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ABSTRACT

This paper theoretically explains the intuition that simple concepts are more likely
to be learned by deep neural networks (DNNs) than complex concepts. Beyond
empirical studies, our research specifies an exact definition of the complexity of
the concept that boosts the learning difficulty. Specifically, it is proven that the
inference logic of a DNN can be represented as a causal graph. In this way, causal
patterns in the causal graph can be used to formulate interactive concepts learned
by the DNN. Based on such formulation, we explain the reason why simple inter-
active concepts in the data are more likely to be learned than complex interactive
concepts. More crucially, we discover that our research provides a new perspec-
tive to explain previous understandings of the conceptual complexity. The code
will be released when the paper is accepted.

1 INTRODUCTION

Deep neural networks (DNNs) have exhibited superior performance in various tasks, but the reason
for their superior performance remains an open problem. To this end, many attempts have been made
to explain the representation capacity of DNNs from different perspectives. For example, Montufar
et al. (2014) used the number of linear response regions in a DNN to evaluate the representation
capacity of the DNN. Dinh et al. (2017) and Petzka et al. (2021) used the flatness of loss functions
at minima to explain the generalization power. Hardt et al. (2016), Lei & Ying (2020), and Bassily
et al. (2020) evaluated the stability of optimization.

Unlike previous studies, we analyze the representation capacity of DNNs from the perspective of
conceptual representation. In this paper, we aim to theoretically explain the reason why it is
easier for DNNs to learn simple concepts than complex concepts.

In fact, the above intuitive phenomenon has been widely observed in previous studies (Arpit et al.,
2017; Liu et al., 2021; Mangalam & Prabhu, 2019). However, these studies mainly investigated
the phenomenon in an empirical manner, without establishing a clearly theoretical connection be-
tween the optimization difficulty and the conceptual complexity. A theoretical connection may shed
new light on the understanding of DNNs. Besides, some different metrics (Xu et al., 2020; Wang
et al., 2019; Santiago et al., 2021; Chatterji et al., 2019) explained the learning difficulty from other
perspectives, instead of directly investigating the complexity of concepts encoded by a DNN.

Therefore, beyond empirical studies on conceptual complexity, in this paper, we aim to specify an
exact mathematical form of conceptual complexity that boosts the learning difficulty. Specifically,
we face the following two issues, i.e., (1) to faithfully represent concepts encoded by the DNN, and
(2) to prove why the DNN is more likely to learn simple concepts than complex concepts.

Representing interactive concepts by causal patterns. Faithfully representing concepts encoded
by DNNs has been a significant challenge for decades. Fortunately, Ren et al. (2021a) have proven
that the inference logic of a DNN on a specific input sample can be represented as a causal graph.
Thus, we consider causal patterns in the casual graph as interactive concepts, which are memorized
by the DNN. Specifically, given an input sample x with n input variables (e.g., words in a sentence
and pixels in an image), Fig. 1 shows a three-layer causal graph. Each source node Ai ∈ {0, 1}
in the bottom layer reflects whether the input variable xi is present (Ai = 1) or masked (Ai = 0).
Each intermediate node CS corresponds to a causal pattern S, which represents an AND relationship
between different input variables in S. For example, the mouth pattern in Fig. 1 consists of image
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Figure 1: The inference logic of a DNN on a specific input sample can be represented as a causal
graph. Given an input sample x with n input variables, there are 2n differently masked samples xT .
The diverse DNN outputs v(xT ) on the 2n samples can be all accurately mimicked by the output of
the corresponding causal graph Y (xT ).

patches x1, x2, and x3, i.e., S1 = {x1, x2, x3}. Only when all these three patches are all present, this
causal pattern is triggered (CS1 = 1). In Fig. 1, we mask the patch x1, which deactivates this causal
pattern (CS1 = 0). The sink node Y in the top layer is referred to as the output of this causal graph.

Trustworthiness of causal graph. Given an input sample x ∈ Rn, there exist as many as 2n different
ways to randomly mask input variables. It has been proven that diverse outputs of the DNN on
all 2n masked samples can be all accurately mimicked by even a concise causal graph with not
so many causal patterns. Both the conciseness and the universal matching of all arbitrarily masked
samples ensure the trustworthiness of using the causal graph to explain the DNN.

Complexity of interactive concepts. In this study, we use the number of variables in S to represent
the complexity of an interactive concept, namely the order of the interactive concept. Thus, low-
order interactive concepts usually reflect simple AND interactions among a few input variables. In
contrast, high-order interactive concepts often represent relatively complex AND interactions among
a large number of input variables.

Theoretical explanation for the intuition that DNNs mainly learn simple concepts. To this end,
we derive an approximate solution to the variance of causal effects of interactive concepts, which
shows that high-order interactive concepts encoded by the DNN are more unstable than low-order
interactive concepts.

In other words, the same low-order concept is more likely to be shared by different input samples in
the same category with consistently positive (or negative) effects on the inference. In comparison,
the high-order concept is more likely to have offsetting effects on the inference of different samples.
This explains the reason why DNNs mainly learn simple interactive concepts.

Explaining existing findings of adversarial robustness, generalization power, and conceptual
complexity of a DNN. We discover that our research may provide a new perspective to explain pre-
vious findings/understandings of the conceptual complexity (Arpit et al., 2017; Mangalam & Prabhu,
2019; Xu et al., 2019; Liu et al., 2021). Besides, the conceptual complexity can directly explain the
adversarial robustness and generalization power of a DNN. Thus, our study is of considerable value
for various research directions in explaining the representation capacity of a DNN.

2 DNNS MAINLY LEARN SIMPLE CONCEPTS

2.1 REPRESENTING A DNN USING INTERACTIVE CONCEPTS

• Explaining a DNN as a causal graph. In this subsection, we analyze the representation capacity
of a DNN from the perspective of conceptual representation. Ren et al. (2021a) have proven that the
inference logic of a trained DNN can be faithfully explained as a causal graph. Specifically, given
a pre-trained DNN and an input sample with n input variables x = [x1, . . . , xn], the corresponding
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causal graph has three layers. As Fig. 1 shows, the first layer of the causal graph contains n leaf
nodes. Each leaf node is an indicator variable Ai ∈ {0, 1}, which reflects whether the input variable
xi is present (Ai = 1) or masked (Ai = 0). The second layer contains causal patterns. Each causal
pattern S represents an AND relationship between different input variables in S. For example, the
co-appearance of image patches x1, x2, and x3 form a mouth pattern S1 = {x1, x2, x3}. In other
words, only when these three patches x1, x2, and x3 are all present, the causal pattern S will be
triggered, denoted by CS1 = 1; otherwise, not triggered CS1 = 0. The third layer is the output layer
of the causal graph, which only contains a single node Y . Thus, the transition probability of this
causal graph can be formulated as follows.

P (CS = 1|A1, A2, . . . , An) =
∏

k∈S
Ak, P (Y |{CS |S ∈ Ω}) = 1(Y =

∑
S∈Ω

CS · US), (1)

where P (CS = 0|A1, A2, . . . , An) = 1 − P (CS = 1|A1, A2, . . . , An), and 1(·) refers to the indicator
function. Moreover, let N = {1, 2, . . . , n} denote the indices of all input variables, and let Ω ⊆ 2N =
{S|S ⊆ N} represent a set of causal patterns. US can be understood as the causal effect of the causal
pattern S to the output Y of the causal graph.

Trustworthiness of the causal graph. Theorem 1 proves that the inference logic of a DNN can be
faithfully explained as the above specific causal graph. To this end, let Y (xT ) represent the output
of the causal graph computed in Eq. (3) by setting the input Ai = 1(i ∈ T ), and let v(xT ) denote the
output of the DNN on the masked sample xT . Here, xT is referred to as the input sample, when we
mask input variables in N \ T using baseline values bi, and keep variables in T unchanged.

(xT )i =

{
xi, if i ∈ T ;

bi, if i ∈ N \ T, subject to bi =

{
xi − τ xi > µi;

xi + τ, xi < µi,
(2)

where τ ∈ R is a constant, and µi = Ex[xi] is referred to as the average value of the input variable
xi over all input samples. Because the mean value µi is usually considered to represent a non-signal
state (Ancona et al., 2019), we consider that pushing the input variable xi to move a large distance
τ towards µi has been significant enough to remove its information. Unlike directly setting bi = µi,
the above setting ensures comparable perturbation magnitudes over different dimensions.

Theorem 1 (proven in Appendix D.1). For each DNN v, there exists a specific causal graph, such
that for any arbitrarily masked sample xT , the output of a DNN v(xT ) can be accurately represented
as the output of the causal graph, i.e., ∃Ω ⊆ 2N , ∃{US |S ∈ Ω}, ∀T ⊆ N, v(xT ) = Y (xT ).

Theorem 1 proves the trustworthiness of using the causal graph to explain the DNN. Theoret-
ically, given an input sample x ∈ Rn with n variables, there are 2n ways to mask it, leading to
2n differently masked samples xT w.r.t. all subsets T ⊆ N . Diverse outputs of the DNN v(xT )
on the 2n samples can be all accurately mimicked by the corresponding causal graph Y (xT ).
In this way, the inference logic of a DNN on x is well represented by the causal graph.

• Considering top-ranked salient causal patterns as interactive concepts encoded by the DNN.
The transition probability in Eq. (1) makes the causal relationship between causal patterns and the
output Y (xT ) be represented as a structural causal model (SCM) (Pearl, 2009),

Y (xT ) =
∑

S∈Ω
I(S), I(S) = US · CS(xT ) = US ·

∏
i∈S

Ai = US · 1(S ⊆ T ) (3)

In fact, each causal pattern S represents an AND relationship, which can be considered as an inter-
active concept memorized by the DNN. In the above example, the mouth pattern= {x1, x2, x3} can
be considered as an interactive concept. This mouth concept will be triggered, only when these three
patches x1, x2, and x3 co-appear, and makes a causal effect I(S) = US . Otherwise, the absence of
any variable (x1, x2, and x3) will remove the causal effect, I(S) = 0.

Remark 1. Ren et al. (2021a) proposed a typical implementation for the computation of the causal
graph, i.e., modeling the causal effect US as the Harsanyi dividend (Harsanyi, 1963), ∀S ⊆ N, US =∑
T⊆S(−1)|S|−|T | · v(xT ), which satisfies Theorem 1. Hence, the causal effect can be computed as

I(S) = CS ·
∑
T⊆S(−1)|S|−|T | · v(xT ).

Moreover, people can apply different confident scores to implement v(xT ), e.g., setting v(xT ) as
the confidence of classifying the input sample xT to the ground-truth category ytruth, v(xT ) =

log p(y=ytruth|xT )
1−p(y=ytruth|xT )

.

3



Under review as a conference paper at ICLR 2023

Remark 2. Based on Remark 1, given a DNN v, causal effects of most patterns are actually ig-
norable. Thus, we can find a sparse subgraph, which only contains a few causal patterns with
top-ranked causal effects in the set Ω′ ⊆ Ω, |Ω′| � 2n, such that the output of the DNN v(xT ) can
be approximately represented by the sparse causal graph, i.e., ∀T ⊆ N, v(xT ) ≈ Y (xT |Ω′). This is
experimentally verified in Appendix C.

Remark 2 is based on numerous experimental results, which indicates that interactive concepts
are very concise (Ren et al., 2021a). In other words, Remark 2 means that causal effects of most
interactive concepts S are close to zero (|US | ≈ 0), thereby having ignorable effects on the network
output. Not so many interactive concepts make considerable effects |US | on the network output.
Therefore, these top-ranked salient interactive concepts can be considered as meaningful concepts
encoded by the DNN.

• Complexity of interactive concepts. We use the number of variables in S to measure the com-
plexity of an interactive concept, namely the order of the interactive concept, order(S) = |S|. Thus,
low-order interactive concepts usually represent simple AND interactions among not so many input
variables. In comparison, high-order interactive concepts are often referred to as relatively complex
AND interactions among a large number of input variables.

2.2 LOW-ORDER INTERACTIVE CONCEPTS IN DATA ARE MORE STABLE

In this subsection, we derive an approximate analytic solution to the variance of causal effects of
interactive concepts, and experimentally verify the correctness of this solution. Specifically, we can
re-write the causal effect of each interactive concept as follows.
Theorem 2 (proven in Appendix D.2). Given a pre-trained DNN v and an arbitrary (masked or
not) sample x′ ∈ Rn, we use the Taylor expansion to decompose the output of this DNN by follow-
ing Deng et al. (2021). The causal effect I(S) ∈ {US , 0} in Eq. (3) is a binary variable, since the
causal graph only consider the binary masking state of each input variable. Then, we extend the
binary causal effect into a continuous function I(S|x′) based on the Taylor expansion, which can
well fit I(S) on all 2n samples with 2n different masking states x′ ∈ {xT |∀T ⊆ N}.

v(x′) =
∑

S⊆N

∑
π∈Qs

US,π · J(S,π|x′) ⇒ I(S|x′) =
∑

π∈Qs
US,π · J(S,π|x′). (4)

J(S,π|x′) =
∏
i∈S(sign(x′i − bi)

x′i−bi
τ

)πi denotes a Taylor expansion term of the degree π ∈ Qs =

{[π1, · · · , πn]|∀i ∈ S, πi ∈ N+;∀i /∈ S, πi = 0}. US,π= τm∏n
i=1 πi!

· ∂mv(x∅)

∂x
π1
1 ···∂x

πn
n
·
∏
i∈S(sign(x′i − bi))πi ,

m =
∑n
i=1 πi. v(x∅) indicates the network output, when we mask all input variables. Moreover,

CS(x′) = I(S|x′)/US .

Empirically, people often use the low-order Taylor expansion for approximation. Thus, let us first
consider the simplest case, i.e., using the expansion term of the lowest degree π̂ for approximation,
∀i ∈ S, π̂i = 1; ∀i /∈ S, π̂i = 0. In this scenario, the causal effect I(S|x′) in Theorem 2 can be
computed as I(S|x′) ≈ US,π̂ · J(S, π̂|x′). Next, we analyze the sensitivity of I(S|x′) when we add
a Gaussian perturbation ε ∼ N (0, σ2I). To simplify the analysis, we roughly consider that |εi| ≤ τ ,
due to the small variance of perturbations ε.
Theorem 3 (proven in Appendix D.3). Let us add a Gaussian perturbation ε ∼ N (0, σ2I) to the
input sample x. If we only consider the approximation based on the lowest degree π̂, then according
to Theorem 2, the mean and variance of I(S|x+ ε) over different perturbations are given as

Eε[I(S|x+ ε)] = US,π̂, Varε[I(S|x+ ε)] = U2
S,π̂

[ (
1 + (σ/τ)2)s − 1

]
. (5)

Theorem 3 shows the impact of variations in input samples on the stability of interactive concepts of
different complexities. That is, the variance of the causal effect I(S|x+ ε) increases along with the
order s of the interactive concept S exponentially. Here, the Gaussian perturbation ε ∈ Rn is used
as a rough representation of inevitable variations in data. For example, image classification suffers
from different variations, such as small shape deformation and small object rotation variations. We
use a Gaussian perturbation because such variations are quite difficult to formulate. In this way,
the exponential increase of the variance w.r.t. the order s in Theorem 3 reflects that compared to
low-order concepts, high-order concepts are much more sensitive to slight input perturbations.

Furthermore, we can extend the analytic solution in Theorem 3 to a more general case, i.e., using
the higher-order Taylor expansion to represent I(S|x′), as follows.
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interactive concepts exponentially. The stability of causal effects decreases along with the order.

Theorem 4 (proven in Appendix D.4). For an arbitrary degree π ∈ Qs = {[π1, · · · , πn]|∀i ∈ S, πi ∈
N+; ∀i /∈ S, πi = 0}, the mean and variance of J(S,π|x+ ε) can be computed as

Eε[J(S,π|x+ ε)] = Eε[
∏

i∈S
(1 + εi/τ)πi ], Varε[J(S,π|x+ ε)] = Varε[

∏
i∈S

(1 + εi/τ)πi ]. (6)

Remark 3. According to Theorem 4, we can roughly consider that the variance of J(S,π|x + ε)
increases along with the order s in an exponential manner. According to Eq. (4), the causal effect
I(S|x + ε) can be represented as the weighted sum of J(S,π|x + ε), and coefficients US,π w.r.t.
different orders s and degrees π are usually chaotic. Hence, we can roughly consider that the
variance of the causal effect I(S|x+ ε) increases along with the order s exponentially, as well.

Experimental verification. Here, we conduct experiments to verify Theorem 3 and Remark 3, i.e.
checking whether the variance of causal effects increased along with the order of the interactive
concepts in an approximately exponential manner. Specifically, to mimic variations in the data, we
add Gaussian perturbations ε with zero mean and the variance σ2 = 0.022 to each training sample.
Then, we comput the average mean E(s)=Ex∈X [ES⊆N,|S|=s[|Eε[I(S|x + ε)]|]] and the average vari-
ance V (s)=Ex∈X [ES⊆N,|S|=s[Varε[I(S|x+ ε)]]] of interactive concepts over different input samples.
For verification, we calculate such metrics on DNNs for image classification and DNNs for tabular
data. We train AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan & Zisserman, 2014), ResNet-
18/20 (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009) and the Tiny-ImageNet
dataset (Le & Yang, 2015), respectively. We also train a five-layer MLP (Ren et al., 2021a) on
the UCI census dataset (namely census dataset) and the UCI TV news dataset (namely TV news
dataset) (Asuncion & Newman, 2007), respectively. Additionally, considering the computational
cost of I(S|x + ε) in Remark 1 is intolerable in real implementation, we apply the sampling-based
approximation method in (Zhang et al., 2020) to calculate I(S|x + ε). Please see Appendix F for
experimental details.

Thus, we use E(s)/
√
V (s) to measure the relative stability of causal effects of the s-th order inter-

active concepts. Fig. 2 shows that the stability decreases significantly, and the variance of causal
effects V (s) increases in an exponential manner along with the order of the interactive concept. Such
phenomena successfully verified findings in Theorem 3 and Remark 3.

2.3 DNNS MAINLY LEARN SIMPLE LOW-ORDER INTERACTIVE CONCEPTS

Simplifying the conceptual learning as a linear problem based on the SCM. In this subsection,
we analyze the trend of a DNN in encoding interactive concepts of different orders. To simplify the
analysis of the DNN, the SCM in Eq. (3) and Theorem 1 explain the DNN as a linear function of
different interactive concepts, i.e., v(xT ) = Y (xT ) =

∑
S∈Ω US · CS(xT ). Here, CS can be roughly

considered as an input dimension of the linear function, which reflects whether the input sample
contains the interactive concept S. The coefficient US can be taken as the strength of the DNN
encoding the interactive concept S. Most interactive concepts have ignorable coefficients US ≈ 0,
and not so many salient concepts S have large absolute value of |US |. Thus, we can consider that the
DNN only learns a small number of salient interactive concepts.

The basic idea of proving the claim that DNNs mainly learn low-order interactive concepts is as
follows. The above SCM in Eq. (3) enables us to understand a DNN for the classification task as a
pseudo-linear function. If feature dimension (i.e., an interactive concept S) has a stable value (i.e.,
CS stably being present/absent) across all samples in the same category, then we consider this feature
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Figure 3: Consistency β(S) of s-order interactive concepts. The curve shows the mean consistency
ES⊆N,|S|=s[β(S)] over different interactive concepts of the s-th order, and the shade indicates the
standard deviation StdS⊆N,|S|=s[β(S)]. Causal effects of low-order concepts are more consistent
than those of high-order concepts.
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Figure 4: Instability κ(S) of s-order interactive concepts to data variations. The curve shows the
average instability ES⊆N,|S|=s[κ(S)] over different interactive concepts of the s-th order, and the
shade represents the standard deviation StdS⊆N,|S|=s[κ(S)]. Causal effects of high-order concepts
are more sensitive to data variations than those of low-order concepts.

dimension (i.e., the concept) is discriminative and easy to learn. In comparison, if the variance of
a feature dimension is large, i.e., the concept cannot be consistently present or consistently absent
over samples in the same category, then this feature dimension (i.e., the concept) is hard to learn.

Experiment 1: verifying the claim that high-order interactive concepts are more sensitive to
data variations than low-order interaction. To this end, we use small perturbations ε to represent
various inevitable variations in the data (such as small shape deformation and small object rotation
variations). Theorem 3, Remark 3, as well as Fig. 2, all show that compared to low-order interactive
concepts, high-order interactive concepts are much more sensitive to inevitable variations in the data.
This makes high-order concepts are more likely to be influenced by data variations and less likely to
be consistently present or absent in a target sample, which boosts the learning difficulty.

Therefore, we use the following two metrics to evaluate the discrimination power of each interactive
concept S (i.e., each single dimension of the above linear function) of a certain order. Specifically,
we use the first metric β(S) = Ec

[
|Ex∈Xc [I(S|x)]|/Stdx∈Xc [I(S|x)]

]
to measure the relative consis-

tency of the interactive concept appearing over different input samples in a certain category c. Here,
Xc denotes a set of training samples belong to the category c, and Std(·) indicates the standard de-
viation over different input samples. A large β(S) value means that the interactive concept S in all
samples of the category c has similar/consistent causal effects I(S|x). It is easier for the DNN to
learn such a consistent concept S.

Besides, we use another metric κ(S) to verify whether the causal effect of the high-
order interactive concept is usually less stable than those of the low-order interac-
tive concept. The metric κ(S) = Ex∈X [Eε[|I(S|x+ ε)− I(S|x)|]]/Ex∈X

[
|I(S|x)|] =

Ex∈X [Eε[|CS(x+ ε)− CS(x)|]]/Ex∈X
[
|CS(x)|] measures the relative instability of the interactive

concept S to the inevitable slight variations ε in the data. Here, CS(x + ε) = I(S|x + ε)/US com-
puted in Theorem 2 denotes the trigger state of the interactive concept S on the sample x+ ε.
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Figure 5: The weighted Jaccard similarity sim(I
(s)
t , Î(s)) between s-order interactive concepts

learned after intermediate epochs I(s)
t and those learned after the final epoch Î(s). Low-order con-

cepts usually have higher Jaccard similarity during the learning process, which indicates that DNNs
first mainly learn low-order concepts and then gradually learn more about high-order concepts.

To this end, we use DNNs trained in the “experimental verification" paragraph of Section 2.2 for
evaluation. Please see Appendix F for more details of experimental settings. Fig. 3 and Fig. 4 show
the change of the average consistency β(S) and the average instability κ(S) of s-order interactive
concepts, respectively, through the learning process. At each training epoch, low-order concepts
usually obtain higher consistency β(S) and lower instability κ(S) than high-order concepts. It means
that low-order concepts usually are more consistent and more stable. Thus, this experiment explains
the reason why low-order interactive concepts are easier to learn.

Experiment 2: verifying the phenomenon that low-order interactive concepts are usually
learned faster than high-order concepts. We have theoretically proven in Section 2.2 and experi-
mentally verified in Experiment 1 that low-order interactive concepts are more consistently present
or consistently absent in different samples of the same category, which makes low-order interactive
concepts easier to be learned. Then, Experiment 2 is conducted to check whether low-order concepts
are really learned faster than high-order concepts.

Specifically, we examine whether interactive concepts encoded by the finally-learned DNN v̂(x)
have already been encoded by the DNN that has not been fully optimized after t training
epochs vt(x). If so, we consider such interactive concepts are learned fast. Specifically, let
I

(s)
t = [It(S1|x), · · · , It(Sd|x)]> ∈ Rd denote a vector for all d =

(
n
s

)
combinations corre-

sponding to s-order interactive concepts. Then, we compute the Jaccard similarity between s-
order interactive concepts encoded by the DNN v̂(x) and those encoded by the DNN vt(x), i.e.,
sim(I

(s)
t , Î(s)) = r · Jaccard(I

(s),+
t , Î(s),+) + (1 − r) · Jaccard(I

(s),−
t , Î(s),−). Because the computa-

tion of the Jaccard similarity requires all elements in these two vectors are non-negative, we com-
pute Jaccard(I

(s),+
t , Î(s),+) = ‖min(I

(s),+
t , Î(s),+)‖1/‖max(I

(s),+
t , Î(s),+)‖1 as the Jaccard similarity

between positive elements in I(s),+
t = max(I

(s)
t , 0) and Î(s),+ = max(Î

(s)
t , 0), where ‖ · ‖1 de-

notes L1-norm. Similarly, Jaccard(I
(s),−
t , Î(s),−) measures the Jaccard similarity between negative

elements in I(s),−
t = max(−I(s)

t , 0) and Î(s),− = max(−Î(s)
t , 0). The weight r is calculated as

r = ‖max(I
(s),+
t , Î(s),+)‖1/[‖max(I

(s),+
t , Î(s),+)‖1 + ‖max(I

(s),−
t , Î(s),−)‖1]. In this way, a large

similarity sim(I
(s)
t , Î(s)) at an earlier epoch t indicates that interactive concepts are easier to learn.

To this end, we use DNNs trained in the “experimental verification" paragraph of Section 2.2 for
evaluation. Please see Appendix F for more details of experimental settings. Fig. 5 shows that the
DNN first learns low-order interactive concepts, and then learns high-order interactive concepts.
Such a phenomenon verifies the conclusion that the DNN mainly learns simple interactive concepts.

3 EXPLAINING FINDINGS IN PREVIOUS STUDIES

3.1 EXPLAINING GENERALIZATION POWER AND ADVERSARIAL ROBUSTNESS

Previous studies (Zhang et al., 2020; Ren et al., 2021b) have discovered that low-order interactions
have stronger generalization power and are more robust to adversarial attacks than high-order in-
teractions. Notice that their high/low-order interactions are highly related to our high/low-order
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Figure 6: Similarity between the distribution of s-order interactive concepts in training samples and
that in testing samples. The distribution of low-order interactive concepts in training samples has a
high Jaccard similarity with that in testing samples, while high-order concepts do not have such a
property. This proves the strong generalization power of low-order interactive concepts.
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Figure 7: Average sensitivity A(s) of s-order interactive concepts to adversarial perturbations. Low-
order interactive concepts are usually much less sensitive to adversarial attacks than high-order
interactive concepts.

interactive concepts. Specifically, our interactive concepts can be explained as elementary compo-
nents for such multi-order interactions (proven in Appendix E). Therefore, from this perspective,
our conclusion that low-order interactive concepts are easy to learn can also explain how a DNN
encodes concepts of different generalization power and adversarial robustness.

Can we use interactive concepts in this paper to verify the heuristic findings of generaliza-
tion power and adversarial robustness in (Zhang et al., 2020; Ren et al., 2021b)? Accord-
ing to the SCM in Eq. (3), we can represent the inference logic of a DNN by a set of interac-
tive concepts, i.e., v(xT ) =

∑
S∈Ω I(S). In this way, we conduct experiments to evaluate the

generalization power and the adversarial robustness of each interactive concept S. The symbolic
conceptual representation of interactive concepts allows us to define the generalization power in
a more direct way. That is, if an interactive concept that frequently appears in training samples
also frequently appears in testing samples, we consider this interactive concept generalizes well
to the test dataset. Similarly, a frequent concept in testing samples is also expected to frequently
appear in training samples. To this end, we use the aforementioned weighted Jaccard similarity
sim(H

(s)
c,train,H

(s)
c,test) to evaluate the generalization power of s-order interactive concepts in the cate-

gory c. Here,H(s)
c,train = [Hc,train(S1), · · · , Hc,train(Sd)]

> ∈ Rd is a vector that enumerates all the s-order
interactive concepts, where each dimension Hc,train(Si) = Ex∈Xc [I(Si|x)] denotes the average causal
effects of the interactive concept Si over all training samples in the same category c. In this way, a
high similarity represents that s-order interactive concepts generalize well.

For the adversarial robustness, we use the metric α(S) = Ex∈X [|I(S|x+ δ)− I(S|x)|]
/Ex∈X

[
|I(S|x)|] to evaluate the sensitivity of the interactive concept S to adversarial perturbations.

δ denotes the adversarial perturbation generated by the `∞ attack (Madry et al., 2018). In this way,
a small α(S) value indicates that the interactive concept S is robust to the adversarial attack.

To this end, we use DNNs trained in the “experimental verification" paragraph of Section 2.2 for
evaluation. Fig. 6 and Fig. 7 show that compared to high-order interactive concepts, low-order
concepts usually obtain larger Ec[sim(H

(s)
c,train,H

(s)
c,test)] values and smaller A(s) = ES⊆N,|S|=s[α(S)]
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values, respectively. Such phenomena demonstrate that low-order interactive concepts have stronger
generalization power, and are more robust to adversarial attacks.

3.2 EXPLAINING EXISTING FINDINGS ABOUT WHAT ARE LEARNED FIRST.

In this subsection, we discuss some related studies on which kind of knowledge is usually first
learned by a DNN. Most previous studies conducted experiments to explore the knowledge that was
easier to be learned by a DNN, without providing much theoretical support. However, we find that
our theorems can partially explain mechanisms behind some previous findings.

• Arpit et al. (2017) trained DNNs to classify both normal samples and white-noise samples to
different object categories. In this way, they considered that the DNN encoded simple concepts
to classify normal samples, but the DNN had to learn complex concepts to classify white noises
to randomly-assigned labels. They observed that the DNN usually learned normal samples first,
because the classification accuracy of normal samples increased before that of white noises. To
this end, our research provides more insights into such an observation. Specifically, Cheng et al.
(2021) have proven that the classification of noisy data usually depends on high-order concepts. Let
us combine this conclusion with our finding that high-order interactive concepts are hard to learn.
Then, we can easily owe the slow learning of white-noise samples observed by Arpit et al. (2017) to
the difficulty of learning high-order interactive concepts.

• Mangalam & Prabhu (2019) considered that easy samples as training samples that could be cor-
rectly classified by shallow machine learning models, such as support vector machine (SVM) and
random forests (RF). They discovered that DNNs first mainly learned easy samples, and then grad-
ually learned more about hard samples. To this end, our research verifies such observation. Specif-
ically, in this paper, we claim that such hard samples may mainly contain high-order interactive
concepts, which correspond to complex AND interactions between numerous variables. This claim
just fits the finding in (Mangalam & Prabhu, 2019), because it is difficult to use shallow models
(e.g., the SVM and the RF) to classify complex interactions between lots of input variables, which
correspond to high-order concepts. In this way, the fast learning of low-order concepts is another
understanding of the finding in (Mangalam & Prabhu, 2019).

• Xu et al. (2019) discovered that during the training process, DNNs usually first learned samples of
low frequencies (e.g., robust to noises), and then encoded samples of high frequencies (e.g., sensitive
to noises). However, the original design of DNNs is not towards learning specific spectrums, and
techniques of deep learning are not developed by assuming a periodic loss landscape of training
samples. Therefore, we believe there should be a more direct explanation for the spectrum-learning
phenomenon discovered by (Xu et al., 2019). To this end, our research explains this phenomenon
as the difficulty of learning high-order concepts. According to Section 3.1, low-order concepts
usually are less sensitive to input perturbations, thereby corresponding to low-frequency components
defined in the loss landscape in (Xu et al., 2019). Accordingly, high-order concepts correspond to
high-frequency components.

• Liu et al. (2021) discovered that during adversarial training, the training loss of the DNN trained
on easy samples decreased faster than that of the DNN trained on hard samples. To this end, we
consider easy samples in adversarial training mentioned by Liu et al. (2021) may mainly contain
low-order interactive concepts. It is because, as discussed in Section 3.1, Ren et al. (2021b) discov-
ered that low-order interactions were robust to adversarial perturbations. Thus, the fast learning of
easy samples in adversarial training can be roughly owing to the learning of low-order interactive
concepts.

4 CONCLUSION

In this paper, we theoretically explain the trend of DNNs learning simple concepts. Our research
specifies an explicit definition of the conceptual complexity that makes the DNN difficult to learn.
Specifically, we use causal patterns in a causal graph to represent interactive concepts encoded by
the DNN. We prove that low-order interactive concepts in the data are much more stable than high-
order concepts, which makes low-order interactive concepts more likely to be encoded. Besides,
our research can also provide new insights into several empirical findings w.r.t. the conceptual
representation of DNNs.
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A MORE DISCUSSIONS ABOUT RELATED WORK

We put the related work section to the Appendix for more discussion.

Evaluating and explaining the representation capacity of DNNs. Formulating and evaluating
the representation ability of DNNs is an emerging perspective to explain DNNs. Pascanu et al.
(2013) and Montufar et al. (2014) evaluated the representation capacity of DNNs based on the num-
ber of linear response regions. Kornblith et al. (2019), Raghu et al. (2017), and Morcos et al.
(2018) analyzed representations similarity between DNNs by using canonical correlation analysis.
The information-bottleneck theory (Shwartz-Ziv & Tishby, 2017) quantified information encoded
in DNNs, and was extended to improve the representation capacity of DNNs (Achille & Soatto,
2018; Amjad & Geiger, 2019; Hjelm et al., 2018). Xu (2018) and Xu et al. (2019) explained the
generalization of DNNs from the perspective of Fourier analysis. Furthermore, several metrics were
proposed to evaluate the robustness or generalization capacity of DNNs, including the flatness of
loss functions at minima (Hochreiter & Schmidhuber, 1994; Dinh et al., 2017; Petzka et al., 2021),
the stability of optimization (Bousquet & Elisseeff, 2002; Hardt et al., 2016; Lei & Ying, 2020;
Bassily et al., 2020), the CLEVER score (Weng et al., 2018), the stiffness (Fort et al., 2019), and the
sensitivity metrics (Novak et al., 2018).

In contrast to previous empirical studies, we mathematically formulate concepts encoded by DNNs
and theoretically prove that DNNs mainly learn simple concepts.

Interactions. Many studies investigated interactions between input variables of DNNs in recent
years. Grabisch & Roubens (1999) proposed the Shapley interaction index to measure the interaction
between players in a cooperative game, based on the Shapley value (Shapley, 1953). Lundberg et al.
(2018) used the Shapley interaction index to analyze tree ensembles. Sundararajan et al. (2020)
proposed the Shapley-Taylor interaction index, and Tsai et al. (2022) defined Faith-Shap, which was
another interaction index. Janizek et al. (2021) explained the pairwise feature interaction in DNNs
by extending Integrated Gradients (Sundararajan et al., 2017). Tsang et al. (2018) and Peebles et al.
(2020) disentangled features via restricting interactions. Tsang et al. (2017) proposed to interpret
DNNs via detecting statistical interactions between DNNs’ weights.

In this paper, we use interactions between input variables of a DNN to represent concepts encoded
by the DNN. In this way, We theoretically explain and empirically verify that DNN is easier to learn
simple interactive concepts.

B AXIOMS AND THEOREMS FOR THE HARSANYI DIVIDEND INTERACTION

In this section, we introduce that the Harsanyi dividend interaction I(S) satisfies several desirable
axioms and theorems.

The Harsanyi dividend interactions I(S) satisfies the efficiency, linearity, dummy, symmetry,
anonymity, recursive and interaction distribution axioms, as follows.

(1) Efficiency axiom (proved by (Harsanyi, 1963)). The reward of a neural network can be decom-
posed into interaction effects of different contexts, i.e. v(N) =

∑
S⊆N I(S).

(2) Linearity axiom. If we merge rewards of two neural networks w and v as the reward of model u,
i.e. ∀S ⊆ N, u(S) = w(S) + v(S), then their interaction effects Iv(S) and Iw(S) can be represented
as ∀S ⊆ N, Iu(S) = Iv(S) + Iw(S).

(3) Dummy axiom. If a variable i ∈ N has no interaction with other variables, ∀S ⊆ N\{i}, I(S ∪
{i}) = 0, then this variable is denoted as a dummy variable, i.e. ∀S ⊆ N\{i}, v(S ∪ {i}) = v(S) +
v({i}).

(4) Symmetry axiom. Given two input variables i, j ∈ N , if ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}),
then ∀S ⊆ N\{i, j}, I(S ∪ {i}) = I(S ∪ {j}).

(5) Anonymity axiom. For any permutations π on N , we have ∀S ⊆ N, Iv(S) = Iπv(πS), where
πS{π(i)|i∈S}, and the new model πv is defined by (πv)(πS)=v(S). This indicates that interaction
effects are not changed by permutation.
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Figure 8: The average histograms of absolute causal effects of causal patterns encoded by five-layer
MLPs.

(6) Recursive axiom. The interaction effects can be calculated recursively. Given i ∈ N and S ⊆
N\{i}, the interaction effect of the pattern S ∪ {i} can be represented as the interaction effect of S
with iminus the interaction effect of S without i, i.e. ∀S⊆N\{i}, I(S∪{i})=I(S|i is always present)−
I(S). I(S|i is always present) denotes the interaction effect when the variable i is always present as a
constant context, i.e. I(S|i is always present) =

∑
L⊆S(−1)|S|−|L| · v(L ∪ {i}).

C CONCISENESS OF INTERACTIVE CONCEPTS

In this section, we conducted experiments to verify the conciseness of causal effects, which is intro-
duced in Section 2.1. To this end, we computed causal effects US of all 2n causal patterns encoded
by a DNN by following (Ren et al., 2021a). Specifically, we trained a five-layer MLP on the census
dataset and the TV news dataset) (Asuncion & Newman, 2007), respectively. For better visualization,
we re-scaled causal effects US by |US |/maxS′⊆N |US′ |. Moreover, the strength of causal effects are
average over different samples in each dataset. Fig. 8 shows histograms of absolute causal effects
of causal patterns.

D PROOF OF THEOREMS

D.1 PROOF OF THEOREM 1 IN THE MAIN PAPER

Theorem 1. For each DNN v, there exists a specific causal graph, such that for any arbitrarily
masked sample xT , the output of a DNN v(xT ) can be accurately represented as the output of the
causal graph. I.e., ∃Ω ⊆ 2N , ∃{US |S ∈ Ω}, such that

∀ T ⊆ N, v(xT ) = Y (xT ) =
∑

S⊆T
US (7)

In fact, Ren et al. (2021a) have provided proofs of Theorem 1. Specifically, they proved that when
the causal effect US of the causal graph is measured by the Harsanyi dividend (Harsanyi, 1963), i.e.,
US =

∑
T⊆S(−1)|S|−|T |v(xT ), the output of the specific causal graph Y (xT ) can well mimic the

output of a DNN v(xT ) on all potential masked samples xT , i.e., ∀T ⊆ N, v(xT ) = Y (xT ).
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Proof. According to the SCM in Eq. (3), we have Y (xT ) =
∑
S∈Ω US ·CS(xT ) =

∑
S⊆T US . Hence,

we only need to prove that ∀ T ⊆ N, v(xT ) =
∑
S⊆T US . Specifically,∑

S⊆T

US =
∑
S⊆T

∑
L⊆S

(−1)|S|−|L|v(xL)

=
∑
L⊆T

∑
S⊆T :S⊇L

(−1)|S|−|L|v(xL)

=
∑
L⊆T

|S|∑
s=1

∑
S⊆T :S⊇L,|S|=s

(−1)s−|L|v(xL)

=
∑
L⊆T

v(xL)

|T |−|L|∑
m=0

(|T |−|L|
m

)
(−1)m = v(xT )

(8)

D.2 PROOF OF THEOREM 2 IN THE MAIN PAPER

Theorem 2. Given a pre-trained DNN v and an arbitrary (masked or not) sample x′ ∈ Rn, we use
the Taylor expansion to decompose the output of this DNN by following (Deng et al., 2021). The
causal effect I(S) ∈ {US , 0} in Eq. (3) is a binary variable, since the causal graph only consider
the binary masking state of each input variable. Then, we extend the binary causal effect into a
continuous function I(S|x′) based on the Taylor expansion, which can well fit I(S) on all 2n samples
with 2n different masking states x′ ∈ {xT |∀T ⊆ N}

v(x′) =
∑

S⊆N

∑
π∈Qs

US,π · J(S,π|x′) ⇒ I(S|x′) =
∑

π∈Qs
US,π · J(S,π|x′). (9)

J(S,π|x′) =
∏
i∈S(sign(x′i − bi)

x′i−bi
τ

)πi denotes a Taylor expansion term of the degree π ∈ Qs =

{[π1, · · · , πn]|∀i ∈ S, πi ∈ N+;∀i /∈ S, πi = 0}. US,π= τm∏n
i=1 πi!

· ∂mv(x∅)

∂x
π1
1 ···∂x

πn
n
·
∏
i∈S(sign(x′i − bi))πi ,

m =
∑n
i=1 πi. v(x∅) indicates the network output, when we mask all input variables. Moreover,

CS(x′) = I(S|x′)/US .

Proof. Let us denote the continuous function on the right of Eq.(9) by Ĩ(S|x′), i.e.,

Ĩ(S|x′) =
∑

π∈QS
US,πJ(S, π|x′)

We need to prove that on all the 2n masked samples, Ĩ(S|x′) = I(S|x′) ∈ {US , 0}.

We prove this theorem in two steps. (i) In the first step, we prove that ŨS
def
= Ĩ(S|x) on the given

sample x also satisfies the faithfulness requirement in Eq. (7). Furthermore, Grabisch & Roubens
(1999) and Ren et al. (2021a) has proved that the Harsanyi dividend US = I(S|x) is the unique
metric to satisfy Eq. (7). Therefore, we can obtain that ŨS = US . (ii) In the second step, we prove
that on all the 2n masked samples x′ ∈ {xT |∀T ⊆ N}, Ĩ(S|x′) = I(S|x′) ∈ {US , 0}.

Proof of Step 1. We aim to prove that ŨS = Ĩ(S|x) =
∑
π∈QS

US,πJ(S, π|x) also satisfies Eq. (7).
Specifically, for an arbitrary masked sample xT , let us consider the Taylor expansion of v(xT )
which is expanded at x∅. Then, we have

∀T ⊆ N, v(xT ) =

∞∑
π1=0

∞∑
π2=0

· · ·
∞∑

πn=0

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂x

πn
n
·
n∏
i=1

[(xT )i − bi]πi (10)

where π ∈ {[π1, . . . , πn]|∀i ∈ N, πi ∈ N} denotes the degree vector of Taylor expansion terms. In
addition, m =

∑n
i=1 πi.

According to the definition of the masked sample xT , we have that ∀i 6∈ T , (xT )i = bi and hence
∀i 6∈ T, [(xT )i − bi]πi = 0. Then, among all Taylor expansion terms, only terms corresponding
to degrees π in the set P = {[π1, . . . , πn]|∀i ∈ T, πi ∈ N;∀i 6∈ T, πi = 0} may not be zero.
Therefore, Eq. (10) can be re-written as follows.

∀T ⊆ N, v(xT ) =
∑
π∈P

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈T

(xi − bi)πi
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We find that the set P can be divided into multiple disjoint sets as follows, P = ∪S⊆TQS , where
QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+;∀i 6∈ S, πi = 0}. Then, we can derive that

∀T ⊆ N, v(xT ) =
∑
S⊆T

∑
π∈QS

1∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈S

(xi − bi)πi

=
∑
S⊆T

∑
π∈QS

τm∏n
i=1 πi!

∂mv(x∅)

∂xπ1
1 · · · ∂x

πn
n

∏
i∈S

(δi)
π

︸ ︷︷ ︸
termedUS,π

·
∏
i∈S′

(δi
xi − bi
τ

)πi︸ ︷︷ ︸
termed J(S,π|x)

,
(11)

where τ ∈ R is a pre-defined constant and δi = sign(xi − bi). Then, Eq. (11) can be re-written as,

∀T ⊆ N, v(xT ) =
∑

S⊆T
ŨS

i.e., {ŨS |S ⊆ N} also satisfies the faithfulness requirement in Eq. (7). Furthermore, Grabisch &
Roubens (1999) and Ren et al. (2021a) has proved that the Harsanyi dividend US = I(S|x) is the
unique metric to satisfy Eq. (7). Therefore, we can obtain that ŨS = US .

Proof of Step 2. We aim to prove that for a specific interactive concept S, I(S|x′) = Ĩ(S|x′) holds
for all the 2n masked samples x′ ∈ {xT |∀T ⊆ N}.
Specifically, for the interactive concept S, let us divided all masked samples xT into two groups, (i)
{xT |S ⊆ T} and (ii) {xT |S 6⊆ T}. According to the SCM in Eq. (3), we can obtain that

I(S|xT ) = US · 1(S ⊆ T ) =

{
US , if S ⊆ T ;

0, if S 6⊆ T. (12)

According to the definition of Ĩ(S|x′), it is easy to obtain that when S ⊆ T , Ĩ(S|xT ) = ŨS = US ;
otherwise, Ĩ(S|xT ) = 0. Then, Theorem 2 holds.

D.3 PROOF OF THEOREM 3 IN THE MAIN PAPER

Theorem 3. Let us add a Gaussian perturbation ε ∼ N (0, σ2I) to the input sample x. If we only
consider the approximation based on the lowest degree π̂, then according to Theorem 2, the mean
and variance of I(S|x+ ε) over different perturbations are given as

Eε[I(S|x+ ε)] = US,π̂, Varε[I(S|x+ ε)] = U2
S,π̂

[ (
1 + (σ/τ)2)s − 1

]
.

Proof. If we only consider Taylor expansion term of the lowest degree, then I(S|x′) ≈ US,π̂ ·
J(S, π̂|x′), where J(S, π̂|x′) =

∏
i∈S sign(x′i − bi) ·

x′i−bi
τ .

Let us add a Gaussian perturbation ε ∼ N (0, σ2I) to the input sample x. Then, we have

I(S|x+ ε) ≈ US,π̂ · J(S, π̂|x+ ε)

J(S, π̂|x+ ε) =
∏
i∈S

sign(xi + εi − bi) ·
xi + εi − bi

τ

=
∏
i∈S

(
sign(xi + εi − bi) ·

xi − bi
τ

+ sign(xi + εi − bi) ·
εi
τ

) (13)

According to the setting of the baseline value, we have ∀i ∈ S, xi − bi ∈ {−τ, τ}. In Section
2.2, we have assumed that the perturbation is small, i.e., ∀i ∈ S, |εi| ≤ τ . In this way, we have
sign(xi + εi − bi) = sign(xi − bi), and we can obtain

J(S, π̂|x+ ε) =
∏
i∈S

(
sign(xi − bi) ·

xi − bi
τ

+ sign(xi − bi) ·
εi
τ

)
=
∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

) (14)
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⇒ Eε[J(S, π̂|x+ ε)] = Eε

[∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

)]

Varε[J(S, π̂|x+ ε)] = Varε

[∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

)] (15)

Since sign(xi − bi) ∈ {−1, 1}, we have 1 + sign(xi − bi) · εiτ ∼ N (1, (σ/τ)2),∀i ∈ S.

Proposition 1. If random variables X1, X2, · · · , Xk are independent of each other, then
E[X1X2 · · ·Xk] =

∏k
i=1 E[Xi], and Var[X1X2 · · ·Xk] =

∏k
i=1(E[Xi]

2 + Var[Xi]
2) −∏k

i=1 E[Xi]
2.

According to the above proposition, we have

Eε[J(S, π̂|x+ ε)] =
∏
i∈S

1 = 1

Varε[J(S, π̂|x+ ε)] =
∏
i∈S

(
12 + (σ/τ)

2
)
−
∏
i∈S

12

=
(

1 + (σ/τ)
2
)|S|
− 1

(16)

Therefore,
Eε[I(S|x+ ε)] = Eε[US,π̂ · J(S, π̂|x+ ε)] = US,π̂

Varε[I(S|x+ ε)] = Varε[US,π̂ · J(S, π̂|x+ ε)] = U2
S,π̂

((
1 + (σ/τ)

2
)|S|
− 1

)
(17)

D.4 PROOF OF THEOREM 4 IN THE MAIN PAPER

Theorem 4. For an arbitrary degree π ∈ Qs = {[π1, · · · , πn]|∀i ∈ S, πi ∈ N+;∀i /∈ S, πi = 0}, the
mean and variance of J(S,π|x+ ε) can be computed as

Eε[J(S,π|x+ ε)] = Eε[
∏

i∈S
(1 + εi/τ)πi ], Varε[J(S,π|x+ ε)] = Varε[

∏
i∈S

(1 + εi/τ)πi ].

Proof. According to Theorem 2, given an arbitrary input sample x′, we have

J(S,π|x′) =
∏

i∈S

(
sign(x′i − bi) ·

x′i − bi
τ

)πi
(18)

Let us add a Gaussian perturbation ε ∼ N (0, σ2I) to the input sample x. In this way, we have

J(S,π|x+ ε) =
∏
i∈S

(
sign(xi + εi − bi) ·

xi + εi − bi
τ

)πi
=
∏
i∈S

(
sign(xi + εi − bi) ·

xi − bi
τ

+ sign(xi + εi − bi) ·
εi
τ

)πi (19)

According to the setting of the baseline value, ∀i ∈ S, xi − bi ∈ {−τ, τ}. We assume that the
perturbation is small, i.e., ∀i ∈ S, |εi| � τ . In this way, sign(xi + εi − bi) = sign(xi − bi), and we
can obtain

J(S,π|x+ ε) =
∏
i∈S

(
sign(xi − bi) ·

xi − bi
τ

+ sign(xi − bi) ·
εi
τ

)πi
=
∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

)πi (20)
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⇒ Eε[J(S,π|x+ ε)] = Eε

[∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

)πi]

Varε[J(S,π|x+ ε)] = Varε

[∏
i∈S

(
1 + sign(xi − bi) ·

εi
τ

)πi] (21)

Since ∀i ∈ S, εi is independent of each other, according to Proposition 1 and Eq. (21), we have

Eε[J(S,π|x+ ε)] =
∏
i∈S

Eεi
[(

1 + sign(xi − bi) ·
εi
τ

)πi]
Varε[J(S,π|x+ ε)] =

∏
i∈S

Eεi
[(

1 + sign(xi − bi) ·
εi
τ

)2πi]
−
∏
i∈S

(
Eεi
[(

1 + sign(xi − bi) ·
εi
τ

)πi])2
(22)

Since sign(xi − bi) ∈ {−1, 1}, we have Eεi
[(

1 + sign(xi − bi) · εiτ
)k]

= Eεi
[(

1 + εi
τ

)k]
,∀k ∈

N+. Therefore, we obtain

Eε[J(S,π|x+ ε)] =
∏
i∈S

Eεi
[(

1 +
εi
τ

)πi]
= Eε

[∏
i∈S

(
1 +

εi
τ

)πi]

Varε[J(S,π|x+ ε)] =
∏
i∈S

Eεi
[(

1 +
εi
τ

)2πi]
−
∏
i∈S

(
Eεi
[(

1 +
εi
τ

)πi])2
= Varε

[∏
i∈S

(
1 +

εi
τ

)πi]
.
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E RELATION BETWEEN INTERACTIVE CONCEPTS AND MULTI-ORDER
INTERACTIONS

In this section, we derive that high-order interactive concepts (computed via the Harsanyi dividend
(Harsanyi, 1963)) can be considered as elementary components for high-order interactions used in
(Ren et al., 2021b).

Given a pre-trained DNN v and a masked sample xS , the multi-order interaction I(m)(i, j) used in
(Ren et al., 2021b) is given as follows:

I(m)(i, j) = ES⊆N\{i,j},|S|=m[∆v(i, j, S)], (23)

where ∆v(i, j, S) = v(xS∪{i,j})− v(xS∪{i})− v(xS∪{j}) + v(xS).

Let ∆vT (S) =
∑
L⊆T (−1)|T |−|L|v(xL∪S) denote the marginal benefit of variables in T ⊆ N \S,

given the environment S. In this way, ∆vT (S) can be represented as the sum of interaction effects
inside T and sub-environments of S, i.e. ∆vT (S) =

∑
S′⊆S I(T ∪ S′) Ren et al. (2021a).

Thus, the I(m)(i, j) can be represented as follows,

I(m)(i, j) =ES⊆N\{i,j},|S|=m[∆v(i, j, S)]

=ES⊆N\{i,j},|S|=m[
∑
L⊆S

I(L ∪ {i, j})]

=
1(
n−2
m

) ∑
S⊆N\{i,j}
|S|=m

[
∑
L⊆S

I(L ∪ {i, j})]

=
∑

L⊆N\{i,j}
|L|≤m

I(L ∪ {i, j})
∑

L⊆S⊆N\{i,j}
|S|=m

1(
n−2
m

)
=

∑
L⊆N\{i,j}
|L|≤m

I(L ∪ {i, j})
(
n−2
m−l

)(
n−2
m

)
=

m∑
l=0

∑
L⊆N\{i,j}
|L|=m

(
n−2
m−l

)(
n−2
m

) I(L ∪ {i, j}).

Therefore, we prove that I(m)(i, j) =
∑m
l=0

∑
L⊆N\{i,j}
|L|=m

(n−2
m−l)

(n−2
m )

I(L ∪ {i, j}).
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F EXPERIMENTAL SETTINGS

Training details. We trained AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan & Zisserman,
2014), ResNet-18/20 (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009) and the
Tiny-ImageNet dataset (Le & Yang, 2015), respectively. We also trained a five-layer MLP (Ren
et al., 2021a) on the UCI census dataset (namely census dataset) and the UCI TV news dataset
(namely TV news dataset) (Asuncion & Newman, 2007), respectively. Each layer of the MLP con-
tained 100 neurons. We trained each neural networks for 200 epochs with the SGD optimizer.

Sampling details. Since, the computational cost of I(S|x) in Remark 1 was intolerable in real
implementation, we applied the sampling-based approximation method in (Zhang et al., 2020) to
calculate I(S|x). Due to the high dimension of image data (e.g. 224 × 224 for ImageNet), we
uniformly split the input image into 8×8 patches. Furthermore, we random sampled 12 patches and
considered these patches as input variables for each image. The remaining 52 patches are set to the
baseline value.

Implementations details. Here, we introduce how to measure β(S) and κ(S) in Section 2.3. On
the Tiny-ImageNet dataset, we randomly sampled 100 training images. These training images were
randomly sampled from different 10 classes. On the CIFAR-10 dataset, we randomly sampled 10
training images from each class. For tabular datasets, we randomly sampled 50 training samples
from each class. For image datasets, we set τ = 2. For tabular datasets, we set τ = 1. In this way,
we set the baseline bi = max(xi − τ, µ), if xi > µi, and we set the baseline bi = min(xi + τ, µ),
if xi < µi. For Gaussian perturbation ε, we set σ = 0.02. Besides, for each training sample, we
randomly sampled five Gaussian perturbation with five different seeds, respectively.

Generalization power. Here, we introduce how to measure Ec[sim(H
(s)
c,train,H

(s)
c,test)] in Section 3.1.

For tabular datasets, we randomly sampled 50 training samples from each class from the training
set. We also randomly sampled 50 testing samples from each class from the test set. For the baseline
value, we set τ = 1.5.

Adversarial attack. Here, we introduce how to measureA(s) in Section 3.1. For tabular datasets, we
randomly sampled 50 training samples from each class from the training set. On the Tiny-ImageNet
dataset, we randomly sampled 100 training images. These training images were randomly sampled
from different 10 classes. On the CIFAR-10 dataset, we randomly sampled 10 training images from
each class. We used the l∞ untargeted PGD attack by following (Madry et al., 2018), in which the
constraint ε = 16/255, and the attack was conducted with 5 steps with the step size ε = 3/255.
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