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Abstract

DeepSeek-R1 has successfully enhanced Large Language Models (LLMs) rea-
soning capabilities through its rule-based reward system. While it’s a “perfect”
reward system that effectively mitigates reward hacking, such reward functions
are often discrete. Our experimental observations suggest that discrete rewards
can lead to gradient anomaly, unstable optimization, and slow convergence. To
address this issue, we propose ReDit (Reward Dithering), a method that dithers
the discrete reward signal by adding simple random noise. With this perturbed
reward, exploratory gradients are continuously provided throughout the learning
process, enabling smoother gradient updates and accelerating convergence. The
injected noise also introduces stochasticity into flat reward regions, encouraging
the model to explore novel policies and escape local optima. Experiments across
diverse tasks and different LLMs demonstrate the effectiveness and efficiency of
ReDit. On average, ReDit achieves performance comparable to vanilla GRPO
with only approximately 10% the training steps, and furthermore, still exhibits a
4% performance improvement over vanilla GRPO when trained for a similar dura-
tion. Visualizations confirm significant mitigation of gradient issues with ReDit.
Moreover, theoretical analyses are provided to further validate these advantages.

1 Introduction

Reinforcement learning (RL) is pivotal in Large Language Models (LLMs) development [1, 2, 3,
4]. Initially, RL from human feedback (RLHF) [5, 6] was employed to align pre-trained LLMs
with human preferences [7, 8]. This typically involves training a separate reward model (RM) on
human preference data [9], which then guides the LLM policy optimization [10]. While effective,
this approach introduces considerable training overhead [11]. Subsequently, methods like Direct
Preference Optimization (DPO) [12, 13] were developed, enabling LLMs to learn directly from
preference data and thus bypassing explicit RM training. However, these methods still require
extensive collection of high-quality preference data. For reasoning tasks such as mathematics
and coding, DeepSeek-R1 [14] with Group Relative Policy Optimization [15](GRPO) proposes an
alternative: optimizing the LLM policy directly using a rule-based reward system [16, 17], thereby
avoiding the need for external RMs or large preference datasets. For instance, such a system might
assign a reward of 1 for outputs meeting predefined criteria (e.g., correctness, format compliance)
and 0 otherwise [14]. The simplicity and unbiased nature of these rule-based rewards prevent LLMs
from hacking them, potentially fostering enhanced reasoning capabilities [18].
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(a) GRPO Training Dynamic on GSM8K
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(b) GRPO Training Dynamic on GSM8K with ReDit
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Figure 1: Training Dynamics of Gradient Norm and Reward for Qwen2.5-7B [31] on GSM8K [32]
Dataset. The left and right figures compare original gradient norm (before gradient clipping [33]) and
reward trends across training steps. The original GRPO method (the left figure) suffers from significant
gradient instability—both vanishing (red dots, norms < 0.01) and exploding (purple asterisks, norms
> 5). In contrast, ReDit with Gaussian reward smoothing (the right figure) effectively stabilizes
optimization throughout training.

However, such reward functions are often discrete, posing significant optimization challenges [19,
20, 21]. Consider an RL scenario with a binary reward [22]: a policy model receives 1 for a correct
answer and 0 otherwise. During early training phases, a policy LLM rarely generates completely
correct answers, resulting in predominantly zero rewards across mini-batches [23]. Although the
model may engage in exploratory behavior on difficult examples, the corresponding gradients
remain minimal due to small advantage magnitudes [24]. Thus, these hard examples and potentially
beneficial explorations [24] are largely unexploited during the early stages. Conversely, the model
may repeatedly reinforce easy examples [25], thus reducing incentives to explore alternative strategies
for more difficult problems [26]. This phenomenon can lead to training stagnation in intermediate
and advanced stages. Consistent with this, as shown in Fig. 1 (the left figure), we observe that the
policy model frequently suffers from gradient vanishing [27, 28] or explosion [29, 30] during these
phases. This combination of insufficient exploration and gradient instability substantially impedes
model convergence, representing a critical obstacle to efficient RL in LLMs.
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Figure 2: The figure illustrates how ReDit
of different variances gradually smooth the
reward distribution, showing the smoothing
effect of perturbations of different variances
on the reward distribution.

This observed phenomenon highlights that even per-
fectly accurate discrete reward functions face signif-
icant limitations within gradient-based optimization
frameworks. Lending theoretical support to this, recent
studies [34, 35, 36] have established that a singular
focus on increasing reward model accuracy does not
necessarily translate to enhanced language model per-
formance. In particular, [36] theoretically substantiates
the necessity for effective reward models to integrate
adequate variance and uncertainty to enable efficient op-
timization. The theoretical details are given in Sec. 3.2.
Consequently, we believe that an excellent reward sys-
tem should achieve a careful equilibrium between cor-
rectness and sufficient variance.

Inspired by these observations and theoretical insights,
we propose ReDit, a simple but effective technique that
introduces zero-mean random perturbations to discrete
reward signals during training. By adding small random
noise to the reward function (Fig. 2), ReDit effectively
softens the original hard reward function. Compared
to a hard reward function, a softened one can provide greater reward variance within mini-batches,
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which, as indicated by previous research, can lead to enhanced model performance and accelerated
convergence.

Fig. 1 (the right figure) illustrates the impact of our proposed ReDit on LLM policy optimization for
the GSM8K [32] task. The orange lines indicate that during early training phases, GRPO with ReDit
achieves significantly higher average rewards compared to the baseline (GRPO without ReDit),
demonstrating the efficacy of our method. We hypothesize that ReDit encourages broader exploration
by assigning varied rewards to outputs that only partially meet strict evaluation criteria, thereby
accelerating convergence. Towards the end of training (1000 steps), while both policy models attain
high rewards, our approach with ReDit exhibits superior performance on the test set, indicating
enhanced generalization. Additionally, ReDit demonstrates more robust gradient updating. As shown
in Fig. 1 (the left figure), phenomena such as gradient vanishing (red point) and explosion (purple star)
emerge during training with the baseline. In contrast, GRPO with ReDit maintains stable gradients
throughout the training process. These findings highlight the advantages of ReDit: more stable policy
optimization, faster convergence, and improved overall performance.

Moreover, theoretical analysis indicates that a greater reward variance can enhance performance
and accelerate convergence in reinforcement learning [36]. We increase reward variance within
mini-batches while preserving the expected gradient through reward dithering. By carefully injecting
noise into the reward function, ReDit achieves a balance between reward signal fidelity and reward
variance, leading to enhanced policy optimization.

In summary, our main contributions are:

• We observe that policy optimization under discrete reward functions suffer from unstable
gradients and slow convergence(Section 3.1).

• We propose Reward Dithering (ReDit), a simple yet effective technique that introduces
perturbations to discrete rewards. This method is shown to accelerate convergence speed
and enhance final model performance (Algorithm 1 and Section 4).

• Extensive experiments across diverse downstream tasks, reinforcement learning algorithms,
and perturbation distributions demonstrate that ReDit achieves superior performance and
enhanced convergence (Section 5).

• Theoretical analysis proves that ReDit produces an unbiased estimate of the original gradient
(Proposition 1) and introduces beneficial gradient variance that mitigates vanishing and
exploding gradients (Proposition 2).

2 Preliminaries

We frame LLM generation as a sequential decision-making problem solvable via RL. The process is
modeled as a Markov Decision Process (MDP) [37] where the state st = q; o<t includes the prompt
q and generated tokens o<t, the action ot is the next token selected from the vocabulary, and the
policy πθ(ot|st) is parameterized by θ. The goal is to optimize the policy to maximize the expected
sequence-level reward R(q, o) =

∑|o|
t=1 r(st, ot) over the prompt distribution pQ:

J(πθ) = Eq∼pQ

[
Eo∼πθ(·|q)[R(q, o)]

]
. (1)

Recently, GRPO [15] was proposed as a PPO alternative that eliminates the need for independent
RMs and value functions. GRPO typically processes sparse, discrete rewards directly, rather than
continuous RM scores. For tasks like mathematical reasoning, this discrete reward R(q, o) ∈ {0, 1} is
often determined by a simple function checking correctness or format. GRPO estimates the advantage
ÂGRPO

i,t by sampling G responses {oi}Gi=1 and normalizing their discrete rewards within the set. Its
objective function, which includes a KL divergence term DKL(πθ||πref) for stability, is given by:

JGRPO(θ) = Eq∼pQ

 1

G

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Â

GRPO
i,t , clip (ri,t(θ), 1− ϵ, 1 + ϵ) ÂGRPO

i,t

)
−βEq∼pQ

[DKL(πθ(·|q)||πref(·|q))] ,

(2)

where ri,t(θ) =
πθ(oi,t|si,t)
πθold (oi,t|si,t)

. Subsequent methods such as DAPO [38], Dr.GRPO [39], and REIN-
FORCE++ [40] generally adopt this discrete reward paradigm (see Appendix A for more related
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Figure 3: Qwen2.5-7B [31] Gradient norm and reward training dynamics of standard GRPO on
GSM8k and MATH datasets. During the whole optimization process, the gradient of standard GRPO
is unstable, and there are a lot of gradient vanishing or gradient exploding cases.

work). While simplifying the overall RL process by avoiding complex RMs, this shift to discrete,
sequence-level rewards introduces significant optimization challenges. The inherent sparsity and
abrupt value changes (e.g., 0 to 1) hinder policy gradient estimation and lead to training instability
(Section 3.1).

3 Motivation

This section articulates the fundamental motivations driving our research and establishes the critical
challenges that our work aims to address. In Section 3.1, we examine the optimization challenges
inherent in discrete reward structures, followed by an exposition of the theoretical principles informing
our methodological framework in Section 3.2.

3.1 Difficulties in Optimization Caused by Discrete Rewards

Optimizing LLM policies using algorithms like GRPO in conjunction with discrete sequence-level
rewards (e.g., binary correctness metrics) presents significant optimization challenges. Fig. 3 plots
the policy gradient norm (blue line) and average reward (orange line) during standard GRPO training
on the GSM8K and MATH datasets, respectively. Two main issues are immediately apparent:

0 1000 2000 3000 4000 5000

Training Steps

37

39

41

43

45

47

49

51

Te
st

 A
cc

ur
ac

y 
(%

)

Peak Accuracy: 49.46%

Gradient Explosion
(Accuracy Drop)

Gradient Vanishing
(Accuracy Stagnation)

39.00%

47.86%

49.46%

47.18% 47.28% 47.26%

GRPO Test Dataset Accuracy on MATH

Figure 4: GRPO has unstable perfor-
mance on the MATH test set. The fig-
ure plots the test accuracy achieved for
the checkpoints saved during the train-
ing run shown in Fig. 3(the right figure).

Gradient Vanishing. The figure illustrates instances
where the gradient norm approaches zero (red dot), oc-
curring when most examples in a GRPO batch yield iden-
tical binary rewards. Consequently, the population relative
advantage estimate ÂGRPO

i,t becomes negligible across ex-
amples, providing insufficient learning signals and caus-
ing training stagnation. This phenomenon is evident in
Fig. 3(the right figure) post-step 2000.

Gradient Explosion. Conversely, training dynamics ex-
hibit sporadic sharp spikes in gradient norm (purple as-
terisks) when small policy changes cause sequences to
transition from incorrect (reward 0) to correct (reward 1).
These transitions create disproportionately large advantage
estimates for newly successful sequences, triggering sud-
den, destabilizing gradient updates as shown in Fig. 3(the
left figure). Such spikes induce reward fluctuations in sub-
sequent steps, hindering smooth convergence and learning
efficiency.

The discrete, sparse rewards induce unstable oscillations between vanishing and exploding gradients.
Fig. 4 demonstrates that model performance fluctuates correspondingly with these oscillations. This
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inherent instability not only compromises optimization efficiency but also serves as a key motivation
for our research.

3.2 Theoretical Principles to Address the Limitations of Discrete Rewards

To overcome the critical challenges with discrete rewards outlined in Section 3.1, we propose a direct
approach to enhance reward signal quality. Our solution derives from key theoretical insights in
policy optimization, particularly Theorem 1 and Theorem 2, which reveal fundamental relationships
between reward variance, model accuracy, and learning efficiency. See Appendix B.1 for definitions.

Theorem 1 (Policy network optimization time lower bound). From Theorem 1 in [41]. Sup-
pose that we maximize the objective (Eq. (1)), using a general autoregressive policy πθ(y|x) =∏y

l=1 softmax(fθ(x,y<l)yl
). For any γ > 0, prompt x ∈ X , and reward function r, the time it

takes until Ey∼πθ(t)(·|x)[r(x,y)] ≥ Ey∼πθ(0)(·|x)[r(x,y)] + γ is:

Ω

(
Ex′∼S

[
vary∼πθ(0)(·|x′)(r(x

′,y))
]− 1

3

)
(3)

The reward variance is: vary∼πθ(·|x)[r(x,y)] := Ey∼πθ(·|x)[[r(x,y)− Ey′∼πθ(·|x)[r(x,y
′)]]2].

Theorem 1 establishes that the time tγrequired for policy improvement is inversely proportional to
reward variance. When rewards exhibit insufficient variance—failing to adequately differentiate
between high-quality and low-quality outputs under policy πθ, convergence slows significantly. This
finding suggests that strategically increasing reward variance can accelerate policy convergence.

Theorem 2 (Policy network optimization time upper bound). From Theorem 2 in [41]. Assume πθ

is a policy of the form πθ(y|x) = softmax[θ:,x]y. Given a prompt x ∈ S, let γ > 0 and denote
by tγ > 0 the initial time of Ey∼πθ(t)(·|x)[rG(x,y)] ≥ Ey∼πθ(0)(·|x)[rG(x,y)] + γ. For any
initial policy πθ(0), a perfect RM converges to tγ that can be arbitrarily large, while a relatively
inaccurate RM has an upper bound of O(πθ(0)(y

γ |x)−1).

Complementarily, Theorem 2 demonstrates that effective reward models must incorporate a calibrated
degree of uncertainty. This controlled uncertainty creates essential exploration space during early
training stages, preventing premature convergence and facilitating more efficient optimization.

While perfectly accurate reward functions resist reward hacking, they paradoxically impede opti-
mization by producing discrete rewards with minimal variance and insufficient randomness. This
limitation severely constrains the growth rates of both training reward rRM and true reward rG
during policy gradient updates. To address this fundamental tension, we introduce ReDit—a method
that injects zero-mean perturbations into discrete rewards. This approach preserves the expected
reward value while introducing beneficial variance and controlled uncertainty in each update step,
dramatically improving both model performance and convergence speed.

4 Reward Dithering (ReDit)

As discussed previously, the discrete nature of rewards commonly used in GRPO can lead to unstable
gradient dynamics. To address this, we propose ReDit . The core idea, detailed in Algorithm 1, is to
inject calibrated, zero-mean perturbations into the discrete rewards obtained from sampled outputs
before using them to compute the GRPO objective for policy updates. Importantly, our ReDit method
preserves the overall optimization structure of the GRPO objective function as defined in Eq. (2), the
optimization still aims to maximize this objective.

The crucial modification introduced by ReDit lies in how the advantage term ÂGRPO
i,t within Eq. (2) is

computed. Instead of directly using the raw discrete rewards ri = r(oi) obtained for each sampled
output oi in the batch {oi}Gi=1 (line 3 in Algorithm 1), we first compute smoothed rewards r̃i. This is
done by adding independently sampled zero-mean perturbation ϵi (e.g., from N (0, σ2) or U [−a, a])
to each discrete reward (line 4 in Algorithm 1):

r̃i = ri + ϵi (4)
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These smoothed rewards {r̃k}Gk=1 are then used as the basis for calculating the advantage. GRPO
often computes advantage based on the relative performance within the batch, typically involving
normalization. With ReDit, the core component of the advantage calculation, which relies on these
rewards, is effectively modified as follows:

ÂGRPO
i,t ∝ ri −mean({rk}Gk=1)

std({rk}Gk=1)

ReDit−−−→ ÂDithering
i,t ∝ r̃i −mean({r̃k}Gk=1)

std({r̃k}Gk=1)
(5)

Thus, the relative standing of each output oi within the batch, which informs its advantage ÂGRPO
i,t

used in Eq. (2), is determined by the continuous smoothed reward r̃i rather than the discrete ri. This
substitution transforms the optimization landscape. By introducing continuous variations via r̃i,
the added noise provides informative, non-zero gradients even when discrete rewards ri are sparse
or identical within a batch, mitigating gradient vanishing. It also dampens the sharp changes in
expected advantage resulting from small policy shifts affecting discrete outcomes, thus reducing the
likelihood of gradient explosion. This overall smoothing effect facilitates a more stable gradient flow,
enabling more robust and efficient optimization of the policy πθ using the GRPO objective (line 5 in
Algorithm 1).

Algorithm 1 ReDit within one optimization step
1: Input: Base policy πθold ; Discrete reward function r : O → {0, 1, 2, 3, ...}; Prompt q; Number

of samples G. Noise parameters: Gaussian std dev σ > 0 or Uniform radius a > 0.
2: Output: Updated policy πθ.

3: Sample G outputs {oi}Gi=1 ∼ πθold(· | q) and compute ri ← r(oi) for i = 1, . . . , G.
4: Sample ϵi ∼ N (0, σ2) or U [−a, a] and compute r̃i ← ri + ϵi for i = 1, . . . , G.// Generate

noise and smooth rewards.
5: Compute JGRPO using {r̃i}Gi=1 and θ ← Optimize(θold, JGRPO, r̃i).// Optimization
6: return Updated policy πθ.

5 Empirical Results

This section presents a thorough evaluation of our ReDit framework, assessing its effectiveness
and efficiency. We begin by detailing the datasets and experimental configurations in Section 5.1.
Subsequently, Section 5.2 provides a comprehensive analysis of the primary findings. To isolate the
contributions of key components, we also conduct ablation studies, the results of which are presented
in Section 5.3.

5.1 Datasets and Setup

Table 1: Comparison of the mean and variance of accuracy
for different baselines under 9000 steps on GSM8K.
Name DAPO DR.GRPO REINFORCE++

Baseline 87.52 86.13 86.25
w/ ours(Gauss) 89.34 (± 0.04) 87.69 (± 0.06) 87.96 (± 0.03)
w/ ours(Uniform) 88.57 (± 0.01) 87.34 (± 0.07) 87.59 (± 0.09)

∆ +1.82 +1.56 +1.71

To rigorously evaluate the effective-
ness of our proposed ReDit frame-
work, we conducted extensive exper-
iments. The specific experimental set-
tings are detailed below.

Datasets. Our dataset selection and
setup largely follow the methodology
of [15], primarily to assess the math-
ematical reasoning capabilities of the
models. This encompasses mathemat-
ical problem-solving datasets such as GSM8K [32] and MATH [42], as well as the multimodal
geometric reasoning dataset Geometry3K [43]. Each dataset provides distinct training and test splits,
which we utilize accordingly for model training and subsequent evaluation. See the Appendix D.1 for
details of the dataset.

Reward Functions. We designed dataset-specific reward functions. For the GSM8K dataset, which
involves simpler problem structures, we implemented several reward types: accuracy-based, strict
format adherence, sort format adherence, integer value correctness, and inference step adherence.
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Figure 5: Accuracy of different GRPO variants (DAPO, DR.GRPO, REINFORCE++) tested on the
GSM8K dataset. The horizontal dashed line highlights the performance of using ReDit at about 1000
training steps, and even after 9000 steps, its accuracy is comparable to the baseline.

For the more complex MATH and Geometry3K datasets, our supervision relied solely on accuracy-
based and inference-based reward functions. Detailed implementations of these reward functions are
provided in the Appendix D.2.

Initial Policy. To rigorously assess the effectiveness of ReDit without confounding factors introduced
by supervised fine-tuning (SFT), we initialized our experiments directly with instruct models without
any additional SFT training. Previous research by [44] demonstrated that even random rewards
can enhance performance for Qwen models. Therefore, we conducted comprehensive evaluations
across a diverse set of instruction-tuned models, including Qwen2.5-7B-Instruct, Qwen2.5-VL-7B-
Instruct [31], Llama-3.2-3B-Instruct, Llama-3.1-8B-Instruct [1], Ministral-8B-Instruct-2410, and
Mistral-7B-Instruct-v0.3 [45], to establish the generalizability of ReDit.
Random Seeds. Our method incorporates random sampling, which can introduce variance to
the experimental outcomes. To thoroughly assess the impact of this stochasticity and ensure the
robustness of our results, we executed all main experiments using multiple distinct random seeds.
Specifically, we selected five seeds: None (no seed), 42, 123, 888, 2025, and 9999. All metrics
reported in our final results represent the mean and variance computed across these five independent
runs.

Other Training Settings. For parameter-efficient fine-tuning, we employed Low-Rank Adaptation
(LoRA) [46]. Our implementation leverages the official GRPO implementation within the TRL
library [47]. Specific configurations for LoRA and GRPO parameters are detailed in the Appendix D.3.
Model evaluation was conducted using the OpenCompass [48]. All experiments were executed on
one NVIDIA H20 GPU.

5.2 Main Results

Table 2: Test mean and variance of accuracy comparison
across datasets for original Backbone, GRPO, and ReDit.
Name GSM8K MATH Geometry3K

Backbone 84.91 39 40.43
GRPO(Baseline) 89.07 48.01 43.10
w/ ours(Gauss) 90.76 (± 0.06) 52.55 (± 0.03) 44.67 (± 0.03)
w/ ours(Uniform) 90.46 (± 0.07) 51.96 (± 0.06) 44.36 (± 0.04)

∆ +1.69 +4.54 +1.57

In our main experiments, we vali-
date the effectiveness of our proposed
ReDit. For these experiments, we pri-
marily use either a uniform smoothing
kernel with radius a = 0.05 or a Gaus-
sian smoothing kernel with standard
deviation σ = a/

√
3. More exper-

imental results can be found in the
Appendix F.

Accelerated Convergence Across
Datasets and LLMs. We demon-
strate that integrating our proposed method, ReDit, with GRPO substantially accelerates convergence
and improves final performance across a wide range of datasets (Fig. 7) and LLMs, including Llama-
3.2-3B, Llama-3.1-8B, Ministral-8B and Mistral-7B (Fig. 6). On all tested models, both Gaussian
and uniform variants of ReDit enable GRPO to reach a competitive performance level within merely
1000 training steps. Notably, this performance already surpasses that of the baseline GRPO trained
for the full 9000 steps. Consequently, ReDit not only enhances training efficiency but also leads to
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Figure 6: Accuracy of different LLMs on GSM8K. ReDit improves training efficiency and final
performance in various LLMs.
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Figure 7: Test accuracy across datasets. The horizontal dashed line marks ReDit’s performance at
1000 steps, which GRPO fails to match even after 9000 steps.

superior final accuracy. The Gaussian variant, in particular, consistently yields the strongest results
and promotes more stable training trajectories with lower volatility compared to the baseline. We
also present more experimental results in the appendix. The results on the code dataset are detailed in
Appendix E.1, the results on the full parameter fine-tuning method are detailed in Appendix E.2, and
the results on the Deepseek-R1 distillation model are detailed in Appendix E.3.

Generalization to Diverse Baselines. Fig. 5 presents results from applying ReDit to additional
reinforcement learning baselines (DAPO, Dr.GRPO, and REINFORCE++) on the GSM8K dataset.
Across all algorithms, ReDit (both Gaussian and uniform variants) consistently enhances performance
and accelerates learning. Beyond these early-stage improvements, ReDit also substantially boosts
the final accuracy of these baselines, as quantitatively demonstrated in Table 1. These accuracy gains
(Table 2) complement the qualitative evidence in Fig. 5, confirming that ReDit enables faster and
more stable learning across diverse algorithms.

Optimal Performance with Scheduled Perturbation. We further investigate convergence behavior
under various scheduled perturbation schemes: SquareRoot, Cosine, and CosineReverse perturba-
tions. These schedules dynamically adjust perturbation variance throughout training, potentially
benefiting model learning. Fig. in the Appendix F.4 illustrates the different perturbation schedules,
while Fig. 8presents their performance. Compared to standard GRPO, ReDit achieves both faster
convergence and superior final performance, with the CosineReverse perturbation schedule yielding
particularly strong results. Additional details are provided in the Appendix F.4.

5.3 Ablation Studies

Perturbation variance affects performance. To study the sensitivity of ReDit to the perturbation
amplitude, we performed an ablation study by varying the parameter a in the Gaussian smoothing
kernel with standard deviation σ = a/

√
3. This effectively changes the variance of the applied

perturbation. As shown in Fig. 9, applying reward smoothing (i.e., for any a > 0.00) consistently
leads to faster convergence compared to the baseline without smoothing (a = 0.00). Moreover, in
most cases, increasing the perturbation amplitude (larger a) tends to improve the final performance of
the model. Notably, the configuration with a = 0.05 shows superior performance, achieving not only
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Figure 8: CosineReverse perturbation achieves
the best performance.
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Figure 9: Appropriate perturbation achieves
the best performance.

the fastest convergence but also the best peak model performance, see the Fig. 9 annotation. However,
these results highlight a key trade-off. While moderate perturbations are beneficial, excessive
perturbations (e.g., a = 0.5) may over-smooth the reward landscape. This may mask the original
reward signal and lead to performance degradation. Conversely, if the perturbation variance is too
small (e.g., a = 0.01), the smoothing effect is small and the improvement over the baseline is limited.
This suggests that there is an optimal perturbation variance. We recommend conducting preliminary
experiments on a smaller dataset to effectively determine this optimal variance before applying it to
larger-scale training scenarios. For a detailed theoretical introduction to σ, please refer to Section 6.

Isolating the Effect on Discrete Rewards. To verify that the performance gains of ReDit stem
specifically from smoothing discrete rewards, we conducted a crucial ablation study. In this exper-
iment, we replaced the discrete reward signal with a continuous one generated by a reward model
pre-trained on human preference data. This model provides a continuous quality score within the
range [0,1]. We then applied the ReDit perturbation mechanism directly to these continuous rewards.
The results, presented in Fig. 10, show that applying ReDit in this setting yields no discernible impact
on either the convergence speed of model or its final performance. This outcome strongly indicates
that the benefits of ReDit are nullified when the reward landscape is already smooth. We therefore
conclude that the efficacy of ReDit lies specifically in addressing the optimization challenges inherent
to sparse and discrete reward signals.
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Figure 10: ReDit has little effect on improving
the performance of GRPO based RM.
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Figure 11: Appropriate perturbation achieves
the best performance.

Comparison with Direct Gradient Manipulation Baselines. We benchmark ReDit against estab-
lished techniques that directly address gradient instability: Gradient Clipping [49], which mitigates
exploding gradients, and Dynamic Sampling [38], which alleviates vanishing gradients. The objective
is to compare our ReDit approach with methods that operate directly on the gradient signal. As
illustrated in Figure 11, ReDit substantially outperforms both baseline methods. We attribute this
performance gap to the inherent limitations of these heuristics. Gradient Clipping, for instance,
crudely truncates gradient magnitudes, a non-principled operation that can introduce significant
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estimation bias. Conversely, while Dynamic Sampling can be effective for vanishing gradients, it
offers no mechanism to prevent gradients from exploding. In contrast, ReDit stabilizes the training
process by smoothing the reward, which provides a more principled solution to prevent both gradient
vanishing and explosion, thereby leading to more efficient and effective training.

6 Theoretical Insights

We provides a theoretical analyzing how perturbing discrete reward signals with, e.g., Gaussian noise,
accelerates RL convergence, offering a principled explanation for observed empirical benefits.

Problem Setup. Our analysis uses a simplified RL framework (from Eq. (1)) focusing on binary
rewards R(q, o) ∈ {0, 1} for complete outputs (e.g., GRPO [15]), not token-level rewards. We
investigate how Gaussian noise ϵ ∼ N (0, σ2) injection improves convergence. The perturbed
objective is:

J̃(πθ) = Eq∼pQ

[
Eo∼πθ(·|q)R̃(q, o)

]
, (6)

where the perturbed reward is R̃(q, o) = R(q, o) + ϵ.

Proposition 1 (Unbiased estimate of gradient). Introducing noise will still ensure the unbiased
estimate of the gradient of the original optimization target Eq. (1), that is:

E
[
∇θJ̃(πθ)

]
= E [∇θJ(πθ)] .

Remark. Proposition 1 provides theoretical proof that introducing Gaussian noise perturbations
into the discrete reward signal preserves the unbiased nature of the policy gradient estimate. This
means that, under the perturbed reward, the expected direction of the policy update is consistent with
the original objective being optimized. Maintaining this unbiased nature ensures that the injected
noise does not introduce systematic biases into the learning dynamics, thus providing a theoretical
basis for the empirical observation that our approach helps to consistently improve performance. See
Appendix B.2 for a detailed proof.

Proposition 2 (Introducing the variance of gradient estimation). Suppose we are optimizing a
non-degenerate strategy, that is, its gradient∇θ log πθ is not completely zero. Introducing noise
will introduce gradient noise on the originally calculated gradient, and its variance is:

Var(Gradient Noise) = σ2 · E
[
∥∇θ log πθ(o|q)∥2

]
> 0.

Remark. In Proposition 2, we analyze how Gaussian reward perturbations affect the variance of policy
gradient estimates. Adding Gaussian noise ϵ ∼ N (0, σ2) to the reward introduces a "gradient noise"
component proportional to ϵ · ∇θ log πθ(o|q) in the gradient estimate. The increased variance has
significant optimization benefits: Mitigate vanishing gradients: Gradient noise provides consistent
stochastic updates even when the original gradient terms are small or vanishing, thus helping to
avoid flat regions. Avoid exploding gradients: The randomness induced by the noise enables the
optimization trajectory to probabilistically bypass unstable regions of high curvature. Furthermore,
the noise variance σ can be adjusted to control the magnitude of the gradient noise for optimal
results. This mechanism enhances the robustness of policy optimization and explains the empirical
improvements observed in training stability and convergence speed from reward perturbations. For
detailed derivation, see Appendix B.3.

7 Limitations and Conclusions

ReDit Improve the stability of reinforcement learning with zero-mean reward noise - theoretically
smoothing gradients, preventing gradient instability, and accelerating convergence by increasing
reward variance. Benchmarks verify significant improvements in convergence speed and performance.
While our approach works, it requires careful tuning of the perturbation variance (although we adopt
a small dataset search strategy, extensive experiments are still needed), and future work will aim to
achieve automatic variance.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are put in the abstract and Section 1
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: For further details, please refer to the "Limitations and Conclusions" section,
found in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The claims are put in the abstract and Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For detailed information, please refer to the "Method" section in Section 4.
Complete pseudocode can be found in Algorithm 1. Specific experimental settings are
discussed in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the instruction and code in supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Specific experimental settings are discussed in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For a detailed comparison, please refer to the experimental sections in Sec-
tion 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: Specific experimental environments can be found in Sec 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper mainly studies the impact of discrete rewards on reinforcement
learning. It does not have any direct positive or negative social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We have checked this and confirmed the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers or URLs of the codes, models, and data sets used in this
article have been cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide the instruction in supplemental material about our code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper only utilizes LLMs for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Related Work

Reinforcement Learning with Discrete Rewards. Group Relative Policy Optimization (GRPO) [15]
utilizes discrete rewards generated by a rule-based reward function to guide the policy model update.
This reward function, known for its simplicity and unbiasedness, effectively mitigates reward hacking
and has demonstrated strong performance. However, GRPO faces challenges related to slow training
speed and unstable gradients during training. To address these issues, various methods have been
proposed. DAPO [38] introduced a dynamic sampling strategy to improve gradient effectiveness by
dynamically filtering invalid samples, thereby increasing sample efficiency, although this reduced
training speed. CPPO [50] prunes completions with low absolute advantages, significantly reducing
the number of gradient calculations and updates required, which enhances training efficiency but
can lead to gradient estimation errors. GPG [51] directly optimizes the original reinforcement
learning objective, eliminating the need for a proxy loss function and improving training efficiency.
However, this simplification may result in a significant divergence between the actor and policy
models. Dr.GRPO [39] improves token efficiency while maintaining inference performance. Despite
these efforts, a critical challenge remains: these algorithms largely neglect the inherent difficulties
introduced by discrete rewards during the optimization process. The oscillations caused by gradient
vanishing and exploding are major contributors to the slow optimization speed. Our work specifically
aims to overcome the challenges in gradient optimization that arise from using discrete rewards.

Addressing Reward Design Challenges in LLM Reinforcement Learning. Designing effective
reward functions for identifying optimal strategies is a well-established area of research outside
the context of Large Language Models (LLMs) [52, 53, 54]. However, a consensus on the optimal
approach for LLM reinforcement learning has not yet been reached [55]. The RLHF framework
proposed training a reward model to score LLM outputs [5]. A recurring challenge, as noted
by numerous studies, is that low reward model accuracy can induce reward hacking [34, 35, 36].
Conversely, improving accuracy often reduces reward variance, which can slow down policy model
convergence due to vanishing gradients [27]. Although the reward function presented in GRPO
provides perfectly correct rewards, thereby avoiding reward hacking, it exacerbates gradient instability
and hinders optimization speed [15, 39]. Recent theoretical findings indicate that a successful reward
function requires a trade-off between variance and inaccuracy [41]. Motivated by this, our work
seeks to design a reward function that effectively addresses the problem of reward hacking while
simultaneously facilitating efficient optimization.

B Theorems and proofs

B.1 Definitions

From Definition 1, 2 in [41], The accuracy and variance of the reward function is as follows:

Definition 1. Given a prompt x ∈ X , the accuracy of a reward model rRM : X × Y → [−1, 1] with
respect to a distribution D over unordered output pairs is defined by:

Accx,D(rRM ) := E{y,y′}∼D

[
1

[
sign

(
rRM (x, y)− rRM (x, y′)

)
= sign

(
rG(x, y)− rG(x, y

′)
)]]

,

(7)

where rG is the ground truth reward, 1[·] is an indicator function, and sign : R→ {−1, 0, 1} is the
sign function.2

Definition 2. Given a policy πθ, prompt x ∈ X , and reward model rRM : X × Y → [−1, 1], the
reward variance induced by rRM for πθ and x is defined by:

Vary∼πθ(·|x)[rRM (x, y)] := Ey∼πθ(·|x)

[(
rRM (x, y)− Ey′∼πθ(·|x)

[
rRM (x, y′)

])2
]
. (8)

2For a set of prompts, accuracy refers to the mean accuracy over the set.
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B.2 Proof of Proposition 1

The proof of Proposition 1 is expressed as follows:

Proof. By the policy gradient theorem, the gradient of the original objective (1) expands to:

∇θJ(πθ) = Eq∼pQ
Eo∼πθ(·|q) [R(q, o)∇θ log πθ(o|q)] . (9)

For the noise-injected objective, its gradient becomes:

∇θJ̃(πθ) = Eq∼pQ
Eo∼πθ(·|q)

[
R̃(q, o)∇θ log πθ(o|q)

]
. (10)

Substituting R̃(q, o) = R(q, o) + ϵ and leveraging linearity of expectation:

E
[
∇θJ̃

]
= Eq,o,ϵ [(R(q, o) + ϵ)∇θ log πθ(o|q)] (11)

= Eq,o [R(q, o)∇θ log πθ(o|q)]︸ ︷︷ ︸
E[∇θJ]

+Eϵ[ϵ] · Eq,o [∇θ log πθ(o|q)] . (12)

Zero-mean noise: Eϵ[ϵ] = 0 by definition of N (0, σ2). Thus, the cross-term vanishes:

E[∇θJ̃ ] = E[∇θJ ] + 0 = E[∇θJ ]. (13)

B.3 Proof of Proposition 2

Proof. Consider the perturbed objective function with noise-augmented reward R(q, o) + ϵ. The
estimated value of the gradient of the noise enhancement objective function using n samples is:

∇ ˆ̃J(θ) =
1

n

n∑
i=1

[∇ log πθ(oi|qi) · (R(qi, oi) + ϵi)] , (14)

where ϵi ∼ N (0, σ2) is the Gaussian noise. The original reward gradient is:

∇Ĵ(θ) = 1

n

n∑
i=1

[∇ log πθ(oi|qi) · (R(qi, oi))] . (15)

Under this condition, the Eq. (14) simplifies to:

∇ ˆ̃J(θ) = ∇Ĵ(θ)︸ ︷︷ ︸
origin gradient

+
1

n

n∑
i=1

[∇ log πθ(oi|qi) · ϵi]︸ ︷︷ ︸
noise gradient

. (16)

While the expectation Eϵ[ϵ] = 0 implies the noise contribution’s mean is zero, the variance of the
gradient term persists. To compute this variance, we use the definition: Var(X) = E[X2]− (E[X])2.
Applying this to the noise-induced component ϵ · ∇θ log πθ(o|q), we get:

Var (ϵ · ∇θ log πθ(o|q)) = E
[
ϵ2 · ∥∇θ log πθ(o|q)∥2

]
− (E [ϵ · ∇θ log πθ(o|q)])2 . (17)

Since E[ϵ] = 0, the second term vanishes. For the first term, note that:

E[ϵ2] = Var(ϵ) + (E[ϵ])2 = σ2 + 0 = σ2. (18)

This allows us to simplify the variance expression to:

Var(noise gradient) = Var (ϵ · ∇θ log πθ) = σ2 · E
[
∥∇θ log πθ(o|q)∥2

]
> 0, (19)

provided∇θ log πθ is not identically zero (a reasonable assumption for non-degenerate policies).
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(b) GRPO Training Dynamic on Math with ReDit
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Figure 12: Training Dynamics of Gradient Norm and Reward on Math Dataset.

C Training Dynamic

In this section, we show more Training Dynamic information.

Figure 12 shows the training dynamics of using and not using ReDit on the Math dataset, indicating
that using ReDit can solve the problems of gradient oscillation and gradient vanishing, and improve
training stability
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(a)Training Dynamic on GSM8K with Uniform ReDit
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(b) Training Dynamic on GSM8K with Gauss ReDit
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Figure 13: Training dynamics of gradient norm and reward on the GSM8K dataset, showing the
impact of perturbations of different distributions.
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(a)Training Dynamic on Math with Uniform ReDit
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(b) Training Dynamic on Math with Gauss ReDit
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Figure 14: Training dynamics of gradient norm and reward on the Math dataset, showing the impact
of perturbations of different distributions.
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Fig 13 and Fig 14 Training dynamics using uniform and Gaussian perturbations. For both uniform
and Gaussian perturbations, ReDit shows amazing gradient stability and training stability.

D Experimental setting

D.1 Dataset

In this section, we introduce the statistics of the dataset and the additional processing performed on
the dataset. The statistics of the dataset are shown in Table 3.

Table 3: Number of samples in the train, validation, and test datasets for various dateset.
Number of samples train dataset validation dataset test dataset
GSM8K 7473 - 1319
MATH 7506 - 5003
Geometry3K 2100 300 601

In addition, We added new templates to the original dataset to ensure the model could complete the
required tasks and output formats. It is important to note that the added templates did not alter the
original dataset, and special processing was performed for different LLMs. The specific examples are
as follows:

Dataset Format of GSM8K

dataset: GSM8K
"prompt": [

{"role": "system", "content": "Respond in the following format:
<reasoning> ... </reasoning> <answer> ...</answer>"},
{"role": "user", "content": "What is the largest single-digit prime number?"},
{"role": "assistant", "content": "<reasoning> 9 is divisble by 3 and 8
is divisible by 2, but 7 is prime. </reasoning>
<answer>7</answer>",
{"role": "user", "content": {question}}
],

"answer": {answer}

Dataset Format of MATH

dataset: MATH
"prompt": [

{"role": "system", "content": "Respond in the following format:
<reasoning> ... </reasoning> <answer> ...</answer>"},
{"role": "user", "content": "{question}
Let"s think step by step and output the final answer within \\boxed{}."
],

"answer": {answer}
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Dataset Format of Geometry3K

dataset: Geometry3K
"prompt": [

{"role": "user", "content": [{
"type": "image",
"image": {image},

},
{

"type": "text",
"text": {question} + ".
You FIRST think about the reasoning process as an internal monologue and
then provide the final answer. The reasoning process MUST BE enclosed
within <think> </think> tags. The final answer MUST BE put in \\boxed{}."
},],

}
]
"answer": {answer}

D.2 Reward function

We design five reward functions for the GSM8K dataset and show how to implement ReDit:

GSM8K Accuracy Reward Function� �
1 def correctness_reward_func_with_noise(prompts, completions, answer

, **kwargs) -> list[float]:
2 def extract_number(s: str) -> str:
3 match = re.search(r’\d+’, s)
4 return match.group(0) if match else ’’
5 responses = [completion[0][’content’] for completion in

completions]
6 q = prompts[0][-1][’content’]
7 extracted_responses = [extract_xml_answer(r) for r in responses

]
8 original_rewards = [2.0 if extract_number(r) == extract_number(

a) else 0.0 for r, a in zip(extracted_responses, answer)]
9

10 # ReDit add
11 noisy_rewards = [r + random.uniform(-m * 2.0, m * 2.0) for r in

original_rewards]
12 #noisy_rewards = [r + random.gauss(0, 2.0 * m / (3 ** 0.5)) for

r in original_rewards]
13 return noisy_rewards 
� �
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GSM8K Int Reward Function� �
1 def int_reward_func_with_noise(completions, **kwargs) -> list[float

]:
2 responses = [completion[0][’content’] for completion in

completions]
3 extracted_responses = [extract_xml_answer(r) for r in responses

]
4 original_rewards = [0.5 if r.isdigit() else 0.0 for r in

extracted_responses]
5

6 # ReDit add
7 noisy_rewards = [r + random.uniform(-m * 0.5, m * 0.5) for r in

original_rewards]
8 #noisy_rewards = [r + random.gauss(0, 0.5 * m / (3 ** 0.5)) for

r in original_rewards]
9 return noisy_rewards 
� �

GSM8K Strict Format Reward Function� �
1 def strict_format_reward_func_with_noise(completions, **kwargs) ->

list[float]:
2 pattern = r"^<reasoning>\n[\s\S]*?\n</reasoning>\n<answer>\n[\s

\S]*?</answer>$"
3 completion_contents = [completion[0]["content"].strip() for

completion in completions]
4 matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE)

for content in completion_contents]
5 original_rewards = [1.0 if match else 0.0 for match in matches]
6

7 # ReDit add
8 noisy_rewards = [r + random.uniform(-m * 1.0, m * 1.0) for r in

original_rewards]
9 #noisy_rewards = [r + random.gauss(0, 1.0 * m / (3 ** 0.5)) for

r in original_rewards]
10 return noisy_rewards 
� �

GSM8K Sort Format Reward Function� �
1 def soft_format_reward_func_with_noise(completions, **kwargs) ->

list[float]:
2 pattern = r"^<reasoning>[\s\S]*?</reasoning>[\s\S]*?<answer>[\s

\S]*?</answer>$"
3 completion_contents = [completion[0]["content"].strip() for

completion in completions]
4 matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE)

for content in completion_contents]
5 original_rewards = [1.0 if match else 0.0 for match in matches]
6

7 # ReDit add
8 noisy_rewards = [r + random.uniform(-m * 1.0, m * 1.0) for r in

original_rewards]
9 #noisy_rewards = [r + random.gauss(0, 1.0 * m / (3 ** 0.5)) for

r in original_rewards]
10 return noisy_rewards 
� �
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GSM8K Reasoning Format Reward Function� �
1 def xmlcount_reward_func_with_noise(completions, **kwargs) -> list[

float]:
2 def count_xml(text) -> float:
3 count = 0.0
4 if text.count("<reasoning>\n") == 1:
5 count += 0.125
6 if text.count("\n</reasoning>\n") == 1:
7 count += 0.125
8 if text.count("\n<answer>\n") == 1:
9 count += 0.125

10 #count -= len(text.split("\n</answer>\n")[-1])*0.001
11 if text.count("\n</answer>") == 1:
12 count += 0.125
13 count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
14 return count
15 contents = [completion[0]["content"] for completion in

completions]
16 original_rewards = [count_xml(c) for c in contents]
17

18 # ReDit add
19 noisy_rewards = [r + random.uniform(-m * 0.5, m * 0.5) for r in

original_rewards]
20 #noisy_rewards = [r + random.gauss(0, 0.5 * m / (3 ** 0.5))

for r in original_rewards]
21 return noisy_rewards 
� �
As shown in the above code block, ReDit does not need to be modified in a complex way, only the
reward function needs to be modified, and any method can be easily integrated. The reward functions
of other datasets can be found in the code.

D.3 Specific experimental parameters

In this section, we present the experimental parameters, including LoRA parameters, GRPO and
other baseline experimental parameters.

Table 4: LoRA Parameters
LoRA Target LoRA Rank LoRA Alpha LoRA Dropout
q & v Proj 8 64 0.05

Table 5: GRPO Parameters
Learning Rate Num Generations Epochs
5e-6 4 10

Table 6: DAPO Parameters
Clip Ratio Low Clip Ratio Low Clip Ratio C Num Generations Max
0.2 0.28 10.0 10

29



0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Steps

31.00

32.75

34.50

36.25

38.00
APPS train, APPS test (pass@1)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Steps

47.00

48.25

49.50

50.75

52.00
APPS train, HumanEval test (pass@1)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Steps

15.00

16.75

18.50

20.25

22.00

pa
ss

@
1 

Ac
cu

ra
cy

 (%
)

CodeContests train, CodeContests test (pass@1)

GRPO Gauss 0.05 Uniform 0.05

Figure 15: Performance comparison on three code generation benchmarks: (left) APPS test, (center)
HumanEval test, and (right) CodeContests test. The pass@1 accuracy is reported across training
steps. Both ReDit variants (Gauss 0.05 and Uniform 0.05) consistently and significantly outperform
the GRPO baseline, confirming the general applicability of our method to the coding domain.

E Additional experiments

E.1 Results on the Code Generation Datasets

To validate the general applicability of our method (ReDit) beyond mathematical reasoning, we
conducted a comprehensive evaluation on the domain of code generation. We performed experiments
on three widely-used coding benchmarks: APPS, HumanEval, and CodeContests. This evaluation
was designed to test the hypothesis that the core benefit of ReDit—stabilizing the learning signal to
improve optimization—is a general principle that is not limited to a single domain.

The results are presented in 15. The plots consistently demonstrate that both the Gaussian (Gauss
0.05) and Uniform (Uniform 0.05) variants of ReDit significantly and consistently outperform the
GRPO baseline across all three coding benchmarks. On all datasets, our method not only achieves
a higher final pass@1 accuracy but also exhibits a faster convergence rate. This strongly suggests
that ReDit provides a more robust optimization pathway, and its benefits generalize effectively to
complex tasks such as code generation.

E.2 Results on Full Parameter Fine-Tuning

To confirm that the benefits of ReDit are not limited to parameter-efficient fine-tuning (PEFT) methods
like LoRA, we conducted additional experiments using a full parameter fine-tuning approach. This
evaluation addresses whether ReDit’s effectiveness is a general property of the optimization process
itself, rather than an artifact of a specific tuning method [56].

For these experiments, we utilized a setup that differs from our primary PEFT experiments; specifi-
cally, we employed the VERL framework for training with 8 GPUs. We evaluated this full fine-tuning
setup on our three mathematical reasoning benchmarks: GSM8K, MATH, and Geo3k.

The results are presented in 16. The plots clearly demonstrate that ReDit (both Gauss 0.05 and
Uniform 0.05 variants) consistently outperforms the GRPO baseline across all three benchmarks in
this demanding full-tuning setting. The performance gap is particularly notable on the MATH and
Geo3k datasets, where the GRPO baseline shows signs of stagnation, while our method continues to
improve. These findings confirm that ReDit is a robust and general-purpose technique, delivering
consistent performance gains in both parameter-efficient and full fine-tuning paradigms.

E.3 Results on DeepSeek Distillation Models

A potential concern regarding our primary results is that they are predominantly focused on the
Qwen2.5 model family. To further demonstrate the robustness and architectural generalizability of
ReDit, we conducted additional experiments to validate its effectiveness on specialized reasoning
models.

Specifically, we evaluated our method on two expert distillation models: DeepSeek-R1-Distill-
Llama-8B and DeepSeek-R1-Distill-Qwen-7B. We used the GSM8K benchmark to compare their
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Figure 16: Performance comparison on mathematical reasoning benchmarks using full parameter
fine-tuning. The plots show test accuracy across training steps for (left) GSM8K, (center) MATH,
and (right) Geo3k. In this full-tuning setting, both ReDit variants (Gauss 0.05 and Uniform 0.05)
consistently achieve higher test accuracy than the GRPO baseline, confirming that our method’s
benefits generalize beyond parameter-efficient tuning (PEFT).
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Figure 17: Evaluating ReDit’s generalizability on specialized reasoning models. The plots show
Test Accuracy (%) on the GSM8K benchmark for (left) DeepSeek-R1-Distill-Llama-8B and (right)
DeepSeek-R1-Distill-Qwen-7B. These results confirm that ReDit’s performance advantage over the
GRPO baseline holds across different model architectures, not just the Qwen models used in the main
experiments.

mathematical reasoning performance against the GRPO baseline. The results are presented in 17.
The plots clearly show that both the Gaussian (Gauss 0.05) and Uniform (Uniform 0.05) variants of
ReDit consistently outperform the GRPO baseline on both DeepSeek models.

This finding is significant as it confirms that ReDit’s ability to stabilize the training signal and improve
performance is a general principle. It is not limited to a single model family but holds true across
various model architectures, including those specifically optimized for reasoning tasks.

F More result

In this section, we present detailed numerical results for all experiments.

F.1 Main Result

In this section, we show the results in Figure 7, the performance of GRPO and GRPO+ReDit on
different datasets.

Tables 7, 8, 9 show the comparison of ReDit on different datasets. ReDit significantly improves the
convergence speed of GRPO. At any same step, ReDit achieves better performance.
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Table 7: Performance Comparison of Different Training Steps on the Math Dataset

Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 39 - - - - - - - - -
GRPO - 47.86 49.46 47.18 47.28 47.26 47.57 47.63 47.89 48.01
Uniform ReDit - 50.02 50.23 50.34 50.78 50.96 51.27 51.37 51.37 51.96
Gauss ReDit - 49.78 50.73 51.03 51.07 51.53 51.43 52.01 52.01 52.55

Table 8: Performance Comparison of Different Training Steps on the GSM8K Dataset

Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 84.91 - - - - - - - - -
GRPO - 85.70 86.01 86.47 86.73 87.13 87.78 88.52 88.73 89.07
Uniform ReDit - 89.16 89.16 89.31 89.31 89.31 89.99 89.99 89.99 90.76
Gauss ReDit - 89.02 89.37 89.61 89.54 89.54 89.54 89.61 89.61 90.46

F.2 Baseline Result

In this section, we present all numerical results in Fig. 5. As shown in Table 10, we demonstrate the
effect of using ReDit on GSM8K based on the GRPO improvement method. The experimental results
show that ReDit can also improve the convergence speed and performance on these algorithms.

F.3 Variance Result

In this section, we show more results on the performance of ReDit as the perturbation changes. As
shown in Figure 18, the variance of uniform perturbation is similar to the variance of Gaussian
perturbation, and the appropriate variance can achieve the best performance. The specific numerical
results are shown in Tables 11 and 12.
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Figure 18: ReDit uniform perturbation performance changes with variance.

F.4 Scheduled Perturbation Result

In this section, we show the changing trends of different scheduled perturbation strategies, as
shown in Figure 19. We took the perturbation of Gauss distribution as an example and conducted
experiments. The experimental results are shown in Table 13. The CosineReverse strategy shows the
best performance.
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Table 9: Performance Comparison of Different Training Steps on the Geometry3K Dataset

Method \Step 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Instruct model 40.43 - - - - - - - - -
GRPO - 40.60 42.93 38.77 39.77 38.94 39.10 40.10 41.36 43.10
Uniform ReDit - 43.37 43.89 44.01 44.23 44.23 44.23 44.12 44.36 44.36
Gauss ReDit - 43.67 43.98 44.03 44.25 44.25 44.25 44.25 44.67 44.67

Table 10: Performance Comparison at Different Training Steps on Different Baseline

Method \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

DAPO 84.99 86.20 86.35 86.35 86.75 87.04 87.12 87.17 87.52
Uniform ReDit 87.03 87.15 87.26 87.54 87.54 87.69 87.83 88.03 88.57
Gauss ReDit 87.76 87.96 88.01 88.01 88.10 88.37 88.67 88.96 89.34

DR.GRPO 84.69 84.23 84.53 84.91 85.67 85.67 85.67 85.90 86.13
Uniform ReDit 86.27 86.36 86.45 86.54 86.75 87.03 87.26 87.16 87.34
Gauss ReDit 86.47 86.23 87.10 87.16 87.56 87.67 87.67 87.67 87.69

REINFORCE++ 84.91 84.69 85.06 85.14 85.14 85.14 86.10 86.17 86.25
Uniform ReDit 86.21 86.11 86.67 86.31 86.75 87.01 87.26 87.59 87.59
Gauss ReDit 86.17 86.27 86.47 86.83 86.83 87.06 87.63 87.76 87.96

Table 11: Performance Comparison of Different variance on the Gauss Perturbation

Variance \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.01 85.97 87.01 87.40 87.54 87.92 88.76 88.84 89.54 89.54
0.02 86.40 87.70 88.16 89.23 89.39 90.22 90.14 90.14 90.14
0.05 89.02 89.37 89.61 89.54 89.54 89.54 89.61 89.61 90.46
0.1 87.64 89.08 89.69 89.84 90.07 89.84 89.84 89.84 90.07
0.3 87.87 88.48 88.78 88.93 89.39 89.39 89.39 89.46 89.46
0.5 86.81 87.57 87.41 87.64 87.64 87.95 88.32 88.48 88.95

Table 12: Performance Comparison of Different variance on the Uniform Perturbation

Variance \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

0.01 85.67 86.79 87.43 87.68 87.96 88.05 88.89 89.01 89.09
0.02 85.44 86.52 87.20 88.03 88.32 88.46 88.99 89.31 89.53
0.05 89.16 89.16 89.31 89.31 89.31 89.99 89.99 89.99 90.76
0.1 88.17 88.25 89.01 89.01 89.84 89.54 89.54 89.61 89.61
0.3 87.49 88.25 88.25 88.02 88.17 87.95 88.93 88.70 88.78
0.5 86.73 87.72 87.64 87.64 87.79 88.48 87.87 88.02 87.87

Table 13: Performance Comparison of Different Scheduled Perturbation Methods

Method \Step 1000 2000 3000 4000 5000 6000 7000 8000 9000

SquareRoot 88.10 89.31 88.93 89.69 89.46 89.46 89.46 89.46 90.22
SquareRootReverse 88.55 89.54 89.46 90.07 90.07 89.31 89.61 89.54 89.69
Factor 88.25 88.63 89.69 89.46 89.23 89.54 89.46 89.31 89.69
FactorReverse 88.48 88.32 89.39 88.78 88.93 89.54 89.61 89.76 89.46
MutilFactor 87.87 89.31 89.01 89.01 89.01 89.61 89.16 89.61 89.46
MutilFactorReverse 88.17 88.78 88.86 89.01 88.93 88.93 89.39 89.16 89.54
Cosine 88.32 88.32 89.39 89.84 89.76 89.61 90.14 90.46 90.23
CosineReverse 89.08 87.95 89.54 89.08 89.16 90.37 90.07 90.84 91.84

33



0 2000 4000 6000 8000

Time Steps

0.01

0.02

0.03

0.04

0.05

N
oi

se

SquareRootNoise

0 2000 4000 6000 8000

Time Steps

0.01

0.02

0.03

0.04

0.05

N
oi

se

SquareRootReverseNoise

0 2000 4000 6000 8000

Time Steps

0.00

0.01

0.02

0.03

0.04

0.05

N
oi

se

FactorNoise

0 2000 4000 6000 8000

Time Steps

0.00

0.01

0.02

0.03

0.04

0.05

N
oi

se

FactorReverseNoise

0 2000 4000 6000 8000

Time Steps

0.01

0.02

0.03

0.04

0.05

N
oi

se

MutilFactorNoise

0 2000 4000 6000 8000

Time Steps

0.01

0.02

0.03

0.04

0.05

N
oi

se

MutilFactorReverseNoise

0 2000 4000 6000 8000

Epochs

0.0

0.1

0.2

0.3

0.4

0.5

N
oi

se

CosineScheduler

0 2000 4000 6000 8000

Epochs

0.00

0.01

0.02

0.03

0.04

0.05

N
oi

se

CosineReverseScheduler

Figure 19: ReDit scheduled perturbation Variance trend with training step (taking the original
variance as 0.05 as an example)
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