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ABSTRACT

Unified generation models aim to handle diverse tasks across modalities—such
as text-to-image generation and image-to-text generation—within a single archi-
tecture and decoding paradigm. Autoregressive unified models suffer from slow
inference due to sequential decoding, and non-autoregressive unified models suf-
fer from weak generalization due to limited pretrained backbones. We introduce
Muddit, a unified discrete diffusion transformer that enables fast and parallel
generation across both text and image modalities. Unlike prior unified diffusion
models trained from scratch, Muddit integrates strong visual priors from a pre-
trained text-to-image backbone with a lightweight text decoder, enabling flexible
and high-quality multimodal generation under a unified architecture. Empirical
results show that Muddit achieves competitive or superior performance compared
to significantly larger autoregressive models in both quality and efficiency. The
work highlights the potential of purely discrete diffusion, when equipped with
strong visual priors, as a scalable and effective backbone for unified generation.

1 INTRODUCTION

Unified generative models have recently emerged as a promising paradigm for multimodal data, en-
compassing both text and images. Most existing approaches adopt the autoregressive (AR) frame-
work (Touvron et al., 2023), where modalities are represented as discrete token sequences and gen-
erated sequentially in raster order. While this paradigm is well-suited for language, it introduces
severe inefficiencies in image generation: producing an image requires step-by-step prediction of
thousands of tokens, leading to substantial computational cost. Moreover, the imposed rasterized
order is poorly aligned with the inherently two-dimensional structure of images. These limita-
tions hinder speed/quality trade-offs and restrict flexible conditional generation, such as inpainting,
thereby constraining the practical applicability of unified models in interactive or real-time scenar-
ios. To mitigate these issues, recent works (Chen et al., 2025a; Pan et al., 2025; Chen et al., 2025b)
have proposed hybrid approaches that couple AR-based language models with diffusion-based im-
age generators (Ho et al., 2020), as shown in Fig. 1 (a). However, such “glue” architectures fall short
of true unification, as they introduce additional complexity into the inference pipeline while retain-
ing considerable computational overhead. So there is a lack of a principled multimodal generative
paradigm over current unified models.

As shown in Fig 1 (b), recent work like Dual-Diffusion (Li et al., 2024c) explores unifying multi-
modal under the diffusion model, but it ultimately relies on continuous diffusion for image (Esser
et al., 2024) and discrete diffusion for text (Swerdlow et al., 2025b). This fundamental mismatch
in generative principles undermines its claim of a true unification paradigm. UniDisc (Swerdlow
et al., 2025a) takes a more promising step by applying discrete diffusion over multimodal token
spaces1. This allows parallel refinement of text and image tokens, improving inference efficiency
and enabling more flexible conditioning. However, the overall quality of UniDisc’s generation re-
mains far from satisfactory. For example, it fails to match the fidelity of early diffusion models such

1MaskGIT, MaskAR, RandomAR, and Discrete Diffusion share significant conceptual and practical over-
laps, often differing only in decoding order or architectural nuances. We elaborate on their connections in the
next section. While Meissonic (Bai et al., 2025) follows the naming convention of MaskGIT (Chang et al.,
2022), we standardize terminology in this paper by referring to all such models under the umbrella of Discrete
Diffusion.
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✅ Text-to-Image Generation

✅ Image Captioning

✅ Visual Question Answering
D-DiT (Continuous + Discrete), 

Muddit (Ours: Fully Discrete)

(a) (b) (c)

Figure 1: We propose Muddit, the first unified discrete diffusion model with a visual prior. Com-
pared to language prior models like Show-o (Xie et al., 2024), Muddit demonstrates strong perfor-
mance at image captioning and visual question answering. It also delivers clearer gains (7.0 vs 3.0)
in image generation over the visual prior model D-DiT (Li et al., 2024c).

as Stable Diffusion 1.5 (Rombach et al., 2022), and lacks support for vision-language reasoning
tasks such as visual question answering (VQA). We attribute these shortcomings to the pretrained
model’s lack of prior knowledge. Without modular components carrying rich priors, these models
face generalization and scalability bottlenecks.

Taken together, the two dark clouds: ineffective unified paradigm and the lack of strong prior knowl-
edge, highlight the need for a new generation of unified models. In this work, we present Muddit, a
MaskGIT-style unified discrete diffusion transformer equipped with a lightweight text decoder. By
combining the strengths of parallel discrete diffusion and semantically rich visual priors from a pre-
trained Meissonic text-to-image backbone (Bai et al., 2025), Muddit enables scalable, efficient, and
flexible sampling while significantly improving alignment and quality across modalities and vari-
ous tasks such as high-resolution text-to-image generation, image captioning, and visual question
answering, as shown in Fig. 1 (c).

We systematically detail the training objective of unified discrete diffusion models, the masking
strategy, and the shared inference sampling strategy across three tasks. Finally, we conduct compre-
hensive evaluations with current popular unified models on several benchmarks, including GenEval,
CIDEr, VQAv2, GQA, MME, MMBench, and MMMU, demonstrating Muddit’s superior perfor-
mance and efficiency, validating that the unexplored purely discrete diffusion approach can rival, or
even surpass, much larger autoregressive-based unified models. While concurrent unified genera-
tion models (Yang et al., 2025b) often build upon a language modeling prior—leveraging pretrained
dLLMs as the backbone—we instead take a visual-first approach. Muddit is built upon an image
generation prior, offering a new path toward unifying vision and language tasks within a discrete
diffusion framework. We hope that this work inspires a new trend for unified generative modeling,
grounded in discrete diffusion, beyond the boundaries of traditional text-to-image generation (Bai
et al., 2025).

2 METHOD

2.1 DISCRETE DIFFUSION WITH UNIFIED IMAGE AND TEXT PERSPECTIVE

In discrete diffusion, a sample x ∈ X is treated as a one-hot vector x, where X = {1, . . . , N}.
For language models, N equals the vocabulary size. While for image models, N is the number
of discrete image token IDs obtained from a tokenizer or VQ codebook. At each diffusion step,
we stochastically corrupt the tokens, gradually transforming the data distribution into a maximally
entropic categorical prior; the generative model then learns to invert this corruption. Following
recent works (Lou et al., 2023; Bai et al., 2025) that cast token corruption as a continuous–time
Markov chain (CTMC) over the finite alphabet X , we let

d pt
dt

= Qt pt, (1)

where pt ∈ RN+1 is the distribution of xt, the time–dependent matrix Qt transports the data dis-
tribution p0 ≈ pdata to the maximally entropic “noise” distribution p1 = pstationary. We adopt the
absorbing-state (masked) diffusion variant that has proved particularly effective in text modelling:
every symbol can jump to a dedicated mask token m = (0, . . . , 0︸ ︷︷ ︸

N

, 1) but never leaves it, i.e. m is an

absorbing class.
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Forward posterior. Marginalising x gives

q(xt | x) = Cat
(
xt | αtx+ (1− αt)m

)
. (2)

Cat(·) denotes a categorical distribution; it returns a one-hot token sampled from the probability
vector inside the parentheses. αt ∈ [0, 1] is the survival probability, i.e. the probability that an
individual token has not yet been masked by time t. Thus xt equals the original clean token with
probability αt and equals the mask token m with probability 1− αt.

Reverse process. For any 0 < s < t < 1, the CTMC induces an analytic posterior

q(xs | xt,x) =


Cat(xs | xt), xt ̸= m,

Cat
(
xs |

(1− αs)m+ (αs − αt)x

1− αt

)
, xt = m,

(3)

xt and xs are the corrupted tokens at times t and s (s < t). If xt is already a real vocabulary token
(xt ̸= m) it stays unchanged going backwards; otherwise, when xt = m, the distribution over xs

is a convex combination of the mask and the clean token x, weighted by their respective survival
probabilities αs and αt.

Training Objective. We employ a masked-token predictor xθ(xt, αt) ≈ x, which leads to the
continuous-time negative ELBO

LNELBO = Eq(xt|x)

[∫ 1

0

α′
t

1− αt
log
(
xθ(xt, αt)·x

)
dt
]
, (4)

where α′
t = dαt

dt and x is the one-hot vector of ground truth. xθ(xt, αt) ∈ RN+1 is the model’s
predicted categorical probability vector for the clean token given the corrupted input (xt, αt); x is
the one-hot ground-truth clean token.

During generation, we start from an all-mask sequence (t = 1) and integrate the reverse CTMC
towards t = 0, repeatedly replacing every masked position with the model’s categorical prediction.
Because the corruption schedule and objective are identical for any discrete alphabet X , the same
diffusion backbone unifies text and image generation. In the following section, we present Muddit,
a unified framework that leverages discrete diffusion to model the generation tasks for both text and
image jointly.

2.2 MUDDIT

2.2.1 UNIFIED ARCHITECTURE

As shown in Fig. 2, our architecture comprises a text encoder Etxt, image encoder Eimg, transformer
generator G, sampler S, text decoder Dtxt, and image decoder Dimg. The generator G is a single
MM-DiT model, following the dual-/single-stream design of FLUX (Labs, 2024). Importantly,
the generator G is initialized from the Meissonic (Bai et al., 2025), which has been extensively
trained for high-resolution text-to-image generation. This initialization brings in a strong pretrained
image prior, capturing rich spatial structures and semantic correlations across image and text tokens,
which significantly enhances sample quality and accelerates convergence in the multimodal setting.
Consequently, the same MM-DiT predicts the masked tokens for both modalities, which produces a
shared generator for text and image synthesis.

To reduce the computational cost of high-resolution imagery and lengthy captions, we quantize both
modalities into a compact discrete space. A pre-trained VQ-VAE acts as the image encoder Eimg,
mapping pixels to codebook indices, while the CLIP text model, as Etxt, provides the text token
embeddings. The MM-DiT predicts clean tokens in this shared space, which a lightweight linear
head Dtxt converts back to text tokens.

2.2.2 UNIFIED TRAINING

Masking strategy. We model the forward posterior in Eq. 2 of both modalities using time-dependent
hyperparameters αt, with the mask ratio defined as γt = 1 − αt. While BERT (Devlin, 2018)
employs a fixed mask ratio of 15%, this setting is suitable for token completion but insufficient for
generation. To support generative tasks, the design of γt must satisfy the following criteria:

3
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Figure 2: The training and inference architecture of Muddit. (a) During training, we randomly
mask tokens from one of the two modalities. MM-DiT is trained to predict the masked tokens
using a re-weighted cross-entropy loss, which jointly optimizes both the MM-DiT backbone and
a lightweight text decoder. (b) In text-to-image inference, we initialize the image latent features
using all-masked tokens and iteratively predict each latent token via MM-DiT. (c) In image-to-text
inference, we similarly initialize all text tokens as masked and generate the text through the same
iterative decoding process. Specifically for VQA tasks, we append mask token IDs to the end of the
question and predict all masked token IDs as the final answer.

1. γt must be a continuous function, bounded between 0 and 1, for t ∈ [0, 1].

2. γt should monotonically decrease with respect to t, with boundary conditions γ0 → 0
(initially clean data) and γ1 → 1 (masking all tokens).

Several strategies for masking and sampling have been proposed to meet these criteria (Chang et al.,
2022). We adopt cosine scheduling strategy. During training, a timestep t ∈ [0, 1] is sampled from
a truncated arccos distribution, with the density function:

γt =
2

π
(1− (1− t)2)−

1
2 . (5)

During training, a mask ratio γt ∈ [0, 1) is randomly sampled for each modality x0 (either image
or text tokens), and the forward process (Eq. 2) is applied by randomly replacing clean tokens with
mask tokens to obtain xt.

Unified training objective. Let c denote the conditioning: the text embedding when synthesizing
an image, or the image embedding when generating a caption. We randomly sample a mask ratio by
Eq. 5. Then we corrupt the target sequence x0 (image or text tokens) with the CTMC described in
Eq. 1 and train a single masked-token predictor G(xt, αt, c) to reconstruct x0. Both directions—text
→ image and image→ text—share the identical continuous-time negative ELBO

Lunified = Eq(xt|x)

[∫ 1

0

α′
t

1− αt
log
(
G(xt, αt, c)·x

)
dt
]
, (6)

where all symbols are as in Eq. 4 but the G now receives the cross-modal condition c as an additional
input. Key point: switching from text→ image to image→ text merely changes the conditioning
signal c; the loss Eq. 6 itself is unchanged. This symmetry keeps optimization identical across tasks
and allows us to train a single parameter set jointly for both generation directions. During inference
we again start from an all-mask sequence (t=1) and integrate the reverse CTMC towards t=0,
feeding in the desired condition c to obtain either an image or a sentence from the same diffusion
backbone.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.2.3 UNIFIED INFERENCE

Sampling strategy. During inference, we apply the time-reversed posterior as defined in Eq. 3.

S(G, xt, t) = pθ(xs | xt) =


Cat(xs | xt), xt ̸= m,

Cat
(
xs |

(1− αs)m+ (αs − αt)G(xt, αt, c)

1− αt

)
, xt = m,

(7)

where θ denotes the parameters of G, c is the multimodal condition, and αt in Eq. 5 is applied
sequentially with t taking values 1, T−1

T , . . . , 1
T , where T is the total number of reverse steps. At

each timestep t, Muddit predicts a fraction γt+ 1
T
− γt of the masked tokens by G and update the

masked tokens xt by S , continuing iteratively until all masked tokens are recovered. This dynamic
approach offers several advantages over autoregressive methods, which require the model to learn
conditional probabilities P (xi | x<i) based on a fixed token ordering. In contrast, random masking
with a variable ratio enables the model to learn P (xi | xΛ), where Λ denotes an arbitrary subset of
observed tokens. This flexibility is essential for parallel sampling, allowing multiple tokens to be
predicted simultaneously rather than sequentially.

Our Muddit supports three tasks with a single generator G and sampler S: (i) text→ image, (ii) image
→ text (captioning), and (iii) visual–question answering (VQA). The only change across tasks is the
conditioning source c provided to G; the diffusion process and guidance logic are shared.

(i) Text→ image. Given a text prompt tp∈T , the text encoder Etxt produces a text token embed-
ding ctxt = Etxt(tp). Starting from a fully masked sequence x1, the generator produces logits

lt = G(xt, αt, ctxt), xt− 1
T
= S(lt, xt, t), (8)

for k = 1, T−1
T , . . . 1

T . After T steps we obtain visual tokens x0, which the image decoder Dimg
converts to a pixel-space image I = Dimg(x0).

(ii) Image→ text. For captioning, an input image I ∈ I is tokenized by the image encoder Eimg:
cimg = Eimg(I). The generator now conditions on the visual tokens while progressively decoding
text:

lt = G(xt, αt, cimg), tt− 1
T
= S(lt, xt, t), (9)

yielding a text token sequence x0, which Dtxt maps to a caption caption =
Detokenize(Dtxt(x0)).

(iii) Image + question→ answer (VQA). For visual–question answering we supply both an image
and a question: cimg = Eimg(I) and ctxt = Etxt(q). They are concatenated and fed to the generator,
which outputs logits over answer tokens xk:

lt = G(xt, αt, [cimg, ctxt]), xt− 1
T
= S(lt, xt, t), (10)

until the full answer a is produced and decoded by a = Detokenize(Dtxt(x0)).

Classifier-free guidance. At each decoding step, we apply the same guidance rule, independent of
modality:

lk ← G(zk, αk, c) + λ
[
G(zk, αk, c)− G(zk, αk, cneg)

]
, (11)

where zk (image or text tokens) is the partial target sequence, c is the positive condition (prompt,
image, or image +question), cneg is the corresponding negative condition, and λ is the guidance scale.
Because the loss, decoding schedule, and guidance operator are identical in all three scenarios—only
the conditioning signal changes—our framework realises a genuinely unified multimodal generator.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Implementation details. We build Muddit on top of the open-sourced Meissonic models (Bai et al.,
2025). The MM-DiT backbone is initialized with pretrained weights, and a lightweight linear head

5
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is added as a text decoder. Following Meissonic, we adopt the CLIP (Radford et al., 2021) as text
encoder and VQ-VAE as image encoder and decoder, keeping them entirely frozen throughout all ex-
periments. To support discrete denoising, we append a special <mask> token to CLIP’s vocabulary
for text masking, while the image mask token is inherited directly from Meissonic’s initialization.
We observe that, even without training, the <mask> embedding can already be predicted into a
coherent sentence during training. Therefore, for simplicity, we freeze the <mask> embedding.
During training, we use a constant learning rate of 1×10−4 and a weight decay of 1×10−2. Gradi-
ent accumulation is applied in both pretraining and supervised fine-tuning, resulting in an effective
batch size of 1024. We trained on 16 H100 GPUs for 5 days. During inference, we adopt the default
Meissonic configuration, using cosine masking scheduling, 64 sampling steps, and a classifier-free
guidance (CFG) scale of 9.0 and 1.5 for text-to-image and image-to-text generation, respectively.

Training data. We train Muddit in two stages using a combination of publicly available and in-
ternal datasets, including JourneyDB (Pan et al., 2023), LAION-Art (Schuhmann et al., 2022),
CC12M (Changpinyo et al., 2021), and others. The final dataset is filtered based on aesthetic score,
resolution, and aspect ratio, resulting in approximately 10 million image–text pairs. Both stages are
optimized with the unified training objective defined in Eq. 6. Below, we describe the datasets and
settings for each stage in detail.

1. Pretraining. We pretrain Muddit for 100K steps with a batch size of 1024, using the unified
objective across both modalities. Text inputs are truncated to a maximum of 77 tokens, and
images are resized to 512×512. The pretraining corpus consists of 8 million image–text pairs, re-
captioned using Qwen2.5-VL-3B for improved consistency. Each batch is evenly split between
text-to-image and image-to-text samples to enable joint training in both directions.

2. Instruction tuning. After pretraining, we fine-tune the model on a combination of 1 million in-
struction following datasets, including LLaVA-Instruct-150K, ALLaVA, SA-1B, and the VQAv2
training set. During this stage, only the answer portion of each prompt is masked. Additionally,
we construct a curated dataset of 1 million high quality image–text pairs to support multi-task
training on VQA and image generation. Following the task instructions embedded in each sam-
ple, Muddit learns to produce long-form answers, concise replies, and image captions via task-
specific prompting.

We present both quantitative and qualitative results for the T2I and I2T tasks in the following sec-
tions. Additional experiments and ablation studies are provided in the Appendix.

3.2 TEXT-TO-IMAGE GENERATION

Quantitative results. Following prior work, we evaluate our 512× 512 model on GenEval (Ghosh
et al., 2024) after supervised fine-tuning. Muddit attains an overall accuracy of 0.61, surpassing
prior discrete diffusion models such as Monetico (0.44) and Meissonic (0.54), and closely matching
Stable Diffusion 3 (0.62) with only 1B parameters. It further shows strong compositional reasoning
(0.72 on “Two Objects”, 0.54 on “Counting”), and benefits from joint multimodal training, which
enhances T2I performance. These results demonstrate the effectiveness of Muddit as the first unified
discrete diffusion model for both text and image modalities.

Qualitative results. We present diverse generations from our model conditioned on rich textual
prompts in Fig. 3. The outputs exhibit strong text-image alignment, capturing fine details in both
realistic and imaginative scenes. Our model effectively renders complex structures, lighting, and
textures across various domains.

3.3 IMAGE-TO-TEXT GENERATION

We present a comprehensive comparison of our model Muddit against other multimodal models
across four benchmarks: MS-COCO (image captioning) (Lin et al., 2014), VQAv2 (Antol et al.,
2015), MME (Fu et al., 2023), MMBench (Liu et al., 2024e), GQA (Hudson & Manning, 2019), and
MMMU (Yue et al., 2024) in Tab. 2. Notably, Muddit is the first unified model to employ discrete
diffusion for both text-to-image and image-to-text generation, demonstrating that this approach is
not only viable but also highly competitive.
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Human: A medieval town nestled on an expansive bay, cloaked in a 
blanket of snow and ice.  Icy winds whip through cobblestone streets 
lined with half-timbered buildings. their stone walls adorned with 
intricate carvings. Steam rises from cozy hearths as villagers huddle 
around fires, their faces illuminated by lanterns. The sky is a deep indigo, 
flecked with stars as a full moon casts an ethereal glow over the scene.

Human: A towering, robotic whale sculpted with gears and cogs stands 
amidst a bustling futuristic cityscape bathed in neon light. Its colossal 
form is detailed with rusted brass accents and gleaming chrome fins that 
ripple as it glides across the shimmering water.  Its eye stalks glow with an 
array of glowing LEDs.

Human: An organic, bioluminescent pavilion, crafted from gleaming 
chrome and polished metal, rises from the tranquil depths of a misty 
ocean. Sunbeams pierce the swirling fog, illuminating shimmering 
structures in intricate curves and forms. The water below reflects an 
ethereal sheen of ambient light, creating a hazy, captivating scene.

Human: A high-quality photograph capturing the majestic Plum Bayou 
Mound Architecture in a vibrant city of anthropomorphic mammals. The 
architecture is intricate and detailed, with towering structures made of 
natural materials like stone and wood, set against a backdrop of lush 
greenery and vibrant blue water reflecting the afternoon sun.

Human: A slice of creamy cheesecake, adorned with a vibrant yellow 
layer of lemon jelly and flecks of zesty lemon zest. The surface is smooth 
and inviting, captured in professional food photography with ultra-
realistic detail.  The lighting is soft, almost cinematic, highlighting the 
intricate texture and high definition sharpness.

Human: A 3D digitally rendered portrait in the style of "glass fragments" art.  
The face is depicted with a fractured, cracked surface reminiscent of 
shattered glass, using muted black and white tones. A split-toned effect 
adds depth and drama, highlighting the emotional intensity of the subject's 
expression. The image is ultra-high definition (4K) and rendered in 
Photoshop.

Figure 3: Samples of Text-to-Image Generation by Muddit.

Assistant: There are two 
people in this image. 

Human: How many people are there in this image?

Assistant: The color of 
the cup is white with 
blue picture on it.

Human: What is the color of this mug?

Assistant: The statue is 
made of marble.

Human: What is this statue made of?

Assistant: There are a 
cup, saucer, and a vase 
of flowers on the white 
table.

Human: What is on the table?

Figure 4: Samples of Visual Question Answering by Muddit.

Quantitative comparison. Muddit demonstrates strong performance across benchmarks despite
its compact size (1B parameters). It achieves a CIDEr score of 59.7 on MS-COCO, surpassing
diffusion-based baselines such as D-DiT (56.2) and Show-O (46.8–65.5). On VQAv2, it attains
67.7% accuracy, outperforming Show-O and D-DiT while approaching larger autoregressive models
like LLaVA-Next (82.8%). Moreover, it reaches 1104.6 on MME, 28.4 on MMB, and 57.1 on GQA,
underscoring its competitiveness across multimodal reasoning tasks. These results highlight the
effectiveness of Muddit as a unified diffusion-based model that balances efficiency with high-quality
task performance.

Qualitative results. We present example captions generated by our model across diverse scenarios
in Fig. 5, including humans, animals, vehicles, and natural landscapes. The model demonstrates
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Table 1: Evaluation of text-to-image generation performance on the GenEval (Ghosh et al., 2024).

Model Text Gen
Arch

Image Gen
Arch

Params
(B) Overall ↑ Objects ↑ Counting ↑Colors ↑Position ↑ Color ↑

AttributionSingle Two

PixArt-α (Chen et al., 2024b) - Diffusion 0.6 0.48 0.98 0.50 0.44 0.80 0.08 0.07
SD 2.1 (Rombach et al., 2022) - Diffusion 0.9 0.50 0.98 0.51 0.44 0.85 0.07 0.17
DALL-E 2 (Ramesh et al., 2022) - Diffusion 6.5 0.52 0.94 0.66 0.49 0.77 0.10 0.19
SDXL (Podell et al., 2023) - Diffusion 2.6 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DALL-E 3 (Betker et al., 2023) - Diffusion - 0.67 0.96 0.87 0.47 0.83 0.43 0.45
SD 3 (Esser et al., 2024) - Diffusion 2 0.62 0.98 0.74 0.63 0.67 0.34 0.36

LWM (Liu et al., 2024c) AR AR 7 0.47 0.93 0.41 0.46 0.79 0.09 0.15
SEED-X (Ge et al., 2024) AR AR 17 0.49 0.97 0.58 0.26 0.80 0.19 0.14
Chameleon (Team, 2024) AR AR 7 0.39 - - - - - -
Show-O (Xie et al., 2024) AR Discrete Diff. 1.3 0.68 0.98 0.80 0.66 0.84 0.31 0.50
Transfusion (Zhou et al., 2024) AR Diffusion 8 0.67 - - - - - -
D-DiT (Li et al., 2024b) Discrete Diff. Diffusion 2 0.65 0.97 0.80 0.54 0.76 0.32 0.50

Monetico (512× 512) (Bai et al., 2025) - Discrete Diff. 1 0.44 0.92 0.48 0.26 0.78 0.06 0.13
Meissonic (1024× 1024) (Bai et al., 2025) - Discrete Diff. 1 0.54 0.99 0.66 0.42 0.86 0.10 0.22
UniDisc (512× 512) (Swerdlow et al., 2025b) Discrete Diff. Discrete Diff. 1.4 0.42 0.92 0.47 0.15 0.67 0.13 0.19

Muddit (512× 512) Discrete Diff. Discrete Diff. 1 0.61 0.98 0.72 0.54 0.82 0.19 0.41

Assistant: The image depicts a man standing in water, 
holding a black dog and smiling. The man is wearing a 
yellow and wet jacket, and he has a happy expression. 
The background consists of a calm body of water with 
possibly a lake.

Assistant: The image depicts two individuals standing in a 
lush, forested area. the person on the left is older and 
wearing a light blue shirt and dark pants, while the person 
on the right is dressed in a suit with a shirt and tie. both 
appear to be engaged in a discussion or discussing 
something on the documents, with the person on the left 
holding a tablet.

Assistant: The image depicts a group of sheep walking along a road near a body of water, 
possibly a lake or a body of water water, possibly a sea or sea. the road is lined with small rocks 
and a scattered vegetation, and a road is visible on the side of the road. in the background, there 
are rolling hills and a calm water with a fence.

Assistant: The image depicts a row of hot motorcycles parked in a parking lot. the motorcycle is 
a white model with a black and white color scheme, identifiable by its distinctive design and 
branding on the side. the motorcycle appears to be a modern model model, as evidenized by the 
branding and branding visible on the side. the background includes a residential building, some 
trees.

Assistant: The image depicts a brown horse standing amidst a lush, green forest. the 
horse appears to be a thoroughbred horse, characterized by its dense features and tail 
visible. it is equipped with a bridle and a decorative tag on its forehead. the background 
is filled with dense foliage and small plants, suggesting a natural, foreforested 
environment. the overall scene is serene.

Figure 5: Samples of Image-to-Text Generation by Muddit.

strong visual grounding and fine-grained descriptive ability, accurately capturing attributes such as
clothing, expressions, background context, and object relationships. Fig. 4 illustrates our model’s
ability to accurately answer visual questions across various domains, including object counting,
color recognition, material identification, and compositional reasoning.

3.4 ABLATION STUDY AND ANALYSIS

Analysis of the inference timesteps. As shown in Tab. 5, performance generally improves with
more diffusion steps, plateauing around T = 32. GenEval and CIDEr see large gains from T = 8
to T = 32, with diminishing returns afterward. VQAv2 remains stable across timesteps, indicating
that fewer steps suffice for discriminative tasks. Overall, a moderate number of steps provides a
good balance between accuracy and efficiency.
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Table 2: Evaluation of image captioning, visual question answering on multimodal benchmarks.
Model Params (B) Text Gen Arch Image Gen Arch MS-COCO CIDEr ↑ VQAv2 Acc. ↑ MME Acc. ↑ MMB Acc. GQA Acc. ↑ MMMU Acc.
InternVL-2.0 8 AR - - - 1648.1 81.7 61.0 49.3
LLaVA-Next 13 AR - - 82.8 1575.0 70.0 65.4 36.2
BLIP-2 13 AR - - 65.0 1293.8 - 41.0 34.4
QWEN-VL 7 AR - - 78.2 1487.5 - 57.5 35.9
OpenFlamingo 9 AR - 65.5 43.5 - - - 28.7
Flamingo 9 AR - 79.4 51.8 - - - -

Chameleon 7 AR AR 18.0 - - 19.8 - -
LWM 7 AR AR - 55.8 - - - -
Show-O (256×256) 1.3 AR Discrete Diff. - 64.7 1014.9 - 54.2 -
Show-O (512×512) 1.3 AR Discrete Diff. - 69.4 1097.2 - 58.0 27.4
Transfusion 7 AR Diffusion 29.0 - - - - -
D-DiT (256×256) 2 Discrete Diff. Diffusion - 59.5 897.5 - 55.1 -
D-DiT (512×512) 2 Discrete Diff. Diffusion 56.2 60.1 1124.7 - 59.2 -
UniDisc 1.4 Discrete Diff. Discrete Diff. 46.8 - - - - -

Muddit (512×512) 1 Discrete Diff. Discrete Diff. 59.9 68.2 1107.4 28.4 57.5 27.6

Table 3: Impact of text loss weight. We apply
the same text loss weight during both pretrain-
ing and instruction tuning.

Benchmark 0.2 0.4 0.6 0.8 1.0

GenEval 60.1 60.5 61.6 60.8 58.3
MS-COCO 51.4 52.1 59.9 58.8 59.4
VQAv2 62.7 66.2 68.2 68.4 69.2

Table 4: Effect of joint training. We denote
text-to-image as T2I and image-to-text as I2T,
respectively.

Benchmark T2I only I2T only Joint training

GenEval 59.3 28.3 61.6
MS-COCO - 60.1 59.9
VQAv2 - 69.1 68.2

Table 5: Performance across different diffusion
timesteps.

Sample steps GenEval CIDEr VQAv2
T=8 51.6 43.6 53.9
T=16 58.5 59.3 57.4
T=24 59.3 59.4 62.3
T=32 61.9 59.7 65.4
T=40 61.7 60.1 66.8
T=64 61.1 59.9 68.2

Analysis of the text loss weight. As shown in
Tab. 3, moderate text loss weights (around 0.6)
yield the best overall performance. CIDEr and
GenEval peak near this value, suggesting that
both insufficient and excessive text weighting can
harm generation quality. VQAv2 continues to im-
prove with stronger text supervision but begins to
plateau beyond 0.6. Overall, while discrimina-
tive tasks benefit from heavier textual guidance,
generative tasks require a balanced mix of visual
and textual signals—highlighting the importance
of grounding language in multimodal learning.

Analysis of joint training. Joint optimization over both text-to-image (T2I) and image-to-text
(I2T) objectives is essential. As shown in Tab. 4, joint training yields the highest GenEval score,
outperforming both T2I-only and I2T-only variants. Notably, I2T-only causes GenEval to drop
sharply from 61.6 to 28.3—more than a twofold decrease—while MS-COCO CIDEr remains nearly
unchanged and VQAv2 declines only slightly. These results show that separating the objectives
severely weakens cross-modal integration, underscoring the need for unified optimization to main-
tain strong multimodal coherence.

3.5 THE SCALABILITY OF MUDDIT

To demonstrate the scalability of our approach, we curate roughly 10 million image–text pairs from
LIAON-ART (Schuhmann et al., 2022), JourneyDB (Pan et al., 2023), and CC12M (Changpinyo
et al., 2021). We filter out samples with an aesthetic score below 7, a height or width under 512
pixels, or an aspect ratio above 2. All images are re-captioned using Qwen2.5-VL 7B (Bai et al.,
2023). We pretrain Muddit on this dataset with a batch size of 512 and a resolution of 1024, applying
random masking to both image and text modalities. The image and text loss weights are set to 1.0
and 0.3, respectively. Training runs for 100K steps.

For instruction tuning, we collect about 6M samples from LLAVA-Instruct-150K (Liu et al., 2024d),
ALLaVA LAION (Chen et al., 2024a), SA-1B (Kirillov et al., 2023), ART500K (Mao et al., 2017),
ScienceQA (Lu et al., 2022), Chart2Text (Kantharaj et al., 2022), and VQAv2 (Antol et al., 2015).
Muddit is then trained with a batch size of 512 at a resolution of 1024, with masking applied only to
the answer text. We also add a 2M high-quality image dataset for high-quality fine-tuning. Further
training configurations are provided in Tab. 6. All experiments are conducted on 16 H100 GPUs.

We evaluate the scaled Muddit model against other comparably sized unified models and state-of-
the-art unified discrete diffusion models (Xin et al., 2025; Yang et al., 2025a), as shown in Tab. 7.
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Table 6: Training hyperparameters across different training stages.

Hyperparameters Stage-I (Pre-training) Stage-II (Instruction-tuning)

Learning Rate 1.0× 10−4 1.0× 10−4

LR Scheduler Constant Constant
Weight Decay 0.01 0.01
Max Gradient Norm 10.0 10.0
Optimizer AdamW (β1 = 0.9, β2 = 0.999)
Batch Size 512 512
Training Steps 100K 15K
Training GPUs 16×H100 16×H100

Gen. Resolution 1024 1024
Under. Resolution 1024 1024

Table 7: Quantitative comparison with other unified models.

Model Params Base model Architecture Data scale Geneval w TTS VQAv2 MME MMMU
Lumina-DiMOO 8B LLaDA Discrete Diff. 80M 0.92 – 1534.2 58.6
MMaDA (512× 512) 8B LLaDA Discrete Diff. Unknown 0.66 76.7 1410.7 30.2

Show-O (512×512) 1.3B Phi-1.5 AR + Discrete Diff 35M – 69.4 1097.2 27.4
D-DiT (512×512) 2B SD3-medium Discrete Diff + Diff 40M – 60.1 1124.7 –
Muddit (512×512) 1B Meissonic Discrete Diff 10M 0.64 68.2 1107.4 27.6
Muddit (1024×1024) 1B Meissonic Discrete Diff 16M 0.67 70.2 1139.2 28.7

Across established benchmarks, Muddit exhibits consistent improvements in both image generation
and image understanding, empirically validating the scalability of our model. Furthermore, we com-
pare Muddit with unified models of similar parameter sizes, all of which rely on hybrid architectures.
Despite being trained on substantially less data, Muddit achieves superior performance.

We attribute this data efficiency to two key factors. First, our visual prior naturally maintains strong
text-following capability for text-to-image generation, enabling robust alignment between image
and text modalities. From the perspective of unified modeling, we prioritize cross-modal alignment
over isolated single-modality ability, which allows Muddit to reach higher performance with less
training data. Second, Muddit adopts a fully unified modeling paradigm: the model learns by pre-
dicting mask tokens based on context across all tasks (text-to-image and image-to-text). In contrast,
hybrid architectures must simultaneously handle next-token prediction alongside velocity or mask
prediction, and often introduce additional special tokens (e.g., < soi >, < eoi >), which increases
architectural complexity and hinders optimization.

4 CONCLUSION

In this work, we present Muddit, a unified generative framework that employs discrete diffusion to
bridge text and image modalities. By unifying image and text generation within a single model,
Muddit demonstrates strong performance across text-to-image, image-to-text, and VQA tasks. No-
tably, it outperforms or matches the capabilities of significantly larger autoregressive models, while
enabling fast, parallel inference. Our results validate the effectiveness of discrete denoising as a
general-purpose modeling strategy and highlight its potential to serve as a scalable backbone for
future multimodal systems.
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APPENDIX

APPENDIX OVERVIEW

This appendix provides additional discussions, results, and analyses to complement the main paper.
It is organized as follows:

• Related Work (Sec. A): We review unified multimodal models for understanding and gen-
eration, with a focus on autoregressive and diffusion-based paradigms, as well as recent
advances in masked image modeling.

• Additional Qualitative Results (Sec. B): We present extended visualizations for several
tasks, including image captioning, text-to-image generation, visual question answering,
and image-guided text editing.

• Additional Experimental Results (Sec. C): We present more experimental results.
• Additional Ablation Studies (Sec. D): We present extended ablation studies.
• Inference Time Analysis (Sec. E): We analyze inference efficiency by comparing autore-

gressive decoding with discrete diffusion, providing FLOPs complexity and speed bench-
marks.

• Generated Results Step by Step (Sec. F): We illustrate the reverse discrete diffusion pro-
cess in detail, showing intermediate decoding steps and examples of progressive generation.

• Discussion (Sec. G): We reflect on the limitations of our approach and its broader impacts,
including potential applications and risks of misuse.

• Use of Large Language Models: We clarify the role of large language models during
paper preparation, emphasizing that they were only used for minor editing and polishing.

A RELATED WORK

A.1 UNIFIED MODELS FOR GENERATION AND UNDERSTANDING

The success of LLMs in language modeling has inspired efforts to extend unified generation to mul-
timodal domains. However, the divergence between autoregressive and diffusion-based paradigms
presents fundamental architectural trade-offs. Autoregressive models naturally handle language, and
several works (Sun et al., 2023; Wang et al., 2024a; Tong et al., 2024; Ge et al., 2024; Dong et al.,
2023; Chen et al., 2025b) extend this by connecting vision modules to LLMs via adapters or instruc-
tion tuning, with LLMs serving as planning modules that produce intermediate representations for
image generation. While effective to some extent, these paradigms often exhibit limited interaction
between text and image modalities and struggle with content consistency, particularly in image-
to-image generation and complex instruction-based synthesis. To address these limitations, recent
research explores unified generation models that integrate understanding and generation within a
single architecture. We categorize these into four major paradigms (see Fig. 6):

Fully Autoregressive: Both text and image are tokenized into discrete sequences and modeled with
an AR Transformer (Liu et al., 2024b; Team, 2024; Wu et al., 2024; Wang et al., 2024b; Chen
et al., 2025d; Liu et al., 2024a; Guo et al., 2024; Zheng et al., 2024). These models achieve strong
cross-modal generation but suffer from high latency due to sequential decoding.

Text AR, Image Diffusion: LLMs generate text tokens while image synthesis is delegated to pre-
trained continuous diffusion backbones (Zhou et al., 2024; Zhao et al., 2024; Ma et al., 2024) or
discrete diffusion (Xie et al., 2024). Though visually strong, these models are not truly unified, as
they rely on separate architectures and token spaces.

Image Diffusion, Text Discrete Diffusion: Emerging models experiment with discrete diffusion for
text and images (Li et al., 2024c), though many, like Dual-Diffusion, still use continuous diffusion
for image synthesis, failing to realize true modality symmetry.

Fully Discrete Diffusion: Recent work like UniDisc (Swerdlow et al., 2025a) pioneers full-token
discrete diffusion over shared Transformer backbones. These models support parallel sampling and
native integration, but currently lag behind in generation fidelity and scale.
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Figure 6: Four types of unified generative models. More details can be found in Sec. A.

Among these, the GPT-4o (OpenAI, 2025) model represents a significant advance as a unified mul-
timodal generative system. However, its closed-source nature obscures critical architectural and
training details, and its success may be largely attributable to scale rather than architectural nov-
elty (Chen et al., 2025c).

A.2 MASKED IMAGE MODELING

Masked Image Modeling (MIM) has emerged as a powerful self-supervised learning paradigm in
computer vision, drawing inspiration from the success of Masked Language Modeling (MLM) in
NLP, notably BERT (Devlin, 2018). The fundamental principle of MIM involves obscuring portions
of an image, which could be raw pixels (MAE (He et al., 2022)), latent patches of pixels, or even
discrete latent tokens (BEiT (Bao et al., 2021), MaskGIT (Chang et al., 2022)), and training a model,
typically an autoencoder, to predict or reconstruct this missing information by leveraging the context
provided by the visible parts.

MaskGIT (Chang et al., 2022) introduced parallel decoding via iterative token refinement, inspiring
discrete diffusion models. Recent work such as RandomAR (Fan et al., 2024) and MAR (Li et al.,
2024a) formalize this as random-order or masked autoregressive generation, blending AR and MIM
principles. The major conceptual difference between RandomAR/MAR and MaskGIT is in the
scanning order at inference time.

This class of techniques forms the conceptual foundation of discrete diffusion over tokenized spaces
and plays a critical role in modern unified models. We will introduce discrete diffusion in the next
section.

A.3 RELATIONSHIP TO CONCURRENT WORK

Our main contribution is to show that a unified, visual-prior fully discrete diffusion model can be
both effective and data-efficient on image understanding tasks, rather than only on text-to-image
generation tasks. Regarding the distinction from discrete diffusion works (Swerdlow et al., 2025b;
Yang et al., 2025a; Xin et al., 2025) we think that unified models should allow for multiple design
choices. Our goal is to demonstrate that a visual-first, fully discrete diffusion backbone can be a
practical and competitive alternative to the more common “LLM-first” unified paradigm, and we
believe this is a fundamental design choice.

Concretely, prior unified discrete diffusion models such as UniDisc (Swerdlow et al., 2025b) are
trained from scratch on multimodal data and therefore lack strong visual priors. As a result, they
significantly underperform early diffusion baselines such as Stable Diffusion 1.5 (Rombach et al.,
2022) and do not support vision–language reasoning tasks like VQA (Antol et al., 2015). In contrast,
Muddit is the first unified discrete diffusion model built on top of a pretrained high-resolution text-
to-image backbone (Meissonic), with a lightweight text decoder on top. This visual prior is not an
implementation detail: it improves the scalability and generalization behavior of discrete diffusion
through a text well-aligned visual backbone.

B ADDITIONAL QUALITATIVE RESULTS

Image-to-text Generation. We present more examples for image-to-text generation in Fig. 7.

Text-to-image Generation. We present more examples for text-to-image generation in Fig. 8.
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Visual Question Answering. We present more examples for visual question answering in Fig. 9.
Muddit reliably identifies fine-grained attributes (e.g., “blonde” hair), object categories (e.g., “bea-
gle”), and physical affordances (e.g., answering “No” to crossing at a red light). Notably, it also
handles commonsense reasoning and spatial localization, such as inferring traffic legality or locat-
ing vehicles on the street.

Image-guided text editing. Zero-shot text-guided image editing performance is already verified
and presented in Meissonic (Bai et al., 2025). As the successor to Meissonic, we present Muddit’s
performance on the image-guided text editing task, where the model completes a masked sentence
based on the input image. As shown in Fig. 10, given a partially masked caption and an image,
Muddit fills in the blanks with semantically and visually grounded phrases.

C ADDITIONAL EXPERIMENTAL RESULTS

We provide a detailed breakdown of the MME benchmark results in the Tab. 8. Muddit demon-
strates strong performance in existence, color, and scene understanding, while also exhibiting solid
reasoning capabilities.

Table 8: Detailed MME results.

Category Task Score

Perception

Existence 135.00
Count 78.33
Position 53.33
Color 140.00
Posters 62.24
Celebrity 56.18
Scene 107.25
Landmark 94.50
Artwork 76.00
OCR 52.50
Total 855.34

Cognition

Commonsense Reasoning 78.57
Numerical Calculation 90.00
Text Translation 57.89
Code Reasoning 57.50
Total 283.97

D ADDITIONAL ABLATION STUDIES

D.1 ABLATION STUDY ON THE CFG FOR IMAGE-TO-TEXT GENERATION

As shown in Tab. 9. We report performance on MS-COCO captioning and VQAv2 benchmarks.
Moderate CFG values (e.g., 1.5) yield the best results, while higher scales lead to degraded perfor-
mance.

E INFERENCE TIME ANALYSIS

As shown in Fig. 13, autoregressive multimodal models are inherently limited by token-by-token
decoding, which constrains their inference speed. Muddit overcomes this bottleneck with a parallel
discrete diffusion decoder, reducing average latency to just 1.49 seconds, achieving a 4× to 11×
speedup over competitive baselines (4.2× faster than Qwen-2.5-VL, 5.6× than Show-o, 8.1× than
BLIP-2, and 10.9× than LLaVA-1.6).

Besides, we present detailed FLOPs comparison between Autoregressive and Discrete Diffusion.
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Table 9: Ablation study on the effect of classifier-free guidance (CFG) scale.

Dataset CFG = 1 CFG = 1.5 CFG = 2 CFG = 2.5 CFG = 3

MS-COCO 57.2 59.9 58.2 51.3 47.2
VQAv2 65.8 68.2 64.7 55.4 49.2

Table 10: Comparison of model efficiency across different resolutions and steps. We report through-
put for both text-to-image generation (images per second) and image-to-text tasks (tokens per sec-
ond). Muddit achieves the best overall balance, matching the highest text-to-image throughput while
significantly outperforming others in image-to-text speed.

Model Image Res Steps Text-to-Image (img/s) Image-to-Text (token/s)

Meissonic 1024 32 0.23 –
UniDisc 512 32 0.89 79.36
Monetico 512 32 1.00 –
D-DiT 512 28 0.62 26.89
Muddit 512 32 1.00 99.98

Autoregressive (AR) without KV Cache:

• At step t, the model attends over t previous tokens.

• Per-step attention FLOPs: O(t2D).

• Total FLOPs:

L∑
t=1

O(t2D) = O

(
D

L∑
t=1

t2

)
= O

(
D · L(L+ 1)(2L+ 1)

6

)
= O(L3D)

Autoregressive (AR) with KV Cache:

• At step t, Q is computed for 1 token, and attends to t K/V keys.

• Per-step attention FLOPs: O(tD).

• Total FLOPs:

L∑
t=1

O(tD) = O

(
D

L∑
t=1

t

)
= O

(
D · L(L+ 1)

2

)
= O(L2D)

Discrete Diffusion:

• Each step updates the full sequence (length L) in parallel.

• Per-step attention FLOPs: O(L2D).

• Total FLOPs:
T ·O(L2D) = O(TL2D), T ≪ L

While discrete diffusion may appear less efficient than autoregressive (AR) models with KV caching
in terms of theoretical FLOPs, it offers a significant advantage over AR without caching—achieving
an L/T speedup by updating the full token sequence in parallel over T iterations. In practice, the
higher degree of parallelism leads to competitive, and often faster, inference speed compared to
AR models, especially when considering real-world GPU throughput. As KV cache techniques for
discrete diffusion are rapidly evolving (Ma et al., 2025), we expect further acceleration in the near
future, narrowing the theoretical speed gap even with KV-cache AR baselines.

In Tab. 10, we compared Muddit against other non-autoregressive models, running all tests on a
single A800 80 GB GPU. Muddit demonstrated a clear advantage in both image and text generation.
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F GENERATED RESULTS STEP BY STEP

Muddit frames text generation as reverse discrete diffusion over a fixed-length sequence of 77 token
indices. At inference time, the model performs 16 ≤ T ≤ 32 denoising steps, starting from a max-
imally entropic prior where every token is masked. At each step t, a parameter-shared transformer
G predicts a categorical distribution over all positions in parallel, and a sampler S selects the next
sequence:

xt−1 = S(G(xt, c, t),xt, t), t = T, . . . , 1, (12)
where xt ∈ V77 is the token sequence at step t, and c denotes conditioning inputs. The logits can be
tempered or top-k filtered before sampling each token independently. The resulting sequence xt−1

seeds the next step, enabling fast, parallel decoding without autoregressive constraints.

Because all positions are updated in parallel, Muddit preserves global syntactic and semantic struc-
ture throughout the reverse diffusion process—unlike left-to-right autoregressive models, which can
only condition on past predictions. Empirically, as few as 16 ≤ T ≤ 32 steps are sufficient to
approximate the natural language distribution with high fidelity. Thus, Muddit unifies diffusion gen-
eration with parallel decoding, effectively overcoming the serial bottleneck that limits conventional
autoregressive multimodal models.

We present 2 examples in Fig. 11 and Fig. 12.

G DISCUSSION

G.1 LIMITATIONS

While Muddit advances discrete diffusion for unified multimodal generation, it still presents several
limitations. First, due to its token-level discrete representation, the model may underperform con-
tinuous diffusion models in generating photorealistic or high-resolution images. Second, Muddit is
initialized from a pretrained text-to-image foundation model, which offers strong visual priors but
limits its capacity for rich text understanding and generation compared to the latest large language
models. This makes it less suitable for tasks that require long-form understanding and generation or
deep linguistic reasoning.

G.2 BROADER IMPACTS

Muddit explores a new paradigm in multimodal generation by leveraging a strong visual prior as
the backbone, in contrast to the prevailing trend of scaling large language models. This offers a
complementary path toward efficient, grounded multimodal generation, particularly in vision-centric
applications. The model’s ability to generate aligned visual and textual outputs in a fast, parallel
manner could benefit downstream tasks, especially in completion-based scenarios such as masked
captioning, image editing, and code implementation. However, as with all generative models, there
remains a risk of misuse in synthetic content creation.

H THE USE OF LARGE LANGUAGE MODELS

During the preparation of this paper, large language models were used only for language polishing
and minor editing. All research ideas, methods, and experimental results were carried out entirely
by the human authors.
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Assistant:  The image is a black - and - white photograph featuring three 
individuals sitting together on a bench. They appear to be in an urban setting, 
as indicated by the trees and buildings in the background. The individuals 
are dressed in police uniforms, with one person looking behind the first 
individual from the second individual.

Assistant: The image depicts a charming street scene with a 
cobblestone pavement and tall buildings. A white dog is resting. 
The dog is lying down near the bicycle on the street. To the left of 
the street, there is an old bicycle parked to the side of the street.

Assistant: The image depicts an elderly man standing on a city street, 
wearing a red jacket and a black cap talking on cell phone to his ear. The 
background shows a crowd of people walking around, some of whom are 
handbags and others visible in the distance. The crowd appears to be the 
middle of a busy area.

Assistant: The image depicts a close - up of a large, round pizza placed on a 
wooden table. The pizza is topped with cheese, and there are several pieces 
of basil leaves. In the background, there are other people sitting around.

Assistant: The image depicts a tennis match on a blue court. the tennis 
match is set against a backdrop of a blue court. The player, wearing a white 
shirt and white shorts, is in mid action and holding a tennis racket, possibly 
preparing for a shot. the court has a row of seats.

Assistant: The image depicts a vibrant and colorful arrangement of umbrellas 
hanging from the branches of trees. The umbrellas come in color and shape, 
including pink, red, and yellow, blue, and purple. They are arranged in a circular 
pattern across the umbrellas, creating a visually appealing display. The 
background features a mix of green trees and foliage, suggesting an outdoor.

Assistant: The image depicts a giraffe standing on a grassy field in a 
rural outdoor setting. The background features a clear blue sky with 
some scattered clouds, and there are trees in the distant distance. 
The giraffe appears to be looking towards a distant horizon.

Assistant: The image depicts a person surfing on a surfboard on a large 
wave. The surfer is in mid-air, with his arms bent, navigating the balance of 
the wave. The background shows a clear blue sky, adding depth to the 
overall scene. The surfer seems to be in the middle of the the wave.

Assistant: The image depicts a stop sign in front of a grassy field with 
majestic mountains in the background. The sky is clear with a scattered 
clouds, and snow-capped mountains rise in the background. The scene 
appears to be in a rural setting.

Assistant: The image depicts a bustling urban street scene with several notable 
elements. In the foreground, there is a tall green clock tower with a clock face 
and a pole, which stands prominently on the street. The clock has a clock face 
on it, indicating the time. In the background, there are several parked cars.

Figure 7: Image-to-text generated results.
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Human: An editorial fashion photo portrait of a striking avant-garde model 
with bubble details. Iridescent art and pop surrealism influence the 
image's ethereal feel. Pastelaesthetic hues of soft pink, tangerine, and 
green create a dreamy backdrop. Seamless pink background, studio 
lighting emphasizes the model's silhouette against the soft pastel palette.

Human: Dark, heavy rainclouds gather over a rocky mountain range, 
obscuring the peaks. A weathered canvas tent flaps open in the wind, its 
silhouette stark against the gray backdrop.  Water pours down in sheets, 
blurring the image and creating a misty effect.

Human: A quaint small town nestled amidst snow-capped hills, bathed in 
the soft, golden hues of dusk. The sky is a tapestry of twilight blue and 
orange, casting long shadows across cobblestone streets as frosted trees 
stand bare against the fading light.  A sense of quiet peace emanates from 
the scene.

Human: An old cyanotype photograph capturing a serene lake at twilight.  
A majestic heron stands in the tranquil waters, its long legs poised, as the 
last golden rays of sunlight paint the sky with hues of blue and purple. The 
distant mountain range glows warmly with the soft, crepuscular light.  
Sharp focus on the heron and water reflection. Wide-angle lens captures 
a panoramic scene.

Human: A vibrant Japanese garden, inspired by Van Gogh's swirling 
brushstrokes. Vivid reds, yellows, blues, and greens dominate the scene. 
Cherry blossoms bloom in full splendor against a backdrop of ancient stone 
lanterns, rendered with lush foliage and dappled sunlight. The effect is 
heightened by 4K resolution and cinematic depth.

Figure 8: Text-to-image generation results.
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Human:  What color is the 
kid‘s hair?

Assistant:  The color of 
the kid’s hair is blonde.

Human:  What brand of 
dogs are these?

Assistant:  The brand of 
dogs are beagle.

Human:  What is flying in 
the picture?

Assistant:  Kite.

Human:  What eating utensil 
is pictured?

Assistant: Fork.

Human:  Where are the 
cars?

Assistant:  The cars are 
on the street.

Human:  Can someone 
legally walk across the 
street right now?

Assistant: No.

Figure 9: Visual question answering results.

<mask> <mask> <mask> lying on a grassy surface. <mask> <mask> has 

a <mask> fur with darker patches on its face and ears, looking directly at 

<mask> <mask>. the bear's mouth is slightly <mask>, revealing its teeth 

and tongue. the background shows some green grass.

A curly bear lying on a grassy surface. the bear has a brown fur with 

darker patches on its face and ears, looking directly at the camera. the 

bear's mouth is slightly open, revealing its teeth and tongue. the 

background shows some green grass.

Muddit

Image-guided text editing

Figure 10: Image-guided text editing results.
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<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>

<mask> <mask> depicts <mask> <mask> and whimsical <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask>, <mask> <mask> <mask> <mask> <mask> <mask> <mask>. <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>

The <mask> depicts a <mask> and whimsical <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask>, <mask> <mask> <mask> <mask> <mask> <mask> <mask>. the <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>, 
<mask> <mask> <mask> <mask> <mask> <mask>

The image depicts a surreal and whimsical scene in what appears to be a <mask> <mask>, possibly 
<mask> <mask> or a dining room. the floor is covered with <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask>, <mask> <mask> <mask> <mask> <mask> 

The image depicts a surreal and whimsical scene in what appears to be a domestic setting, possibly a 
room or a dining room. the floor is covered with numerous pink flowers, adding a touch of <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>, <mask> to the <mask> <mask> 
<mask> <mask> <mask> <mask> <mask>

The image depicts a surreal and whimsical scene in what appears to be a domestic setting, possibly a 
room or a dining room. the floor is covered with numerous pink flowers, adding a touch of <mask>. the 
petals are scattered throughout the room, adding to the dreamlike quality of the scene. 

The image depicts a surreal and whimsical scene in what appears to be a domestic setting, possibly a 
room or a dining room. the floor is covered with numerous pink flowers, adding a touch of color. the 
petals are scattered throughout the room, adding to the dreamlike quality of the scene. 

The image depicts a surreal and whimsical scene in what appears to be a domestic setting, possibly a 
room or a dining room. the floor is covered with numerous pink flowers, adding a touch of color. the 
petals are scattered throughout the room, adding to the dreamlike quality of the scene. 

User: Please describe this image.

T=1

T=0

Figure 11: Image-to-text generated results in each step.
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<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>

<mask> image <mask> <mask> bear <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask>

<mask> image depicts <mask> bear lying <mask> its <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
be <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask>. 

<mask> image depicts <mask> bear lying <mask> its <mask> <mask> a <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> appears to be resting 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> or <mask>. 

The image depicts a bear lying <mask> its back <mask> a <mask> surface <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask>. the bear appears to be sleeping <mask> with its head <mask> on 
<mask> <mask> surface <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> or <mask>. 

the image depicts a bear lying on its back on a <mask> surface. the <mask> is <mask> <mask> <mask> 
<mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask> <mask>. 
the bear appears to be sleeping. the <mask> suggests <mask> the <mask> <mask> <mask>, possibly 
near a <mask> or <mask>. 

The image depicts a bear lying on its back on a concrete surface. the bear is lying down, with <mask> 
head <mask> <mask> its head resting <mask> <mask> <mask>. the bear appears to be sleeping. the 
setting suggests that the scene is outdoors, possibly near a park or <mask>. 

The image depicts a bear lying on its back on a concrete surface. the bear is lying down, with its head 
resting on the surface. the bear appears to be  sleeping. the setting suggests that the scene is outdoors, 
possibly near a park or garden. 

User: Please describe this image.

T=1

T=0

Figure 12: Image-to-text generated results in each step.
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Figure 13: Inference speed comparison. We use 32 inference steps for Muddit and fix the sequence
length to 77 across all models.
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