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Abstract

Federated learning (FL) facilitates collaboration between a group of clients who1

seek to train a common machine learning model without directly sharing their2

local data. Although there is an abundance of research on improving the speed,3

efficiency, and accuracy of federated training, most works implicitly assume that4

all clients are willing to participate in the FL framework. Due to data heterogeneity,5

however, the global model may not work well for some clients, and they may6

instead choose to use their own local model. Such disincentivization of clients can7

be problematic from the server’s perspective because having more participating8

clients yields a better global model, and offers better privacy guarantees to the9

participating clients. In this paper, we propose an algorithm called INCFL that10

explicitly maximizes the fraction of clients who are incentivized to use the global11

model by dynamically adjusting the aggregation weights assigned to their updates.12

Our experiments show that INCFL increases the number of incentivized clients by13

30-55% compared to standard federated training algorithms, and can also improve14

the generalization performance of the global model on unseen clients.15

1 Introduction16

Federated learning (FL) is a distributed learning framework that enables the training of a machine17

learning model using a network of clients (e.g., mobile phones, hospitals) [1], without having to18

transfer the clients’ data to a central server. In the standard FL framework [1–6], clients perform a19

few updates using their local data, and a central server aggregates these updates into a single global20

model. As the global model is based on the union of all the local datasets, it is expected to generalize21

well for the entire client population. However, due to heterogeneity of the data between clients [7],22

not all clients stand to benefit from federation. While FL can produce a model that performs well23

on average, for some clients, it may perform even worse than a model trained in isolation on their24

limited local data. Our experiments (Section 4) demonstrate that local models trained in isolation on25

FL benchmarks can indeed outperform global models obtained by commonly used FL algorithms.26

When a client participates in FL, it incurs the cost of contributing its local data and computational27

resources to the federation in return for receiving a global model. However, if a local model trained28

in isolation is better than the global model, the client may not be incentivized to participate in29

FL—causing it to opt out of contributing to and using the global model in the future. This lack of30

incentives for clients to participate in FL can be problematic from the server’s perspective. Having a31

large pool of clients willing to participate in training is beneficial, if not imperative, to ensure the32

performance of FL models [8, 9]. When a large number of clients participate, the global model is33

based on a larger pool of data, allowing better generalization to new clients that may join in the34

future. Having a larger number of participating clients can also improve privacy-utility trade-offs by35

mitigating the impact of each individual client on the global model [10–12].36
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In this work, we seek to answer the following pertinent question: How can we actively incentivize37

clients to use and contribute to a federated global model, rather than training local models in38

isolation? To address this question, we propose an algorithm called INCFL to train a global model39

that dramatically improves the fraction of incentivized clients in comparison to standard FL algorithms.40

Our key contributions are summarized as follows.41

• In Section 2 we formalize the notion of client incentives by defining a metric called the incentivized42

participation rate (IPR), which measures the fraction of clients willing to participate in the FL43

framework. We propose to maximize a sigmoid relaxation of the IPR, which makes the objective44

differentiable and enables the use of common gradient-based optimization algorithms.45

• In Section 3 we propose a federated algorithm called INCFL to maximize incentivized client46

participation. INCFL dynamically adjusts the weight assigned to each client’s local update when47

aggregating the updates at the central server. The method allows for partial client availability for48

training, it is applicable to general non-convex objectives (with convergence guarantees), and it is49

stateless (does not require clients to maintain local parameters during training).50

• In Section 4, we empirically validate the performance of INCFL by comparing it with standard FL51

algorithms for multiple data sets. INCFL is able to increase the number of incentivized clients by52

30-55%, and also ensures that the global model generalizes well to unseen clients.53

As surveyed in [13], previous works investigating client incentives in FL have typically done so from54

a game-theoretic perspective and for toy problems such as mean estimation. In contrast, our work55

is generally applicable to non-convex objectives, and considers a server that seeks to train a single56

global model that will be preferred by the maximum number of clients, thus incentivizing them to57

participate in FL. We provide a more detailed review of prior work in Appendix A below.58

2 Problem Formulation59

We consider a FL setup where M clients are connected to a central server. For each client k ∈60

{1, 2, . . . ,M}, its true local loss function is given by fk(w) = Eξ∼Dk
[ℓ(w, ξ)] where Dk is the true61

data distribution of client k, and ℓ(w, ξ) is the composite loss function for the model w ∈ Rd for data62

sample ξ. In practice, each client only has access to its local training dataset Bk with |Bk| = Nk data63

samples sampled from Dk. Client k’s empirical local loss function is Fk(w) = 1
|Bk|

∑
ξ∈Bk

ℓ(w, ξ).64

Our setup is applicable to both cross-device and cross-silo FL as we do not make any specific65

assumptions about the nature of the clients or their constraints.66

Defining Client Incentives in FL. The goal of each client is to find a model that minimizes its67

true loss function, which we denote as w∗
k := argminw fk(w). To do so, we consider that each68

client does some solo training on its local dataset Bk to obtain an approximate local model ŵk. For69

example, ŵk can be found by running a few steps of SGD on the empirical loss Fk(w). Since the70

local dataset size is in general small, ŵk may not generalize well to the true distribution Dk of a71

client. Therefore we say that a client is incentivized to participate in FL (i.e., use the federated model)72

if the federated model gives better generalization performance than its local model.73

Definition 1 (Client Incentive). Given a global model w, client k ∈ [M ] is said to be incentivized to74

participate in FL if fk(w) < fk(ŵk), that is, the global model is better than its own local model.75

In practice, clients can have a separate validation dataset on which they compare the losses of the76

global model and their local model to decide if they are incentivized to participate. In general, fk(ŵk)77

in Definition 1 acts as a performance benchmark for the global model and can also be replaced by a78

different value depending on the specific need of a client.79

Standard FL Objective does not account for Client Incentives. In standard FL, clients collab-80

oratively minimize the objective F (w) =
∑M

k=1 pkFk(w), where the aggregation weights pk are81

usually set as pk ∝ |Bk|. Observe that this objective function does not consider client incentives as82

defined in Definition 1 and implicitly assumes that all clients will participate in training and use the83

global model. However, due to clients’ data heterogeneity, this assumption may not hold in general.84
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Incentivized Participation Rate (IPR). Based on Definition 1, we formulate the following metric to85

explicitly measure the fraction of clients that are incentivized for a given federated global model w:86

Incentivized Participation Rate (IPR) =
1

M

M∑

k=1

I{fk(w) < fk(ŵk)}, (1)

where I is the indicator function. Note that IPR only looks at whether or not a client is incentivized87

and not how much a client is incentivized (or disincentivized) since the decision to participate in88

FL is binary. Another variation of (1) could be to measure the incentive margin of clients, e.g.89 ∑
k max{fk(ŵk)− fk(w), 0}, but this does not capture the motivation behind our work which is90

to improve the number of the incentivized clients in FL. To the best of our knowledge, a similar91

indicator based metric has not been explored previously in the FL literature.92

2.1 Proposed INCFL Objective93

A naïve approach to increase the number of incentivized clients with our definition of client incentives94

in (1) is directly maximizing the IPR as follows:95

max
w

[
1

M

M∑

k=1

I{fk(w) < fk(ŵk)}
]
= min

w

[
1

M

M∑

k=1

sign(fk(w)− fk(ŵk))

]
. (2)

where sign(x) = 1 if x ≥ 0 and 0 otherwise. There are two immediate difficulties in minimizing (2).96

First, clients may not know their true data distribution Dk to compute fk(w)− fk(ŵk). Secondly,97

the sign function makes the objective nondifferentiable and limits the use of common gradient-based98

methods. We resolve these issues by proposing a "proxy" for (2) with the following relaxations.99

1. Replacing the Sign function with the Sigmoid function σ(·) [14]: Replacing the non-100

differentiable 0-1 loss with a smooth differentiable loss is a standard tool used in optimiza-101

tion [15, 16]. Given the many candidates (e.g. hinge loss, ReLU, sigmoid), we find that using the102

sigmoid function is essential for our objective to faithfully approximate the true objective in (2).103

We discuss theoretical implications of using the sigmoid loss in more detail in Appendix B.1.104

2. Replacing σ(fk(w) − fk(ŵk)) with σ(Fk(w) − Fk(ŵk)): As clients do not have access to105

their true distribution Dk to compute fk(·) we propose to use an empirical estimate σ(Fk(w)−106

Fk(ŵk)). Since ŵk is locally trained, it is likely that Fk(ŵk) < fk(ŵk). On the other hand, the107

global model w is trained on the data of all clients, making it unlikely to overfit to the local data108

of any particular client, leading to fk(w) ≈ Fk(w) (see Appendix F.2). Hence, in most cases109

we have fk(w)− fk(ŵk) < Fk(w)− Fk(ŵk) and since sigmoid is an increasing function, this110

implies that σ(fk(w)− fk(ŵk)) < σ(Fk(w)− Fk(ŵk)). Therefore, with this relaxation we are111

effectively trying to minimize an upper bound on our true objective.112

With these relaxations, we present our proposed INCFL objective:113

INCFL Obj. : min
w

F̃ (w) = min
w

1

M

M∑

i=1

F̃i(w),where F̃i(w) := σ(Fi(w)− Fi(ŵi)). (3)

Our experimental results in Section 4 support our intuition of these relaxations and convincingly114

demonstrate that minimizing our proposed objective leads to a much higher IPR than the standard FL115

objective. Before discussing the details of how we minimize our objective, we take a closer look at116

how our objective behaves for a mean estimation problem.117

3 Proposed INCFL Algorithm118

With the sigmoid approximation of the sign loss and for differentiable Fk(w), our objective F̃ (w) in119

(3) is differentiable and can be minimized with gradient descent and variants. Its gradient is given by:120

∇F̃ (w) =
1

M

M∑

k=1

(1− F̃k(w))F̃k(w)︸ ︷︷ ︸
aggregating weight:=qk(w)

∇Fk(w). (4)
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Figure 1: Aggregating weight qk(w) for
any client k versus the emprical incen-
tive gap Fk(w)− Fk(ŵk). The weight
qk(w) is small for clients that already
have a very large incentive (global much
better than local) or no incentive at all
(local much better than global), and is
highest for clients that are moderately
incentivized (global similar to local).

Observe that∇F̃ (w) is a weighted aggregate of the gradi-121

ents of the clients’ empirical losses, similar in spirit to the122

gradient∇F (w) in standard FL. The key difference is that123

in INCFL, the weights qk(w) := (1− F̃k(w))F̃k(w) are124

incentive-dependent, and are dynamically updated based125

on the current model w, as we discuss below.126

Behavior of the Aggregation Weights qk(w). For a127

given w, the behavior of the aggregation weights qk(w)128

depend on the empirical incentive gap, Fk(w)− Fk(ŵk)129

(see Fig. 1) since F̃k(w) = σ(Fk(w)− Fk(ŵk)). When130

Fk(w) ≪ Fk(ŵk), it implies that the global model w131

performs much better than the local model ŵk at client132

k. Hence INCFL sets qk(w) ≈ 0 to focus on the updates133

of other clients. Similarly if Fk(w) ≫ Fk(ŵk), INCFL134

will set qk(w) ≈ 0. This is because Fk(w) ≫ Fk(ŵk)135

implies that the current model w is incompatible with the136

local model wk at client k and hence it is better to avoid137

optimizing for this client at the risk of disincentivizing138

other clients. INCFL gives the highest weight to those139

clients for which the global model performs similar to140

their local models, i.e. Fk(w) ≈ Fk(ŵ), since this allows141

it to increase IPR without hurting other clients’ performance.142

A Practical INCFL Solver. Directly minimizing the INCFL objective using gradient descent can143

be slow to converge and impractical since it requires all clients to be available for training. Instead,144

we propose a practical INCFL algorithm, which uses multiple local updates at each client to speed145

up convergence as done in standard FL [1] and allow for partial client availability. We replace the146

gradient ∇Fk(w) with the local update ∆wk at a client, and aggregate these updates only from147

clients that are available in that round.148

Let us use the superscript (t, r) to denote the communication round t and local iteration index r. At149

each round t, the server selects a new set of clients S(t,0) uniformly at random and sends the most150

recent global model w(t,0) to clients in S(t,0). The clients in S(t,0) then perform τ local iterations151

with local learning rate ηl to calculate their updates as follows:152

Perform Local SGD: w
(t,r+1)
k = w

(t,r)
k − ηlg(w

(t,r)
k , ξ

(t,r)
k ) for all r ∈ {0, . . . , τ − 1}, (5)

Compute Local Update: ∆w
(t,0)
k = w

(t,τ)
k −w

(t,0)
k , (6)

where g(w
(t,r)
k , ξ

(t,r)
k ) = 1

b

∑
ξ∈ξ

(t,r)
k

∇f(w(t,r)
k , ξ) is the stochastic gradient computed using a153

mini-batch ξ
(t,r)
k of size b that is randomly sampled from client k’s local dataset Bk. The weight154

qk(w
(t,0)
k ) can be computed at each client by calculating the loss over its training data with w

(t,0)
k155

which is a simple inference step. Clients in S(t,0) then send back their local updates ∆w
(t,0)
k and156

weights qk(w
(t,0)
k ) to the server which updates the global model as follows:157

Global Update Rule: w(t+1,0) = w(t,0) − η(t,0)g

∑

k∈S(t,0)

qk(w
(t,0))∆w

(t,0)
k , (7)

where η
(t,0)
g =

ηg∑
k∈S(t,0) qk(w(t,0))+ϵ

is the adaptive server learning rate with a fixed global learning158

rate ηg and constant ϵ > 0. We discuss the reasoning for such an adaptive learning rate along with159

the pseudo code and convergence bounds of our INCFL in Appendix C.160

4 Experimental Results161

We evaluate INCFL in four different settings: (i) logistic regression on a synthetic federated dataset162

(Synthetic(1,1) [2]), (ii) MLP trained on non-iid partitioned FMNIST [17], (iii) CNN trained on163

non-iid partitioned CIFAR10 [18], and (iv) MLP for sentiment classification trained on Sent140 [19].164

We compare INCFL with well-known stateless FL algorithms that train a single model such as165
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(a) Training Data Ratio 40%
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(b) Training Data Ratio 80%

Figure 2: Incentivized participation rate (IPR), i.e., the fraction of incentivized clients, and preferred-
model test accuracy evaluated on the test data for the synthetic data with the training clients. INCFL
improves on both IPR and preferred-model test accuracy for both smaller (40%) and larger (80%)
training data ratios where the IPR improvement of INCFL is larger for the smaller training data ratio.

0 20 40 60 80 100
CRPPunLFaWLRn RRunds

0.0

0.2

0.4

In
F.

 P
ar

WLF
Lp

aW
LR

n 
R

aW
e

FedAvg
FedPrRx
0W-Fed
InFFL

0 20 40 60 80 100
CRPPunLFaWLRn RRunds

99.0

99.1

99.2

99.3

3r
eI

er
re

d-
0

Rd
el

 T
eW

 A
FF

.

FedAvg
Fed3rRx
0W-Fed
InFFL

(a) FMNIST
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(b) CIFAR10
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(c) Sent140
Figure 3: Incentivized participation rate (upper), i.e., the fraction of clients incentivized to participate
in FL, and preferred-model test accuracy (lower) for the training clients’ test data with different
datasets. For all datasets, INCFL achieves at least 30% to up to 55% increase in the fraction of
incentivized clients, while also achieving the maximum preferred-model test accuracy.

standard FedAvg [1], FedProx [2] which aims to tackle data heterogeneity, PerFedAvg [20] which166

facilitates personalization, and MW-Fed [21] which incentivizes client participation. We provide167

results on personalization jointly used with INCFL in Appendix F.2.168

Setup. For Sent140, we consider 308 clients and for the other datasets we have 100 clients that169

are used for training in FL. These clients are active at some point in training the global model, and170

we name them as ‘seen clients’. In all experiments, 10 clients are sampled every communication171

round. For FMNIST, data is partitioned into 5 clusters where 2 labels are assigned for each cluster172

with no labels overlapping across clusters. Clients are randomly assigned to each cluster, and within173

each cluster, clients are homogeneously distributed with the assigned labels . We similarly partition174

CIFAR10, where clients are partitioned into 10 clusters with 1 label assigned to each cluster. For the175

Sent140 dataset, clients are naturally partitioned with their twitter IDs. We also generate ‘unseen176

clients’ the same way we generate the seen clients, with 619 clients for Sent140 and 100 clients for177

all other datasets. These unseen clients represent new incoming clients that have not been seen before178

during the training rounds of FL. The data of each client is partitioned to 60% : 40% for training and179

test data ratio unless mentioned otherwise. Further details are deferred to Appendix F.1.180

Evaluation Metrics: IPR and Preferred-model Test Accuracy. We evaluate INCFL and other181

methods with these two key metrics: 1) Incentivized Participation Rate (IPR), defined in (1) and 2)182

Preferred-Model Test Accuracy. Recall that IPR is the fraction of clients incentivized to participate in183

FL and use the global server. The preferred-model test accuracy is the average of the clients’ test184

5



Table 1: Incentivized participation rate (IPR) and preferred-model test accuracy of the final global
models trained with different algorithms for the unseen clients’ test data.

Incentivized Participation Rate (IPR) Preferred-Model Test Acc.

FMNIST CIFAR10 Sent140 FMNIST CIFAR10 Sent140
FedAvg 0.08 (±0.01) 0.00 (±0.00) 0.37 (±0.07) 98.53 (±0.13) 100.00 (±0.00) 57.05 (±1.44)

FedProx 0.07 (±0.01) 0.00 (±0.00) 0.37 (±0.07) 98.43 (±0.21) 100.00 (±0.00) 57.07 (±1.42)

MW-Fed 0.05 (±0.04) 0.02 (±0.02) 0.17 (±0.03) 98.32 (±0.13) 100.00 (±0.00) 55.57 (±1.28)

INCFL 0.55 (±0.00) 0.40 (±0.00) 0.43 (±0.05) 98.83 (±0.06) 100.00 (±0.00) 57.16 (±1.35)

accuracies computed on their preferred model, either the global model or their solo-trained local185

model. Higher IPR is beneficial to the server, and higher preferred-model test accuracy is beneficial186

to the clients. Thus, it is desirable for an algorithm to improve both these metrics.187

Incentivizing the Participation of the Seen Clients. We first discuss the performance for seen188

clients used during the training of the global model. In Fig. 2, we show that for the synthetic data,189

INCFL incentivizes at least 5% more clients compared to the other baselines. The preferred-model190

test accuracy achieved by INCFL is also highest amongst other baselines. Hence INCFL provides191

a win-win for both the server and clients since clients have the highest accuracy from choosing the192

better model and the server has the highest fraction of incentivized clients. In Fig. 3, for all DNN193

experiments, INCFL significantly improves the IPR to at least 30% to at most 55%. Fig. 3 also shows194

that the baselines can fail in incentivizing the clients with even 0% clients incentivized. INCFL also195

improves on the preferred-model test accuracy than the other baselines for FMNIST and Sent140,196

corroborating the win-win for both the server and clients. For CIFAR10, the preferred-model test197

accuracy is 100% for all baselines while the IPR is significantly higher for INCFL. This shows198

that while clients can always achieve 100% by either choosing the local or global model for best199

performance, server can only gain a large fraction of incentivized clients when using INCFL.200

Incentivizing the Participation of the Unseen Clients. We now show that INCFL is also bettter at201

incentivizing the unseen clients that were not active during the training of the global model such as202

new incoming clients. In Table 1, we show that INCFL consistently improves the IPR of such clients203

by at least 40% for FMNIST and CIFAR 10, and 6% for Sent140. INCFL also achieves higher or at204

least the same preferred-model test accuracy compared to that of all baselines for all datasets.205

Effect of Training Data Ratio. In Fig. 2, we show the performance of INCFL with different ratios206

of the training data to test data split for each client’s data. One can expect that if a client has a high207

training data ratio, the solo-trained local model of a client sufficiently generalizes well to its test data,208

and hence the client will be less incentivized to participate in FL. We show in that even if a client has209

a high training data ratio (80% in Fig. 2(b)), INCFL is able to increase the fraction of incentivized210

clients compared to other baselines but the improvement is smaller compared to when clients have211

smaller training data ratio (40% in Fig. 2(a)). In general, clients are believed to have very few labeled212

training data [22, 23], in which case INCFL can improve the fraction of incentivized clients greatly.213

5 Concluding Remarks214

In this work we carefully re-examine the fundamental assumption in FL that clients always stand to215

benefit from federation. To do so, we formalize a intuitive notion of client incentives in FL based216

on whether a global model has better generalization performance than a client’s local model. We217

introduce a novel metric termed as Incentivized Participation Rate (IPR) to explicitly measure the218

fraction of incentivized clients in FL and develop a corresponding framework INCFL to maximize219

IPR. In contrast to existing work, INCFL allows the server to play an active role in incentivizing220

clients by dynamically adjusting its aggregation procedure while training the global model. Moreover221

INCFL is well-suited to both cross-device and cross-silo FL since it stateless and allows partial client222

availability while training. We provide convergence guarantees for INCFL and show that in practice223

it can dramatically improve IPR compared to standard FL. We believe our work will open up new224

research directions in understanding the role played by the server in incentivizing clients for FL.225

Future work includes jointly examining client incentives with privacy guarantees offered in FL.226
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A Related Work351

Game-Theoretic Study of Client Coalitions. Similar to our work, [24, 25] consider the problem352

of client incentives where each client can either train a local model in isolation or join a coalition with353

other similar clients to train a common model. The authors study the ratio between the stable solution354

(where no client is incentivized to shift to a different coalition) and the optimal solution (where355

the sum of losses of all clients is minimized). Although this line of work establishes a number of356

useful game-theoretic insights, it focuses on simple mean estimation and linear regression problems.357

The server plays the role of a passive matchmaker, facilitating the formation of coalitions of clients.358

In contrast, in our work, the server actively seeks to train a single global model that maximizes359

client participation. This perspective alleviates some of the analysis complexities occurring in360

game-theoretic formulations and allows us to consider general non-convex objective functions.361

Client Incentives for Contributing Data and Computation Resources. Other recent works362

such as [21, 26–28] develop mechanisms to incentivize clients to contribute data samples and local363

computational resources to federated training, and compensate for these contributions. In [21], which364

is closest to our work, the authors consider linear problems and analyze the existence and optimality365

of equilibria in the problem of equitably distributing the burden of data contribution between clients.366

They propose a heuristic algorithm called Multiplicative Weight (MW)-Fed, where the server instructs367

clients for whom the global model is performing poorly to conduct more local updates. Unlike our368

work, this approach does not explicitly maximize client participation, and it is not supported by369

theoretical guarantees. However, we include it as a baseline in our experiments (Section 4).370

Personalized and Fair Federated Learning. Finally, personalized or fair FL methods may offer371

an auxiliary benefit of increasing incentivized client participation even though they are not formally372

studied in the client incentives context. Instead of having all clients use a common global model,373

personalized FL methods consider learning models unique to each client. In cross-device settings, a374

common approach is to consider methods that fine-tune the global model to produce personalized375

models [29, 30, 7, 31, 32]. This can naturally incentivize more clients to use the global model and376

participate in FL. Our INCFL algorithm is orthogonal to and can be combined with such personalized377

FL methods. In our experiments, we demonstrate the performance of INCFL combined with local378

fine-tuning and compare it with [20], which uses meta-learning for personalization. Another related379

area is fair FL, where a common goal is to train a global model whose accuracy has less variance380

across the client population than standard FedAvg [33, 34]. A side benefit of these methods is that381

they can incentivize the worst performing clients to participate. However, a downside is that the382

performance of the global model may be degraded for the best performing clients, thus incentivizing383

them to leave the federation. We show in additional experimental results in Appendix F.1 that384

common fair FL methods are indeed not effective in improving the overall client participation rate.385

B Mean Estimation as a Toy Example for INCFL386

B.1 Maximizing IPR in Two Client Mean Estimation387

We consider a setup with M = 2 clients where each client aims to find the mean of its data distribution388

by minimizing the true loss function fk(w) = Eξk

[
(w − ξk)

2
]
, ξk ∼ N (θk, ν

2) ∀k ∈ [2]. In389

practice, clients only have Nk samples drawn from their distribution denoted by Bk = {ek,j}Nk
j=1 and390

can only minimize their empirical loss function given by Fk(w) =
1

|Bk|
∑Nk

j=1(w − ek,j)
2. Then the391

solo trained models at each client will be their local empirical mean, i.e. ŵk = θ̂k = 1
|Bk|

∑Nk

j=1 ek,j .392

IPR for Standard FL Model Decreases Exponentially with Heterogeneity. For simplicity let393

us assume N1 = N2 = N . Let γ2 = ν2/N be the variance of the local empirical means and394

γ2
G = ((θ1 − θ2)/2)

2 > 0 be a measure of heterogeneity between the true means. The standard395

FL objective will always set the FL model to be the average of the local empirical means (i.e.396

w = (θ̂1 + θ̂2)/2) and does not take into account the heterogeneity among the clients. As a result,397

the IPR of the global model decreases exponentially as γ2
G increases.398

Lemma B.1. The expected IPR of the standard FL model is upper bounded by 2 exp
(
− γ2

G

5γ2

)
, where399

the expectation is taken over the randomness in the local datasets B1,B2.400
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F2(w)
<latexit sha1_base64="DxlsUqrFn19rm4XI2hLrJwBkc/4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpVctPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukWa14Z5Xq3XmpdpXFkYcjOIYyeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8fY4+OWQ==</latexit>

b✓1 = 0
<latexit sha1_base64="hQlzOXXQxWsa5BvwFd7M5SM3DwA=">AAAB/XicdVDJSgNBEO2JW4xbXG5eGoPgKcxMookHIejFYwQTA0kIPZ2KadKz0F2jxCH4K148KOLV//Dm39hZBBV9UPB4r4qqel4khUbb/rBSc/MLi0vp5czK6tr6RnZzq67DWHGo8VCGquExDVIEUEOBEhqRAuZ7Eq68wdnYv7oBpUUYXOIwgrbPrgPRE5yhkTrZndat6EKfYdLCPiAbdZwTu5PN2fniUcktuNTO2xMYUj48dl2HOjMlR2aodrLvrW7IYx8C5JJp3XTsCNsJUyi4hFGmFWuIGB+wa2gaGjAfdDuZXD+i+0bp0l6oTAVIJ+r3iYT5Wg99z3T6DPv6tzcW//KaMfbK7UQEUYwQ8OmiXiwphnQcBe0KBRzl0BDGlTC3Ut5ninE0gWVMCF+f0v9J3c07hbx7UcxVTmdxpMku2SMHxCElUiHnpEpqhJM78kCeyLN1bz1aL9brtDVlzWa2yQ9Yb5+cwJVT</latexit>

b✓2 = 4
<latexit sha1_base64="es0UkHrWz9codIp7ARqf7MKlSJI=">AAAB/XicdVDLSgNBEJz1GeMrPm5eBoPgaZndBJMcBNGLxwhGhSSE2UnHDM4+mOlV4hL8FS8eFPHqf3jzb5zECCpa0FBUddPdFSRKGmTs3Zmanpmdm88t5BeXlldWC2vrZyZOtYCGiFWsLwJuQMkIGihRwUWigYeBgvPg6mjkn1+DNjKOTnGQQDvkl5HsScHRSp3CZutGdqHPMWthH5APO/5+uVMoMrdWqVaYT5lbYrVadc8SVt7zvRL1XDZGkUxQ7xTeWt1YpCFEKBQ3pumxBNsZ1yiFgmG+lRpIuLjil9C0NOIhmHY2vn5Id6zSpb1Y24qQjtXvExkPjRmEge0MOfbNb28k/uU1U+xV25mMkhQhEp+LeqmiGNNRFLQrNQhUA0u40NLeSkWfay7QBpa3IXx9Sv8nZ77rlVz/pFw8OJzEkSNbZJvsEo9UyAE5JnXSIILcknvySJ6cO+fBeXZePlunnMnMBvkB5/UD1K+VeQ==</latexit>

eF (w)
<latexit sha1_base64="gZTgm9sFPwbdLuOp7Ltm0/93pC0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSBT0WBfFYwdZCG8pmM2mXbjZhd9NSQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZ5yecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipOJYUmjXks2z5RwJmApmaaQzuRQCKfw5M/vJ35TyOQisXiUU8S8CLSFyxklGgj9Wy7O2YBaMYDyO6mlfF5zy47VWcOvErcnJRRjkbP/uoGMU0jEJpyolTHdRLtZURqRjlMS91UQULokPShY6ggESgvm18+xWdGCXAYS1NC47n6eyIjkVKTyDedEdEDtezNxP+8TqrDay9jIkk1CLpYFKYc6xjPYsABk0A1nxhCqGTmVkwHRBKqTVglE4K7/PIqadWq7kW19nBZrt/kcRTRCTpFFeSiK1RH96iBmoiiEXpGr+jNyqwX6936WLQWrHzmGP2B9fkDSQOTbA==</latexit>

F1(w)
<latexit sha1_base64="ErcAzWkEPojkTnsNBzcMW6hKnz4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpeeWn016x5FbcGdAy8TJSggz1XvGr25ckiagwhGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKnBEtZ/Orp2gE6v0USiVLWHQTP09keJI63EU2M4Im6Fe9Kbif14nMeGlnzIRJ4YKMl8UJhwZiaavoz5TlBg+tgQTxeytiAyxwsTYgAo2BG/x5WXSrFa8s0r17rxUu8riyMMRHEMZPLiAGtxCHRpA4AGe4RXeHOm8OO/Ox7w152Qzh/AHzucPYgiOWA==</latexit>

F2(w)
<latexit sha1_base64="DxlsUqrFn19rm4XI2hLrJwBkc/4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpVctPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukWa14Z5Xq3XmpdpXFkYcjOIYyeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8fY4+OWQ==</latexit>

(b)
Figure 4: Results for the two client mean estimation in Appendix B.1; (a): IPR for FedAvg decays
exponentially while IPR for INCFL is lower bounded by a constant. Replacing the sigmoid approxi-
mation with ReLU approximation in INCFL leads to the same solution as FedAvg; (b): IncFL adapts
to the heterogeneity of the problem—for small heterogeneity it encourages collaboration by having
a single global minima, for large heterogeneity it encourages separation by having far away local
minimas.

Maximizing IPR with Relaxed Objective. We now explicitly maximize the IPR for this setting by401

solving for a relaxed version of the objective in (2) as proposed earlier. We replace the true loss fk(·)402

by the empirical loss Fk(·) and replace the 0-1 (sign) loss with a differentiable approximation h(·).403

We first show that setting h(·) to be a standard convex surrogate for the 0-1 loss (e.g. log loss,404

exponential loss, ReLU) leads to our new objective behaving the same as the standard FL objective.405

Lemma B.2. Let h be any function that is convex, twice differentiable, and strictly increasing in406

[0,∞). Then our relaxed objective is strictly convex and has a unique minimizer at w∗ =
(

θ̂1+θ̂2
2

)
.407

Maximizing the INCFL Objective Leads to Increased IPR. Based on Lemma B.2, we see that408

we need nonconvexity in h(·) for the objective to behave differently than standard FL. We set409

h(x) = σ(x) = exp(x)
1+exp(x) , as proposed in our INCFL objective in (3). We find that the INCFL410

objective adapts to the empirical heterogeneity parameter γ̂2
G =

(
θ̂2−θ̂1

2

)2
. If γ̂2

G < 1 (small data411

heterogeneity), the objective encourages collaboration by setting the global model to be the average412

of the local models. On the other hand, if γ̂2
G > 2 (large data heterogeneity), the objective encourages413

separation by setting the global model close to either the local model of the first client or the local414

model of the second client (see Fig. 4). Based on this observation, we have the following theorem.415

Theorem B.1. Let w be a local minima of the INCFL objective. The expected IPR using w is lower416

bounded by 1
16 exp

(
− 1

γ2

)
where the expectation is over the randomness in the local dataset B1,B2.417

Note that our result above is independent of the heterogeneity parameter γ2
G. Therefore even with418

γ2
G ≫ 0, INCFL will keep incentivizing atleast one client by adapting its objective accordingly.419

Additional discussion and proof details can be found in Appendix B.420

We begin by recalling the setup discussed in Appendix B.1. We have a setup with M = 2 clients421

where each client aims to find the mean of its data distribution by minimizing the true loss function422

fk(w) = Eξk

[
(w − ξk)

2
]
, ξk ∼ N (θk, ν

2) ∀k ∈ [2]. Without loss of generality we assume423

that θ2 ≥ θ1. In practice, each client has N samples drawn from their distribution denoted by424

Bk = {ek,j}Nj=1 and can only minimize their empirical loss function given by425

Fk(w) =
1

N

N∑

j=1

(w − ek,j)
2 (8)

= (w − θ̂k)
2 +

1

N

N∑

j=1

(θ̂k − ek,j)
2 (9)

where θ̂k = 1
N

∑N
j=1 ek,j is the empirical mean at client k. We assume that clients set their solo426

trained models as their empirical mean, i.e. ŵk = θ̂k.427
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<latexit sha1_base64="K+iivrhdeUPnWoxmB5CJQNdKl6I=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOYDjP8=</latexit>

eF (w)
<latexit sha1_base64="gZTgm9sFPwbdLuOp7Ltm0/93pC0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSBT0WBfFYwdZCG8pmM2mXbjZhd9NSQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZ5yecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipOJYUmjXks2z5RwJmApmaaQzuRQCKfw5M/vJ35TyOQisXiUU8S8CLSFyxklGgj9Wy7O2YBaMYDyO6mlfF5zy47VWcOvErcnJRRjkbP/uoGMU0jEJpyolTHdRLtZURqRjlMS91UQULokPShY6ggESgvm18+xWdGCXAYS1NC47n6eyIjkVKTyDedEdEDtezNxP+8TqrDay9jIkk1CLpYFKYc6xjPYsABk0A1nxhCqGTmVkwHRBKqTVglE4K7/PIqadWq7kW19nBZrt/kcRTRCTpFFeSiK1RH96iBmoiiEXpGr+jNyqwX6936WLQWrHzmGP2B9fkDSQOTbA==</latexit>

F1(w)
<latexit sha1_base64="ErcAzWkEPojkTnsNBzcMW6hKnz4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpeeWn016x5FbcGdAy8TJSggz1XvGr25ckiagwhGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKnBEtZ/Orp2gE6v0USiVLWHQTP09keJI63EU2M4Im6Fe9Kbif14nMeGlnzIRJ4YKMl8UJhwZiaavoz5TlBg+tgQTxeytiAyxwsTYgAo2BG/x5WXSrFa8s0r17rxUu8riyMMRHEMZPLiAGtxCHRpA4AGe4RXeHOm8OO/Ox7w152Qzh/AHzucPYgiOWA==</latexit>

F2(w)
<latexit sha1_base64="DxlsUqrFn19rm4XI2hLrJwBkc/4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpVctPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukWa14Z5Xq3XmpdpXFkYcjOIYyeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8fY4+OWQ==</latexit>

F3(w)
<latexit sha1_base64="YB3wEBMNIOjfjSZiDvKYTOKuIvg=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpVctPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukeVbxqpWzu/NS7SqLIw9HcAxl8OACanALdWgAgQd4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/ZRaOWg==</latexit>

(a)
w

<latexit sha1_base64="K+iivrhdeUPnWoxmB5CJQNdKl6I=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOYDjP8=</latexit>

b✓1 = 0
<latexit sha1_base64="hQlzOXXQxWsa5BvwFd7M5SM3DwA=">AAAB/XicdVDJSgNBEO2JW4xbXG5eGoPgKcxMookHIejFYwQTA0kIPZ2KadKz0F2jxCH4K148KOLV//Dm39hZBBV9UPB4r4qqel4khUbb/rBSc/MLi0vp5czK6tr6RnZzq67DWHGo8VCGquExDVIEUEOBEhqRAuZ7Eq68wdnYv7oBpUUYXOIwgrbPrgPRE5yhkTrZndat6EKfYdLCPiAbdZwTu5PN2fniUcktuNTO2xMYUj48dl2HOjMlR2aodrLvrW7IYx8C5JJp3XTsCNsJUyi4hFGmFWuIGB+wa2gaGjAfdDuZXD+i+0bp0l6oTAVIJ+r3iYT5Wg99z3T6DPv6tzcW//KaMfbK7UQEUYwQ8OmiXiwphnQcBe0KBRzl0BDGlTC3Ut5ninE0gWVMCF+f0v9J3c07hbx7UcxVTmdxpMku2SMHxCElUiHnpEpqhJM78kCeyLN1bz1aL9brtDVlzWa2yQ9Yb5+cwJVT</latexit>

b✓2 = 1
<latexit sha1_base64="v4wqHZwUHezl3x51qh+WczB7lkw=">AAAB/XicdVDLSgNBEJz1GeMrPm5eBoPgaZndBJMcBNGLxwhGhSSE2UnHDM4+mOlV4hL8FS8eFPHqf3jzb5zECCpa0FBUddPdFSRKGmTs3Zmanpmdm88t5BeXlldWC2vrZyZOtYCGiFWsLwJuQMkIGihRwUWigYeBgvPg6mjkn1+DNjKOTnGQQDvkl5HsScHRSp3CZutGdqHPMWthH5APO/6+1ykUmVurVCvMp8wtsVqtumcJK+/5Xol6LhujSCaodwpvrW4s0hAiFIob0/RYgu2Ma5RCwTDfSg0kXFzxS2haGvEQTDsbXz+kO1bp0l6sbUVIx+r3iYyHxgzCwHaGHPvmtzcS//KaKfaq7UxGSYoQic9FvVRRjOkoCtqVGgSqgSVcaGlvpaLPNRdoA8vbEL4+pf+TM9/1Sq5/Ui4eHE7iyJEtsk12iUcq5IAckzppEEFuyT15JE/OnfPgPDsvn61TzmRmg/yA8/oB0COVdg==</latexit>

eF (w)
<latexit sha1_base64="gZTgm9sFPwbdLuOp7Ltm0/93pC0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSBT0WBfFYwdZCG8pmM2mXbjZhd9NSQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZ5yecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipOJYUmjXks2z5RwJmApmaaQzuRQCKfw5M/vJ35TyOQisXiUU8S8CLSFyxklGgj9Wy7O2YBaMYDyO6mlfF5zy47VWcOvErcnJRRjkbP/uoGMU0jEJpyolTHdRLtZURqRjlMS91UQULokPShY6ggESgvm18+xWdGCXAYS1NC47n6eyIjkVKTyDedEdEDtezNxP+8TqrDay9jIkk1CLpYFKYc6xjPYsABk0A1nxhCqGTmVkwHRBKqTVglE4K7/PIqadWq7kW19nBZrt/kcRTRCTpFFeSiK1RH96iBmoiiEXpGr+jNyqwX6936WLQWrHzmGP2B9fkDSQOTbA==</latexit>

F1(w)
<latexit sha1_base64="ErcAzWkEPojkTnsNBzcMW6hKnz4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpeeWn016x5FbcGdAy8TJSggz1XvGr25ckiagwhGOtO54bGz/FyjDC6aTQTTSNMRnhAe1YKnBEtZ/Orp2gE6v0USiVLWHQTP09keJI63EU2M4Im6Fe9Kbif14nMeGlnzIRJ4YKMl8UJhwZiaavoz5TlBg+tgQTxeytiAyxwsTYgAo2BG/x5WXSrFa8s0r17rxUu8riyMMRHEMZPLiAGtxCHRpA4AGe4RXeHOm8OO/Ox7w152Qzh/AHzucPYgiOWA==</latexit>

F2(w)
<latexit sha1_base64="DxlsUqrFn19rm4XI2hLrJwBkc/4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRYFMRjBfsB7VKyabaNzSZLklXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbWV1b38hvFra2d3b3ivsHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdD31W49UaSbFvRnH1I/wQLCQEWys1LzpVctPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsJLP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukWa14Z5Xq3XmpdpXFkYcjOIYyeHABNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8fY4+OWQ==</latexit>
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eF (w)
<latexit sha1_base64="gZTgm9sFPwbdLuOp7Ltm0/93pC0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LBahXkpSBT0WBfFYwdZCG8pmM2mXbjZhd9NSQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZ5yecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipOJYUmjXks2z5RwJmApmaaQzuRQCKfw5M/vJ35TyOQisXiUU8S8CLSFyxklGgj9Wy7O2YBaMYDyO6mlfF5zy47VWcOvErcnJRRjkbP/uoGMU0jEJpyolTHdRLtZURqRjlMS91UQULokPShY6ggESgvm18+xWdGCXAYS1NC47n6eyIjkVKTyDedEdEDtezNxP+8TqrDay9jIkk1CLpYFKYc6xjPYsABk0A1nxhCqGTmVkwHRBKqTVglE4K7/PIqadWq7kW19nBZrt/kcRTRCTpFFeSiK1RH96iBmoiiEXpGr+jNyqwX6936WLQWrHzmGP2B9fkDSQOTbA==</latexit>

F1(w)
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(c)

Figure 5: Results for the three client mean estimation; (a): case 1 when the true mean across clients
are close to amongst each other where IncFL’s optimal soluation is identical to that of FedAvg; (b):
case 2 when the true mean across clients are all different from each other where IncFL’s optimal
solution ensures that at least one of the clients will be incentivized participate with IncFL’s global
model (unlike FedAvg); (c) case 3 when two clients’ true means are close to each other while the
other client has a different mean. IncFL in this case, is able to ensure that the two clients participate
while FedAvg is not able to make any client participate.

We define the following quantities428

γ2 :=
ν2

N
; γ2

G =

(
θ2 − θ1

2

)2

; (10)

Note that the distribution of the empirical means itself follows a normal distribution following the429

linear additivity of independent normal random variables.430

θ̂1 ∼ N (θ1, γ
2); θ̂2 ∼ N (θ2, γ

2) (11)

B.2 Maximizing IPR in Three Client Mean Estimation.431

We further examine the property of IncFL to incentivize clients with a 3 clients toy example which is432

an extension from what we have shown in Appendix B.1 for 2 clients. Reusing the notation from433

Appendix B.1, where θi is the true mean at client i and θ̂i ∼ N (θi, 1) is the empirical mean of a434

client, our analysis can be divided into the following cases for the 3 client example (see Fig. 5):435

• Case 1: θ1 ≈ θ2 ≈ θ3: This case captures the setting where the data at the clients is almost i.i.d. In436

this case, it makes sense for clients to collaborate together and therefore IncFL’s optimal solution437

will be the average of local empirical means (same as FedAvg).438

• Case 2: θ1 ̸= θ2 ̸= θ3: This case captures the setting where the data at clients is completely439

disparate. In this case, none of the clients benefit from collaborating and therefore IncFL’s optimal440

solution will be the local model of one of the clients. This ensures atleast one of the clients will441

still be incentivized to use the IncFl global model unlike FedAvg.442

• Case 3: θ1 ≈ θ2 ̸= θ3: The most interesting case happens when data at two of the clients is443

similar but the data at the third client is different. Without loss of generality we assume that data444

at clients 1 and 2 is similar and client 3 is different. In this case, although client 1 and 2 benefit445

from federating, FedAvg is unable to leverage that due to the heterogeneity at client 3. IncFL, on446

the other hand, will set the optimal solution to be the average of the local models of just client 1447

and client 2. This ensures that clients 1 and 2 will both continue to participate in the FL training448

process, thus maximizing the number of incentivized clients.449

The behavior of IncFL in the three client setup clearly highlights the non-trivialness of our proposed450

IncFL’s formulation.451

B.3 Proof of Lemma B.1452

Lemma B.1 The expected IPR of the standard FL model is upper bounded by 2 exp
(
− γ2

G

5γ2

)
, where453

the expectation is taken over the randomness in the local datasets B1,B2.454
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Proof.455

The standard FL model is given by,456

w =
θ̂1 + θ̂2

2
(12)

Therefore the expected IPR is,457

E

[
I{(w − θ1)

2 < (θ̂1 − θ1)
2}+ I{(w − θ2)

2 < (θ̂2 − θ2)
2}

2

]
(13)

=
1

2


P
(
(w − θ1)

2 < (θ̂1 − θ1)
2
)

︸ ︷︷ ︸
T1

+P
(
(w − θ2)

2 < (θ̂2 − θ2)
2
)

︸ ︷︷ ︸
T2


 (14)

Next we bound T1 and T2. Bounding T1 :458

T1 = P
(
(w − θ1)

2 < (θ̂1 − θ1)
2
)

(15)

= P



(
θ̂1 + θ̂2

2
− θ1

)2

< (θ̂1 − θ1)
2


 (16)

= P



(
θ̂2 − θ̂1

2

)2

+ 2

(
θ̂2 − θ̂1

2

)
(θ̂1 − θ1) < 0


 (17)

= P







(
θ̂2 − θ̂1

2

)2

+ 2

(
θ̂2 − θ̂1

2

)
(θ̂1 − θ1) < 0



 ∩

{
θ̂2 > θ̂1

}



+ P







(
θ̂2 − θ̂1

2

)2

+ 2

(
θ̂2 − θ̂1

2

)
(θ̂1 − θ1) < 0



 ∩

{
θ̂2 ≤ θ̂1

}

 (18)

= P

({(
θ̂2 − θ̂1

2

)
+ 2(θ̂1 − θ1) < 0

}
∩
{
θ̂2 > θ̂1

})

+ P







(
θ̂2 − θ̂1

2

)2

+ 2

(
θ̂2 − θ̂1

2

)
(θ̂1 − θ1) < 0



 ∩

{
θ̂2 ≤ θ̂1

}

 (19)

≤ P

((
θ̂2 − θ̂1

2

)
+ 2(θ̂1 − θ1) < 0

)
+ P

(
θ̂2 − θ̂1 ≤ 0

)
(20)

= P (Z1 < 0) + P (Z2 ≤ 0) where Z1 ∼ N
(
γG,

5

2
γ2

)
, Z2 ∼ N

(
2γG, 2γ

2
)

(21)

≤ exp

(
− γ2

G

5γ2

)
+ exp

(
−γ2

G

γ2

)
(22)

≤ 2 exp

(
− γ2

G

5γ2

)
(23)

where (18) uses P (A) = P (A ∩B) + P
(
A ∩B∁

)
, (20) uses P (A ∩B) ≤ P (A), (21) uses (11)459

and linear additivity of independent normal random variables, (22) uses a Chernoff bound.460

We can similarly bound T2 to get T2 ≤ 2 exp
(
− γ2

G

5γ2

)
. Thus the expected IPR of the standard FL461

model is upper bounded by 2 exp
(
− γ2

G

5γ2

)
.462

13



B.4 Proof of Lemma B.2463

Lemma B.2 Let h be any function that is convex, twice differentiable, and strictly increasing in464

[0,∞). Then our relaxed objective is strictly convex and has a unique minimizer at w∗ =
(

θ̂1+θ̂2
2

)
.465

Proof.466

Let us denote our relaxed objective by v(w). Then v(w) can be written as,467

v(w) =
1

2
[h (F1(w)− F (ŵ1)) + h (F2(w)− F (ŵ2))] (24)

=
1

2
h
(
(w − θ̂1)

2
)

︸ ︷︷ ︸
v1(w)

+
1

2
h
(
(w − θ̂2)

2
)

︸ ︷︷ ︸
v2(w)

(25)

(26)

We first prove that v1(w) is strictly convex. Let λ ∈ (0, 1) and (w1, w2) be any pair of points in R2468

such that w1 ̸= w2. We have,469

v1(λw1 + (1− λ)w2) =
1

2
h
(
(λ(w1 − θ̂1) + (1− λ)(w2 − θ̂1))

2
)

(27)

<
1

2
h
(
λ(w1 − θ̂1)

2 + (1− λ)(w2 − θ̂1)
2
)

(28)

≤ λ

2
h
(
(w1 − θ̂1)

2
)
+

1− λ

2
h
(
(w2 − θ̂1)

2
)

(29)

= λv1(w1) + (1− λ)v1(w2) (30)

where (28) follows from the strict convexity of f(w) = w2 and the fact that h(w) is strictly increasing470

in the range [0,∞), (29) follows from the convexity of h(w).471

This completes the proof that v1(w) is strictly convex. We can similarly prove that v2(w) is stricly472

convex and hence v(w) is strictly convex since summation of strictly convex functions is strictly473

convex.474

Also note that,475

∇v(w) = ∇h
(
(w − θ̂1)

2
)
(w − θ̂1) +∇h

(
(w − θ̂2)

2
)
(w − θ̂2) (31)

It is easy to see that ∇v(w) = 0 at w =
(

θ̂1+θ̂2
2

)
. Since v(w) is strictly convex this implies that476

w∗ =
(

θ̂1+θ̂2
2

)
will be a unique global minimizer. This completes the proof.477

B.5 Proof of Theorem B.1478

Before stating the proof of Theorem 3.1 we first state some intermediate results that will be used in479

the proof.480

The INCFL objective can be written as,481

v(w) =
1

2
σ
(
(w − θ̂1)

2
)
+

1

2
σ
(
(w − θ̂2)

2
)

(32)

where σ(w) = 1/(1 + exp(−w)).482

We additionally define the following quantities,483

i := argmin
{
θ̂1, θ̂2

}
; j := argmax

{
θ̂1, θ̂2

}
; γ̂G :=

θ̂j − θ̂i
2

(33)

Let q(w) = σ(w)(1− σ(w)). The gradient of v(w) is given as,484

∇v(w) = q
(
(w − θ̂1)

2
)
(w − θ̂1) + q

(
(w − θ̂2)

2
)
(w − θ̂2) (34)
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Lemma B.3 For γ̂G > 2, w =
(

θ̂1+θ̂2
2

)
will be a local maxima of the INCFL objective.485

It is easy to see that w =
(

θ̂1+θ̂2
2

)
will always be a stationary point of ∇v(w). Our goal is to486

determine whether it will be a local minima or a local maxima. To do so, we calculate the hessian of487

v(w) as follows. Let f(w) = 2σ(w)(1− σ(w))(1− 2σ(w)). Then,488

∇2v(w) = f
(
(w − θ̂1)

2
)
(w − θ̂1)

2 + q
(
(w − θ̂1)

2
)

︸ ︷︷ ︸
h1(w)

+ f
(
(w − θ̂2)

2
)
(w − θ̂2)

2 + q
(
(w − θ̂2)

2
)

︸ ︷︷ ︸
h2(w)

(35)

Note that h1(w) = h2(w) for w =
(

θ̂1+θ̂2
2

)
. Hence it suffices to focus on the condition for which489

h1(w) < 0 at w =
(

θ̂1+θ̂2
2

)
. We have,490

h1

(
(θ̂1 + θ̂2)/2

)
= f(γ̂2

G)γ̂
2
G + q(γ̂2

G) (36)

= q(γ̂2
G)(2(1− 2σ(γ̂2

G))γ̂
2
G + 1) (37)

< 0 for γ̂G ≥ 1.022 (38)

where the last inequality follows from the fact that q(w) > 0 for all w ∈ R and 2(1−2σ(w2))w2+1 <491

0 for w ≥ 1.022. Thus for γ̂G > 2, w =
(

θ̂1+θ̂2
2

)
will be a local maxima of the INCFL objective.492

Lemma B.4 For γ̂G > 0, any local minima of v(w) lies in the range (θ̂i, θ̂i + 2] ∪ [θ̂j − 2, θ̂j).493

Firstly note that since γ̂G > 0 we have θ̂j > θ̂i. Secondly note that since q(w) > 0 for all w ∈ R,494

∇v(w) < 0 for all w ≤ θ̂i and∇v(w) > 0 for all w ≥ θ̂j . Therefore any root of the function∇v(w)495

must lie in the range (θ̂i, θ̂j).496

Case 1: 0 < γ̂G ≤ 2.497

In this case, the lemma is trivially satisified since (θ̂i, θ̂j) ⊂
{
(θ̂i, θ̂i + 2] ∪ [θ̂j − 2, θ̂j)

}
.498

Case 2: γ̂G > 2.499

Let x = w − θ̂i and g(x) = q(x2)x. We can write∇v(w) as,500

∇v(θ̂i + x) = g(x)− g(2γ̂G − x) (39)

It can be seen that for x > 2, g(x) is a decreasing function. For x ∈ (2, γ̂G) we have x >501

2γ̂G − x which implies g(x) > g(2γ̂G − x). Therefore ∇v(θ̂i + x) > 0 for x ∈ (2, γ̂G). Also502

∇v(θ̂i + 2γ̂G − x) = −∇v(θ̂i + x) and therefore ∇v(θ̂i + x) < 0 for x ∈ (γ̂G, 2γ̂G − 2).503

∇v(θ̂i + γ̂G) = 0 but this will be a local maxima for γ̂G > 2 as shown in Lemma B.3. Thus there504

exists no local minima of v(w) for w ∈ (θ̂i + 2, θ̂j − 2)505

Combining both cases we see that any local minima of v(w) lies in the range506 {
(θ̂i, θ̂i + 2] ∪ [θ̂j − 2, θ̂j)

}
.507
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Theorem B.1 Let w be a local minima of the INCFL objective. The expected IPR using w is lower508

bounded by 1
16 exp

(
− 1

γ2

)
where the expectation is over the randomness in the local dataset B1,B2.509

Proof.510

The IPR can be written as,511

1

2

[
P
(
(w − θi)

2 < (θ̂i − θi)
2
)
+ P

(
(w − θj)

2 < (θ̂j − θj)
2
)]

(40)

We focus on the case where θ̂2 ̸= θ̂i implying θ̂j > θ̂i (θ̂2 = θ̂1 is a zero-probability event and does512

not affect our proof). Let w be any local minima of the INCFL objective. From Lemma B.4 we know513

that w will lie in the range (θ̂i, θ̂i + 2] ∪ [θ̂j − 2, θ̂j)514

Case 1: w ∈ (θ̂i, θ̂i + 2]515

P
(
(w − θi)

2 < (θ̂i − θi)
2
)
= P

(
(w − θ̂i)

2 + 2(w − θ̂i)(θ̂i − θi) < 0
)

(41)

= P
(
(w − θ̂i) + 2(θ̂i − θi) < 0

)
(42)

≥ P
(
2 + 2(θ̂i − θi) < 0

)
(43)

= P
(
(θ̂i − θi) < −1

)
(44)

≥ P
({

θ̂1 < θ̂2

}
∩
{
(θ̂1 − θ1) < −1

})
(45)

= P
(
θ̂1 < θ̂2

)
P
(
θ̂1 − θ1 < −1|θ̂1 < θ̂2

)
(46)

≥ P
(
θ̂1 < θ̂2

)
P
(
θ̂1 − θ1 < −1

)
(47)

= P
(
θ̂1 < θ̂2

)
P (Z > 1/γ) where Z ∼ N (0, 1) (48)

≥ 1

8
exp

(
− 1

γ2

)
(49)

(42) uses the fact that (w − θ̂i) > 0, (43) uses (w − θ̂i) ≤ 2, (45) uses P (A) ≥ P (A ∩B) and516

definition of i. (47) uses the following argument. If θ1 − 1 ≥ θ̂2 then P
(
θ̂1 − θ1 < −1|θ̂1 < θ̂2

)
=517

1. If θ1 − 1 < θ̂2 then P
(
θ̂1 − θ1 < −1|θ̂1 < θ̂2

)
= P

(
θ̂1 − θ1 < −1

)
/P
(
θ̂1 < θ̂2

)
≥518

P
(
θ̂1 − θ1 < −1

)
. (48) uses θ̂1 − θ1 ∼ N (0, γ2), (49) uses P

(
θ̂1 < θ̂2

)
≥ 1

2 and P (Z ≥ x) ≥519

2 exp(−x2/2)√
2π(

√
4+x2+x)

≥ 1
4 exp(−x2) where Z ∼ N (0, 1) [35].520

In the case where w ∈ (θ̂j − 2, θ̂j ] a similar technique can be used to lower bound521

P
(
(w − θj)

2 < (θ̂j − θj)
2
)

. Thus the IPR of any local minima of the INCFL objective is lower522

bounded by 1
16 exp

(
− 1

γ2

)
.523
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C Additional Discussion on Our Proposed INCFL Algorithm524

We first present our pseudo-code for INCFL below in Algorithm 1.525

Algorithm 1 Proposed Client Incentivizing FL Framework: INCFL

1: Input: mini-batch size b, local iteration steps τ , training loss Fi(ŵi) for each client i ∈ [M ]
2: Output: Global model w(T,0), Initialize: Global model w(0,0)

3: For t = 0, ..., T − 1 communication rounds do:
4: Global server do:
5: Select m clients for S(t,0) uniformly at random and send w(t,0) to clients in S(t,0)
6: Clients k ∈ S(t,0) in parallel do:
7: Set w(t,0)

k = w(t,0), and calculate qk(w
(t,0)
k ) = σ(Fk(w

(t,0)
k )− Fk(ŵk))

8: For r = 0, ..., τ − 1 local iterations do:
9: Update w

(t,r+1)
k ← w

(t,r)
k − ηlg(w

(t,r)
k , ξ

(t,r)
k )

10: Send ∆w
(t,0)
k = w

(t,0)
k −w

(t,τ)
k and aggregation weight qk(w

(t,0)
k ) to the server

11: Global server do:
12: Update global model with w(t+1,0) = w(t,0) − η

(t,0)
g

∑
k∈S(t,0) qk(w

(t,0))∆w
(t,0)
k

Adaptive Server Learning Rate for INCFL. With Lc continuous and Ls smooth Fk(w), ∀k ∈ [M ]526

(see Assumption C.1), the objective F̃ (w) is L̃s smooth where L̃s = Ls

M

∑M
k=1 qk(w) + Lc

4 (see527

Appendix D.2). Hence, the optimal learning rate η̃ for the INCFL is given by, η̃ = 1/L̃s =528

Mη/
(∑M

k=1 qk(w) + ϵ
)

, where η = 1
Ls

is the optimal learning rate for standard FL and ϵ = MLc

4Ls
529

> 0 is a constant. The denominator of the optimal η̃ is proportional to the sum of the aggregation530

weights qk(w) and acts as a dynamic normalizing factor. Therefore, we propose using adaptive global531

learning rate η
(t,0)
g = ηg/(

∑
k∈S(t,0) qk(w

(t,0)) + ϵ) with hyperparameters ηg and ϵ.532
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Figure 6: Behavior of Theo-
retical Learning Rate of IN-
CFL for the mean estimation
example in Fig. 4(b). As
expected from the theoretical
learning rate formula, we see a
higher learning rate in regions
where the function is flat.

INCFL’s Theoretical Learning Rate Behavior for Fig. 4 (b).533

Here, we provide a plot of INCFL’s theoretical learning rate for534

the mean estimation example in Fig. 4(b) in Fig. 6 to show how535

the learning rate changes for different regions of the model. We536

show this plot as a proof of concept on the adaptive learning rate537

we discuss above. For the sigmoid function which is used for our538

INCFL objective, using a global notion of smoothness can cause539

gradient descent to be too slow since global smoothness is deter-540

mined by behavior at w = 0 where w is the model. In this case, it is541

better to use a local estimate of smoothness in the flat regions where542

|w| >> 0. Recall that ∇2σ(w) = σ(w)(1− σ(w))(1− 2σ(w)) <543

σ(x)(1− σ(w)) and therefore setting the learning rate proportional544

to 1
σ(w)(1−σ(w)) can increase the learning rate in flat regions where545

σ(w) is close to 1 or 0. Following a similar argument, we can546

show that the learning rate in our objective should be proportional547

to 1/
(∑M

i=1 σ(Fi(w)− Fi(ŵ
∗)(1− σ(Fi(w)− Fi(ŵ

∗))
)

.548

Ease of Implementing INCFL. INCFL enjoys the following prop-549

erties: i) it does not modify the local SGD procedure clients perform550

in standard FL, ii) it allows for partial client participation, and iii) it is stateless. By stateless, we551

mean that clients do not carry varying local parameters throughout training rounds preventing any552

problems from stale parameters which can be exacerbated with partical client participation. Note that553

Fk(ŵk) needed for calculating qk(w), k ∈ [M ] can be considered as an input parameter for INCFL,554

that is computed once and saved as a constant beforehand at each client by training ŵk on its local555

dataset for a few SGD steps.556
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C.1 Convergence Properties of INCFL557

In this section we show the convergence properties of the global model trained with INCFL. Our558

convergence analysis shows that the gradient norm of our global model goes to zero and therefore we559

converge to a stationary point of our objective F̃ (w).560

First we introduce the assumptions and definitions utilized for our convergence analysis below.561

Assumption C.1 (Continuity & Smoothness of Fk(w), ∀ k). The local objective functions for all562

clients, F1(w), ..., FM (w), are all Lc-continuous and Ls-smooth for all w.563

Assumption C.2 (Unbiased Stochastic Gradient with Bounded Variance for Fk(w), ∀ k). For the564

mini-batch ξk uniformly sampled at random from Bk from user k, the resulting stochastic gradient is565

unbiased, i.e., E[gk(wk, ξk)] = ∇Fk(wk). Also, the variance of stochastic gradients is bounded:566

E[∥gk(wk, ξk)−∇Fk(wk)∥2] ≤ σ2
g for k ∈ [M ].567

Assumption C.3 (Bounded Dissimilarity of F (w)). There exists constants β2 ≥ 1, κ2 ≥ 0 such568

that 1
M

∑M
i=1 ∥∇Fi(w)∥2 ≤ β2∥ 1

M

∑M
i=1∇Fi(w)∥2 + κ2 for any w.569

Assumption C.1-C.3 are standard assumptions frequently used in the optimization literature [36, 3, 37,570

4], including the Lc-continunity assumption [38, 39]. Note that we do not have any assumptions over571

our proposed objective function F̃ (w) and only use the conventional assumptions used in FL for the572

standard objective function F (w) to prove the convergence of INCFL over F̃ (w) in Theorem C.1.573

Theorem C.1 (Convergence to the INCFL Objective F̃ (w)). Under Assumption C.1-C.3, suppose the574

server uniformly selects m out of M clients without replacement in each global round of Algorithm 1.575

With ηl =
1√
Tτ

, ηg =
√
τm, for a sufficiently large T our optimization error is bounded as follows:576

min
t∈[T ]

E
[∥∥∥∇F̃ (w(t,0))

∥∥∥
2
]
≤ O

(
σ2
g√

mτT

)
+O

(
σ2
g

Tτ

)
+O

( √
τ√

Tm

)
+O

(
κ2 + β2

T

)
(50)

where O subsumes all constants (including Ls and Lc).577

Theorem C.1 shows that with a sufficiently large number of communication rounds T we reach a578

stationary point of our objective function F̃ (w). The proof is deferred to Appendix D.2 where we579

also show a version of this theorem that contains the learning rates ηg and ηl with the constants.580

D Convergence Proof581

D.1 Preliminaries582

First, we introduce the key lemmas used for the convergence analysis.583

Lemma D.1 (Bounded Dissimilarity for F̃ (w)). With Assumption C.1 and Assumption C.3 we have584

the bounded dissimilarity with respect to F̃ (w) as:585

1

M

M∑

i=1

∥∇F̃i(w)∥2 ≤ β′2∥∇F̃ (w)∥2 + κ′2 (51)

where β′2 = 2β2, κ′2 = 4β2L2
c + κ2586

Proof. One can easily show that587

1

M

M∑

i=1

∥∇F̃i(w)∥2 =
1

M

M∑

i=1

qi(w)2∥∇Fi(w)∥2 ≤ 1

M

M∑

i=1

∥∇Fi(w)∥2 (52)

due to qi(w) ≤ 1. Hence we have from Assumption C.3 and Cauchy-Schwarz inequality that588

1

M

M∑

i=1

∥∇F̃i(w)∥2 ≤ 1

M

M∑

i=1

∥∇Fi(w)∥2 ≤ β2∥∇F (w)−∇F̃ (w) +∇F̃ (w)∥2 + κ2 (53)

≤ 2β2∥∇F (w)−∇F̃ (w)∥2 + 2β2∥∇F̃ (w)∥2 + κ2 (54)
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We bound the first term in (54) as589

∥∇F (w)−∇F̃ (w)∥2 =

∥∥∥∥∥
M∑

i=1

(1− qi(w))

M
∇Fi(w)

∥∥∥∥∥

2

≤ 1

M

M∑

i=1

∥(1− qi(w))∇Fi(w)∥2 (55)

≤ 2

M

M∑

i=1

∥∇Fi(w)∥2 ≤ 2L2
c (56)

where in (56) we use qi(w) ≤ 1,∀i ∈ [M ] and Assumption C.1. Then from (54) we have590

1

M

M∑

i=1

∥∇F̃i(w)∥2 ≤ 2β2∥∇F̃ (w)∥2 + κ2 + 4β2L2
c (57)

completing the proof.591

Lemma D.2 (Smoothness of F̃ (w)). If Assumption C.1 is satisfied we have that the incentive local592

objectives, F̃1(w), ... , F̃M (w), are also L̃s-smooth for any w where L̃s = L2
c/4 + qi(w)Ls.593

Proof. Recall the definitions of F̃ (w) below:594

F̃ (w) =
1

M

M∑

i=1

F̃i(w), F̃i(w) := σ(Fi(w)− Fi(ŵ
∗
i )) (58)

Let ∥∥op denote the spectral norm of a matrix. Accordingly, with the model parameter vector w ∈ Rd,595

we have the spectral norm of the Hessian of F̃i(w), ∀i ∈ [M ] as:596

∥∇2F̃i(w)∥op = ∥qi(w)[(∇Fi(w)∇Fi(w)T )(1− qi(w)) +∇2Fi(w)]∥op (59)

where qi(w) = Sigmoid(Fi(w)− Fi(ŵ
∗
i )) and∇Fi(w) ∈ Rd×1 is the gradient vector for the local597

objective Fi(w) and∇2Fi(w) ∈ Rd×d is the Hessian of Fi(w). We can bound the RHS of (59) as598

follows599

∥∇2F̃i(w)∥op = ∥qi(w)(1− qi(w))(∇Fi(w)∇Fi(w)T ) + qi(w)∇2Fi(w)]∥op (60)

≤ ∥qi(w)(1− qi(w))(∇Fi(w)∇Fi(w)T )∥op + ∥qi(w)∇2Fi(w)∥op (61)

= qi(w)(1− qi(w))∥(∇Fi(w)∇Fi(w)T )∥op + qi(w)∥∇2Fi(w)∥op (62)

= qi(w)(1− qi(w))∥∇Fi(w)∥2 + qi(w)∥∇2Fi(w)∥op (63)

≤ L2
c

4
+ qi(w)Ls (64)

where we use triangle inequality in (61), and use ∥xyT ∥op = ∥x∥∥y∥ in (63), and use qi(w) ≤600

1 along with Assumption C.1 in (64). Since the norm of the Hessian of F̃i(w) is bounded by601

L2
c

4 + qi(w)Ls we complete the proof.602

D.2 Proof of Theorem C.1 – Full Client Participation603

For ease of writing, we define the following auxiliary variables for any client i ∈ [M ]:604

Weighted Stochastic Gradient: h(t,0)
i := qi(w

(t,0))

τ−1∑

r=0

g(w
(t,r)
i , ξ

(t,r)
i ), (65)

Weighted Gradient: h
(t,0)

i := qi(w
(t,0))

τ−1∑

r=0

∇Fi(w
(t,r)
i ), (66)

Normalized Global Learning Rate: η(t,0)g := ηg/

(
M∑

i=1

qi(w
(t,0)) + ϵ

)
(67)
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where ϵ is a constant added to the denominator to prevent the denominator from being 0. From605

Algorithm 1 with full client participation, our proposed algorithm has the following effective update606

rule for the global model at the server:607

w(t+1,0) = w(t,0) − η(t,0)g ηl

M∑

k=1

h
(t,0)
k (68)

With the update rule in (68), defining η̃(t,0) := η
(t,0)
g ηlτM and using Lemma D.2 we have608

E
[
F̃ (w(t+1,0))

]
− F̃ (w(t,0)) ≤ −η̃(t,0)E

[〈
∇F̃ (w(t,0)),

1

Mτ

M∑

i=1

h
(t,0)
i

〉]

+
L̃s(η̃

(t,0))2

2
E



∥∥∥∥∥

1

Mτ

M∑

i=1

h
(t,0)
i

∥∥∥∥∥

2



(69)

= −η̃(t,0)E
[〈
∇F̃ (w(t,0)),

1

Mτ

M∑

i=1

(
h
(t,0)
i − h

(t,0)

i

)〉]
− η̃(t,0)E

[〈
∇F̃ (w(t,0)),

1

Mτ

M∑

i=1

h
(t,0)

i

〉]

+
L̃s(η̃

(t,0))2

2
E



∥∥∥∥∥

1

Mτ

M∑

i=1

h
(t,0)
i

∥∥∥∥∥

2



(70)

= − η̃(t,0)

2

∥∥∥∇F̃ (w(t,0))
∥∥∥
2

− η̃(t,0)

2
E



∥∥∥∥∥

1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2

+

η̃(t,0)

2
E



∥∥∥∥∥∇F̃ (w(t,0))− 1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



+
L̃s(η̃

(t,0))2

2M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)
i

∥∥∥∥∥

2



(71)

For the last term in (71), we can bound it as609

L̃s(η̃
(t,0))2

2M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)
i

∥∥∥∥∥

2

 ≤ L̃s(η̃

(t,0))2

M2τ2

M∑

i=1

E
[∥∥∥h(t,0)

i − h
(t,0)

i

∥∥∥
2
]
+

L̃s(η̃
(t,0))2

M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



(72)

=
L̃s(η̃

(t,0))2

M2τ2

M∑

i=1

E



∥∥∥∥∥qi(w

(t,0))

τ−1∑

r=0

(
g(w

(t,r)
i , ξ

(t,r)
i )−∇Fi(w

(t,r)
i )

)∥∥∥∥∥

2

+

L̃s(η̃
(t,0))2

M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



(73)

=
L̃s(η̃

(t,0))2

M2τ2

M∑

i=1

qi(w
(t,0))2

τ−1∑

r=0

E
[∥∥∥g(w(t,r)

i , ξ
(t,r)
i )−∇Fi(w

(t,r)
i )

∥∥∥
2
]
+

L̃s(η̃
(t,0))2

M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



(74)

=
L̃s(η̃

(t,0))2

M2τ2

M∑

i=1

qi(w
(t,0))2τσ2

g +
L̃s(η̃

(t,0))2

M2τ2
E



∥∥∥∥∥

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2

 (75)

≤ L̃s(η̃
(t,0))2σ2

g

Mτ
+ L̃s(η̃

(t,0))2E



∥∥∥∥∥

1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2

 (76)
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where (72) is due to the Cauchy-Schwartz inequality and (75) is due to Assumption C.2 and (76) is610

due to qi(w) ≤ 1,∀i ∈ [M ]. Merging (76) into (71) we have611

E
[
F̃ (w(t+1,0))

]
− F̃ (w(t,0)) ≤ − η̃(t,0)

2

∥∥∥∇F̃ (w(t,0))
∥∥∥
2

+
η̃(t,0)

2
E



∥∥∥∥∥∇F̃ (w(t,0))− 1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



+
L̃s(η̃

(t,0))2σ2
g

Mτ
+

(
(η̃(t,0))2L̃s −

η̃(t,0)

2

)
E



∥∥∥∥∥

1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2



(77)

Now we aim at bounding the second term in the RHS of (77) as follows:612

η̃(t,0)

2
E



∥∥∥∥∥∇F̃ (w(t,0))− 1

Mτ

M∑

i=1

h
(t,0)

i

∥∥∥∥∥

2

 (78)

=
η̃(t,0)

2
E



∥∥∥∥∥
1

M

M∑

i=1

qi(w
(t,0))∇Fi(w

(t,0))− 1

Mτ

M∑

i=1

qi(w
(t,0))

τ−1∑

r=0

∇Fi(w
(t,r)
i )

∥∥∥∥∥

2

 (79)

=
η̃(t,0)

2
E



∥∥∥∥∥

1

Mτ

M∑

i=1

qi(w
(t,0))

τ−1∑

r=0

(
∇Fi(w

(t,0))−∇Fi(w
(t,r)
i )

)∥∥∥∥∥

2

 (80)

≤ η̃(t,0)

2Mτ

M∑

i=1

qi(w
(t,0))2

τ−1∑

r=0

E
[∥∥∥∇Fi(w

(t,0))−∇Fi(w
(t,r)
i )

∥∥∥
2
]

(81)

=
L2
sη̃

(t,0)

2Mτ

M∑

i=1

qi(w
(t,0))2

τ−1∑

r=0

E
[∥∥∥w(t,0) −w

(t,r)
i

∥∥∥
2
]

(82)

where (81) is due to Jensen’s inequality and (82) is due to Lemma D.2. We can bound the difference613

of the global model and local model for any client i ∈ [M ] as follows:614

E
[∥∥∥w(t,0) −w

(t,r)
i

∥∥∥
2
]
= η2l E



∥∥∥∥∥
r−1∑

l=0

g(w
(t,l)
i , ξ

(t,l)
i )

∥∥∥∥∥

2

 (83)

≤ 2η2l E



∥∥∥∥∥
r−1∑

l=0

g(w
(t,l)
i , ξ

(t,l)
i )−∇Fi(w

(t,l)
i )

∥∥∥∥∥

2

+ 2η2l E



∥∥∥∥∥
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where (84) is due to Cauchy-Schwarz inequality and (85) is due to Assumption C.2. We bound the615

last term in (85) as follows:616
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where (86) is due to Jensen’s inequality, and (87) is due to Cauchy-Schwarz inequality, and (88) is617

due to Lemma D.2. Combining (88) with (85) we have that618
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2
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(89)

Reorganizing (89) and taking the summation r ∈ [τ ] on both sides we have,619
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l τ
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(90)
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2
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2 + 4η2l τ
3E
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∥∥∥
2
]

(91)

With ηl ≤ 1/(2
√
2τLs), we have that 1/(1− 4L2

sη
2
l τ

2) ≤ 2 and hence can further bound (91) as620
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Finally, plugging in (92) to (82) we have621
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where (94) uses qi(w) ≤ 1,∀i ∈ [M ] and (95) uses Lemma D.1. Merging (95) to (77) we have622
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With ηlηg ≤ 1/(4τLs) we have that η̃(t,0)L̃s − 1
2 ≤ −1/4 and thus can further simplify (96) to623
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With local learning rate ηl ≤ min{1/(4τLs), 1/(4β
′τLs)} we have that624
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and we use the property of η̃(t,0) that Mτηlηg

M+ϵ ≤ η̃(t,0) ≤ Mτηlηg

ϵ to get625
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Taking the average across all rounds on both sides of (100) we get626
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and prove627
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Further, using L̃s = Ls

M

∑M
k=1 qk(w) + Lc

4 and ϵ = MLc

4Ls
> 0 from the optimal learning rate we628

have the bound in (102) to be629
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(103)

By setting the global and local learning rate as ηg =
√
τM and ηl =

1√
Tτ

we can further optimize630

the bound as631
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(104)

completing the full client participation proof of Theorem C.1.632

D.3 Proof of Theorem C.1 – Partial Client Participation633

We present the convergence guarantees of INCFL for partical client participation in this section. With634

partical client participation, we have the update rule in (68) changed to635

w(t+1,0) = w(t,0) − η(t,0)g ηl
∑

k∈S(t,0)

h
(t,0)
k (105)

where the m clients are sampled uniformly at random without replacement for S(t,0) at each commu-636

nication round t by the server and η
(t,0)
g = mηg/(

∑
k∈S(t,0) qk(w

(t,0)) + ϵ) for positive constant ϵ.637

Then with the update rule in (105) and Lemma D.2, defining η̃(t,0) = η
(t,0)
g ηlτm we have638
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For the first term in the RHS of (106) we have that due to the uniform sampling of clients (see Lemma639

4 in [40]), it becomes analogous to the derivation for full client participation. Hence, with the property640

of mτηlηg

m+ϵ ≤ η̃(t,0) ≤ mτηlηg

ϵ and using the previous bounds in (95), we result in the final bound for641

the first term in the RHS of (106) as below:642
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For the second term in the RHS of (106), with C = L̃s(mτηlηg/ϵ)
2 we have the following:643
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where (110) follows due to, again, the uniform sampling of clients and the rest follows identical steps644

for full client participation in the derivation for (72). Note that645
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For the second term in (111) we have that646
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First we bound A1 in (114) as follows:647
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where (116) is due to Jensen’s inequality and qi(w) ≤ 1 and (117) is due to the uniform sampling of648

clients, and (118) is due to Assumption C.1. Using (77) we have already derived, bound (118) further649

to:650
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where (120) is due to Lemma D.1.651

Next we bound A2 as follows:652
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where (121) is due to the variance under uniform sampling without replacement (see Lemma 4 in653

[40]) and (123) is due to the Cauchy-Schwarz inequality and (124) is due to Assumption C.1.654
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Mering the bounds for A1 and A2 to (114) we have that655
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Then we can plug in (126) back to (111) and plugging in (107) to (106), we can derive the bound in656

(106) as657
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where ν = Ls + Lc/4. With ηl ≤ 1/4β′τLs, ϵ = m, and ηgηl ≤ 1
9τν , we can further bound above658

as659
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Taking the average across all rounds on both sides of (128) and rearranging the terms we get660
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With the small enough learning rate ηl = 1/(
√
Tτ) and ηg =

√
τm one can prove that661

min
t∈[T ]

E
[∥∥∥∇F̃ (w(t,0))

∥∥∥
2
]
≤

4
(
F̃ (w(0,0))− F̃inf

)
+ 4σ2

gν√
Tτm

+
4σ2

gL
2
s√

T
+

8σ2
gL

2
s

3τT

+
80L2

sκ
′2

T
+

48ν(M −m)L2
c

√
τ√

Tm

(130)
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completing the proof for Theorem C.1 for partial client participation.662

E Simulation Details for Fig. 4a663

For the mean estimation simulation for Fig. 4(a), we set the true means for the two clients as664

θ1 = 0, θ2 = 2γG where γG ∈ [0,
√
20]. The simulation was perfomed using NumPy [41] and665

SciPy [42]. The empirical means θ̂1 and θ̂2 are sampled from the distributionN (θ1, 1) andN (θ2, 1)666
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respectively where the number of samples are assumed to be identical for simplicity. For local667

training we assume clients set their local models as their local empirical means which is analogous to668

clients performing a large number of local SGD steps to obtain the local minima of their empirical669

loss. For the global objective (standard FL, INCFL (ReLU), INCFL) a local minima is found using670

the scipy.optimize function in the SciPy package. For each γ2
G ∈ [0,

√
20], the average IPR is671

calculated over 10000 runs for each global objective.672

F Experiment Details and Additional Results673

All experiments are conducted on clusters equipped with one NVIDIA TitanX GPU. The algorithms674

are implemented in PyTorch 1. 11. 0. All experiments are run with 3 different random seeds and675

the average performance with the standard deviation is shown. The code used for all experiments is676

included in the supplementary material.677

F.1 Experiment Details678

Obtaining ŵi, i ∈ [M ] for INCFL Results in Section 4. In INCFL, we use ŵi, i ∈ [M ] to679

calculate the aggregating weights (see Algorithm 1). For all experiments with INCFL, we obtain680

ŵi, i ∈ [M ] at each client by each client taking 100 local SGD steps on its local dataset with its own681

separate local model before starting federated training. We use the same batch-size and learning rate682

used for the local training at clients done after we start the federated training (line 8-9 in Algorithm 1).683

The specific values are mentioned in the next paragraph.684

Local Training and Hyperparameters. For all experiments, we do a grid search over the required685

hyperparameters to find the best performing ones. Specifically, we do a grid search over the learning686

rate: ηlηg ∈ {0.1, 0.05, 0.01, 0.005, 0.001}, batchsize: b ∈ {32, 64, 128}, and local iterations:687

τ ∈ {10, 30, 50} to find the hyper-parameters with the highest test accuracy for each benchmark.688

For all benchmarks we use the best hyper-parameter for each benchmark after doing a grid search689

over feasible parameters referring to their source codes that are open-sourced. For a fair comparison690

across all benchmarks we do not use any learning rate decay or momentum.691

Logistic Regression on the Synthetic Dataset. We conduct simulations on synthetic data which692

allows precise manipulation of heterogeneity. Using the methodology constructed in [2], we use the693

dataset with large data heterogeneity, Synthetic(1,1). We have in total 100 devices where the local694

dataset sizes for each device follows the power law. The dimension used for logistic regression is695

R61×10 where 10 is the output dimension.696

DNN Experiments. For FMNIST, we train a deep multi-layer perceptron network with 2 hidden697

layers of units [64, 30] with dropout after the first hidden layer where the input is the normalized698

flattened image and the output is consisted of 10 units each of one of the 0-9 labels. For CIFAR10,699

we train a deep convolutional neural network with 2 convolutional layers with max pooling and 4700

hidden fully connected linear layers of units [120, 100, 84, 50]. The input is the normalized flattened701

convolution output and the output is consisted of 10 units each of one of the 0-9 labels. For Sent140,702

we train a deep multi-layer perceptron network with 3 hidden layers of units [128, 86, 30] with703

pre-trained 200D average-pooled GloVe embedding [43]. The input is the embedded 200D vector704

and the output is a binary classifier determining whether the tweet sentiment is positive or negative705

with labels 0 and 1 respectively. All clients have at least 50 data samples.706

F.2 Additional Experimental Results707

Local Tuning for Personalization. Personalized FL methods can be used to fine-tune the global708

model at each client before comparing it with that client’s locally trained model. INCFL can be709

combined with these methods by simply allowing clients to perform some fine-tuning iterations710

before computing the aggregation weights in Step 7 of Algorithm 1. Both for clients that are active711

during training and unseen test clients, we show in Table 2 that INCFL increases the fraction of712

incentivized clients by at least 10% as compared to all baselines. For FMNIST, CIFAR10, and713

Sent140, the improvement in IPR over other methods is up to 27%, 39%, and 28% respectively for714

active clients and 17%, 35%, and 4% respectively for the unseen incoming clients.715
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Table 2: Incentivized participation rate (IPR) of locally-tuned models with 5 local steps from the final
global models trained with different algorithms for seen clients and unseen clients (the corresponding
preferred-model test accuracy is in Appendix F.2).

Seen Clients Unseen Clients

FMNIST CIFAR10 Sent140 FMNIST CIFAR10 Sent140
FedAvg 0.38 (±0.06) 0.19 (±0.07) 0.25 (±0.09) 0.39 (±0.06) 0.20 (±0.07) 0.42 (±0.06)

FedProx 0.40 (±0.07) 0.17 (±0.07) 0.26 (±0.09) 0.41 (±0.07) 0.19 (±0.07) 0.43 (±0.12)

PerFedAvg 0.45 (±0.05) 0.26 (±0.02) 0.24 (±0.10) 0.46 (±0.06) 0.28 (±0.04) 0.47 (±0.06)

MW-Fed 0.28 (±0.07) 0.01 (±0.01) 0.08 (±0.01) 0.39 (±0.04) 0.06 (±0.03) 0.20 (±0.01)

INCFL 0.55 (±0.01) 0.40 (±0.00) 0.36 (±0.05) 0.56 (±0.01) 0.41 (±0.01) 0.55 (±0.01)
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(c) Sent140

Figure 7: Comparison of the average of the true local losses across all clients (
∑M

k=1 fk(w)/M ) and
the empirical local losses across all clients (

∑M
k=1 Fk(w)/M ) where the former is calculated on the

test dataset and the latter is calculated on the training dataset for the global model w. We show that
the average of the true local losses is nearly identical to the average empirical local loss across all
clients empirically validating our relaxation of replacing fk(w) with Fk(w).

Ablation Study on fk(w) ≈ Fk(w). One of the two key relaxations we use for INCFL (see716

Section 2.1) is that we replace fk(w)− fk(ŵk) with Fk(w)− Fk(ŵk). In other words, we replace717

the true loss fk(w) = Eξ∼Dk
[ℓ(w, ξ)] with the empirical loss Fk(w) = 1

|Bk|
∑

ξ∈Bk
ℓ(w, ξ) for718

all clients k ∈ [M ]. We have used the likely conjecture that the global model w is trained on the719

data of all clients, making it unlikely to overfit to the local data of any particular client, leading to720

fk(w) ≈ Fk(w). We show in Fig. 7 that this is indeed the case. For all DNN experiments, we721

show that the average true local loss across all clients, i.e.,
∑M

k=1 fk(w)/M is nearly identical to the722

average empirical local loss across all clients, i.e.,
∑M

k=1 Fk(w)/M given the training of the global723

model w throughout the communication rounds. This empirically validates our relaxation of the true724

local losses to the empirical local losses.725

Preferred-model Test Accuracy for the Local-Tuning Results in Table 2. In Table 2, we have726

shown how INCFL can largely increase the fraction of incentivized clients compared to the other base-727

lines even when jointly used with local-tuning. In Table 3, we show the corresponding preferred-model728

test accuracies. We show that for the seen clients that were active during training, INCFL achieves at729

least the same or higher preferred-model test accuracy than the other methods for all the different730

datasets. Hence, the clients are able to also gain from INCFL by achieveing the highest accuracy in731

average with their preferred models (either global model or solo-trained local model). For the unseen732

clients with FMNIST, FedProx achieves a slightly higher preferred-model test accuracy (+0.05) than733

INCFL but with a much lower IPR of 0.46 (see Table 2) as INCFL’s IPR is 0.56. For the other datasets734

with unseen clients, INCFL achieves at least the same or higher preferred-model test accuracy than735

the other methods. This demonstrates that INCFL consistently largely improves the IPR compared to736

the other methods while losing very little, if any, in terms of the preferred-model test accuracy.737

Comparison with Algorithms for Fairness Fair FL methods [33, 34] aim in training a global738

model that yields small variance across the clients’ test accuracies. These methods may incentivize739

the worst performing clients to participate, but potentially at the cost of disincentivizing the best740

performing clients. We show in Table 4 that the common fair FL methods are indeed not effective in741
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Table 3: Preferred-model test accuracy with the locally-tuned models with 5 local steps from the final
global models trained with different algorithms for seen clients’ and unseen clients’ test data (the
corresponding IPR is in Table 2).

Seen Clients Unseen Clients

FMNIST CIFAR10 Sent140 FMNIST CIFAR10 Sent140
FedAvg 99.37 (±0.24) 100.00 (±0.00) 55.71 (±0.46) 99.50 (±0.02) 100.00 (±0.00) 58.79 (±0.67)

FedProx 99.35 (±0.23) 100.00 (±0.00) 55.75 (±0.80) 99.55 (±0.09) 100.00 (±0.00) 58.82 (±0.72)

PerFedAvg 99.20 (±0.25) 100.00 (±0.00) 55.74 (±0.80) 98.98 (±0.55) 100.00 (±0.00) 58.82 (±0.72)

MW-Fed 99.27 (±0.39) 100.00 (±0.00) 55.06 (±0.38) 99.47 (±0.08) 100.00 (±0.00) 57.36 (±0.71)

INCFL 99.40 (±0.30) 100.00 (±0.00) 55.82 (±0.82) 99.50 (±0.02) 100.00 (±0.00) 58.88 (±0.77)

Table 4: Incentivized participation rate (IPR) and preferred-model test accuracy for the seen clients’
test data with the final global models trained via INCFL and q-FFL [33] which aims in improving
fairness. The baseline q-FFL with large q, e.g. q = 10, emulates the behavior of another well-known
algorithm for improving fairness named AFL [34].

Incentivized Participation Rate (IPR) Preferred-Model Test Acc.

FMNIST CIFAR10 Sent140 FMNIST CIFAR10 Sent140
q-FFL (q = 1) 0.03 (±0.01) 0.00 (±0.00) 0.09 (±0.06) 99.24 (±0.05) 100.00 (±0.00) 53.10 (±2.63)

q-FFL (q = 10) 0.00 (±0.00) 0.00 (±0.00) 0.09 (±0.00) 98.90 (±0.01) 100.00 (±0.00) 52.71 (±1.40)

INCFL 0.55 (±0.00) 0.40 (±0.00) 0.41 (±0.07) 99.29 (±0.03) 100.00 (±0.00) 53.93 (±1.87)

improving the overall clients’ incentivized participation rate. We see that the fair FL methods achieve742

an incentivized participation rate lower than 0.01 for all datasets while INCFL achieves at least 0.40743

for all datasets. Moreover, the preferred-model test accuracy is also higher for INCFL compared to744

the fair FL methods. This underwelming performance of fair FL methods in incentivizing clients can745

be due to the fact that fair FL methods try to find the global model that performs well, in overall, over746

all clients which results in failing to incentivize any client.747
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