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ABSTRACT

There is growing demand for large language models which can process hundreds
of thousands or even millions of input tokens. Inference at this extreme scale
demands significant computational resources and costs. To address the inference
time costs associated with running self-attention based transformer language mod-
els on long contexts, we propose a tunable mechanism that reduces the cost of the
forward pass by attending to only the most relevant tokens at every generation step
using a top-k selection mechanism. We showcase the efficiency gains afforded by
our method by performing inference on context windows up to 1M tokens us-
ing approximately 16GB of GPU RAM. Our experiments reveal that models are
capable of handling the sparsity induced by the reduced number of keys and val-
ues. By attending to less than 1% of input tokens, we achieve over 95% of model
performance on common long context benchmarks (LM-Eval, AlpacaEval, and
RULER).

1 INTRODUCTION

Long-context inference enables models to analyze large document collections or follow long and
detailed instructions. During language model inference, tokens are produced one token at a time,
with each new token attending to every token in the context window. As a result, long-context
inference is expensive. To solve this, brute-force approaches to long-context in Large Language
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Figure 1: (left-top) Typical attention requires each query vector to attend over—compute an inner
product with—each key vector in the context window. In practice, very few key vectors contribute
significantly to attention, and much of this computation is wasted. (left-bottom) top-k attention
retrieves only the keys that contribute significantly to the attention computation, leaving the gray
arrows out and achieving sublinear runtime. (right) Performance on OpenLLM Leaderboard using
only the top-k keys for each attention computation. Typical questions have a context length of
∼ 1000, yet only 10 keys are needed to achieve the same performance as full attention.
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Models (LLMs) are commonplace. Leading this charge is Ring Attention (Liu et al., 2023), which
uses round-robin communication between many servers to scale up computation. However, this
approach is not a sustainable or commercially viable long-term solution due to the extremely high
per-token inference costs.

In this paper, we observe that modern LLMs only require the top contributors to each attention
computation to perform well. This opens the door to do long-context inference with very little GPU
computing power. We build an implementation of attention in which keys and values are stored in
a vector database in CPU memory. When attention is computed using a query vector, we retrieve
only the keys with the largest attention scores. This retrieval can be done in sublinear time using an
approximate k-nearest neighbor search, enabling long-context inference using plentiful and cheap
CPU memory, and without the heavy computational overhead required for full attention.

Our proposed approach bears similarities to Retrieval Augmented Generation (RAG), in which a
large corpus of text is analyzed by retrieving a small subset of the most relevant documents from
a vector database and placing them into the context window. However, retrieval models lack the
sophisticated zero-shot and reasoning capabilities of a full-scale language model. Our proposed
approach is a middle ground between long-context inference and RAG; we retain the inherent ca-
pabilities of language models, but also leverage a vector database to reduce computation. By seam-
lessly integrating the capabilities of long-context inference and RAG, we make it possible to perform
generation over context lengths in the millions of tokens with a single, inexpensive GPU.

Our primary contributions are summarized as follows:

• We propose a simple method for sublinear long-context generation by using top-k attention
over preprocessed states in a vector database.

• We show that this technique achieves high fidelity on common benchmarks and long-
context tasks.

• We provide empirical analysis on why top-k attention works and prescriptive recommen-
dations for choosing the optimal k for a given task.

2 MOTIVATION

Our work on long context inference is motivated by the observation that modern language models
naturally have extremely sparse attention patterns in which a very small number of tokens make up
a the vast majority of attention mass.

We visualize the sparsity of attention in Llama-3-8B using 50 Wikipedia articles in Figure 2. For
the last token in each 4000-token context window, we tabulate the number of keys in the context that
is needed to collect 75% of the attention mass. We see that a relatively small number of the 4000
tokens are needed to collect this mass, especially for deeper layers of the networks.
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Figure 2: We analyze the number of attention scores that correspond to 75% of the probability mass
for generating the next token. Each point is the number of scores of the last ‘row’ from the attention
matrix required to reach 75% of the total attention. We observe each of the 32 heads across 50
samples. Each sample consists of 4000 tokens but no sample requires more than 1250 tokens to
account for 75% of the attention.
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Figure 3: Where does the attention go across multiple documents? Observing all of the attention
scores over all of the heads and all of the layers we see that in expectation the model is able focus
most of its attention on the correct document.

Next, we take our multi-document long context samples and ask Llama to copy one of the documents
that relates to a specific topic. Figure 3 demonstrates that in expectation the attention scores (across
all heads and layers) are higher for the document containing the correct document.

To further analyze the sparsity of the model, we observe the entropy of the attention weights for
each token as a function of layer depth. Figure 4 shows that entropy is low across all layers, and
drops significantly after the first layer.
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Figure 4: Entropy of the distribution of attention scores for each layer of a model. Attention score
distributions are derived from 50 samples and aggregated over all heads for a given layer. Entropy
serves as a measure of how concentrated the attention scores are for a given query token: low entropy
indicates a large amount of attention centered over few tokens, and high entropy indicates a more
uniform dispersion of attention scores.

The sparsity in Llama’s attention weights suggests that few key-value pairs should be needed for the
model to perform close it its full capabilities. We test this hypothesis in Figure 1 (right) by evaluating
models from the Llama family across varying quantities of key-value pairs. In these experiments, we
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use the same number of keys for each layer of the network and average the model performance over
all tasks on the OpenLLM leaderboard. We see that all three models saturate in performance by the
15th key, and the most recent (and most overtrained) variants of the model require only 10 top keys
to achieve the same performance as full-scale attentions. While Figure 2 indicates that there is some
spreading of the attention mass for layer 1 of the network, this tail mass seems to be unnecessary for
good performance on benchmarks.

These experiments motivate the idea of exploiting model sparsity to speed up attention computations.
Empirically, very few keys are needed to perform inference, but it is important to select keys that are
primary contributors to the attention computation. The clear way forward is to use a vector database
to retrieve the top-k most influential tokens, enabling the GPU to perform matrix computations
while the keys and values live in CPU memory. This approach alleviates both the computational and
memory barriers to doing long-context inference on a small GPU.

3 METHODOLOGY

In this section, we elaborate on our method for reducing memory costs at inference time using top-k
attention. But first, we introduce some notation and common terms related to attention blocks.

3.1 CAUSAL SELF-ATTENTION

The first step of self-attention as implemented in a standard transformer block is to project the se-
quence of token embeddings x ∈ RN×D via learned weight matrices into queries, keys, and values:
Q = xWQ,K = xWK , V = xWV ∈ RN×D. The canonical scaled softmax attention is imple-
mented by “scoring” the relevance of each key vector to each query vector via inner products, and
then the resulting “attention” scores are renormalized via a softmax function. Finally, at each query
position, the scores are used to weight a summation over value vectors to produce the output hidden
state at every position. This is often compactly represented using the following matrix notation:

Attention(Q,K, V ) = Softmax
(
QKT

√
D

)
V. (1)

We refer to S = QKT as the score matrix, and A = softmax(S/
√
D) as the attention matrix. The

transformer block performs a few more operations including normalization and position-wise feed-
forward transformations, although our implementation leaves these operations intact and we do not
consider them further.

3.2 INFERENCE WITH KV CACHES

Autoregressive transformer language models generate text by repeatedly predicting the most likely
next token conditioned on a sequence of previous tokens, and then concatenating the newly chosen
token to the original input sequence before repeating the process. Because the key and value com-
putations of past tokens are unaffected by the addition of future tokens, it is typical to cache key and
value pairs from each token and re-use them each time a token is generated.

(a) Full Attention O(N2) (b) Top-k Attention Scores Mask (c) Effective Score Matrix O(Nk)

Figure 5: Comparing dense causal self-attention vs top-k causal attention with k = 3.
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When keys and values are cached for all tokens in the context window, a token can be generated by
producing the query, key, and value vectors for the latest token, and compare this new query vector
against all previous keys.

Since the single new query is a vector qi ∈ R1×D, when multiplied by all previous N +Ngen keys
in the cache during attention, the memory cost incurred for the score matrix at this step is now only
O(N). This process is formalized in Algorithm 1.

Algorithm 1 Standard KV Cache Generation

Require: K cache = {Kℓ}Lℓ=1, V cache = {Vℓ}Lℓ=1, token x ∈ R1×D, Nmax ∈ N
1: Ngen = 1
2: while Ngen < Nmax do
3: for ℓ ∈ {1, . . . , L} do
4: Q = xWQ, K = xWK , V = xWV ▷ Q,K, V ∈ R1×D

5: K cache[ℓ]← concat(K cache[ℓ],K) ▷ K cache[ℓ] ∈ R(N+Ngen)×D

6: V cache[ℓ]← concat(V cache[ℓ], V ) ▷ V cache[ℓ] ∈ R(N+Ngen)×D

7: S ← Q · K cache[ℓ]T ▷ S ∈ R1×(N+Ngen)

8: x̂← softmax
(

S√
D

)
· V cache[ℓ] ▷ x̂ ∈ R1×D

9: end for
10: x← sample new token(x̂)
11: Ngen ← Ngen + 1
12: end while

3.3 TOP-k ATTENTION

Even when using a KV Cache, as the length of the sequence grows, the cost of computing the
attention scores for just the single newly generated token becomes non-trivial. We cut down on this
growing cost by only considering a subset of the most relevant keys in the KV cache by performing
a k-nearest neighbor search over the key vectors for the new query vector, returning only those value
vectors corresponding to the k-largest attention scores:

top-k-Attention(Q,K, V ) = Softmax
(

1√
D

top-k
(
QKT

))
V. (2)

This can be visualized as a mask selecting only the k largest values in each row of the attention
matrix (Figure 5 center). This increases the sparsity of the attention matrices while retaining the
most important score values. The weighted sums of value vectors are taken only over the k value
vectors corresponding to the k largest attention scores, a final operation with complexity onlyO(k).
An optimal implementation of this method abstracts the implementation and, critically, space-time
complexity of the k-NN search over the KV cache. In our experiments we offload the KV cache and
vector search operation to the CPU while performing the Q, K, and V projections on the GPU (as
well as other matrix operations in the transformer model).

Algorithm 2 concretely describes how our method takes in a KV Cache and constructs a nearest
neighbor vector search data structure with the keys as the “database” vectors. When a new query
vector is generated, it searches over the cache for the top-k score values, and densely computes the
score values with respect to any previously generated tokens. K and V projections for the newly
generated tokens can optionally be added to the database. However, our experiments operate on
the scale of millions for the database and thousands for generated tokens, so we maintain a dense
KV cache for newly generated tokens on the GPU, while using a sparse top-k cache for keys in the
pre-computed context cache.

3.4 CONSTRUCTING A KV CACHE AT THE MILLION TOKEN SCALE

The initial forward pass in the construction of a KV cache potentially requires incurring the full
O(N2) memory cost. There are many ways this could be done. Given access to large amounts of
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Algorithm 2 Top-k KV Cache Generation

Require: K cache = {Kℓ}Lℓ=1, V cache = {Vℓ}Lℓ=1, token x ∈ R1×D, k ∈ N, Nmax ∈ N
1: Ngen = 1, K cache gen = [], V cache gen = []
2: K cache← build knn(K cache)
3: while Ngen < Nmax do
4: for ℓ ∈ {1, . . . , L} do
5: Q = xWQ, K = xWK , V = xWV ▷ Q,K, V ∈ RD

6: K cache gen[ℓ]← concat(K cache gen[ℓ],K) ▷ K cache gen[ℓ] ∈ RNgen×D

7: V cache gen[ℓ]← concat(V cache gen[ℓ], V ) ▷ V cache gen[ℓ] ∈ RNgen×D

8: vals,idx← topk query(Q,K cache, k) ▷ V, I ∈ R1×k

9: A← Softmax (construct sparse matrix(V, I)) ▷ A ∈ R1×N , A = O(k)

10: Agen ← Softmax
(

1√
D
Q · K cache gen[ℓ]T

)
▷ Agen ∈ R1×Ngen

11: x̂← AV +AgenV cache gen[ℓ]
12: end for
13: x← sample new token(x̂)
14: Ngen ← Ngen + 1
15: end while

compute, one could parallelize over many GPUs and construct the cache using algorithms like Ring
Attention Liu et al. (2023). If such hardware is not available, approximate algorithms like windowed
attention would allow for the construction of large caches with more modest compute Child et al.
(2019). For small enough N (100’s of thousands of tokens), and with a high-memory GPU, the
vLLM library can quickly construct KV caches by performing a standard forward pass on the model
using the paged attention algorithm Kwon et al. (2023). Finally, for very large N, top-k attention
could be employed at cache construction time as well. In our experiments, we employ a variety of
these techniques depending on the model and context window size.

4 EVALUATING TOP-k ATTENTION AT SCALE

We evaluate top-k on various benchmarks to highlight the relationship between different k values
and performance on various benchmarks. We find that models of various sizes and generations
perform well even at small k. In general, we observe that a k equal to 1% of the total context length
is sufficient to achieve 95% of the performance achieved with full, standard attention.

4.1 EVALUATIONS

We analyze the top-k attention mechanism’s effectiveness across three benchmarks: AlpacaEval,
Open LLM Leaderboard v1 tasks, and RULER. Each of these benchmark highlight a different qual-
ity. RULER tests the model’s long context capability. AlpacaEval measures generation quality of the
model. Open LLM Leaderboard v1 tasks test the model’s capabilities such as knowledge. Measuring
performance across these datasets presents a comprehensive understanding of top-k.

RULER To demonstrate that top-k attention with small k remains effective as the context length
increases, we run the RULER (Hsieh et al., 2024) benchmark suite over a series of increasing context
lengths. As shown in Table 1 we run over lengths from 4k to 128k. RULER consists of thirteen
total tasks from four categories. The evaluation harness runs the original Needle In A Haystack
(NIAH) (Kamradt, 2023) task along with a series of more challenging variations on the task. (For
example in one task the text consists entirely of labeled ”needles” and the model is queries to retrieve
the needle corresponding to a single label.) These NIAH tasks comprise 8 of the 13 tasks, and
the remaining tasks are split into three categories: summarization proxies, multi-hop proxies, and
question answering.

AlpacaEval 2.0 We benchmark top-k attention on AlpacaEval (Dubois et al., 2024). AlpacaEval
2.0 requires a model to generate responses to 805 queries. These responses are then compared
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Table 1: Results on RULER benchmark at various context lengths. Scores represent an average
of 13 tasks in the RULER benchmark, with maximum possible score being 100. The RULER
benchmark was run separately for each context length listed, and each context length was run with
top-k attention for increasing values of k and also with standard, full attention.

Context Length (tokens)
k 4096 8192 16384 32768 65536 131072

2 70.42 67.82 75.36 67.95 67.83 64.76
8 87.44 80.01 86.69 84.56 75.99 61.28
32 88.35 84.35 88.08 84.56 78.18 65.89
128 88.85 86.86 89.08 84.56 77.41 73.59
512 88.73 88.10 89.31 84.56 77.41 63.58
2048 90.04 88.77 89.31 84.56 77.33 64.62
8192 – – 88.85 84.56 77.41 58.53
16384 – – – 83.79 77.26 73.40
32768 – – – – 78.03 73.40
Full 92.35 89.27 89.12 84.56 78.87 75.17

by a LLM-as-a-Judge to GPT-4 Turbo responses generated from the same query set. The winrate
percentage is reported, and the LLM-as-a-Judge is GPT-4 Turbo.

Open LLM Leaderboard Tasks We investigate the performance of top-k on Open LLM Leader-
board tasks. Particularly, we evaluate different models on various values of k on the average of
MMLU (Hendrycks et al., 2020), ARC tasks both easy and challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), winogrande (Keisuke et al., 2019), OpenbookQA (Mihaylov et al.,
2018), BoolQ (Clark et al., 2019), and PiQA (Bisk et al., 2020). For each task, we record the
normalized accuracy when available; otherwise, we record accuracy. We report the average over
tasks. We evaluate the following models on these benchmarks: llama-1 (7B), llama-2 (7B), llama-
3 (8B), llama-3.1 (8B), Vicuna-v1.3 (7B), llama-2 chat (7B), llama-3 Instruct (8B), llama-3.1 in-
struct (8B), llama-3.2 1B instruct, and llama-3.2 3B instruct (Touvron et al., 2023a; Zheng et al.,
2023; Touvron et al., 2023b; Dubey et al., 2024; AI, 2024). The experiments are conducted using
lm-eval-harness in a zero-shot setting (Gao et al., 2024).

4.2 TOP-k IS EFFECTIVE AT LOW k

Top-k Performance on RULER We evaluate RULER using GradientAI’s Llama-3-8B model that
has a trained context length of 262k. We find that very small values of k are sufficient to recover
near-baseline performance. For every context length evaluated, 95% of the baseline performance
can always be achieved with a k value of 1% or less of the total length. In Table 1, at k = 2, greater
than 60% performance is achieved at all context lengths. The performance on RULER improves as
k increases. Nevertheless, even at a context length of 131k tokens to achieve∼ 98% performance of
the full attention only 12.5% of the attention scores are required. This highlights the effectiveness
of top-k on long-context.

Interestingly, most mechanical tasks have high success rates with little variation across runs. Con-
versely, the question-answering tasks (from SQuAD (Rajpurkar et al., 2016) and HotpotQA Yang
et al. (2018)) end up being the tasks most indicative of model capability, with a consistently de-
creasing score as context length increases and as k decreases. These QA tasks were both the most
revealing and had the highest variance across test runs, so allocating an extra compute budget to this
subset of tasks would be helpful.

Top-k Performance on AlpacaEval Of the three benchmarks evaluated, AlpacaEval required the
largest k as a percentage of context length to achieve 95% of baseline performance, with 2.5% of
the context length being required. The trend of small k values achieving near-baseline performance
was repeated across model sizes and generations.
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Figure 6: Top-K attention is effective for OpenLLM Leaderboard Tasks even at small values of
k. Left shows the average of all tasks as we increase k on pretrained base models. Center shows
instruction tuned models. Right investigates the performance on different model sizes.
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Figure 7: AlpacaEval 2.0 results for various models showing what value of k is required to achieve
the same benchmark performance as standard, full attention. Left compares different generations of
llama instruction tuned models. Right investigates how models of different sizes handle small values
of k.

Top-k Performance on OpenLLM Leaderboard Tasks We evaluated various models to find that
top-k behavior exists regardless of instruction tuning, model size, or the number of tokens the model
was trained on. When comparing the models with different amounts of tokens trained, Table 6 left
shows all models exhibit a similar curve with performance quickly saturating by a k value < 10,
regardless of the number of tokens on which the model was trained. Furthermore, when comparing
Table 6 left and center, we see that instruction models and pretrained base models exhibit the same
behavior, very quickly saturating. Additionally, regardless of model size, in Table 6 right, we see
that whether a model is 1B, 3B, or 8B the behavior of top-k is the same.

4.3 HUGE CONTEXT GENERATION WITH TOP-k

To demonstrate the scaling that top-k attention permits, we use our method to generate tokens from
a context window of one million tokens. We choose RULER’s Needle In A Haystack task to use
for the context, and we use GradientAI’s Llama-3-8B model that has a trained context length of 1M
(Gradient Team, 2024). We run this on a single-GPU node with a Faiss vector database containing
the KV cache.1 We also compare our method against Xiao et al. (2023) for needle in a haystack in
figure 8.

1We used a variety of k values for this experiment and it turned out that k=1 is sufficient to solve Needle In
A Haystack with a context length of 1 million tokens.
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Figure 8: 1 million token needle-in-a-haystack. Comparison between Xiao et al. (2023) and our
method on a needle-in-a-haystack task. The red cells show that attention sinks are incapable of
retrieving tokens outside of the local window or early sink tokens. Our method is able to do so with
k = 10 and extends to over 1 million tokens

5 RELATED WORK

5.1 EFFICIENT ATTENTION MECHANISM

The memory usage of the classic “self-attention” operation (Vaswani et al., 2017) grows quadrati-
cally with the input sequence length. This high demand for GPU memory impedes scaling LLMs
to longer sequences, hindering many practical applications. To overcome this hurdle, recent works
have developed various efficient alternatives to the attention operation. Here, we divide existing
efficient attention mechanisms into two categories: one is “exact” attention (Dao et al., 2022), and
the other is “approximate” attention (Beltagy et al., 2020; Han et al., 2023).

Exact attention algorithms strive to maintain near mathematical equivalence to the original attention,
and the memory efficient approaches usually leverage efficient CUDA implementations (Dao et al.,
2022), blockwise computation (Liu et al., 2023; Kwon et al., 2023), and sequence parallelization (Li
et al., 2023). On the other hand, approximate attention algorithms save memory by reducing the size
of the actual attention matrix at the loss of some of the original fidelity. A straightforward solution
is sliding window attention (Beltagy et al., 2020), which assumes that local interactions dominate
and long range dependencies can often be ignored. StreamingLLM (Xiao et al., 2024) discovered
the “attention-sink” phenomenon and proposed a modified sliding window attention that alleviates
the performance degradation in windowed attention. Other works explore the sparsity of attention
matrices and propose different sparse attention operations to improve efficiency (Child et al., 2019;
Qiu et al., 2020; Nawrot et al., 2024; Jiang et al., 2024). Our work falls into the approximate attention
category; while similar ideas have been explored in previous work (Gupta et al., 2021; Klett & Ahle,
2024), we are the first to implement and run our top-k attention at a million token context-length
scale.

5.2 SYSTEM SOLUTIONS TO LONG-CONTEXT IN LLMS

There is a long line of proposed system solutions to address the long-context problem in LLMs
at inference. Flash Attention, and later extended to Flash-Attention 2, provides theoretical linear
complexity over the sequence length, providing two to four times the memory savings over standard
attention at inference time (Dao et al., 2022; Dao, 2024). vLLM’s implementation of Paged At-
tention (Kwon et al., 2023) optimizes for throughput over many requests, but, like Flash Attention,
this Paged Attention implements a block matrix multiplication algorithm that allows for memory
savings at inference time. With a more retriever-like system, Klett & Ahle (2024) propose using
sliding window attention to build a cache and k nearest neighbor (kNNs) using its utilization up to
16k context length. For KV cache management, Wu et al. (2022) alter the attention mechanism to
memorize the internal representations of past inputs to acquire new skills and knowledge. Li et al.
(2024) propose SnapKV, a method that reduces KV cache size without the need for fine-tuning by
carefully selecting clustered important KV positions for each attention head reducing memory while
increasing speed. Adnan et al. (2024) introduce Keyformer, which reduces the size of the cache
by utilizing the sparsity in language models and only considering specific keys to decrease latency

9
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and increase throughput. Singhania et al. (2024) construct a low-cost proxy to full attention using
PCA, which informs the token subset for the attention computation. However, these solutions do not
support context lengths past a few hundred thousand tokens. Thus, Liu et al. (2023) propose Ring
Attention, which employs blockwise computation for the self-attention and feedforward operations,
distributing long sequences over multiple devices and overlapping key-value block communication
with the computation of attention. However, this method is computationally demanding, both in
terms of memory usage and processing speed, as it requires substantial resources to manage the
parallelization of large sequences across devices while maintaining communication overhead. To
the best of our knowledge our approach is the first to achieve inference on million token context
windows on a single commodity GPU.

6 CONCLUSION

We have demonstrated the capability of a top-k attention mechanism to operate at the million token
scale on a single GPU. In addition, our investigation of attention distributions across layers points
to future directions where the choice of k can be adapted across layers. We achieve sublinear com-
plexity and evaluate at over 95% accuracy on common benchmarks while using only 1% of the
context length on average in the attention block. This exploitation of attention sparsity opens up
new directions for efficient and viable solutions to long-context in language models.
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Figure 9: Results for RULER over various context lengths.
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Figure 10: Only a few number of scores or tokens are required to make up 50% of the prob-
ability mass of a row in the attention matrix. We analyze the number of attention scores that
correspond to 50% of the probability mass for generating the next token. Each point is the number
of scores of the last ‘row’ from the attention matrix that make up 50% of the probability mass. There
are 1600 points comprised from the 50 datapoints and 32 heads. On the left, we plot the histogram
for the first layer in the network, the center corresponds 16th layer, and right corresponds to the last
layer. The sequence length of each sequence of 4000 tokens. However, we plot the range from 0 to
1250 on the x-axis as no ways of the three plots exceeds this range.
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Figure 11: Only a few number of scores or tokens are required to make up 25% of the prob-
ability mass of a row in the attention matrix. We analyze the number of attention scores that
correspond to 25% of the probability mass for generating the next token. Each point is the number
of scores of the last ‘row’ from the attention matrix that make up 25% of the probability mass. There
are 1600 points comprised from the 25 datapoints and 32 heads. On the left, we plot the histogram
for the first layer in the network, the center corresponds 16th layer, and right corresponds to the last
layer. The sequence length of each sequence of 4000 tokens. However, we plot the range from 0 to
1250 on the x-axis as no ways of the three plots exceeds this range.

A.3 LAYER-WISE k: 8096 CONTEXT LENGTH

1st layer other layers score 1st layer other layers score 1st layer other layers score
2 2 70.5 33 1 49.3 32 1 49.4
8 8 83.1 132 4 74.1 32 2 70.8
32 32 85.3 528 16 83.7 32 4 77.8
128 128 87.2 2112 64 86.6 32 6 82.1
512 512 88.5 full 264 87.9 32 8 82.7
2048 2048 89.4 full 1850 89.8 32 12 83.4
Full Full 89.3 full full 89.3 32 16 84.4

32 24 84.6
32 32 85.3
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Figure 12: All 32 layers are plotted in order, where the top row represents layers 1, 2, 3, and 4 and
last row represents layers 29, 30, 31, and 32.
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