight
the effectiveness of Vid2World in leveraging rich priors from action-free video data, obviating
the prohibitive data requirements and training costs associated with pre-training on cross-domain
action-labeled datasets.

5.4 ABLATION STUDY

To verify the effectiveness of components in our method, we perform an ablation study on the RT-1
dataset in the autoregressive setting, focusing on two questions: (1) How critical is action guidance?
(2) Which weight transfer mechanisms do best transfer? Due to limited computational budgets, all
models are trained for 30k gradient steps. Regarding the first question, as shown in Table 2, we
observe that for both Extrapolative Weight Transfer and Masked Weight Transfer, enforcing action
guidance yields better performance compared to their counterpart, which have never dropped out
action in training and inference. Regarding the second question, both Masked and Extrapolative
Weight Transfer yield better performance than Shift Weight Transfer, and utilizing Extrapolative
Weight Transfer yields slightly better outcomes compared to Masked Weight Transfer. Hence, both
techniques play a dominant role in the superior performance of Vid2World.
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Robot Manipulation
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Open-World Navigation
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Game Simulation
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Figure 7: Qualitative evaluation of Vid2World across various domains. Zoom in for details.
Extended examples can be found in Appendix D.

6 CONCLUSION

In this work, we transform passive video diffusion models into interactive world models. We
propose Vid2World, introducing two key mechanisms—video diffusion causalization and causal
action guidance—to support autoregressive, action-conditioned generation. Extensive experiments
demonstrate that Vid2World achieves state-of-the-art performance in world modeling tasks and also
effectively supports downstream decision-making. While this work marks a successful first attempt,
it leaves plentiful space for further exploration. First, due to computational resource constraints,
we are limited to employing a relatively lightweight video diffusion model as the base model. We
envision that exploring larger-scale models (NVIDIA et al., 2025; Peng et al., 2025) may lead to better
performance. Second, the training process remains relatively time-consuming. We look forward to
future methods that can achieve comparable or even superior performance with fewer training steps.
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A THEORETICAL JUSTIFICATIONS AND EXTENDED DISCUSSION

A.1 CONSTRUCTION OF COUNTER-EXAMPLE FOR SHIFT WEIGHT TRANSFER

We start by showing that even when the input sequence zt ≜ f(t) is L-smooth, Shift Weight Transfer
(SWT) can still yield outputs with arbitrarily large error. Denote

ySWT
t =

∑m

i=−m
wizt+i−m + b.

Counter-example. Consider the one-dimensional input f(t) = αt, where α > 0 is a scaling
parameter. Clearly f is L-smooth for any finite L (since f ′′(t) = 0). The original convolution output
at time t should be

yt =
∑m

i=−m
wizt+i + b.

The error term now becomes:

||ySWT
t − yt|| = ||

∑m

i=−m
wi(zt+i−m − zt+i)||

= αm · ||
∑m

i=−m
wi||.

Implication. Even though f is perfectly smooth (indeed linear), the approximation error of SWT
grows endlessly as α→∞. Hence, the error is not controlled by the smoothness constant L alone.
This shows that Shift Weight Transfer may catastrophically fail, motivating the more principled
extrapolative construction.

A.2 DETAILED DERIVATION FOR EXTRAPOLATIVE WEIGHT TRANSFER

From first principles, we posit that zt+k can be linearly approximated over a window of p past
timesteps. Specifically, we perform linear regression on {(zτ , τ)}tτ=t−p+1 and predict zt+k based on
the regression result (ẑt+k, t+ k).

zt+k ≈
∑p−1

j=0
γk,j zt−j + βk,

where γk,·,βk are determined by a linear extrapolation (OLS) from the past p features. Concretely,
let τj ≜ t− j and define the empirical mean and variance of the timestamps:

µ =
1

p

p−1∑

j=0

τj = t− p− 1

2
, S =

p−1∑

j=0

(τj − µ)2.

Then the regression prediction admits a closed form:

ẑt+k =

p−1∑

j=0

(
1

p
+

(t+ k − µ)(τj − µ)
S

)
zt−j .

Thus, the coefficients are explicitly

γk,j =
1

p
+

(t+ k − µ)(τj − µ)
S

, βk = 0.

Note that
∑

j γk,j = 1, hence the intercept βk vanishes automatically, and the extrapolation is
expressed as a weighted combination of past features zt−j ∈ Rd.

Keeping in mind the design principle of maximally preserving the output representation of the original
convolution, such that the new causal computation produces a similar result to the original non-causal
one: ∑m

i=−m
wizt+i + b =

∑0

j=−2m
w′

jzt+j + b′.
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We rewrite the left-hand side as
∑m

i=−m
wizt+i + b =

∑0

i=−m
wizt+i +

∑m

i=1
wizt+i + b

≈
∑0

i=−m
wizt+i +

∑m

i=1
wi

(∑p−1

j=0
γi,j zt−j + βi

)
+ b

=
∑0

i=−m
wizt+i +

∑p−1

j=0

(∑m

i=1
γi,jwizt−j

)
+

∑m

i=1
wiβi + b.

Rearranging the terms with respect to z gives us:

w′
j = 1[j≥−m] · wj + 1[−p+1≤j≤0] ·

∑m

i=1
γi,−jwi, b′ = b+

∑m

i=1
wiβi.

In the specialized case of m = 1, p = 2, zt+k satisfies:

zt+k ≈ (k + 1)zt − kzt−1

Since m = 1, we can explicitly write out the three terms:

w′
j = 1[j≥−m] · wj + 1[−p+1≤j≤0] ·

∑m

i=1
γi,−jwi

=





w0 + 2w1, j = 0

w−1 − w1, j = −1
0, j = −2

.

Also, b′ = b. Since all temporal convolution layers in DynamiCrafter (Xing et al., 2024) have a
kernel size of 3, we are restricted to using the formulation for m = 1, p = 2. However, we anticipate
that extrapolating with higher terms may lead to better performance as well as more complicated
technical designs, which we leave for future work.

A.3 EXTRAPOLATIVE WEIGHT TRANSFER ERROR BOUND

Proposition 1. Assuming the input sequence zt ≜ f(t) is generated by a twice-differentiable L-
smooth function f(t), the approximation error of the Extrapolative Weight Transfer (EWT) can be
bounded by:

∥∥yorig − yEWT
∥∥
2
≤ L

2

m∑

i=1

|wi|
(
i2 +

6p2

p+ 1
i+

(p− 1)(p− 2)

6

)
.

Proof. The total error is the weighted sum of the per-term extrapolation errors:

∥∥yorig − yEWT
∥∥
2
≤

m∑

i=1

|wi| ·
∥∥zt+i − z̃t+i

∥∥
2
. (1)

We derive a complete bound for the per-term error ∥zt+i − z̃t+i∥2. Let l∗(x) = f(t) + (x− t)f ′(t)
be the true tangent line at t, and l(x) be the OLS fitted line. The error is ∥f(t+ i)− l(t+ i)∥2. We
use the triangle inequality to decompose this error into three distinct sources:

∥f(t+ i)− l(t+ i)∥2 ≤ ∥f(t+ i)− l∗(t+ i)∥2 + ∥l∗(t+ i)− l(t+ i)∥2
≤ ∥f(t+ i)− l∗(t+ i)∥2︸ ︷︷ ︸

(A) Taylor Error

+ ∥f(t)− l(t)∥2︸ ︷︷ ︸
(B) Intercept Error at t

+ ∥i(f ′(t)− ŝ)∥2︸ ︷︷ ︸
(C) Propagated Slope Error

.

We now bound each of these three terms.

(A) Bounding the Taylor Error By Taylor’s theorem, there exists some ξ ∈ (t, t+ i) such that
f(t+ i)− l∗(t+ i) = i2

2 f
′′(ξ). Given ∥f ′′(·)∥2 ≤ L, this term is bounded by:

∥f(t+ i)− l∗(t+ i)∥2 ≤
L

2
i2.
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(B) Bounding the Intercept Error This term, ∥f(t) − l(t)∥2, represents the error of the OLS
prediction at time t. The prediction is l(t) = z̃t =

∑p−1
j=0 γ0,jzt−j . We analyze the error component-

wise using a Taylor expansion of f(t− j) around t:

l(t) =

p−1∑

j=0

γ0,jf(t− j) =
p−1∑

j=0

γ0,j

[
f(t)− jf ′(t) + j2

2
f ′′(ξj)

]
.

For the coefficient sums for γ0,j = 1
p +

(t−µ)(τj−µ)
S , we have:

p−1∑

j=0

γ0,j = 1, (2)

p−1∑

j=0

jγ0,j =
1

p

∑
j +

t− µ
S

∑
j(τj − µ) =

p− 1

2
+

(p− 1)/2

S
(−S) = 0. (3)

Thus, the error simplifies to:

f(t)− l(t) = f(t)−


f(t)− 0 · f ′(t) +

p−1∑

j=0

γ0,j
j2

2
f ′′(ξj)


 = −1

2

p−1∑

j=0

j2γ0,jf
′′(ξj).

Taking the norm and the bound ∥f ′′(·)∥2 ≤ L:

∥f(t)− l(t)∥2 ≤
L

2

∣∣∣∣∣∣

p−1∑

j=0

j2γ0,j

∣∣∣∣∣∣
.

The sum can be calculated in closed form:
p−1∑

j=0

j2γ0,j =
1

p

∑
j2 +

t− µ
S

∑
j2(τj − µ)

=
(p− 1)(2p− 1)

6
+

(p− 1)/2

S

(
−p(p− 1)2(p+ 1)

12

)

=
(p− 1)(2p− 1)

6
− (p− 1)/2

S
S(p− 1) = − (p− 1)(p− 2)

6
.

Therefore, the intercept error is bounded by:

∥f(t)− l(t)∥2 ≤
L

2

(p− 1)(p− 2)

6
.

(C) Bounding the Propagated Slope Error This can be achieved by bounding the slope-estimation
error:

∆i ≜ ||f ′(t)− ŝ||,
for the OLS fit on uniformly spaced timestamps τj = t− j. The OLS slope estimator is given by

ŝ =

∑p−1
j=0(τj − µ) f(τj)∑p−1

j=0(τj − µ)2
=

1

S

p−1∑

j=0

(τj − µ) f(τj).

Using the Taylor expansion f(τj) = f(t)− jf ′(t) + j2

2 f
′′(ξj), we can distribute the sums into:

ŝ =
1

S

(
f(t)

∑
(τj − µ)− f ′(t)

∑
j(τj − µ) +

1

2

∑
(τj − µ)j2f ′′(ξj)

)
.

Using the properties in Equation 3 gives us

ŝ =
1

S

(
0− f ′(t)(−S) + 1

2

∑
(τj − µ)j2f ′′(ξj)

)
= f ′(t) +

1

2S

∑
(τj − µ)j2f ′′(ξj).
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Taking vector norm and using ∥f ′′(·)∥2 ≤ L we get the uniform bound

∆i = ∥ŝ− f ′(t)∥2 ≤
1

2S

p−1∑

j=0

∣∣(τj − µ)j2
∣∣ · ||f ′′(ξj)||2 ≤

L

2S

p−1∑

j=0

∣∣(τj − µ)j2
∣∣.

As
p−1∑

j=0

∣∣(τj − µ)j2
∣∣ ≤ p2

p−1∑

j=0

|(τj − µ)| ≤ p3 ·
p− 1

2
,

therefore

∆i ≤
L

2S
· 1
2
(p− 1)p3 =

L

2
· 6p2

p+ 1
.

Combining All Terms Combining the three terms, we get the complete per-term error bound:

∥zt+i − z̃t+i∥2 ≤
L

2
i2 +

L

2
· 6p2

p+ 1
i+

L

2

(p− 1)(p− 2)

6
.

Substituting this back into Equation 1:

∥∥yorig − yEWT
∥∥
2
≤

m∑

i=1

|wi|
(
L

2
i2 +

L

2
· 6p2

p+ 1
i+

L

2

(p− 1)(p− 2)

6

)

=
L

2

m∑

i=1

|wi|
(
i2 +

6p2

p+ 1
i+

(p− 1)(p− 2)

6

)
.

This completes the full proof.

A.4 CAUSAL ACTION GUIDANCE AS PROBABILITY STEERING

In this section, we provide the proof for Theorem 4.1, formally demonstrating that our Causal
Action Guidance mechanism is mathematically equivalent to sampling from a sharpened posterior
distribution, effectively steering the generation process.

Theorem 4.1 (Causal Action Guidance as Probability Steering). LetHt := ([xτ ]τ<t, [aτ ]τ<t−1)
denote the history context excluding the current action. Under standard score-based formulation„
the proposed score composition is mathematically equivalent to sampling from the following steered
posterior distribution, where ω ∝ (1 + λ) is a fixed constant:

p̃(xt | at−1,Ht) ∝ p(xt | Ht)︸ ︷︷ ︸
History-Consistent Prior

·
(
p(xt | at−1,Ht)

p(xt | Ht)

)ω

︸ ︷︷ ︸
Action Alignment

∝ p(xt | Ht) · p(at−1 | xt,Ht)
ω.

Proof. We begin by establishing the relationship between the score functions and the probability
densities. In the context of diffusion models (Ho et al., 2020; Song et al., 2021b), the trained noise
prediction network ϵθ(xt, ·) estimates the score of the data distribution −∇xt

log p(xt | ·) (up to a
scaling constant).

LetHt := ([xτ ]τ<t, [aτ ]τ<t−1) denote the history context excluding the current action. We identify
the two score components used in our method as:

ϵcond ∝ −∇xt
log p(xt | at−1,Ht),

ϵucond ∝ −∇xt
log p(xt | Ht).

Applying Bayes’ rule to the conditional density p(xt | at−1,Ht):

log p(xt | at−1,Ht) = log p(xt | Ht) + log p(at−1 | xt,Ht)− log p(at−1 | Ht).
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Since the term log p(at−1 | Ht) is independent of xt, taking the gradient with respect to xt yields
the following decomposition of the conditional score:

∇xt log p(xt | at−1,Ht) = ∇xt log p(xt | Ht) +∇xt log p(at−1 | xt,Ht),

⇔ ϵcond = ϵucond − γ∇xt
log p(at−1 | xt,Ht).

where γ is a proportionality constant absorbed into the guidance scale. During sampling, the update
rule for Causal Action Guidance can now be rewritten as :

ϵguided = (1 + λ)ϵcond − λϵucond

= (1 + λ) (ϵucond − γ · ∇xt
log p(at−1 | xt,Ht))− λϵucond

= ϵucond − γ · (1 + λ)∇xt
log p(at−1 | xt,Ht).

Recalling that ϵguided ∝ −∇xt
log p̃(xt | at−1,Ht), we equate the gradients:

∇xt log p̃(xt | at−1,Ht) = ∇xt log p(xt | Ht) + γ · (1 + λ)∇xt log p(at−1 | xt,Ht).

Denoting ω := γ · (1 + λ), integrating both sides with respect to xt recovers the log-density, up to
constant C:

log p̃(xt | at−1,Ht) = log p(xt | Ht) + log p(at−1 | xt,Ht)
ω + C.

Exponentiation on both sides yields the steered posterior distribution:
p̃(xt | at−1,Ht) ∝ p(xt | Ht) · p(at−1 | xt,Ht)

ω.

This completes the proof.

A.5 CLARIFICATION ON CAUSAL TERMINOLOGY AND CONNECTIONS TO INTERVENTIONAL
WORLD MODELS

In this work, we bridge concepts from video generation and world modeling, domains where the
term “causal” carries distinct nuances. Throughout the paper, our usage of “causal” primarily refers
to Temporal Causality, focusing on the sequential evolution of environment dynamics. However,
specifically within our proposed Causal Action Guidance, the mechanism also implicitly embodies
Interventional Causality, i.e. p(st+1 | st, do(at)). In this section, we clarify these two interpretations
and discuss their connections to the broader causal inference literature.

Temporal Causality . In the deep learning community, particularly in autoregressive sequence
modeling, “causal” typically refers to the temporal structure or non-anticipative dependency. A
model is temporally causal if the prediction at time t, xt, depends only on the past context x<t and
is independent of future information x>t. Our Video Diffusion Causalization (Section 4.1) strictly
follows this definition. Standard video diffusion models utilize bidirectional attention, violating the
arrow of time required for online interaction. Our method repurposes these architectures to strictly
enforce temporal causality, establishing the structural foundation for autoregressive rollout.

Interventional Causality. While our framework is built on temporal causality, our Causal Action
Guidance (Section 4.2) naturally extends into the realm of interventional causality (Pearl, 2009).
In causal inference, this refers to reasoning about the effect of an intervention, i.e., estimating
p(st+1 | st, do(at)). By injecting the action signal at and utilizing classifier-free guidance to amplify
its likelihood, we are effectively performing an intervention do(at). This forces the model to generate
the specific counterfactual future resulting from that action, rather than a generic future based solely
on observational correlations.

In Vid2World, we establish temporal causality as the necessary architectural prerequisite to enable on-
line rollout, while leveraging action guidance to implicitly enforce interventional causality. Together,
these components enable controllable and action-conditioned world simulation.

A.6 EXTENDED DISCUSSION ON DATA DISTRIBUTION MISMATCH DURING VIDEO
GENERATION AND WORLD MODELING

While Vid2World is motivated by leveraging the broad visual experience and rich physical priors
encoded in the pretrained video diffusion models, it is natural that the distribution of internet-scale
pretraining video data differs from the agent-centric interaction data used in world modeling. To this
end, we highlight two key dimensions of this data distribution gap:
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1. Scene Composition and Object Distribution. Internet videos span a wide variety of
environments, objects, and scene layouts, whereas world-model training datasets generally
contain more controlled, task-centric settings with a narrower range of objects and inter-
actions. Although this introduces a distribution mismatch, the underlying compositional
regularities (e.g. object permanence, contact dynamics, spatial relations), are shared across
all sources and serve as transferable priors.

2. Motion Scale and Interaction Granularity. Pretraining videos typically capture large-
scale, coarse global motions, while world models focus on fine-grained, local interactions
between agents and objects. Despite this difference in motion granularity, low-level physical
regularities, such as temporal continuity, acceleration smoothness and occlusion dynamics,
remain consistent, supporting transfer of motion priors into action-conditioned rollouts.

Even with these mismatches, we argue that by large-scale pretraining on diverse visual experience,
the video diffusion model captures strong and broadly applicable visual and physical priors. This is
especially true in our Vid2World approach. Building upon DynamiCrafter (Xing et al., 2024), an
image animation model fine-tuned from the general-purpose video generation model VideoCrafter
(Chen et al., 2023), Vid2World inherits both the broad visual experiences from internet-scale video
pretraining and the structured motion priors essential for producing physically coherent dynamics,
properties that are directly beneficial for action-conditioned generation.

A.7 EXTENDED DISCUSSION ON UTILIZING VID2WORLD FOR DOWNSTREAM TASKS

While Vid2World demonstrates a successful first step at transferring video diffusion models to world
models, due to the large parameter size of the pretrained model and the iterative process in diffusion,
the model does not enjoy fast inference speed, compared to counterparts trained using teacher
forcing, see Appendix E for further details. However, we fully acknowledge that the world model’s
performance in downstream tasks is a critical factor for evaluating the world model’s applicability,
especially for applications in domains such as embodied artificial intelligence.

We conduct the downstream task of Real2Sim Policy Evaluation in the RT-1 environment (Section
5.1), a challenging task validating the model’s effectiveness in discriminating the performance of
different policies as well as serving as a reference of the policy’s real world success rate. Due to
limited computation resources, we did not explore training agents via reinforcement learning with
our world models, as reinforcement learning is notoriously known as being sample inefficient.

As the model scale grows increasingly larger, the computation cost grows higher accordingly. Even
at industry-level world models, such as Genie 3 (Google, 2025), V-JEPA 2 (Meta, 2025) and PAN
(PAN-Team, 2025), downstream tasks especially reinforcement learning are not conducted. We
believe this is a collective effort where multiple domain may require breakthroughs:

1. Novel world modeling methods with faster inference speed: Current high-fidelity world
models are dominated by diffusion models. With recent advances in one-step and few-step
generative models showing feasibility in domains such as text to image generation (Song
et al., 2023; Boffi et al., 2025; Geng et al., 2025), we anticipate world modeling methods
that generate high-fidelity future predictions with improved inference latency.

2. Sample-Efficient Methods for Model-Based Reinforcement Learning: Reinforcement
Learning is notoriously known for being sample inefficient. We strongly believe that
designing model-based reinforcement learning algorithms with improved sample efficiency
(both for offline and online reinforcement learning) may be crucial to fully unlock the
potential of training policy model inside world models with reinforcement learning.

3. Hardware Acceleration Methods for Inference Speedup: Aside from algorithmic in-
novations, we strongly believe hardware speedup methods are necessary to unleash the
full capabilities of world models in downstream tasks, especially planning, control and
reinforcement learning. Such improvement may include novel methods for implementing
KV Cache in the context of world modeling (Yin et al., 2024; Huang et al., 2025; Yang
et al., 2025), better utilization of GPU locality, and developing hardware-friendly software
packages that are easier to use.
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B VID2WORLD IMPLEMENTATION DETAILS

B.1 ALGORITHM PSEUDO-CODE

In this subsection, we provide the pseudo-code for training and autoregressive inference of Vid2World.

Algorithm 1 Vid2World Training
1: Input: Model θ, Trajectory dataset D.
2: loop
3: Sample trajectory [xgt

t ,a
gt
t ]0:T from D

4: for t = 0, ..., T do
5: xkt

t ∼ q(· | xgt
t , kt), kt ∼ U [0,K]

6: ãt =

{
∅, w.p. p,
agt
t , o/w.

7: ϵt =
x
kt
t −
√

ᾱkt
x

gt
t√

1−ᾱkt

8: ϵ̂t = ϵθ([x
kτ
τ ]τ≤t, [ãτ ]τ<t, [kτ ]τ≤t)

9: end for
10: L =MSELoss([ϵ̂1, ..., ϵ̂n] , [ϵ1, ..., ϵn])
11: Backprop with L and update θ
12: end loop
13: Return Model θ.

Algorithm 2 Auto-Regressive Sampling
1: Input: Model θ, Initial observation x0, Action se-

quence [at]0:T−1, Action guidance scale λ.
2: Initialize xt ∼ N (0, σ2

KI),∀t ∈ 1, ..., T .
3: for t = 1, . . . , T do
4: for k = K, ..., 0 do
5: ϵ̂ = ϵθ([xτ ]τ≤t, [aτ ]τ<t, [0, ..., 0, k])
6: if λ ̸= 1 then
7: ϵuc = ϵθ([xτ ]τ≤t, [aτ<t−1,∅], [0, ..., 0, k])

8: ϵ̂← (1 + λ)ϵ̂− λϵuc
9: end if

10: w ∼ N (0, I)

11: xt ← 1√
αk

(xt − 1−αk√
1−ᾱk

ϵ̂) + σkw

12: end for
13: end for
14: Return x0:T .

B.2 MODEL DETAILS

Base Model Details. The pre-trained model DynamiCrafter (Xing et al., 2024) is a state-of-the-art
latent video diffusion model conditioned on text and image, with its full-sized version ranking
high on the VBench leaderboard (Huang et al., 2024). It builds on the Stable Diffusion variational
autoencoder (Rombach et al., 2022) and trains a 3D U-Net for video generation using web-scale
video data. Specifically, starting from the pre-trained VideoCrafter T2V model (Chen et al., 2023),
DynamiCrafter introduces a dual-stream conditional image injection paradigm: in one stream, CLIP
(Radford et al., 2021) image encoder embeddings are fed into the U-Net via cross-attention; in the
other, images are encoded into VAE latents, which are then replicated along the channel dimension for
the full video length and concatenated with the initial noise latents. This mechanism simultaneously
injects text-aligned semantic representations and fine-grained visual details, improving video quality.
For the noise level k, the model injects such information into the diffusion network by firstly using
sinusoidal embedding to transform it into a vector, which is subsequently fed into a two-layer MLP,
obtaining a learned embedding. The embedding is then added to the convolutional features to provide
the noise level condition. Since the base model only contains temporal convolution layers with kernel
size 3, our Extrapolative Weight Transfer Method is applied using hyperparameters m = 1, p = 2.

Image Preprocessing. For all of our experiments, we use the publicly released DynamiCrafter
model at 320 × 512 resolution, which has 1.1B trainable parameters. During data preprocessing,
we resize the shorter side to 320 px while preserving the aspect ratio. After resizing, if the longer
side remains below 512 px, we pad with black borders up to 512 px; otherwise, we take the other
approach: resizing the longer edge to 512 px, and pad with black borders on the height dimension.
This setup is used in both training and inference. For evaluation metrics calculation, we resize the
model output to the baseline method’s resolution. For instance, in CS:GO, we calculate the metrics
by firstly cropping out the black paddings in the model output, followed by resizing to 150× 280
resolution.

Noise-level Conditioning. The structure of noise level embedding layers naturally supports the
transformation to different noise scales at different frames. Specifically, instead of broadcasting the
identical noise level sinusoidal embedding along the temporal axis, we use the independently sampled
noise level at each frame, stacking it in the temporal dimension.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Action Conditioning. For action conditioning, we inject frame-level action conditions into the base
model, similar to the injection of noise levels. For cases where actions are discrete, we alter the first
layer of the noise conditioning network into a learned embedding layer. For cases where the action
space is continuous, we simply switch the first layer to a linear projection. The embedding obtained
through action conditioning is later integrated with the noise conditioning through element-wise
addition.

B.3 TRAINING DETAILS

We use the 320 × 512 version of DynamiCrafter (Xing et al., 2024) as the base model for all
experiments. For robot manipulation, game simulation as well as open-world navigation tasks, we
train for 100k gradient steps; for ablation studies, all models are trained for 30k steps. The training is
conducted using 4 × 40GB NVIDIA A100 GPUs.

B.4 INFERENCE DETAILS

During autoregressive rollout, we denoise the current frame by fixing noise levels at the history
frames to be zero, whereas denoising the current frame using DDIM (Song et al., 2021a). In practice,
following diffusion forcing (Chen et al., 2024), we add a small noise ksmall uniformly to history
frames. Under all settings in this paper, concerning action guidance, we apply a guidance scale of 2.5
for our experiments, as well as a guidance rescale factor (Lin et al., 2024) of 0.7. We believe that the
optimal values of these hyperparameters are related to domains, and an extensive hyperparameter
search can lead to even better performance. A detailed list of hyperparameters regarding the model
architecture, training, and inference process is shown in Table 3.
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Table 3: Hyperparameters for Vid2World

Hyperparameter Value

Architecture

Base Model:
Resolution 320× 512
Latent Diffusion True
Downsample Ratio f 8
z-shape 32× 32× 4
U-Net Chaneels 320

Noise level Conditioning:
Embedding dimension 1024

Action Conditioning:
Embedding dimension 1024

Other Conditioning:
Language condition Empty Sequence
FPS condition 3
Image condition First frame

Training

Learning rate 1.0× 10−5

# training steps 100k
Batch size per GPU 2
# GPUs 4
Accumulate gradient batches 2
GPU-type A100-40GB

Diffusion Setup:
Diffusion steps K 1000
Noise schedule Linear
β0 0.00085
βK 0.0120
Noise level along Temporal Axis iid. samples

Data Processing:
Input video length 16
Normalize [-1,1]
Input resize Resize, Center-Crop
Brightness [0.9,1.1]
Contrast [0.9,1.1]
Saturation [0.9,1.1]
Hue [-0.05,0.05]

Causalization:
Mixed weight transfer True
Causal Mask for Temporal attention True

Action Conditioning:
Dropout rate p 0.2
Sampling along Temporal Axis iid. samples

Sampling

Sampler DDIM
Steps 50
Timestep spacing Uniform trailing
Action Guidance scale 2.5
Guidance rescale 0.7
ksmall 20
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C EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

RT-1 Details. RT-1 (Brohan et al., 2023) is a widely used dataset consisting of real-world robot
experiences, spanning multiple robot manipulation tasks, including opening drawers, closing drawers,
picking and placing. Each episode is sampled at an fps of 3, with the embodiment, a robot arm,
performing certain tasks. In addition to video frames, it also records action sequences as well as
annotated language prompts. In our setup, we use the observations obtained by RGB cameras, as
well as the action sequence.

CS:GO Details. We use the publicly released dataset collected by Pearce & Zhu (2022). It contains
different subsets of human players interacting with the CS:GO maps, spanning from expert-level to
novice players. Here, we use the largest subset in their dataset, dataset_dm_scraped_dust2,
which contains 5.5M frames (95 hours) of online human gameplay from the map Dust II. The dataset
is created by scraping user behaviors on online servers, offering a diverse set of interactions from
policies of all sorts. For each timestep, the actions are represented as an array of discrete values.

RECON Details. RECON (Shah et al., 2022) is a well-known open-world navigation dataset. It
consists of 40 hours across 9 open-world environments, collected using a Clearpath Jackal UGV
platform. The dataset is collected at a fps of 4, and The action space is defined as a 3D vector at =
(x, y, yaw), where (x, y) ∈ R2 denotes translation along the forward/backward and left/right axes, and
yaw ∈ R denotes the change in rotation angle. Formally, each action is given by the proprioceptive
state difference between timesteps, i.e.,at = st′ − st, where st is the agent’s proprioceptive state and
t′ denotes either the next timestep or a future timestep of interest (as in NWM).

C.2 METRICS FOR VIDEO PREDICTION

For Robot Manipulation, Game Simulation and Open-World Navigation tasks, we adopt commonly
used video prediction metrics for image or video generation tasks. These metrics measure either the
pixel-level or the semantic-level similarity between the generated videos and the ground truth videos.
For metrics calculated on each image, the values are obtained by extracting all frames and treating
them as independent images for feature extraction and statistical estimation.

Next, we provide a description for each metric:

FID. We compute the Fréchet Inception Distance (FID) introduced by Heusel et al. (2017). FID
measures the Fréchet distance between two multivariate Gaussians fitted to Inception-v3 activations
of real and generated frames. Specifically, let µr,Σr and µg,Σg denote the empirical means and
covariances of these activations for real and generated frames, respectively. FID is defined as:

FID(Pr, Pg) = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
.

FVD. Fréchet Video Distance (FVD), introduced by Unterthiner et al. (2018), generalizes FID by
embedding entire video clips via a pre-trained Inflated 3D ConvNet (I3D) and computing the Fréchet
distance between the resulting feature distributions of real and generated videos. Concretely, let
Pr and Pg be the distributions of I3D activations for real and generated videos, respectively, with
empirical means µr, µg and covariances Σr,Σg . FVD is then defined as:

FVD(Pr, Pg) = ∥µr − µg∥22 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
.

SSIM. Structural Similarity Index Measure (SSIM) (Wang et al., 2004) quantifies perceptual
similarity by jointly comparing the luminance, contrast, and structural information between two
image patches. Given a pair of patches x and y, let µx, µy be their mean intensities, σ2

x, σ
2
y their

variances, and σxy their covariance. The SSIM index is calculated using:

SSIM(x, y) =
(2µxµy + C1) (2σxy + C2)

(µ2
x + µ2

y + C1) (σ2
x + σ2

y + C2)
,

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where C1 = (K1L)
2 and C2 = (K2L)

2 are stability constants with L the pixel dynamic range. For
our purpose, we compute SSIM over an 11× 11 Gaussian-weighted sliding window and average the
local SSIM values to obtain a mean SSIM (MSSIM) per frame; the final video-level SSIM score is
the average MSSIM across all sampled frames.

LPIPS. Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) measures percep-
tual similarity by comparing deep feature activations of real and generated frames across multiple
layers of a pre-trained network. Specifically, let f̂ l(x) and f̂ l(y) be the unit–normalized activations
at layer l for inputs x and y, and wl the learned channel-wise weights. LPIPS is computed via:

LPIPS(x, y) =
∑

l

1

HlWl

Hl∑

h=1

Wl∑

w=1

∥∥∥wl ⊙
(
f̂ lh,w(x)− f̂ lh,w(y)

)∥∥∥
2

2
. (4)

It is worth noting that for evaluation in RT-1 and CS:GO, we use VGG (Simonyan & Zisserman,
2015) as the feature extraction network, whereas in RECON, we use AlexNet (Krizhevsky et al.,
2012) as the network, following baselines.

PSNR. Peak Signal-to-Noise Ratio (PSNR) (Hore & Ziou, 2010) quantifies pixel-level fidelity by
comparing the maximum possible pixel intensity to the mean squared error (MSE) between two
frames. PSNR is defined as:

PSNR(x, y) = 10 log10
L2

MSE(x, y)
,

where L is the maximum pixel value (e.g. 255 for 8-bit images).

DreamSim. DreamSim (Fu et al., 2023) is a relatively new metric for measuring perceptual image
similarity, which aims to evaluate perceptual similarity. This is accomplished by comparing deep
features from a neural network. The resulting metric is better aligned with human perception.

C.3 DETAILS OF VID2WORLD FOR ROBOT MANIPULATION.

C.3.1 IMPLEMENTATION

We make use of the RT-1 (Brohan et al., 2023) dataset. To align with the baseline evaluation methods,
we randomly split 4361 episodes as the holdout set, using the remaining 82851 episodes as the
training set. In this case, since the action space is continuous, we use a linear layer as the first layer to
add the action condition, as described in Appendix B.

Following baseline (Rigter et al., 2024), we train the model for up to 100k gradient steps on 4 ×
A100, which takes less time (6.4 days) than the seven days reported for training baseline methods.
During training, the model inputs are video and action sequence segments of length 16. At test time,
we randomly sample 1024 episodes from the evaluation set, and sample a segment of 16 frames
for each episode. The model is provided with the first frame of the segment as well as the action
sequence, and the metric is calculated on all 16 frames, the same as baseline methods.

C.3.2 BASELINES

We compare Vid2World with several baselines, all utilizing the same base model (Dynamicrafter
(Xing et al., 2024), resolution 320 × 512), while differing in their transfer methods. It is worth
noting that for all baseline methods in this setting, the model is transferred without enforcing
causality, neglecting the need for interactiveness; i.e., the models are still trained and sampled with
homogeneous noise levels in all frames and the model is still architecturally non-causal. Therefore,
the transferred models are unable to perform autoregressive rollout. During testing, the models
generate videos in a non-autoregressive manner. Next, we provide a brief introduction to each
baseline method:

Action-Conditioned Fine-tuning. In this approach, all parameters of the pre-trained model are fine-
tuned on the action-conditioned dataset. For each timestep t of the noisy video x, the corresponding
action at is embedded to compute the action embedding eta using an embedding table for discrete
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actions or a linear layer for continuous actions. For RT1, action embeddings are both concatenated
with and added to the corresponding timestep embeddings.

Language-Conditioned Fine-tuning. Language-Conditioned Fine-tuning fine-tunes the pre-trained
model using a textual description of each video. Each description is embedded via CLIP (Radford
et al., 2021) and incorporated through cross-attention following the approach of the original model.

ControlNet (Zhang et al., 2023). ControlNet freezes the parameters of the pre-trained model and
creates a trainable copy of its UNet encoder. The trainable branch is conditioned on the action signal
and connected to the original decoder via zero-initialized convolutions. In this work, ControlNet is
employed with the aim of incorporating action-conditioning into the diffusion process.

Classifier Guidance (Dhariwal & Nichol, 2021) A classifier fϕ(a | xi) is trained on noisy images
xi to predict actions. With weight w, this classifier steers the diffusion sampling process toward
samples that are consistent with the specified actions. The resulting noise prediction is

ϵfinal(xi, a, i, x0) = ϵpre(xi, i, x0)−
√
1− αtw∇xi

log fϕ(a|xi).

C.4 DETAILS OF REAL2SIM POLICY EVALUATION

Real2Sim Policy Evaluation (Li et al., 2025) aims to evaluate policies using simulation as a surrogate
for the real world, serving as an indicator of the performance of different policies. This interaction
between the policy and the simulation environment requires world models to generate images in
an interactive manner. A well-performing model should be capable of distinguishing successful
trajectories from failure cases by autoregressively simulating the outcomes of different policy actions.

We employ Vid2World as the world model to evaluate three policies: RT-1 (Begin), RT-1 (15%), RT-1
(Converged), taken for different stages of RT-1 (Brohan et al., 2023) training. Specifically, we sample
N trajectories from the RT-1 dataset for the given task and extract their initial frames. These frames
are provided to each RT-1 policy to generate actions, which are then fed into the world model to
simulate the next frame. The policy continues to act on these imagined frames in an iterative manner.

For the first L frames, new frames are generated autoregressively based on all previously observed
frames. Beyond this point, each subsequent frame is generated based on a sliding window of the
most recent L frames. This process continues until a sequence of length H is produced. We then
employ a verifier to determine whether each trajectory is successful, and compute the overall success
rate accordingly. In our experiments, we sample trajectories from the "close drawer" task in the RT-1
dataset. For each policy, we use sample number N = 50, sliding window length L = 10, and rollout
horizon H = 40. For simplicity, we use human evaluation as the verifier ψ.

The complete procedure is described in Algorithm 3.

Algorithm 3 Real2Sim Policy Evaluation

Require: World model P (ot+1|o≤t,a≤t), policy π(at|ot), task κ, initial frame set Dκ, trajectory success
verifier ψ(o0:H)→ {0, 1}.

1: Init success_count← 0
2: for n = 0, ..., N do
3: Sample initial frame o0 from Dκ

4: for t = 0, ..., H do
5: Sample at ∼ π(· | ot)
6: if t < L then
7: ot+1 ∼ P (ot+1|o≤t,o≤t)
8: else
9: ot+1 ∼ P (ot+1|ot−L:t,at−L:t)

10: end if
11: end for
12: success_count← success_count+ ψ(o0:H)
13: end for
14: Return success_rate = 1

N
· success_count

We provide the instructions for human verification below:
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Instruction for Human Verification
Watch each clip of the robot attempting to close a drawer and decide if the attempt succeeds or
fails: label Success when, by the final frame, the drawer face sits flush with the cabinet frame
(no visible gap and no rebound); label Failure when any gap remains, the drawer re-opens after
contact, the robot jams or stops short, or the view prevents you from confirming full closure.

C.5 DETAILS OF VID2WORLD FOR GAME SIMULATION

C.5.1 IMPLEMENTATION

We utilize the largest subset in the CS:GO dataset (Pearce & Zhu, 2022). Following DIAMOND
(Alonso et al., 2024), we use exactly the same holdout set of 0.5M frames (corresponding to 500
episodes, or 8 hours) for testing. As actions are discrete values in this domain, the first layer in
the action is injected via a learned embedding layer. For training and evaluation purposes, we use
segments of 16 frames. For evaluation, since DIAMOND (Alonso et al., 2024) requires 4 frames as
history context, we autoregressively generate frames from four consecutive history frames, until a
sequence length of 16 is reached. In this experiment, the metrics are calculated only on the predicted
frames, excluding frames used for conditioning. Since the output of the baseline method, DIAMOND,
is in a resolution of 150× 280, we downsampled our generated image to match this corresponding
resolution. For our model, we train for 100k steps.

C.5.2 BASELINES

We use DIAMOND (Alonso et al., 2024), a state-of-the-art autoregressive world model as the baseline.
It treats the world modeling task as an image generation problem, which learns an image diffusion
model based on the previous four observations and actions. In practice, the input image diffusion
model is downsampled, and a separate upsampler is learned to upsample the diffusion model’s output
to higher resolutions. Here, we use the publicly released checkpoints of DIAMOND, which contain
both the diffusion model and the upsampler. We evaluated both sampling configurations provided by
the authors, namely:

1. DIAMOND-Fast: Under this configuration, the model generates images with lower fidelity
in exchange for faster inference speed, necessary for interactive gaming.

2. DIAMOND-HQ: This is the configuration where the generated images have higher fidelity,
coming at the cost of slower inference speed.

We test our model’s performance with baseline performances using exactly the same test set. Addi-
tional generation results can be viewed in Appendix D.2.

C.6 DETAILS OF VID2WORLD FOR OPEN-WORLD NAVIGATION

C.6.1 IMPLEMENTATION

We utilize the RECON dataset (Shah et al., 2022), a well-celebrated dataset for open-world navigation.
Following baseline implementations, we split the data into two parts: 9,468 videos for training and
2367 videos for evaluation, using exactly the same data split. Since the action space is continuous, we
use linear projection as the first layer for injecting actions. During training, we preprocess the image
into 320 × 512 resolutions by padding 320 × 320 with black borders. During evaluation, we cut out
the black borders and downsample the image to 224 × 224, making it comparable with baselines.
During training, we use a context length of 16, with no downsampling in the temporal fps. Since the
dataset is collected at 4 fps, for our evaluations into 4s into the future, the model is provided with
a history of 4 frames (following baselines) and predicts a sequence of 16 frames, creating a total
context length of 20 frames, which is longer than the training horizon. In our experiments, we are
focused on two setups: Single-Step Prediction and autoregressive Prediction.

Single-Step Prediction. The Single-Step Prediction set contains 500 video segments. Since NWM
is capable of single-step prediction of a future timestep within its training horizon, the model is
evaluated given 4 frames of history context and asked to single-shotedly predict the observations at
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4s into the future. Our model, however, must generate predictions in a sequential manner; hence, our
evaluations are done using autoregressive inference. It is worth noting that this makes the problem
significantly harder, as the model’s prediction will degrade with respect to the rollout horizon due to
error accumulation. The results are shown in Table 1. For image generation metrics (i.e., all metrics
except FVD), we report the results at the predicted frame, different from RT-1 and CS:GO evaluations,
where we report means across all predicted frames. For FVD, we report the metric acquired by
evaluating the video sequence of all 16 predicted frames. For LPIPS, PSNR and Dreamsim, we
take the results from of NWM directly from the reported numbers in their paper, whereas for FVD,
FID and SSIM, we report our evaluated numbers, which are obtained by building on the official
implementation of NWM.

autoregressive Predictions. In this setup, the evaluation set consists of 150 video segments.
Here, baseline methods as well as Vid2World conduct inference via autoregressive rollout. For
baseline methods, except for the normal version of predicting future frames at 4 fps, there is also a
downsampled version, which predicts future frames at 1 fps. This results in fewer autoregressive
rollout steps, potentially leading to less error accumulation. For results in this domain, following
baselines, we evaluate our model for 5 parallel runs using different random seeds, and report the
mean and std.

C.6.2 BASELINES

Here we consider two state-of-the-art baselines: Navigation World Models (NWM) (Bar et al., 2025)
and DIAMOND (Alonso et al., 2024).

NWM. Navigation World Model (Bar et al., 2025) is a state-of-the-art model, built on a novel
architecture CDiT. At its core, the model takes in action as well as the predicted timestep as conditions,
and the backbone, follows the architecture of DiT (Peebles & Xie, 2023) used in image generation.
This equips the model with the ability to single-step predict a timestep in the future. Here we use
CDiT-XL, a 1B model trained on various action-labeled cross-domain data, leveraging 4 history
frames as context. The original autoregressive setup is 4 fps, and 1 fps denotes the autoregressive
rollout by predicting the future 1 second from the current time. We also consider a model variant:
NWM+Ego4D, which was co-trained with action-free video data to improve out-of-distribution
generalization. It is worth noting that the NWM model is trained on 8 nodes, each with 8 Nvidia
H100 GPUs, trained for 100k (NWM) / 200k (NWM+Ego4D) gradient steps using a batch size of
1024. This is significantly more computationally expensive than Vid2World’s setup, with is trained
on 4 Nvidia A100 40GB GPUs for 100k gradient steps using a batch size of 32.

DIAMOND. DIAMOND (Alonso et al., 2024) is also the baseline we used for CS:GO. In this
setup, following NWM, the model is trained from various cross-domain data, and inference is done
using autoregressive generation. Additionally, we include DIAMOND (1fps), which is a model
trained using observations and actions at intervals of 1 second.

We use exactly the same training and test split, and the same evaluation samples; showcases of
generation results are included in Appendix D.3.
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D ADDITIONAL EXPERIMENTS AND VISUALIZATION RESULTS

In this section, we provide additional visualization results for our proposed Vid2World model.
Generated results from our model are obtained by autoregressive rollout. In Section D.1, we include
visual results for the RT-1 dataset in the video prediction task. In Section D.2, we provide generated
results in the CS:GO environment under the video prediction task. In Section D.3, we include
showcases of Vid2World generation in RECON environment. In Section D.4, we provide some
generated examples for the Real2Sim Policy Evaluation experiments.

D.1 GENERATION RESULTS OF RT-1

We provide additional visualization results for Vid2World on the RT-1 Dataset in Figure 9. As shown
in the figure, our model makes video predictions that accurately represent the environment dynamics.
Our world model generates physically plausible frame sequences with high fidelity, offering great
potential in video prediction tasks.

However, limitations still exist. We provide two examples of such limitations in Figure 8. These fall
into two categories:

1. Failing to predict fine-grained control: In the upper case of Figure 8, the model predicts
the moving directions of the robot arm successfully, but fails to capture the gripper’s control
over the green bag.

2. Regressing to more familiar scenes: In the lower case of Figure 8, although the robot
movement is mostly correct, the grasped object changes to a more often seen object.

t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

GT

Ours

GT

Ours

Figure 8: Failure cases for RT-1 dataset
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t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14
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Figure 9: Comparison between ground truth and generated videos by Vid2World in RT-1 Environment.
The first frame is provided as context.
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D.2 GENERATION RESULTS OF CS:GO

We provide generation results of Vid2World compared to baseline methods (DIAMOND (Alonso
et al., 2024)) in the CS:GO environment. We observe several interesting phenomenon, demonstrating
the characteristics, both in strength and in limitations, of our model. We provide the discussion below.

Error Accumulation. A common challenge for autoregressive models (for example, the baseline
model DIAMOND) in multi-step prediction is performance degradation due to error accumulation,
which is especially pronounced when consecutive frames exhibit large variation. In Figure 10, we
compare the qualitative predictions of Vid2World and DIAMOND under rapid viewpoint changes.
By contrast, DIAMOND’s frames become progressively blurred; Vid2World maintains sharpness and
closely follows the ground truth trajectory.

t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

GT

Ours

DIAMOND-HQ

DIAMOND-Fast

Figure 10: Error Accumulation in CS:GO. While DIAMOND’s fidelity degrades significantly during
rollout, Vid2World maintains high-quality generation with strong physical accuracy.

Action Alignment. The reliability of a world model, to a large extent, depends on how well its
predictions align with the input actions. As shown in Figure 11, Vid2World accurately reflects the
aim-down-sights action in its predicted video, whereas DIAMOND fails to manifest this action.

t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

GT

Ours

DIAMOND-HQ

DIAMOND-Fast

Figure 11: Action alignment in CS:GO. Vid2World truthfully reflects the aim-down-sights action in
its predicted video, while DIAMOND fails to follow the action.

Failure Cases. Despite substantially reducing the accumulated error and preserving action alignment,
Vid2World still encounters failure cases, as demonstrated in Figure 12. In this figure, neither
Vid2World nor DIAMOND matches the ground truth. Although the model’s capability is one
important factor leading to failure, the environment’s randomness, in this case, the place for the
player’s respawn, also adds to the difficulty.
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t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

GT

Ours

DIAMOND-HQ

DIAMOND-Fast

Figure 12: Failure Cases in CS:GO environments.

Action influence on generated sequence. For world models, it is important to do so-called
counterfactual reasoning with the current action, instead of predicting trends based solely on past
observations. In Figure 13, we showcase the capability of our model to perform generation based on
action sequences. All trajectories start from the same observation, but lead to completely different
generated frame sequences due to different action sequences.

t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

Forward

Left

Backward

Right

Look left

Look right

Look up

Look down

Figure 13: Effect of different actions on generated videos in CS:GO for Vid2World. Trajectories start
with the same initial observation, diverging drastically as a result of different action sequences.
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D.3 GENERATION RESULTS FOR OPEN-WORLD NAVIGATION

We provide generation results of Vid2World in the open-world navigation video prediction task, as
shown in Figure 14.

GT

Predicted

GT

Predicted

GT

Predicted

GT

Predicted

GT

Predicted

GT

Predicted

t=0 t=4 t=6 t=8 t=10 t=12 t=14 t=16 t=18

Figure 14: Comparison between ground truth and generated videos by Vid2World in RECON
Environment. The first four frames are provided as context.
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D.4 GENERATION RESULTS OF REAL2SIM POLICY EVALUATION

We provide generation results of Vid2World in the Real2Sim Policy Evaluation task, as shown in
Figure 15.

t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35 t=40

t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35 t=40

t=0 t=5 t=10 t=15 t=20 t=25 t=30 t=35 t=40

RT-1-Begin

RT-1-15%

RT-1-Converged

RT-1-Begin

RT-1-15%

RT-1-Converged

RT-1-Begin

RT-1-15%

RT-1-Converged

Figure 15: Generation Results for Vid2World in Real2Sim Policy Evaluation experiments.
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Figure 16: Video Prediction Metrics as a function of Causal Action Guidance Scale (λ) in
the CS:GO environment. While increasing λ initially improves performance by enforcing action
alignment, excessive guidance leads to degradation due to over-sharpening artifacts.

D.5 IMPACT OF CAUSAL ACTION GUIDANCE SCALE ON GENERATION QUALITY

To further validate the efficacy of our proposed Causal Action Guidance mechanism, we analyze the
impact of the guidance scale λ on generation quality using 3D Game Simulation.

Setup. We randomly subsample a subset of 50 trajectories from the validation set in the
CS:GO environment, and evaluate Vid2World’s performance across a range of scales λ ∈
[1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0], reporting the following four metrics: PSNR, SSIM, LPIPS, and
DreamSim. Following the setup in Section 5.2, the video prediction metrics are calculated on the
predicted frames, conditioned on four initial history frames given as ground truth.

Results. As shown in Figure 16, we observe a consistent trend of improvement followed by
degradation with respect to increasing guidance scale λ in the generation quality across all evaluated
metrics. This is aligned with our intuition of probability steering: While absence or insufficiency
of guidance scale results in suboptimal metric scores due to poor action adherence, overshoot of
guidance scale leads to over-sharpened distributions and visual artifacts. Through varying causal
action guidance scale λ, our mechanism offer the test-time flexibility of trading off action alignment
with visual fidelity, leading to improved world modeling capabilities. These results, taken together
with ablation studies in Section 5.4 (which confirm the necessity of guidance) and theoretical
justifications in Appendix A.4, provide a holistic validation of our method, spanning theoretical
arguments, intuitive explanations and empirical validations.

D.6 LONG-HORIZON ROLLOUT AND ZERO-SHOT GENERALIZATION

To validate Vid2World’s robustness to temporal extrapolation, we conduct a long-horizon rollout
experiment in the CS:GO environment. Initialized with 9 ground truth frames, the model performs
autoregressive generation conditioned on a sliding window of the 9 most recent observations. The
action sequence is sampled uniformly from {W,A,S,D}, with each action held constant for 10
consecutive frames to induce significant movement. We extend the rollout to a total of 100 generated
frames, significantly exceeding the training horizon of 16. As illustrated in Figure 17, while artifacts
such as softened textures and drift in spatial layout occur as the rollout horizon increases, the
generation maintains relatively high fidelity and physical realism, demonstrating strong robustness
against error accumulation.

In addition to in-domain temporal extrapolation, we further evaluate the model’s zero-shot general-
ization on a completely out-of-distribution (OOD) dataset: the tactical shooter game Valorant (Riot
Games, 2020). Crucially, during the Vid2World training process, the model was exposed exclusively
to CS:GO data. Therefore, any cross-domain generalization observed in this setting stems entirely
from the robust visual priors preserved from the pre-trained video diffusion backbone during our
transformation process. We perform autoregressive rollouts up to 50 frames. As shown in Figure
18, although the visual quality degrades much faster compared to the in-domain setting, the model
surprisingly retains rudimentary capabilities of temporal consistency and action responsiveness. This
zero-shot generalization experiment further validates that Vid2World enables interactivity while
preserving and channeling the video diffusion model’s inherent generalization capabilities.
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(a) Rollout Sample 1

(b) Rollout Sample 2

Figure 17: Temporal Extrapolation via Long-Horizon Rollout (Part I). Initialized with 9 history
frames, Vid2World autoregressively generates 100 frames conditioned on random action sequences
in the CS:GO environment (over 6x the training horizon). Frame indices and corresponding actions
are annotated at the start of each row. Zoom in for details. Continued on next page.
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(c) Rollout Sample 3

(d) Rollout Sample 4

Figure 17: Temporal Extrapolation via Long-Horizon Rollout (Part II). Initialized with 9 history
frames, Vid2World autoregressively generates 100 frames conditioned on random action sequences
in the CS:GO environment (over 6x the training horizon). Frame indices and corresponding actions
are annotated at the start of each row. Zoom in for details. Continued on next page.
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(e) Rollout Sample 5

(f) Rollout Sample 6

Figure 17: Temporal Extrapolation via Long-Horizon Rollout (Part III). Initialized with 9 history
frames, Vid2World autoregressively generates 100 frames conditioned on random action sequences
in the CS:GO environment (over 6x the training horizon). Frame indices and corresponding actions
are annotated at the start of each row. Zoom in for details.
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(a) Zero-Shot Rollout Sample 1

(b) Zero-Shot Rollout Sample 2. Notice the movement of the railing from Frame 21 to 30, moving right due to
the character moving left, showcasing action responsiveness.

Figure 18: Zero-Shot Generalization on Valorant (OOD). Despite being trained exclusively on
CS:GO, Vid2World autoregressively generates 50-frame rollouts in the unseen game Valorant while
suprisingly retaining rudimentary temporal consistency and action responsiveness, demonstrating the
robust visual priors preserved from the pre-trained backbone. Zoom in for details.

t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10
History Context Action: Switch Weapon

Figure 19: Capturing Environment Stochasticity. Conditioned on 4 history frames, Vid2World
predict the future in auto-regressive rollout. On timestep t=8, given the “switch weapon" action,
the model generates the previously unseen weapon. Since the specific weapon is unobserved in
the history, the model produces diverse plausible outcomes with various shapes and colors across
samples, effectively capturing the stochastic nature of the environment. Zoom in for details.

D.7 CAPTURING ENVIRONMENT STOCHASTICITY

To further investigate whether Vid2World captures the complex stochastic nature of the underlying
dynamics, rather than merely predicting a single-modal distribution, we conduct a qualitative analysis
in the domain of CS:GO. Specifically, we fix the provided history (4 frames) and the future action
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Move Forward (x+)

Move Backward (x-)

Move Left (y+)

Move Right (y-)

Lift Up (z+)

Press Down (z-)

t=0 t=2 t=4 t=6 t=8 t=10 t=12 t=14

Figure 20: Following Action Semantics. Conditioned on the same initial frame, Vid2World predicts
diverging futures under different action conditions, faithfully following action semantics.

sequence (triggering “switch weapon” at t = 8), while sampling multiple trajectories with our
Vid2World model. As illustrated in Figure 19, the model produces diverse plausible outcomes of the
potential weapon, varying in shapes and colors. Since the secondary weapon is not visible in the
conditioning context, the model is destined to draw the weapon from a multi-modal distribution. This
diversity confirms that our model effectively learns the joint distribution of the data, capturing the
inherent stochasticity of the environment rather than collapsing to a single mode.

D.8 FOLLOWING ACTION SEMANTICS

To validate Vid2World genuinely follows action semantics, rather than predicting observatory trends
based solely on history frames, we start from the same initial frame, sampling different action
sequences for video prediction. In addition to validating this capability in the CS:GO environment
(as shown in Figure 13), we conduct the experiment with similar spirits using the RT-1 environment.

Setup. We randomly sample an initial frame from the validation set, using it as the history context.
Since in the RT-1 environment, the action space represents the end effector position of the robot
arm, we therefore condition generation on six canonical action sequences: Move Forward, Move
Backward, Move Left, Move Right, Lift Up, and Press Down, corresponding to translations of the end
effector along the x, y and z axes. Using the same configurations as Section 5.1, we autoregressively
rollout trajectories until a total number of 16 frames is reached.

Results. As shown in Figure 20, Vid2World’s predictions exhibit clear, directionally coherent
end-effector motion that aligns with the semantics of the conditioned action sequence. Notably,
the model correctly anticipates challenging phenomena such as end effector exiting the camera
view (for Move Backward and Move Right) and physical contact with the table (for Press Down).
Taken together with the action influence on generated trajectory experiment in Figure 13 and the
Real2Sim Policy Evaluation Experiment in Section 5.1, these results validate Vid2World’s capability
of generating future predictions that faithfully reflect the semantics of actions.
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Table 4: Quantitative Results of Interactive Metrics on CS:GO environment. After generating
video predictions based on ground truth actions as well as random actions, we calculate the normalized
delta metrics ∆N −M. Best results are shown in bold.

Model ∆N -FVD ↓ ∆N -FID ↓ ∆N -SSIM ↑ ∆N -LPIPS ↓ ∆N -PSNR ↑ ∆N -Dreamsim ↓
Diamond-Fast -48.43 -5.01 44.84 -20.95 52.94 -44.16
Diamond-HQ -55.85 -14.76 47.04 -25.55 48.78 -53.35
Vid2World -77.06 -29.44 22.40 -20.32 17.60 -41.81

D.9 QUANTITATIVE RESULTS ON INTERACTIVE METRICS

To quantitatively validate Vid2World’s capability of performing counterfactural reasoning based on
the action sequence, following Bruce et al. (2024), we evaluate this “action semantics following"
capability by comparing the generation quality conditioned on ground truth and conditioned on
random action input.

Metrics. We generalize the ∆t-PSNR proposed by Bruce et al. (2024) to video generation met-
rics, introducing normalized delta metrics (∆N -M) for corresponding video generation metricM.
Specifically, given the ground truth video sequence x0:T , generated sequence conditioned on ground
truth action x̃0:T and generated sequence conditioned on random actions x̃′

0:T , as well as a video
generation metricM : RT×d × RT×d → R, the metric is defined as:

∆N -M(x0:T , x̃0:T , x̃
′
0:T ) :=

M(x0:T , x̃0:T )−M(x0:T , x̃
′
0:T )

M(x0:T , x̃′
0:T )

.

Intuitively, this metric measures how much the video generations differ when conditioned on ground
truth action sequences compared to actions sampled from a random distribution, normalized by the
scale of the metricM. For metricM such that higher is better, ∆N -M also satisfies higher is better,
as vice versa.

Setup. We evaluate our model’s action following capability under the CS:GO environment. Fol-
lowing Section 5.2, we initialize with 4 history frames and corresponding ground truth actions, and
predict on the validation set (500 trajectories) autoregressively until a total frame number of 16 is
reached. For randomly sampled actions, we uniformly sample from all valid keyboard inputs. We
report the calculated Delta Normalized Metrics ∆N -M, are shown in Table 4.

Results and Discussion. As shown in Table 4, Vid2World outperforms baseline methods in
∆N -FVD and ∆N -FID, showing Vid2World’s capability of following action semantics. However, we
notice clear trends of generation quality degradation when sampling DIAMOND with random actions,
whereas our model does not. Hence, we raise the concern of “hacking" the metric, where a model can
acquire high quantitative performance on these delta normalized metrics by generating low-quality
videos when conditioned on random action distribution. This inability to distinguish action following
capabilities with generation quality degrade under ood action distributions, contributes at least
partially to Vid2World’s limited performance on these metrics. We anticipate futher work to come up
with better evaluation metrics for measuring interactivity capabilities.

D.10 THE ROLE OF LARGE-SCALE PRETRAINING

In this section, we focus on a key question, highlighting the role of large-scale pretraining on this
transfer method:

RQ : Is the model’s success attributed to channeling visual priors from the pre-trained video
diffusion model or merely the novel architectural changes?

To ablate the role of large-scale video pretraining, we randomly initialize the model parameters,
following the exact architectural choice as Vid2World, and train the entire model from scratch based
solely on the RT-1 dataset, using 30k gradient steps for fair comparison with other ablated models.
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Table 5: Ablation study on the role of video pretraining: To validate Vid2World truly transfers
priors from the pretrained video diffusion model, we train an additional model from scratch in the
RT-1 environment, maintaining the exact architecture as Vid2World but randomly initializing the
parameters. Best results in bold, worst in italics.

Model WT AG FVD ↓ FID ↓ SSIM ↑ LPIPS ↓ PSNR ↑
Vid2World Shift 29.9 7.85 0.799 0.185 21.5
Vid2World Masked 29.4 7.07 0.824 0.169 22.9
Vid2World Extrapolative 28.6 7.52 0.832 0.162 23.4
Vid2World Masked ✓ 25.8 6.84 0.840 0.159 23.9
Vid2World Extrapolative ✓ 22.4 6.16 0.839 0.159 23.9
From Scratch Does not Apply ✓ 1768.8 469.4 0.065 0.8177 8.3

As shown in Table 5, even with the identical architectural and algorithmic designs, training the world
model from scratch leads to significant performance drop compared to all other Vid2World models
that utilize the pre-existing video diffusion model across all metrics. This indicates that during
Vid2World, the generation priors encapsulated in video diffusion model due to large-scale video
pretraining truly transfers to the transformed interactive world model.

D.11 EMPIRICAL VALIDATION OF CAUSAL WEIGHT TRANSFER

To validate the functioning our causal weight transfer mechanism, we conduct additional experiment,
investigating whether representation similarity is perserved during transformation. Specifically, we
focus on the following research question:

RQ: Does Weight Transfer preserve representations close to the original video diffusion model?

Setup. To measure the similarity of the transformed feature of our transformed world model and
the original pretrained video diffusion model, we utilize the metric of Cosine Similarity. Cosine
Similarity measures the similarity between two non-zero vectors in a multi-dimensional space by
calculating the cosine of the angle between them, resulting in values in [−1, 1]. The higher the score,
the stronger the correlation. We randomly sample 50 trajectories in the validation set of RT-1, passing
the clean video sequence as input. Actions are dropped out for world models, and noise scale is
set to zero across of frames. We measure the mean cosine similarity between latent representations
extracted after the first convolutional layer of our transformed world model and the original pretrained
video diffusion model. For all models, we employ training on 30k gradient steps, following ablation
setup (Section 5.4). The results are shown in Table 6.

Table 6: Cosine similarity between features of transformed world models and original video
diffusion model. Taken the same video sequence as input, we measure the mean cosine similar of
features taken after the first convolution layer of both models. Values are scaled by 100 for better
visualization. Best results are shown in bold.

Model WT AG Cosine Similarity ↑
Vid2World Shift ✓ 71.04
Vid2World Masked ✓ 71.09
Vid2World Extrapolative ✓ 71.13

Results. As shown in Table 6, all three weight transfer methods of Vid2World achieve high cosine
similarity scores (>0.7), demonstrating that Vid2World preserves the representational structure of the
original video diffusion model. The extrapolative variant achieves the highest similarity, providing
empirical evidence of the functioning of linear extrapolation, effectively repurposing generative video
priors for interactive world modeling.
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E COMPUTATION COSTS

In this section, we provide a detailed breakdown of the computational costs required for Vid2World.
As a first step toward repurposing large-scale video diffusion models into interactive world models,
our primary focus has been on establishing visual fidelity and physical realism rather than optimizing
for inference latency.

Training Computation Costs. We conduct training on 4 Nvidia 40GB A100 GPUs, using the
hyperparameters provided in Table 3. The configured training completes 100k gradient steps in 7
days, utilizing a memory footprint of 37GB of GPU VRAM.

Inference Computation Costs. Since our model is capable of autoregressive generation conditioned
on a flexible number of history frames and ddim sample steps, our inference speed depends on the
configuration of such hyperparameters. We provide a realistic setup below: On a single NVIDIA
A100 (40GB) GPU, the model is configured with a context window of 10 history frames and utilizes
50-step DDIM sampling with causal action guidance scale greater than 1. Under these settings, with
a batch size of 2, the model’s inference latency is approximately 20.0 seconds per generated frame,
with memory footprint of approximately 16 GB of GPU VRAM.

Potential Speedup Methods. While the current inference latency reflects the heavy computational
cost of high-fidelity diffusion sampling, we identify several promising avenues of speeding up
inference: (a.) Decreasing the number of sampling steps; (b.) Conditioning on shorter history; (c.)
Software optimizations for instance JIT compiling the model; (d.) Implementing (rolling) KV-Cache
for autoregressive generation (Yin et al., 2024; Huang et al., 2025). We anticipate further work that
builds upon these insights, achieving real-time action-conditioned video generation.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were employed with the single purpose of polishing the writing of
this manuscript. Their use was strictly limited to enhancing language quality, improving readability,
and ensuring clarity throughout the paper. In particular, LLM assisted in rephrasing sentences,
checking grammar, and identifying typos.

It is important to note that LLMs were not involved in the conception and realization of research ideas,
the design of methodologies, or the execution of experiments. All research contributions—including
conceptual development, methodological choices, and data analysis—were carried out independently
by the authors. LLMs’ role was strictly confined to linguistic refinement, without influencing the
scientific substance of the work.

The authors take full responsibility for the entire content of the manuscript, including text that was
modified using LLM-based assistance. We have taken great care to ensure our use of LLMs adheres
to ethical guidelines and does not give rise to plagiarism or scientific misconduct.
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