
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RUNNING HUGE CONTEXT WINDOWS ON TINY GPUS

Anonymous authors
Paper under double-blind review

ABSTRACT

There is growing demand for large language models which can process hundreds
of thousands or even millions of input tokens. Inference at this extreme scale
demands significant computational resources and costs. To address the inference
time costs associated with running self-attention based transformer language mod-
els on long contexts, we propose a tunable mechanism that reduces the cost of the
forward pass by attending to only the most relevant tokens at every generation step
using a top-k selection mechanism. We showcase the efficiency gains afforded by
our method by performing inference on context windows up to 1M tokens us-
ing approximately 16GB of GPU RAM. Our experiments reveal that models are
capable of handling the sparsity induced by the reduced number of keys and val-
ues. By attending to less than 1% of input tokens, we achieve over 95% of model
performance on common long context benchmarks (LM-Eval, AlpacaEval, and
RULER).

1 INTRODUCTION

Long-context inference enables models to analyze large document collections or follow long and
detailed instructions. During language model inference, tokens are produced one token at a time,
with each new token attending to every token in the context window. As a result, long-context
inference is expensive. To solve this, brute-force approaches to long-context in Large Language

0 5 10 15 20 25 30
Top-k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
ve

ra
ge

P
er

fo
rm

an
ce

Llama-2 7B

Llama-3 8B

Llama-3.1 8B

Figure 1: (left-top) Typical attention requires each query vector to attend over—compute an inner
product with—each key vector in the context window. In practice, very few key vectors contribute
significantly to attention, and much of this computation is wasted. (left-bottom) top-k attention
retrieves only the keys that contribute significantly to the attention computation, leaving the gray
arrows out and achieving sublinear runtime. (right) Performance on OpenLLM Leaderboard using
only the top-k keys for each attention computation. Typical questions have a context length of
∼ 1000, yet only 10 keys are needed to achieve the same performance as full attention.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Models (LLMs) are commonplace. Leading this charge is Ring Attention (Liu et al., 2023), which
uses round-robin communication between many servers to scale up computation. However, this
approach is not a sustainable or commercially viable long-term solution due to the extremely high
per-token inference costs.

In this paper, we observe that modern LLMs only require the top contributors to each attention
computation to perform well. This opens the door to do long-context inference with very little GPU
computing power. We build an implementation of attention in which keys and values are stored in
a vector database in CPU memory. When attention is computed using a query vector, we retrieve
only the keys with the largest attention scores. This retrieval can be done in sublinear time using an
approximate k-nearest neighbor search, enabling long-context inference using plentiful and cheap
CPU memory, and without the heavy computational overhead required for full attention.

Our proposed approach bears similarities to Retrieval Augmented Generation (RAG), in which a
large corpus of text is analyzed by retrieving a small subset of the most relevant documents from
a vector database and placing them into the context window. However, retrieval models lack the
sophisticated zero-shot and reasoning capabilities of a full-scale language model. Our proposed
approach is a middle ground between long-context inference and RAG; we retain the inherent ca-
pabilities of language models, but also leverage a vector database to reduce computation. By seam-
lessly integrating the capabilities of long-context inference and RAG, we make it possible to perform
generation over context lengths in the millions of tokens with a single, inexpensive GPU.

Our primary contributions are summarized as follows:

• We propose a simple method for sublinear long-context generation by using top-k attention
over preprocessed states in a vector database.

• We show that this technique achieves high fidelity on common benchmarks and long-
context tasks.

• We provide empirical analysis on why top-k attention works and prescriptive recommen-
dations for choosing the optimal k for a given task.

2 MOTIVATION

Our work on long context inference is motivated by the observation that modern language models
naturally have extremely sparse attention patterns in which a very small number of tokens make up
a the vast majority of attention mass.

We visualize the sparsity of attention in Llama-3-8B using 50 Wikipedia articles in Figure 2. For
the last token in each 4000-token context window, we tabulate the number of keys in the context that
is needed to collect 75% of the attention mass. We see that a relatively small number of the 4000
tokens are needed to collect this mass, especially for deeper layers of the networks.

Layer 1 Layer 16 Layer 32

0 200 400 600 800 1000 1200

Number of scores (75% Mass)

0

400

800

1200

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200

Number of scores (75% Mass)

0

400

800

1200

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200

Number of scores (75% Mass)

0

400

800

1200

1600

F
re

qu
en

cy

Figure 2: We analyze the number of attention scores that correspond to 75% of the probability mass
for generating the next token. Each point is the number of scores of the last ‘row’ from the attention
matrix required to reach 75% of the total attention. We observe each of the 32 heads across 50
samples. Each sample consists of 4000 tokens but no sample requires more than 1250 tokens to
account for 75% of the attention.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Document #

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

A
tt

en
ti

on
S

co
re

Figure 3: Where does the attention go across multiple documents? Observing all of the attention
scores over all of the heads and all of the layers we see that in expectation the model is able focus
most of its attention on the correct document.

Next, we take our multi-document long context samples and ask Llama to copy one of the documents
that relates to a specific topic. Figure 3 demonstrates that in expectation the attention scores (across
all heads and layers) are higher for the document containing the correct document.

To further analyze the sparsity of the model, we observe the entropy of the attention weights for
each token as a function of layer depth. Figure 4 shows that entropy is low across all layers, and
drops significantly after the first layer.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Layers

1

2

3

4

5

6

7

E
n
tr

op
y

Maximum entropy

Mean entropy

Std deviation

Figure 4: Entropy of the distribution of attention scores for each layer of a model. Attention score
distributions are derived from 50 samples and aggregated over all heads for a given layer. Entropy
serves as a measure of how concentrated the attention scores are for a given query token: low entropy
indicates a large amount of attention centered over few tokens, and high entropy indicates a more
uniform dispersion of attention scores.

The sparsity in Llama’s attention weights suggests that few key-value pairs should be needed for the
model to perform close it its full capabilities. We test this hypothesis in Figure 1 (right) by evaluating
models from the Llama family across varying quantities of key-value pairs. In these experiments, we

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

use the same number of keys for each layer of the network and average the model performance over
all tasks on the OpenLLM leaderboard. We see that all three models saturate in performance by the
15th key, and the most recent (and most overtrained) variants of the model require only 10 top keys
to achieve the same performance as full-scale attentions. While Figure 2 indicates that there is some
spreading of the attention mass for layer 1 of the network, this tail mass seems to be unnecessary for
good performance on benchmarks.

These experiments motivate the idea of exploiting model sparsity to speed up attention computations.
Empirically, very few keys are needed to perform inference, but it is important to select keys that are
primary contributors to the attention computation. The clear way forward is to use a vector database
to retrieve the top-k most influential tokens, enabling the GPU to perform matrix computations
while the keys and values live in CPU memory. This approach alleviates both the computational and
memory barriers to doing long-context inference on a small GPU.

3 METHODOLOGY

In this section, we elaborate on our method for reducing memory costs at inference time using top-k
attention. But first, we introduce some notation and common terms related to attention blocks.

3.1 CAUSAL SELF-ATTENTION

The first step of self-attention as implemented in a standard transformer block is to project the se-
quence of token embeddings x ∈ RN×D via learned weight matrices into queries, keys, and values:
Q = xWQ,K = xWK , V = xWV ∈ RN×D. The canonical scaled softmax attention is imple-
mented by “scoring” the relevance of each key vector to each query vector via inner products, and
then the resulting “attention” scores are renormalized via a softmax function. Finally, at each query
position, the scores are used to weight a summation over value vectors to produce the output hidden
state at every position. This is often compactly represented using the following matrix notation:

Attention(Q,K, V ) = Softmax
(
QKT

√
D

)
V. (1)

We refer to S = QKT as the score matrix, and A = softmax(S/
√
D) as the attention matrix. The

transformer block performs a few more operations including normalization and position-wise feed-
forward transformations, although our implementation leaves these operations intact and we do not
consider them further.

3.2 INFERENCE WITH KV CACHES

Autoregressive transformer language models generate text by repeatedly predicting the most likely
next token conditioned on a sequence of previous tokens, and then concatenating the newly chosen
token to the original input sequence before repeating the process. Because the key and value com-
putations of past tokens are unaffected by the addition of future tokens, it is typical to cache key and
value pairs from each token and re-use them each time a token is generated.

(a) Full Attention O(N2) (b) Top-k Attention Scores Mask (c) Effective Score Matrix O(Nk)

Figure 5: Comparing dense causal self-attention vs top-k causal attention with k = 3.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

When keys and values are cached for all tokens in the context window, a token can be generated by
producing the query, key, and value vectors for the latest token, and compare this new query vector
against all previous keys.

Since the single new query is a vector qi ∈ R1×D, when multiplied by all previous N +Ngen keys
in the cache during attention, the memory cost incurred for the score matrix at this step is now only
O(N). This process is formalized in Algorithm 1.

Algorithm 1 Standard KV Cache Generation

Require: K cache = {Kℓ}Lℓ=1, V cache = {Vℓ}Lℓ=1, token x ∈ R1×D, Nmax ∈ N
1: Ngen = 1
2: while Ngen < Nmax do
3: for ℓ ∈ {1, . . . , L} do
4: Q = xWQ, K = xWK , V = xWV ▷ Q,K, V ∈ R1×D

5: K cache[ℓ]← concat(K cache[ℓ],K) ▷ K cache[ℓ] ∈ R(N+Ngen)×D

6: V cache[ℓ]← concat(V cache[ℓ], V ) ▷ V cache[ℓ] ∈ R(N+Ngen)×D

7: S ← Q · K cache[ℓ]T ▷ S ∈ R1×(N+Ngen)

8: x̂← softmax
(

S√
D

)
· V cache[ℓ] ▷ x̂ ∈ R1×D

9: end for
10: x← sample new token(x̂)
11: Ngen ← Ngen + 1
12: end while

3.3 TOP-k ATTENTION

Even when using a KV Cache, as the length of the sequence grows, the cost of computing the
attention scores for just the single newly generated token becomes non-trivial. We cut down on this
growing cost by only considering a subset of the most relevant keys in the KV cache by performing
a k-nearest neighbor search over the key vectors for the new query vector, returning only those value
vectors corresponding to the k-largest attention scores:

top-k-Attention(Q,K, V ) = Softmax
(

1√
D

top-k
(
QKT

))
V. (2)

This can be visualized as a mask selecting only the k largest values in each row of the attention
matrix (Figure 5 center). This increases the sparsity of the attention matrices while retaining the
most important score values. The weighted sums of value vectors are taken only over the k value
vectors corresponding to the k largest attention scores, a final operation with complexity onlyO(k).
An optimal implementation of this method abstracts the implementation and, critically, space-time
complexity of the k-NN search over the KV cache. In our experiments we offload the KV cache and
vector search operation to the CPU while performing the Q, K, and V projections on the GPU (as
well as other matrix operations in the transformer model).

Algorithm 2 concretely describes how our method takes in a KV Cache and constructs a nearest
neighbor vector search data structure with the keys as the “database” vectors. When a new query
vector is generated, it searches over the cache for the top-k score values, and densely computes the
score values with respect to any previously generated tokens. K and V projections for the newly
generated tokens can optionally be added to the database. However, our experiments operate on
the scale of millions for the database and thousands for generated tokens, so we maintain a dense
KV cache for newly generated tokens on the GPU, while using a sparse top-k cache for keys in the
pre-computed context cache.

3.4 CONSTRUCTING A KV CACHE AT THE MILLION TOKEN SCALE

The initial forward pass in the construction of a KV cache potentially requires incurring the full
O(N2) memory cost. There are many ways this could be done. Given access to large amounts of

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 2 Top-k KV Cache Generation

Require: K cache = {Kℓ}Lℓ=1, V cache = {Vℓ}Lℓ=1, token x ∈ R1×D, k ∈ N, Nmax ∈ N
1: Ngen = 1, K cache gen = [], V cache gen = []
2: K cache← build knn(K cache)
3: while Ngen < Nmax do
4: for ℓ ∈ {1, . . . , L} do
5: Q = xWQ, K = xWK , V = xWV ▷ Q,K, V ∈ RD

6: K cache gen[ℓ]← concat(K cache gen[ℓ],K) ▷ K cache gen[ℓ] ∈ RNgen×D

7: V cache gen[ℓ]← concat(V cache gen[ℓ], V ) ▷ V cache gen[ℓ] ∈ RNgen×D

8: vals,idx← topk query(Q,K cache, k) ▷ V, I ∈ R1×k

9: A← Softmax (construct sparse matrix(V, I)) ▷ A ∈ R1×N , A = O(k)

10: Agen ← Softmax
(

1√
D
Q · K cache gen[ℓ]T

)
▷ Agen ∈ R1×Ngen

11: x̂← AV +AgenV cache gen[ℓ]
12: end for
13: x← sample new token(x̂)
14: Ngen ← Ngen + 1
15: end while

compute, one could parallelize over many GPUs and construct the cache using algorithms like Ring
Attention Liu et al. (2023). If such hardware is not available, approximate algorithms like windowed
attention would allow for the construction of large caches with more modest compute Child et al.
(2019). For small enough N (100’s of thousands of tokens), and with a high-memory GPU, the
vLLM library can quickly construct KV caches by performing a standard forward pass on the model
using the paged attention algorithm Kwon et al. (2023). Finally, for very large N, top-k attention
could be employed at cache construction time as well. In our experiments, we employ a variety of
these techniques depending on the model and context window size.

4 EVALUATING TOP-k ATTENTION AT SCALE

We evaluate top-k on various benchmarks to highlight the relationship between different k values
and performance on various benchmarks. We find that models of various sizes and generations
perform well even at small k. In general, we observe that a k equal to 1% of the total context length
is sufficient to achieve 95% of the performance achieved with full, standard attention.

4.1 EVALUATIONS

We analyze the top-k attention mechanism’s effectiveness across three benchmarks: AlpacaEval,
Open LLM Leaderboard v1 tasks, and RULER. Each of these benchmark highlight a different qual-
ity. RULER tests the model’s long context capability. AlpacaEval measures generation quality of the
model. Open LLM Leaderboard v1 tasks test the model’s capabilities such as knowledge. Measuring
performance across these datasets presents a comprehensive understanding of top-k.

RULER To demonstrate that top-k attention with small k remains effective as the context length
increases, we run the RULER (Hsieh et al., 2024) benchmark suite over a series of increasing context
lengths. As shown in Table 1 we run over lengths from 4k to 128k. RULER consists of thirteen
total tasks from four categories. The evaluation harness runs the original Needle In A Haystack
(NIAH) (Kamradt, 2023) task along with a series of more challenging variations on the task. (For
example in one task the text consists entirely of labeled ”needles” and the model is queries to retrieve
the needle corresponding to a single label.) These NIAH tasks comprise 8 of the 13 tasks, and
the remaining tasks are split into three categories: summarization proxies, multi-hop proxies, and
question answering.

AlpacaEval 2.0 We benchmark top-k attention on AlpacaEval (Dubois et al., 2024). AlpacaEval
2.0 requires a model to generate responses to 805 queries. These responses are then compared

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Results on RULER benchmark at various context lengths. Scores represent an average
of 13 tasks in the RULER benchmark, with maximum possible score being 100. The RULER
benchmark was run separately for each context length listed, and each context length was run with
top-k attention for increasing values of k and also with standard, full attention.

Context Length (tokens)
k 4096 8192 16384 32768 65536 131072

2 70.42 67.82 75.36 67.95 67.83 64.76
8 87.44 80.01 86.69 84.56 75.99 61.28
32 88.35 84.35 88.08 84.56 78.18 65.89
128 88.85 86.86 89.08 84.56 77.41 73.59
512 88.73 88.10 89.31 84.56 77.41 63.58
2048 90.04 88.77 89.31 84.56 77.33 64.62
8192 – – 88.85 84.56 77.41 58.53
16384 – – – 83.79 77.26 73.40
32768 – – – – 78.03 73.40
Full 92.35 89.27 89.12 84.56 78.87 75.17

by a LLM-as-a-Judge to GPT-4 Turbo responses generated from the same query set. The winrate
percentage is reported, and the LLM-as-a-Judge is GPT-4 Turbo.

Open LLM Leaderboard Tasks We investigate the performance of top-k on Open LLM Leader-
board tasks. Particularly, we evaluate different models on various values of k on the average of
MMLU (Hendrycks et al., 2020), ARC tasks both easy and challenge (Clark et al., 2018), Hel-
laSwag (Zellers et al., 2019), winogrande (Keisuke et al., 2019), OpenbookQA (Mihaylov et al.,
2018), BoolQ (Clark et al., 2019), and PiQA (Bisk et al., 2020). For each task, we record the
normalized accuracy when available; otherwise, we record accuracy. We report the average over
tasks. We evaluate the following models on these benchmarks: llama-1 (7B), llama-2 (7B), llama-
3 (8B), llama-3.1 (8B), Vicuna-v1.3 (7B), llama-2 chat (7B), llama-3 Instruct (8B), llama-3.1 in-
struct (8B), llama-3.2 1B instruct, and llama-3.2 3B instruct (Touvron et al., 2023a; Zheng et al.,
2023; Touvron et al., 2023b; Dubey et al., 2024; AI, 2024). The experiments are conducted using
lm-eval-harness in a zero-shot setting (Gao et al., 2024).

4.2 TOP-k IS EFFECTIVE AT LOW k

Top-k Performance on RULER We evaluate RULER using GradientAI’s Llama-3-8B model that
has a trained context length of 262k. We find that very small values of k are sufficient to recover
near-baseline performance. For every context length evaluated, 95% of the baseline performance
can always be achieved with a k value of 1% or less of the total length. In Table 1, at k = 2, greater
than 60% performance is achieved at all context lengths. The performance on RULER improves as
k increases. Nevertheless, even at a context length of 131k tokens to achieve∼ 98% performance of
the full attention only 12.5% of the attention scores are required. This highlights the effectiveness
of top-k on long-context.

Interestingly, most mechanical tasks have high success rates with little variation across runs. Con-
versely, the question-answering tasks (from SQuAD (Rajpurkar et al., 2016) and HotpotQA Yang
et al. (2018)) end up being the tasks most indicative of model capability, with a consistently de-
creasing score as context length increases and as k decreases. These QA tasks were both the most
revealing and had the highest variance across test runs, so allocating an extra compute budget to this
subset of tasks would be helpful.

Top-k Performance on AlpacaEval Of the three benchmarks evaluated, AlpacaEval required the
largest k as a percentage of context length to achieve 95% of baseline performance, with 2.5% of
the context length being required. The trend of small k values achieving near-baseline performance
was repeated across model sizes and generations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 5 10 15 20 25 30

Top-k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
vg

.
P

er
fo

rm
an

ce

Llama-2 7B

Llama-3 8B

Llama-3.1 8B

0 5 10 15 20 25 30

Top-k

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
vg

.
P

er
fo

rm
an

ce

Llama-2 7B (chat)

Llama-3 8B (instruct)

Llama-3.1 8B (instruct)

0 5 10 15 20 25 30

Top-k

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
vg

.
P

er
fo

rm
an

ce

Llama-3.2 1B (instruct)

Llama-3.2 3B (instruct)

Llama-3.1 8B (instruct)

Figure 6: Top-K attention is effective for OpenLLM Leaderboard Tasks even at small values of
k. Left shows the average of all tasks as we increase k on pretrained base models. Center shows
instruction tuned models. Right investigates the performance on different model sizes.

0 100 200 300 400 500
Top-k

0.00

0.05

0.10

0.15

0.20

0.25

A
lp

ac
aE

va
l

2.
0

W
in

ra
te

Llama-2 7B (chat)

Llama-3.1 8B (instruct)

Llama-3 8B (instruct)

0 100 200 300 400 500
Top-k

0.00

0.05

0.10

0.15

0.20

0.25

A
lp

ac
aE

va
l

2.
0

W
in

ra
te

Llama-3.2 1B (instruct)

Llama-3.2 3B (instruct)

Llama-3.1 8B (instruct)

Figure 7: AlpacaEval 2.0 results for various models showing what value of k is required to achieve
the same benchmark performance as standard, full attention. Left compares different generations of
llama instruction tuned models. Right investigates how models of different sizes handle small values
of k.

Top-k Performance on OpenLLM Leaderboard Tasks We evaluated various models to find that
top-k behavior exists regardless of instruction tuning, model size, or the number of tokens the model
was trained on. When comparing the models with different amounts of tokens trained, Table 6 left
shows all models exhibit a similar curve with performance quickly saturating by a k value < 10,
regardless of the number of tokens on which the model was trained. Furthermore, when comparing
Table 6 left and center, we see that instruction models and pretrained base models exhibit the same
behavior, very quickly saturating. Additionally, regardless of model size, in Table 6 right, we see
that whether a model is 1B, 3B, or 8B the behavior of top-k is the same.

4.3 HUGE CONTEXT GENERATION WITH TOP-k

To demonstrate the scaling that top-k attention permits, we use our method to generate tokens from
a context window of one million tokens. We choose RULER’s Needle In A Haystack task to use
for the context, and we use GradientAI’s Llama-3-8B model that has a trained context length of 1M
(Gradient Team, 2024). We run this on a single-GPU node with a Faiss vector database containing
the KV cache.1 We also compare our method against Xiao et al. (2023) for needle in a haystack in
figure 8.

1We used a variety of k values for this experiment and it turned out that k=1 is sufficient to solve Needle In
A Haystack with a context length of 1 million tokens.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 8: 1 million token needle-in-a-haystack. Comparison between Xiao et al. (2023) and our
method on a needle-in-a-haystack task. The red cells show that attention sinks are incapable of
retrieving tokens outside of the local window or early sink tokens. Our method is able to do so with
k = 10 and extends to over 1 million tokens

5 RELATED WORK

5.1 EFFICIENT ATTENTION MECHANISM

The memory usage of the classic “self-attention” operation (Vaswani et al., 2017) grows quadrati-
cally with the input sequence length. This high demand for GPU memory impedes scaling LLMs
to longer sequences, hindering many practical applications. To overcome this hurdle, recent works
have developed various efficient alternatives to the attention operation. Here, we divide existing
efficient attention mechanisms into two categories: one is “exact” attention (Dao et al., 2022), and
the other is “approximate” attention (Beltagy et al., 2020; Han et al., 2023).

Exact attention algorithms strive to maintain near mathematical equivalence to the original attention,
and the memory efficient approaches usually leverage efficient CUDA implementations (Dao et al.,
2022), blockwise computation (Liu et al., 2023; Kwon et al., 2023), and sequence parallelization (Li
et al., 2023). On the other hand, approximate attention algorithms save memory by reducing the size
of the actual attention matrix at the loss of some of the original fidelity. A straightforward solution
is sliding window attention (Beltagy et al., 2020), which assumes that local interactions dominate
and long range dependencies can often be ignored. StreamingLLM (Xiao et al., 2024) discovered
the “attention-sink” phenomenon and proposed a modified sliding window attention that alleviates
the performance degradation in windowed attention. Other works explore the sparsity of attention
matrices and propose different sparse attention operations to improve efficiency (Child et al., 2019;
Qiu et al., 2020; Nawrot et al., 2024; Jiang et al., 2024). Our work falls into the approximate attention
category; while similar ideas have been explored in previous work (Gupta et al., 2021; Klett & Ahle,
2024), we are the first to implement and run our top-k attention at a million token context-length
scale.

5.2 SYSTEM SOLUTIONS TO LONG-CONTEXT IN LLMS

There is a long line of proposed system solutions to address the long-context problem in LLMs
at inference. Flash Attention, and later extended to Flash-Attention 2, provides theoretical linear
complexity over the sequence length, providing two to four times the memory savings over standard
attention at inference time (Dao et al., 2022; Dao, 2024). vLLM’s implementation of Paged At-
tention (Kwon et al., 2023) optimizes for throughput over many requests, but, like Flash Attention,
this Paged Attention implements a block matrix multiplication algorithm that allows for memory
savings at inference time. With a more retriever-like system, Klett & Ahle (2024) propose using
sliding window attention to build a cache and k nearest neighbor (kNNs) using its utilization up to
16k context length. For KV cache management, Wu et al. (2022) alter the attention mechanism to
memorize the internal representations of past inputs to acquire new skills and knowledge. Li et al.
(2024) propose SnapKV, a method that reduces KV cache size without the need for fine-tuning by
carefully selecting clustered important KV positions for each attention head reducing memory while
increasing speed. Adnan et al. (2024) introduce Keyformer, which reduces the size of the cache
by utilizing the sparsity in language models and only considering specific keys to decrease latency

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

and increase throughput. Singhania et al. (2024) construct a low-cost proxy to full attention using
PCA, which informs the token subset for the attention computation. However, these solutions do not
support context lengths past a few hundred thousand tokens. Thus, Liu et al. (2023) propose Ring
Attention, which employs blockwise computation for the self-attention and feedforward operations,
distributing long sequences over multiple devices and overlapping key-value block communication
with the computation of attention. However, this method is computationally demanding, both in
terms of memory usage and processing speed, as it requires substantial resources to manage the
parallelization of large sequences across devices while maintaining communication overhead. To
the best of our knowledge our approach is the first to achieve inference on million token context
windows on a single commodity GPU.

6 CONCLUSION

We have demonstrated the capability of a top-k attention mechanism to operate at the million token
scale on a single GPU. In addition, our investigation of attention distributions across layers points
to future directions where the choice of k can be adapted across layers. We achieve sublinear com-
plexity and evaluate at over 95% accuracy on common benchmarks while using only 1% of the
context length on average in the attention block. This exploitation of attention sparsity opens up
new directions for efficient and viable solutions to long-context in language models.

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant J. Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference, 2024. URL https://arxiv.org/abs/2403.09054.

Meta AI. Llama 3.2: Revolutionizing edge ai and vision with
open, customizable models. https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/, 2024. Accessed:
2024-10-01.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
CoRR, abs/2004.05150, 2020.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019. URL https://arxiv.org/abs/1904.10509.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=mZn2Xyh9Ec.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.org/abs/
2205.14135.

10

https://arxiv.org/abs/2403.09054
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Gradient Team. Scaling rotational embeddings for long-
context language models. https://gradient.ai/blog/
scaling-rotational-embeddings-for-long-context-language-models,
May 2024. Accessed: 2024-10-01.

Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and Jonathan Berant. Memory-efficient
Transformers via Top-k Attention. In Proceedings of the Second Workshop on Simple and Ef-
ficient Natural Language Processing, pp. 39–52, Virtual, 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.sustainlp-1.5.

Insu Han, Rajesh Jayaram, Amin Karbasi, Vahab Mirrokni, David P. Woodruff, and Amir Zandieh.
HyperAttention: Long-context Attention in Near-Linear Time, December 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. RULER: What’s the Real Context Size of Your Long-Context Lan-
guage Models?, April 2024.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn, Zhenhua
Han, Amir H. Abdi, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. MInference 1.0:
Accelerating Pre-filling for Long-Context LLMs via Dynamic Sparse Attention, July 2024.

Gregory Kamradt. Needle in a haystack - pressure testing llms. https://github.com/
gkamradt/LLMTest, 2023. GitHub repository.

Sakaguchi Keisuke, Le Bras Ronan, Bhagavatula Chandra, and Choi Yejin. Winogrande: An adver-
sarial winograd schema challenge at scale. 2019.

Phoebe Klett and Thomas Ahle. Extended Mind Transformers, June 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Eric P. Xing, Joseph E. Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. Lightseq: Sequence level parallelism for distributed training of long context
transformers. CoRR, abs/2310.03294, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation, 2024. URL https://arxiv.org/abs/2404.14469.

Hao Liu, Matei Zaharia, and Pieter Abbeel. Ring attention with blockwise transformers for near-
infinite context, 2023. URL https://arxiv.org/abs/2310.01889.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://gradient.ai/blog/scaling-rotational-embeddings-for-long-context-language-models
https://github.com/gkamradt/LLMTest
https://github.com/gkamradt/LLMTest
https://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2310.01889


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Piotr Nawrot, Adrian Lancucki, Marcin Chochowski, David Tarjan, and Edoardo M. Ponti. Dynamic
memory compression: Retrofitting llms for accelerated inference. In ICML. OpenReview.net,
2024.

Jiezhong Qiu, Hao Ma, Omer Levy, Wen-tau Yih, Sinong Wang, and Jie Tang. Blockwise self-
attention for long document understanding. In Trevor Cohn, Yulan He, and Yang Liu (eds.),
Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2555–2565,
Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.232. URL https://aclanthology.org/2020.findings-emnlp.
232.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text, 2016. URL https://arxiv.org/abs/1606.05250.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention, 2024. URL https://arxiv.org/abs/2406.02542.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, pp. 5998–6008, 2017.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and Christian Szegedy. Memorizing Transform-
ers, March 2022.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In ICLR. OpenReview.net, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018. URL https://arxiv.org/abs/1809.09600.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, Florence, Italy, July 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/P19-1472. URL https://aclanthology.org/
P19-1472.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

A APPENDIX

A.1 FULL RULER RESULTS

A.2 DISTRIBUTION OF ATTENTION SCORES

12

https://aclanthology.org/2020.findings-emnlp.232
https://aclanthology.org/2020.findings-emnlp.232
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/2406.02542
https://arxiv.org/abs/1809.09600
https://aclanthology.org/P19-1472
https://aclanthology.org/P19-1472


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(a) Context length 4096

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(b) Context length 8192

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(c) Context length 16384

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(d) Context length 32768

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(e) Context length 65536

0 500 1000 1500 2000
Top-k

50

60

70

80

90

100

R
U

L
E

R
S

co
re

Llama-3 8B 262k (GradientAI)

(f) Context length 131072

Figure 9: Results for RULER over various context lengths.

0 200 400 600 800 1000 1200
Number of scores (50% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200
Number of scores (50% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200
Number of scores (50% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

Figure 10: Only a few number of scores or tokens are required to make up 50% of the prob-
ability mass of a row in the attention matrix. We analyze the number of attention scores that
correspond to 50% of the probability mass for generating the next token. Each point is the number
of scores of the last ‘row’ from the attention matrix that make up 50% of the probability mass. There
are 1600 points comprised from the 50 datapoints and 32 heads. On the left, we plot the histogram
for the first layer in the network, the center corresponds 16th layer, and right corresponds to the last
layer. The sequence length of each sequence of 4000 tokens. However, we plot the range from 0 to
1250 on the x-axis as no ways of the three plots exceeds this range.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

0 200 400 600 800 1000 1200
Number of scores (25% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200
Number of scores (25% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

0 200 400 600 800 1000 1200
Number of scores (25% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

qu
en

cy

Figure 11: Only a few number of scores or tokens are required to make up 25% of the prob-
ability mass of a row in the attention matrix. We analyze the number of attention scores that
correspond to 25% of the probability mass for generating the next token. Each point is the number
of scores of the last ‘row’ from the attention matrix that make up 25% of the probability mass. There
are 1600 points comprised from the 25 datapoints and 32 heads. On the left, we plot the histogram
for the first layer in the network, the center corresponds 16th layer, and right corresponds to the last
layer. The sequence length of each sequence of 4000 tokens. However, we plot the range from 0 to
1250 on the x-axis as no ways of the three plots exceeds this range.

A.3 LAYER-WISE k: 8096 CONTEXT LENGTH

1st layer other layers score 1st layer other layers score 1st layer other layers score
2 2 70.5 33 1 49.3 32 1 49.4
8 8 83.1 132 4 74.1 32 2 70.8
32 32 85.3 528 16 83.7 32 4 77.8
128 128 87.2 2112 64 86.6 32 6 82.1
512 512 88.5 full 264 87.9 32 8 82.7
2048 2048 89.4 full 1850 89.8 32 12 83.4
Full Full 89.3 full full 89.3 32 16 84.4

32 24 84.6
32 32 85.3

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600
F

re
qu

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

0 250 500 750 1000 1250 1500 1750 2000
Number of scores (75% Mass)

0

200

400

600

800

1000

1200

1400

1600

F
re

q
u

en
cy

Figure 12: All 32 layers are plotted in order, where the top row represents layers 1, 2, 3, and 4 and
last row represents layers 29, 30, 31, and 32.

15


	Introduction
	Motivation
	Methodology
	Causal Self-Attention
	Inference With KV Caches
	Top-k Attention
	Constructing a KV Cache at the Million Token Scale

	Evaluating Top-k Attention at Scale
	Evaluations
	top-k is Effective at Low k
	Huge Context Generation with Top-k

	Related Work
	Efficient Attention Mechanism
	System Solutions to Long-Context in LLMs

	Conclusion
	Appendix
	Full RULER Results
	Distribution of Attention Scores
	Layer-wise k: 8096 Context Length


