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Abstract

Visual arguments, often used in advertising or001
social causes, rely on images to persuade view-002
ers to do or believe something. Understanding003
these arguments requires selective vision: only004
specific visual stimuli within an image are rele-005
vant to the argument, and relevance can only be006
understood within the context of a broader ar-007
gumentative structure. While visual arguments008
are readily appreciated by human audiences,009
we ask: are today’s AI capable of similar un-010
derstanding?011

We collect and release VisArgs, an annotated012
corpus designed to make explicit the (usu-013
ally implicit) structures underlying visual ar-014
guments. VisArgs includes 1,611 images ac-015
companied by three types of textual annota-016
tions: 5,112 visual premises (with region an-017
notations), 5,574 commonsense premises, and018
reasoning trees connecting them to a broader019
argument. We propose three tasks over VisArgs020
to probe machine capacity for visual argument021
understanding: localization of premises, iden-022
tification of premises, and deduction of con-023
clusions. Experiments demonstrate that 1) ma-024
chines cannot fully identify the relevant visual025
cues. The top-performing model, GPT-4-O,026
achieved an accuracy of only 78.5%, whereas027
humans reached 98.0%. All models showed a028
performance drop, with an average decrease in029
accuracy of 19.5%, when the comparison set030
was changed from objects outside the image031
to irrelevant objects within the image. Further-032
more, 2) this limitation is the greatest factor033
impacting their performance in understanding034
visual arguments. Most models improved the035
most when given relevant visual premises as036
additional inputs, compared to other inputs, for037
deducing the conclusion of the visual argument.038

1 Introduction039

What we see depends040

mainly on what we look for.041

– Lubbock (1893)042

Polar bear's habitat

is vanishing

as ice melts.

The smokestack

symbolizes


melting of Arctic ice.

Factory smokestacks

contribute to climate change.

small means ice is melting.

It use ice floe for habitat.

The ice is positioned above

a large factory smokestack.

The ice floe is small.

A polar bear stands on a piece of ice.

Industrial pollution needs to be reduced.


Figure 1: An example from our VisArgs corpus. Vis-
Args makes the persuasion process in a visual argument
explicit by representing it as a reasoning tree. Image
credit: Eglė Plytnikaitė

Humans often communicate messages visually. 043

For example, traffic light colors regulate drivers’ 044

behavior, while computer icons, such as the trash 045

bin symbol for deleting files or the magnifying 046

glass for searching, guide user actions. 047

We consider the case of visual arguments. Con- 048

sider Fig. 1, which depicts a polar bear on a shrink- 049

ing ice floe. Without any text, this image calls 050

attention to climate change: a visual metaphor con- 051

nects melting ice to industrial emissions from facto- 052

ries. A plausible interpretation of the argument con- 053

cludes: industrial pollution needs to be reduced. 054

We introduce VisArgs, an annotated dataset of 055

1,611 images containing visual arguments. VisArgs 056

makes explicit the reasoning process in interpret- 057

ing a visual argument:1 each image is annotated 058

with visual premises grounded on object bounding 059

boxes, commonsense premises eliciting implicit 060

knowledge, and argument trees formalizing the 061

connection of these premises to the conclusion. An 062

1We note that our corpus contains just one possible inter-
pretation of a visual argument (rather than, e.g., claiming to
represent the creator’s intent).
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Premises

Localization of Premises Identification of Premises Deduction of Conclusion

Conclusion

10 reasons to refresh yourself
Advertising Coke and McDonald's.
Coke quenches thirst. 

Drink Coke in McDonald’s on a hot day.
102 reasons to drink from McDonald’s.

Coca-Cola drink with ice.

102° (temperature) 

reasons to refresh... 

McDonald's logo.

Coca-Cola drink with ice.

Coca-
Cola...

102... McDon
ald...

Drink coke on a hot day.

Coke quenches thirst. 

102° suggests a very hot day.

Intermediate Conclusions

Drink Coke on a hot day.

Buy at Mcdonalds

The billboard suggests to

Cool down with a Coke from 
McDonald's on a hot day.

IC1

IC2

C

Reasoning Tree
VP1

VP2

VP3
CP2

CP1

(VP1, CP1,  
VP2, CP2) 

-> IC1

Figure 2: To identify the bottleneck in visual argument understanding, we define three tasks over VisArgs:
Localization of Premises requires models to ground the visual premises. Identification of Premises necessitates
models to infer the visual premise relevant to the given intermediate conclusion. Deduction of Conclusion studies
the ability of models to deduce the argument’s conclusion based on different levels of inputs.

argument tree consists of a root node (conclusion),063

some internal nodes (intermediate conclusion), and064

two types of leaf nodes (visual and commonsense065

premises).066

Using VisArgs, we propose three complemen-067

tary tasks to evaluate different aspects of machine068

capacity for comprehending visual arguments as069

illustrated in Fig. 2: 1) Localization of Premises:070

associates the description of a visual premise with071

a specific region in the image, 2) Identification of072

Premises: Given an image and an (intermediate)073

conclusion, retrieves the necessary visual premises074

to support the conclusion, and 3) Deduction of Con-075

clusion: generates the conclusion with increasing076

detail of the annotated visual argument.077

Experiments on VisArgs demonstrate that the078

main bottleneck for machine understanding of vi-079

sual arguments is selective vision, i.e., Identifica-080

tion of Premises relevant to a given conclusion (see081

§ 5.2). We show that while machines can identify082

visual premises within an image (albeit worse than083

human agreement, see Localization of premises084

§ 5.1), they struggle to discern which premises are085

relevant to the conclusion among them. Results on086

our final Deduction of Conclusion task (§ 5.3) ad-087

ditionally support the hypothesis that difficulties in088

understanding visual arguments do not stem from089

deficiencies in raw vision capacity. There, we con-090

trolled the level of input to the algorithm, ranging091

from raw images to explicit reasoning trees. The092

greatest accuracy gains came from the inclusion of093

relevant visual cues, further supporting our main094

hypothesis. In all visual argument understanding095

tasks, machines perform worse than human agree-096

ment, providing avenues for future work.097

In conclusion, our results suggest that selective 098

attention to visual cues is the main bottleneck for 099

the current AI capacity to understand visual argu- 100

ments. This finding also establishes visual argu- 101

ment understanding as a distinct area of study in 102

the computational domain: vision does not precede, 103

but works jointly with reasoning in terms of under- 104

standing visual arguments. We expect that VisArgs 105

will be utilized as a diagnostic benchmark for selec- 106

tive vision in future multimodal models: even the 107

best current models lag significantly behind human 108

performance in our Identification of Premises and 109

Deduction of Conclusion tasks. 110

2 Related Work 111

Visual arguments are arguments built on visual 112

medium (Boland, 2005). Unlike typical images, a 113

visual argument is intentionally organized to per- 114

suade viewers to a certain conclusion (Birdsell and 115

Groarke, 1996; Boland, 2005). This work builds 116

upon to ongoing debates in the human studies litera- 117

ture about the nature of visual arguments (Johnson, 118

2003; Tseronis, 2018). Our results (§ 5) suggest 119

that understanding visual arguments requires focus- 120

ing on a subset of the visual context: not all visual 121

cues contribute, and identifying the relevant ones 122

is the key necessity. This task one of selective vi- 123

sion: the human capability to focus on behaviorally 124

relevant stimuli. (Desimone and Duncan, 1995). 125

Examples of visual arguments are prevalent in ad- 126

vertisements (Kjeldsen, 2012; Zhang et al., 2018; 127

Ye et al., 2019), cartoons (Birdsell and Groarke, 128

2007), mathematical educations (Inglis and Mejía- 129

Ramos, 2009), and, arguably, diagrams (Kembhavi 130
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et al., 2016; Alikhani and Stone, 2018).131

Multimodal reasoning. Recent studies have in-132

troduced various multimodal models capable of133

sophisticated reasoning across different modali-134

ties, such as vision and language. Models such135

as LLaVA (Liu et al., 2023a), Idefics2 (Laurençon136

et al., 2024), and Qwen-VL (Bai et al., 2023) are137

built on pretrained large language models (e.g.,138

LLaMA (Touvron et al., 2023)) and integrate vi-139

sion encoders. Others, including OFA (Wang140

et al., 2022) and Unified-IO (Lu et al., 2022), are141

developed from scratch. These models excel in142

tasks such as localization, image captioning, and143

commonsense reasoning. Furthermore, models144

such as Unified-IO-2 (Lu et al., 2023) and GPT-145

4-O (Achiam et al., 2023) can understand audio,146

while others (Zellers et al., 2022; Han et al., 2023a)147

support video understanding, demonstrating broad148

multimodal reasoning capabilities.149

Beyond factual visual understanding. Visual150

comprehension is moving beyond factual under-151

standing to include various types of writing. These152

include visual commonsense reasoning (Zellers153

et al., 2019; Park et al., 2020; Han et al., 2023b;154

Hessel et al., 2022), humor understanding (Hessel155

et al., 2023; Hyun et al., 2023), and understanding156

social interaction (Zadeh et al., 2018). Of particular157

relevance to our work is visual metaphors (Akula158

et al., 2023), which express abstract concepts with159

concrete visual cues. While some overlap exists160

in the images used, there are clear differences in161

intention and structure; not all metaphorical images162

present clear arguments and can be seen as visual163

arguments. Conversely, not all visual arguments164

depend on metaphors (Blair, 2012).165

Argument structure. An argument is typically166

understood as a structure that starts from a set of167

premises (reasons) and ends in a conclusion, of-168

ten represented symbolically as a tree (Whately,169

1863; Freeman, 2011). While there have been ex-170

tensions, including computational models of argu-171

ments (Bench-Capon and Dunne, 2007; Rahwan172

and Simari, 2009; Atkinson et al., 2017), we use173

the basic form of trees connecting premises to con-174

clusions, following previous literature (Stab and175

Gurevych, 2014; Lawrence and Reed, 2020).176

3 VisArgs Dataset177

VisArgs comprises a total of 1,611 images featur-178

ing clear visual arguments. These images are cat-179

egorized into 914 advertisement images and 697180

Stairs that resembles a rough terrain.

Depiction of a Jeep driving up the stairs.

"Jeep" is written at the base of the stairs.

Concrete stairs in an urban setting.

A white outline labeled "P".

The outline includes the Jeep logo.

Hallucination! Replace.

“base of the stairs” is not relevant.

“rough terrain” involves 
commonsense inference.

Figure 3: Human workers iteratively refine initial data
produced by machines in VisArgs annotation process.

cartoon images based on their sources. Each im- 181

age in VisArgs is annotated with descriptions and 182

bounding boxes for the visual premises (VP), de- 183

scriptions of the commonsense premises (CP), the 184

conclusion, and an argumentation tree (T) detailing 185

the reasoning path from the premises to the conclu- 186

sion (C). All descriptions are in English, with an 187

average character length of 79, 91, 142, and 105 for 188

VP, CP, C, and T, respectively. On average, each 189

image contains 3.17 visual premises, 3.46 common- 190

sense premises, and 2.88 intermediate conclusions. 191

3.1 Annotation Process 192

We partially rely on GPT-4-O (Achiam et al., 2023) 193

for initial annotations. However, these machine- 194

generated annotations serve only as preliminary 195

seeds, which are then extensively refined by experi- 196

enced human workers, as illustrated in §3. The ma- 197

chine’s role is merely to provide imperfect starting 198

points to facilitate the human annotation process. 199

Below, we detail our annotation procedure. 200

Collecting Images. We manually collect around 201

1,600 images from Pinterest.2 Starting with 202

keyword-based searches (e.g. creative ads), we 203

expanded our collection by exploring related im- 204

ages. Cartoons (which often contain visual argu- 205

ments (Birdsell and Groarke, 1996)) were sourced 206

from a dedicated website.3 We manually collected 207

around 1,600 cartoons from various categories, in- 208

2www.pinterest.com
3www.cartoonmovement.com

3
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cluding politics, education, and environment. For209

both categories, we followed previous work (Schuh-210

mann et al., 2022; Lee et al., 2021) by including211

URLs to the images to comply with licensing terms.212

Refer to Appendix A for details.213

Describing Visual Premises. The next step is to214

explicitly describe the visual argument within each215

image. However, during the early stages of our216

annotation process, we discovered that although217

humans can naturally understand visual arguments,218

they often find it challenging to articulate their219

interpretation into structured argumentation trees.220

Therefore, we used an AI model (GPT-4-O) to gen-221

erate initial candidates. Human workers then se-222

lect and modify these initial annotations, as shown223

in Fig. 3. To facilitate this process, we break down224

the annotation into two steps: describing the visual225

premises and specifying the argument structure.226

Given an image containing a visual argument,227

we instructed the model to generate a set of visual228

premises necessary to support the argument (refer229

to Appendix J for further details). However, the AI230

model often fails to fully comprehend the visual231

argument. To address this, we engaged a pool of232

experienced human workers to review the machine-233

generated outputs. They selected the correct visual234

premises and made necessary modifications to en-235

sure accuracy and coherence. Additionally, we236

identified that a model-generated visual premise237

sometimes contains multiple atomic premises. We238

instructed the reviewers to separate these merged239

premises into individual atomic premises. Further240

details are provided in Appendix A.241

Specifying Argument Structure. Given the visual242

premises and the image, we further annotate three243

components constituting the argumentation struc-244

ture: commonsense premises, conclusions, and ar-245

gument trees. As in the previous stage, we first246

generate initial candidates using an AI model. For247

this stage, we impose an additional criterion: the248

set of selected premises should be both necessary249

and complete (refer to Appendix J). The same pool250

of human workers then adjust the annotations for251

greater accuracy. The workers first verify the cor-252

rectness of the conclusion and discard the image253

if it is incorrect. They then identify and correct254

any errors, including semantic and structural mis-255

takes. We discarded 1,593 of the 3,204 images in256

this process. Details are provided in Appendix A.257

Visual Grounding. Lastly, we manually gather258

bounding box annotations for each visual premise259

to finalize the multimodal annotations. We assume260

28%

20%
28%

28%

16%

3%

7%

11%

4%
3%

12%

9%

9%

6%

5%

10%

Visual Premise Conclusion

Figure 4: Variety of the topics represented in the visual
premises and conclusions in VisArgs.

Recall Hit rate

LLaVaNeXT 0.48 0.14
LLaVa-LLaMa3-Docci 0.27 0.02
ShareCaptioner 0.40 0.12

Table 1: Frequency of detailed captions containing vi-
sual premises. Hit rate denotes how often all visual
premises per image are included in the captions.

a one-to-one relationship between each bounding 261

box (vpri ) and its corresponding textual description 262

(vpdi ). Annotators are instructed to ensure accurate 263

matching and precise bounding box tightness, as 264

detailed in Appendix A. 265

3.2 Data Analysis 266

Topic Diversity. To gauge the diversity of topics 267

covered in VisArgs, we run zero-shot categoriza- 268

tion using GPT-4-O and LLaMa3 (AI@Meta, 2024) 269

to classify the topics of visual premises and con- 270

clusions. The topics cover a wide range of visual 271

objects and argument topics, as shown in Fig. 4. 272

Refer to Appendix B for details. 273

Visual Cues vs. Dense Captioning. In theory, se- 274

lective attention to visual premises could be col- 275

lapsed into an NLP problem by describing every- 276

thing in an image. To test this counter-hypothesis, 277

we manually check how often the visual premises 278

are contained in the outputs of detailed captioning 279

models. We include three baselines here: a gener- 280

alist (LLaVA-Next (Liu et al., 2024b)), a specialist 281

(ShareCaptioner (Chen et al., 2023)), and LLaVA- 282

LLaMa3 (XTuner Contributors, 2023) fine-tuned 283

on a detailed captioning corpus (DOCCI (Onoe 284

et al., 2024))4. Tab. 1 summarizes our manual in- 285

spection of 100 images, showing that the detailed 286

4huggingface.co/gokaygokay/llava-llama3-docci

4

huggingface.co/gokaygokay/llava-llama3-docci


Acc. Prec. Rec. F1 Corr. (ρ)

BLEU-4 67 44 67 53 18
ROUGE 75 76 75 72 35
CIDEr 72 70 72 70 26
GPTEval 75 83 75 76 53
BERTScore 94 94 93 93 59

Table 2: Correlation of each metric with human deci-
sions in the Deduction of Conclusion task.

captions insufficiently capture the visual premises,287

with the hit rate staying below 15% for all models.288

Safety. Since we did not initially filter for safety,289

we now analyze the safety of VisArgs using stan-290

dard models. For textual safety, we utilize the Per-291

spective API5, and for visual domains, we employ292

LAION-Safety6. The toxicity scores for textual de-293

scriptions were 0.03 for visual premises and 0.07294

for conclusions. Also, given the threshold of 0.7,295

no descriptions and visual premises were classified296

as toxic. Furthermore, only 71 among 1611 images297

are classified as unsafe. Manual inspection reveals298

that such “unsafe" images were social campaigns299

advocating against the harmful behaviors which300

presumably triggered the LAION detector.301

4 Task Overview302

We pose three tasks based on VisArgs for a struc-303

tured analysis of how machines understand argu-304

ments presented in visual form.305

An instance of VisArgs consists of an im-306

age I , a set of visual premises VP =307

{(vpd0, vpr0), (vpd1, vpr1), . . .} with textual descrip-308

tion vpd along with region grounding with a bound-309

ing box vpr = ⟨x, y, h, w⟩, a set of commonsense310

premises CP = {cpd0, cpd1, . . .}, and the conclusion311

in textual form C. Further, a single argument tree312

for each image is built on the premises. Each tree313

t ∈ T represents a reasoning path leading to the314

conclusion C. The nodes N of a tree consist of the315

following: 1) leaf nodes: subsets of the union of316

the visual and commonsense premises VP∪CP. 2)317

internal nodes: elements of the set of intermediate318

conclusions IC. 3. root node: the conclusion C.319

An edge e of the tree connects a subset of nodes320

N̄ ⊂ VP ∪ CP ∪ IC to either an intermediate con-321

clusion ic ∈ IC or the final conclusion C.322

5www.perspectiveapi.com; June 2024 version.
6www.github.com/LAION-AI/LAION-SAFETY

4.1 Localization of Premises 323

The first task focuses on assessing whether ma- 324

chines can accurately align visual premises (VPd) 325

with the corresponding regions (VPr) in a given 326

image (I), requiring minimal computational reason- 327

ing capabilities. It aims to determine if difficulties 328

in understanding visual arguments originate from 329

basic object detection stages. 330

We investigate two setups based on the algo- 331

rithm’s ability to output bounding box labels: First, 332

closed-set grounding is designed for a broad range 333

of models that lack explicit grounding capabili- 334

ties. The problem is formulated as a retrieval task 335

where the goal is to match a region in the image 336

(vpri ) with an appropriate description (vpdi ). We 337

adapt standard image-text matching models (e.g. 338

CLIP) to perform grounded image-text matching. 339

More details can be found in § 5. Second, open-set 340

grounding tests models with explicit grounding ca- 341

pabilities. The task is framed as a visual grounding 342

problem (Yu et al., 2016), where the machine must 343

locate an object in an image based on a natural 344

language expression. Both the ground truth and 345

machine output are represented as bounding box 346

coordinates ⟨x, y, h, w⟩. Performance is evaluated 347

using the intersection over union (IoU) ratio, with 348

predictions considered correct if IoU ≥ 0.5. 349

4.2 Identification of Premises 350

The second task tests the machines’ capabilities 351

to discern visual premises that would better sup- 352

port the given conclusion. Given the image I , 353

the intermediate conclusion ic, and a superset of 354

the gold text descriptions of the visual premises 355

S ⊃ VPd, the machine should retrieve a correct 356

visual premise vpdi ∈ VPd. Note that the candidate 357

set S contains a single ground truth premise vpdi 358

and a fixed number K = 2 of negative premises. 359

The complexity of a retrieval task is impacted 360

by the choice of the negative set. We explore four 361

types of global samplers and a single local sam- 362

pler for constructing the negative set. The global 363

samplers source the negatives from visual premises 364

that do not correspond to the selected image. The 365

only difference is the sample selection strategy: 1. 366

Random sampling samples uniformly without re- 367

placement. 2. Visual sampling samples from the 368

top premise descriptions that are the closest to the 369

given image. We use CLIPScore (Hessel et al., 370

2021) for the multimodal scoring. 3. Textual sam- 371

pling samples from the top premise descriptions 372

5
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that are the closest to the ground truth premise. We373

use cosine similarity on the ColBERT (Khattab and374

Zaharia, 2020) representation space for the textual375

scoring. 4. Mixed sampling combines textual and376

visual sampling by visually selecting from the top377

10 textual retrieval results.378

For local sampling, we select from the visual379

premises that do correspond to the given image. Re-380

lying on our argumentation tree annotation, we can381

automatically obtain the set of local visual premises382

that does not help justify the given intermediate383

conclusion ic. we sample uniformly without du-384

plicates from the local pool and name the method385

5. Semantic sampling due to its argumentation-386

dependent nature. Additionally, we report human387

performance on 100 random samples to mitigate388

the risk of false negatives.389

4.3 Deduction of Conclusion390

The final task is to evaluate how each component391

(I , VP, CP, IC, and T ) influences the deduc-392

tion of the conclusion C. We approach this as a393

sequence-to-sequence task aimed at generating C.394

While this allows flexible output formats, it com-395

plicates evaluation because the machine-generated396

text must be compared to the free-form label. Com-397

mon text comparison practices, such as BLEU (Pa-398

pineni et al., 2002), ROUGE (Lin, 2004), and399

CIDER (Vedantam et al., 2015) measure surface400

form similarity, not semantic similarity between401

conclusions. Alternatively, prompt-based evalua-402

tion using general reasoners (e.g. GPT-4) (Achiam403

et al., 2023) can be biased by factors including can-404

didate order (Pezeshkpour and Hruschka, 2023).405

Human verification, though ideal, is costly and hard406

to reproduce. We conduct a small-scale comparison407

study (see Tab. 2) to verify that the model-based408

metric BERTScore (Zhang* et al., 2020) provides409

the most stable estimate, making it our primary410

metric. Details are in Appendix D.411

5 Experiments412

5.1 Localization of Premises413

Localization of Premises tests the visual grounding414

capabilities of machines. Given the image I and415

description of a visual premise vpd, the goal is to416

find a corresponding region vpr in the image.417

Metrics and Models. For closed-set grounding,418

which is an N-way classification task, the goal is to419

match the given description with the correct bound-420

ing box. To evaluate standard image-text matching421

Acc. (%)

Ads Cartoon All

Random 33.33 33.33 33.33
Human 100.00 100.00 100.00

CLIPRN50 80.83 82.72 81.91
CLIPViT-L 82.72 82.96 82.85
CLIPViT-L@336 82.09 83.26 82.76
SigLIP 86.10 86.67 86.43
AlphaCLIP 75.15 77.44 76.45

OFABase 68.75 75.71 72.71
OFALarge 72.01 79.18 76.10

Table 3: closed-set results in localization of premises.

IoU Acc. (%)

UNINEXT-H 38.75 35.58
LISA 44.25 44.62
Unified-IO-2 48.61 47.15
OFA 50.14 49.13
MM-G-Dino 55.02 54.98

Table 4: open-set results in localization of premises.

algorithms (e.g. CLIP), we crop the regions accord- 422

ingly. The models for this task include various 423

CLIP-based models (CLIP (Radford et al., 2021) 424

with different backbones and SigLIP (Zhai et al., 425

2023)) and a multitask model OFA (Wang et al., 426

2022). For open-set grounding, which is to locate 427

an object in an image based on a natural language 428

expression, we instruct the models to output bound- 429

ing box coordinates and we compare them to the 430

ground truth region. A predicted coordinate is con- 431

sidered correct if its intersection over union with 432

the gold label is at least (IoU ≥ 0.5). We use 433

a diverse set of models that support local region 434

output formats, UNINEXT-H (Yan et al., 2023), 435

LISA (Lai et al., 2023), Unified-IO-2 (Lu et al., 436

2023), OFA, MM-G-DINO (Liu et al., 2023b). 437

Results. Tab. 3 demonstrates that current models 438

are generally effective in matching descriptions of 439

visual premises to the correct regions in images, 440

thereby meeting the basic vision requirements for 441

understanding visual arguments. However, the re- 442

sults for open-set grounding, shown in Tab. 4, are 443

somewhat mixed: the scores are acceptable but 444

not uniformly high. We traced this performance 445

decline to the nature of zero-shot object detectors, 446

which are designed to detect concrete objects and 447

clear segments. In contrast, our bounding boxes are 448

more semantic (Guo et al., 2018). Visual examples 449

can be found in Appendix G. 450
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Global Local

Random Visual Textual Mixed Semantic

Random 33.33 33.33 33.33 33.33 33.33 (-)
Human 100.00 99.00 94.00 100.00 98.00 (↑ 4.00)

OFA 0.00 0.00 0.00 0.00 0.00 (-)
Qwen-VL-Chat 86.05 85.77 70.67 75.57 49.74 (↓ 20.93)
CogVLM 97.46 96.39 88.00 92.22 65.31 (↓ 22.69)
Idefics2 98.68 97.83 91.80 95.07 75.01 (↓ 16.79)
InstructBLIP 83.77 79.23 66.95 71.37 61.90 (↓ 5.05)
Unified-IO-2 98.42 96.99 86.87 92.81 34.74 (↓ 52.13)
LLaVA-1.5 98.65 97.91 83.74 89.86 67.43 (↓ 16.31)
LLaVA-NeXT 97.66 96.20 80.90 85.86 78.53 (↓ 2.37)
GPT-4-O - - - - 79.50 (-)

Semantic

+ G.T region

-
-
-
-

78.13 (↑ 16.23)
84.39 (↑ 49.65)
76.67 (↑ 9.24)
82.19 (↑ 3.66)

-

Table 5: Results of the Identification of Premises task. Difference between the lowest score in global and local setup
for each model are highlighted.

Image + VP + CP + Tree

LLaMA3 - 30.2 37.8 (↑7.6) 40.8 (↑2.0)
Mistralv0.2 - 18.9 30.2 (↑11.3) 36.6 (↑6.4)
Zephyr - 20.6 28.7 (↑8.1) 36.5 (↑7.8)

OFA -41.3 -24.6 (↑16.7) -16.5 (↑8.1) -13.9 (↑2.6)
Qwen-VL-Chat 12.8 23.7 (↑10.9) 30.2 (↑6.5) 32.7 (↑2.5)
CogVLM 25.7 30.7 (↑5.0) 33.6 (↑2.9) 36.3 (↑2.7)
Idefics2 16.4 22.8 (↑6.4) 29.5 (↑6.7) 36.6 (↑7.2)
InstructBLIP -18.4 16.6 (↑35.0) 28.9 (↑12.3) 32.2 (↑3.3)
Unified-IO-2 -9.9 -3.4 (↑6.5) 4.2 (↑7.6) 8.0 (↑3.8)
LLaVA-1.5 2.2 20.0 (↑17.8) 29.6 (↑9.6) 33.7 (↑4.1)
LLaVA-Next 15.1 28.4 (↑13.3) 34.3 (↑5.9) 39.5 (↑5.2)
GPT-4-O 25.5 - 34.3 (↑8.8) 41.0 (↑6.7)

Table 6: Results of the Deduction of Conclusion task,
showing how incremental additions of inputs affect the
correctness of the conclusion. Scores are presented
using BERTScore, with similar trends observed across
other metrics as detailed in Appendix F.

5.2 Identification of Premises451

Identification of Premises tests the selective atten-452

tion capabilities, i.e., selecting necessary visual453

cues to understand an argument. Given the image454

I and an intermediate conclusion ic, the goal is455

to select a visual premise vpd that leads to this456

intermediate conclusion.457

Metrics and Models. For this task, we retain only458

intermediate conclusions that have at least two un-459

related visual premises within the image. We report460

classification accuracy based on a single gold vi-461

sual premise and two negative candidates. The462

negative sets are sourced as described in § 4.2463

and are categorized into random, visual, textual,464

mixed, and semantic sets. Given the task’s require-465

ment for understanding argumentation structure,466

the models evaluated are primarily multimodal467

large language models with adequate reasoning468

capabilities. We experiment with a broad selection 469

of models: OFA (Wang et al., 2022), Qwen-VL- 470

Chat (Bai et al., 2023), CogVLM (Wang et al., 471

2023), Idefics2 (Laurençon et al., 2024), Instruct- 472

BLIP (Dai et al., 2024), Unified-IO 2 (Lu et al., 473

2023), LLaVa-1.5 (Liu et al., 2024a), and LLaVa- 474

Next (Liu et al., 2024b). For the sake of brevity, 475

we do not report per-category results (Ads and Car- 476

toon) here. Refer to Appendix F for full results. 477

Results. Tab. 5 highlights a significant trend: mod- 478

els struggle to distinguish negatives within the im- 479

age (local), but excel in identifying global neg- 480

atives. A major challenge for most models was 481

handling semantic negatives within the same im- 482

age, as evidenced by the generally wide margin 483

between models’ performance on global and local 484

setups. Still, the global negative samples exhib- 485

ited more pronounced distinctions based on their 486

sampling scheme. Negatives sampled uniformly 487

were distinguishable by most models with ≥ 90% 488

accuracy. In contrast, retrieval methods proved 489

more challenging across the board, particularly for 490

negatives retrieved using the text-to-text similarity 491

model (textual), which increased the problem com- 492

plexity for most models. Notably, OFA failed to 493

follow zero-shot instructions for multiple-choice 494

answering, scoring close to zero. Finally, we also 495

present results for cropped ground-truth region im- 496

ages. Although cropped images are not lossless 497

representations of the regions, all models exhibited 498

significant improvements, indicating that the abil- 499

ity to infer relevant visual cues is indeed a critical 500

challenge. Thus, we conclude that models struggle 501

to infer which visual cues support the argument. 502
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Figure 5: Failure cases of LLaVA-1.5 in Identification of
Premises. The model incorrectly reasons about relevant
objects, relying instead on common words.

Image ∆ VP ∆ CP ∆ Tree

LLaVA-1.5 3.48 ↑ 13.29 (5.42) ↑ 8.57 (4.75) ↑ 4.72 (4.34)
LLaVA-Next 15.04 ↑ 11.28 (1.21) ↑ 6.72 (2.78) ↑ 4.14 (4.02)

Table 7: Mean of incremental improvements in
BERTScore with each additional input across four dif-
ferent prompts in Deduction of Conclusion. Standard
deviations are shown in parentheses.

5.3 Deduction of Conclusion503

Deduction of Conclusion evaluates the comprehen-504

sive ability to deduce the conclusion of an argu-505

ment. Given a subset of inputs among the im-506

age I , the visual premises VP, the commonsense507

premises CP, and the reasoning tree T , the objec-508

tive is to generate the conclusion C of an argument.509

Metrics and Models. As discussed earlier in § 4.3,510

we use BERTScore as the primary metric. We511

supplement this with three additional static met-512

rics (Bleu-4, ROUGE-L, CIDEr) in Appendix F.513

The models tested in this task include all the mul-514

timodal LLMs used in the previous experiment515

and text-only LLMs (LLaMa-3-Instruct (AI@Meta,516

2024), Mistral-Instruct (Jiang et al., 2023), and517

Zephyr (Tunstall et al., 2023)). All LLMs consid-518

ered here are the 7 ∼ 8b sized variants. The LLMs519

do not take the image as an input.520

Results. Table 6 shows the results for this task. As521

expected from previous tasks, most models expe-522

rience the highest gain from the additional infor-523

mation provided by the ground-truth set of visual524

premises. This supports our hypothesis that selec- 525

tive attention to visual premises is a bottleneck in 526

understanding visual arguments in current models. 527

Also, both multimodal and text-only models bene- 528

fited from commonsense premises and reasoning 529

trees in most setups, indicating that models cannot 530

yet perfectly understand visual arguments in a text- 531

only format and benefit from explicit reasoning 532

process information. We note that OFA struggled 533

to follow the instruction format, leading to sub- 534

zero scores. Although rare, BERTScore, based on 535

cosine similarity, can yield negative values. We 536

also clarify that the multimodality of the deduction 537

of conclusion task resides in the visual premises, 538

making it solvable by text-only models given them. 539

5.4 Diagnostics 540

Prompt Robustness. To ensure the robustness of 541

our empirical results, we differentiated the prompts 542

provided to the models. As shown in Tab. 7, the 543

trend of gains remained stable across four different 544

prompts, confirming the validity of our tests. For 545

detailed prompts, refer to Appendix M, and for 546

results in other tasks, see Appendix E. 547

Error Analysis. Fig. 5 provides qualitative exam- 548

ples of failure cases. We present straightforward 549

instances to clearly explain the errors. In these 550

cases, the models fail to reason about the relevant 551

object, which is the subject of the given intermedi- 552

ate conclusion, and instead rely on common words, 553

leading to incorrect inference results. 554

6 Conclusion 555

We introduce VisArgs, a curated and annotated 556

benchmark for visual argument understanding. Us- 557

ing our benchmark, we affirm a compelling hypoth- 558

esis: selective vision is a critical bottleneck for 559

visual reasoning in current machines. We aim for 560

our benchmark to serve as a resource for advancing 561

multimodal intelligence beyond passive captioning. 562

Future work includes: 563

1. Conditional Saliency Analysis: It is demon- 564

strated that the saliency required for visual ar- 565

guments differs from that needed for passive 566

captioning. Can the varying saliency require- 567

ments across different tasks be analyzed? 568

2. Extending Modalities: In speech recognition, 569

non-conditional selective attention is known as 570

the cocktail party effect. Would conditional se- 571

lective attention be necessary in modalities other 572

than vision as well? 573
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7 Limitations574

VisArgs, which is built on advertisements and car-575

toons from web sources, does not encompass all576

forms of visual arguments. Visual arguments also577

include various forms of media including mathe-578

matical diagrams (Inglis and Mejía-Ramos, 2009)579

and videos, such as films (Alcolea-Banegas, 2009).580

Consequently, the findings of this study do not rep-581

resent all forms of visual arguments.582

Additionally, the annotations for VisArgs are583

created by two NLP researchers with similar cul-584

tural backgrounds. Although a different group of585

human evaluators validated these annotations, fu-586

ture research should consider individual variances587

in the interpretation of visual arguments and the588

reasoning processes identified by reasoning trees.589

Finally, we excluded images containing written590

text in non-English languages when curating Vis-591

Args, as the annotators were not familiar with other592

languages. This limitation may confine the cul-593

tural context covered by VisArgs, thus representing594

only a partial depiction of visual arguments. Since595

the logical relations forming a visual argument can596

depend on culture-specific elements, this skewed597

distribution of images can lead to a biased under-598

standing of visual arguments.599
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A Data Annotation Details908

Human Resources. To ensure a comprehensive909

understanding of the intricate requirements of our910

setup and maintain consistency across annotations,911

two of this paper’s authors conducted the entire912

annotation process. Three volunteers from the NLP913

research community did the human evaluation.914

Annotation Interface. We used a custom-built915

interface for efficient and convenient image annota-916

tion. The interface is depicted in Fig. 6 and Fig. 7.917

Additionally, we provide a snapshot of the human918

evaluation interface for Identification of Premises919

in Fig. 8. We will open-source this interface along920

with the dataset.921

B Analyzing Topic Diversity922

Initially, we considered using the Latent Dirich-923

let Allocation (LDA) (Blei et al., 2003) method924

for data visualization, following previous litera-925

ture (Hessel et al., 2022). However, we found that926

LDA based on Bag-of-Words representations could927

not generate meaningful clusters or labels for con-928

clusion topics. As a solution, we developed an929

adaptive semantic classification technique using930

multimodal large language models:931

Defining Class Labels. We utilize GPT-4-O. We932

first sample 400 sentences each for VP and C, and933

then feed them to GPT with the following instruc-934

tions: For VP: "Give me well-balanced 10 object935

type classes for these texts (e.g., eating & dining,936

environments & landscapes, attire). Just classes."937

For C: "Give me well-balanced 10 classes for these938

texts. Just classes." After receiving the 10 classes939

from the GPT, we manually refine these classes940

into 8 classes for both VP and C.941

Labelling Data. We use a pretrained language942

model to classify visual premises (VP) and conclu-943

sions (C) in a zero-shot manner. We provide the944

following input to the LLaMA-37 LLM:945 � �946
Classes: {}947
Your task is to classify a sentence into948
the given classes.949
Give me just the class.950
Sentence: {}951 � �952

Visualization. We use the Plotly (Plotly, 2015)953

library.954

model dtype #parameter version

CLIP - 623M RN50x64
CLIP - 427M ViT-L/14
CLIP - 427M ViT-L/14@336px
SigLIP - 652M large-patch16-384
AlphaCLIP - 428M clip_l14_336_grit_20m_4xe
UNINEXT-H - 775M image_joint_vit_huge_32g
LISA - 7B xinlai/LISA-7B-v1
MM-G-DINO - 343M grounding_dino_swin-l_pretrain_all
LLaVA-1.5 FP16 7B llava-1.5-7b-hf
LLaVA-NeXT FP16 7B mistral-v0.2
Idefics2 FP16 8B chatty
OFA - 470M vqa-pretrain-large
QwenVLChat BF16 9B Qwen-VL-Chat
CogVLM BF16 17B cogvlm-chat-hf
InstructBLIP FP16 7B instructblip-vicuna-7b
Unified-IO-2 - 3B uio2-xl

Table 8: Details on the models used in our experiments.

C Experiment Details 955

C.1 Localization of Premises 956

For closed-set grounding, we utilized CLIP, SigLIP, 957

AlphaCLIP, and OFA. We measured the align- 958

ment between regions and descriptions of visual 959

premises using image-to-text cosine similarity 960

scores. The input regions were provided as cropped 961

images. A model output was considered correct 962

(True) if the similarity between the ground-truth 963

region and the given description was the highest 964

among all candidates; otherwise, it was marked 965

incorrect (False). 966

For open-set grounding, we employed ob- 967

ject grounding models such as MM-GDINO, 968

UNINEXT-H, LISA, OFA, and Unified-IO-2 to 969

directly generate bounding box coordinates. We ap- 970

plied a threshold of 0.35 to the outputs, merging the 971

selected regions into the tightest rectangle union. 972

For LISA, we converted the output segmentation 973

mask into bounding boxes. We then calculated 974

the Intersection over Union (IoU) score for each 975

bounding box. To compute the accuracy metric, 976

we used a threshold of 0.5 for binary classification 977

over the IoU. We calculated the local mean, which 978

is the mean per visual premise in an image, and the 979

mean per image. 980

C.2 Identification of Premises 981

We utilized OFA, Qwen-VL-Chat, CogVLM, 982

Idefics2, InstructBLIP, Unified-IO-2, LLaVA-1.5, 983

LLaVA-Next, and GPT-4-O for our experiments. 984

We created multiple-choice questions with three 985

possible answers: one correct answer and two in- 986

correct answers. Five conditions were set for sam- 987

pling the negatives for incorrect answers: 988

7meta-llama/Meta-Llama-3-8B-Instruct
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• Random Sampling: This global sampler selects989

samples uniformly without duplication.990

• Visual Sampling: This global sampler chooses991

the top 2 premise descriptions most similar to the992

image, using CLIP to score the cosine similarity993

between the image and text. We set the CLIP994

similarity threshold to 0.24 to ensure negative995

premises do not accurately describe the image.996

• Textual Sampling: This sampler selects the top 2997

premise descriptions most similar to the ground998

truth premise, using ColBERT to score the co-999

sine similarity between texts. We set the Col-1000

BERT similarity threshold to 25 to prevent neg-1001

ative premises from accurately describing the1002

image.1003

• Mixed Sampling: This approach combines visual1004

and textual sampling, visually selecting from the1005

top 10 textual retrieval results.1006

To ensure a fair comparison across various nega-1007

tive sampling methods, we use only intermediate1008

conclusions that have three or more related visual1009

premises. This results in 1,775 visual premises1010

for the advertisement category and 1,774 for the1011

cartoon category, totaling 3,549 visual premises,1012

which is 62.34% of the overall visual premises.1013

Human Evaluation. We randomly selected 1001014

images from each data category and had human1015

annotators perform the same tests as the machines1016

across all negative set setups. The results demon-1017

strated that humans achieved nearly perfect accu-1018

racy in this task, as shown in Tab. 12.1019

C.3 Deduction of Conclusion1020

We conducted experiments on both Multi-Modal1021

Large Language Models (MLLM) and Large1022

Language Models (LLMs). The MLLMs used1023

in our experiments include LLaVA-1.5, LLaVA-1024

NeXT, Idefics2, OFA, InstructBLIP, Qwen-VL-1025

Chat, CogVLM, and Unified-IO-2. The LLMs1026

include LLaMA-3, Mistral, and Zephyr.1027

Prompting. Before conducting the experiments,1028

we established a set of instructions to be applied to1029

all models to elicit appropriate responses. During1030

this process, we encountered several issues with1031

prompt engineering, such as model refusal to ad-1032

dress controversial or unsafe questions, the inclu-1033

sion of unnecessary tokens, multiple sentences, and1034

the positioning of image tokens. Ultimately, we1035

decided on the following prompt: "<image> <in-1036

formation> Your task is to answer what the image1037

wants to convey. You should respond in only one1038

sentence without any unnecessary prefixes. AN-1039

SWER:" 1040

C.4 Resource & Hyperparameters 1041

Computation. We utilized RTX-4090 and A6000 1042

GPUs for our experiments. All models, except 1043

for CogVLM, were implemented using RTX-4090 1044

GPUs. Due to the size of its model weights, 1045

CogVLM was implemented on an A6000 GPU. 1046

Each model required up to 8 RTX-4090 GPU-hours 1047

per task. In total, conducting all tasks demanded 1048

200 RTX-4090 GPU-hours. 1049

Hyperparameters. Our experiments are de- 1050

terministic, given the pretrained model weights, 1051

the greedy decoding scheme, and the instruction 1052

prompts. We explore prompt diversification in § 5.4 1053

and Appendix E. 1054

C.5 Model Details 1055

We specify all exact model identifiers and sizes 1056

in Tab. 8. 1057

D Comparison of Metrics for Deduction 1058

of Conclusion 1059

Here, we describe details for human evaluation of 1060

goodness per each metric illustrated in Tab. 2. 1061

Human Evaluation. We sampled 200 target im- 1062

ages and collected responses from three models: 1063

LLaVA-Next, Qwen-VL-Chat, and GPT-4o. Hu- 1064

man annotators then determined whether each 1065

model’s conclusion was semantically similar to the 1066

reference conclusion. 1067

Metrics. To evaluate accuracy, precision, recall, 1068

and F1-score, we first converted each metric into 1069

binary decisions using derived thresholds. We es- 1070

tablished these thresholds by training a logistic 1071

regression model on 100 pairs of metric scores and 1072

human decisions. Subsequently, we inferred binary 1073

decision labels on the remaining 100 pairs. The 1074

results are presented in Tab. 9. Additionally, the 1075

correlation between the metrics and human deci- 1076

sions is reported using Pearson’s coefficient (Cohen 1077

et al., 2009). 1078

E Prompt Robustness in Identification of 1079

Premises 1080

Extending the robustness study in Tab. 7, we con- 1081

ducted a similar prompt diversification experiment 1082

for the task of Identification of Premises. By para- 1083

phrasing the original prompt as described in Ap- 1084

pendix L, we performed the same evaluation. The 1085

results, presented in Tab. 10, demonstrate that our 1086

14



Accuracy Precision Recall F1-score Pearson Corr. (ρ)

BLEU-4 0.67 0.44 0.67 0.53 0.18
ROUGE 0.75 0.76 0.75 0.72 0.35
CIDEr 0.72 0.70 0.72 0.70 0.26
GPTEval 0.75 0.83 0.75 0.76 0.53
BERTScore 0.94 0.94 0.93 0.93 0.59

Table 9: Comparison of metrics with human decision on Deduction of Conclusion

Global Local

Prompt Random Visual Textual Mixed Semantic

LLaVA-NeXT Original 97.10 96.14 80.53 84.70 77.51
InstructBLIP 90.65 84.53 71.54 74.75 58.21

LLaVA-NeXT Paraphrase 1 97.24 96.59 80.98 85.63 77.60
InstructBLIP 90.93 84.73 72.78 74.98 59.68

LLaVA-NeXT Paraphrase 2 97.60 96.25 81.46 86.00 76.67
InstructBLIP 93.32 89.83 79.01 81.71 64.50

Table 10: Assessment of prompt robustness with different paraphrases in Identification of Premises. Accuracy is
measured as a percentage.

IoU Acc. (%)

Ads Cartoon All Ads Cartoon All

UNINEXT-H 34.50 44.33 38.75 31.67 40.71 35.58
LISA 40.05 49.17 44.25 40.52 50.01 44.62
Unified-IO-2 45.81 52.29 48.61 44.66 50.43 47.15
OFA 49.10 51.49 50.14 49.06 49.22 49.13
MM-G-Dino 52.70 58.06 55.02 52.39 58.37 54.98

Table 11: Open-set grounding results in localization of
premises.

experimental outcomes remain stable for Identifi-1087

cation of Premises across different prompt para-1088

phrases.1089

F Full Results1090

This section presents the comprehensive versions of1091

the results summarized in the main paper. Tab. 111092

displays the open-set grounding results for Local-1093

ization of Premises, while Tab. 12 provides the1094

results for Identification of Premises. The results1095

for the task of Deduction of Conclusion are detailed1096

by category: advertisements are shown in Tab. 13,1097

cartoons in Tab. 14, and the average across both1098

categories in Tab. 15.1099

G Qualitative Samples on Open-Set1100

Grounding1101

To identify the cause of low performance in the1102

open-set evaluation of the Localization of Premises1103

task, we examine qualitative samples shown in1104

Fig. 9. Traditional object detection models are1105

typically trained on single object labels, whereas1106

our semantic region labels may encompass multi- 1107

ple objects with similar meanings. Consequently, 1108

although the models may detect the correct target, 1109

the intersection over union (IoU) scores are lower, 1110

resulting in reduced accuracy. 1111

H Qualitative Samples on Deduction of 1112

Conclusion 1113

Inference results of different models with varying 1114

inputs are shown in Fig. 10 and Fig. 11. The out- 1115

puts of the models display discrepancies; for in- 1116

stance, CogVLM exhibits weak conditioning on 1117

additional inputs, producing similar outputs despite 1118

the incremental increase in information provided 1119

through different inputs. 1120

I Credits 1121

We do not claim any rights to the images included 1122

in our dataset. Therefore, we provide only the 1123

URLs to the corresponding images instead of dis- 1124

tributing the raw files. For usage outside of an aca- 1125

demic context, please contact the copyright holders 1126

directly. 1127

Figures. All icons used in the figures are from 1128

www.flaticon.com. 1129

• Figure 1: www.art-vibes.com/design/egle 1130

-plytnikaite-environmental-issues 1131

• Figure 2: www.commarts.com/project/24399 1132

/mcdonald-s-refresh 1133

• Figure 3: www.aisleone.net/2007/10/30/ 1134

jeep/ | www.nextml.github.io/caption-c 1135

15

www.flaticon.com
www.art-vibes.com/design/egle-plytnikaite-environmental-issues
www.art-vibes.com/design/egle-plytnikaite-environmental-issues
www.art-vibes.com/design/egle-plytnikaite-environmental-issues
www.commarts.com/project/24399/mcdonald-s-refresh
www.commarts.com/project/24399/mcdonald-s-refresh
www.commarts.com/project/24399/mcdonald-s-refresh
www.aisleone.net/2007/10/30/jeep/
www.aisleone.net/2007/10/30/jeep/
www.aisleone.net/2007/10/30/jeep/
www.nextml.github.io/caption-contest-data/dashboards/630.html
www.nextml.github.io/caption-contest-data/dashboards/630.html


ontest-data/dashboards/630.html | ww1136

w.i.pinimg.com/originals/ac/32/16/ac1137

321665c9e8f5feccc62eb3f6d09d37.jpg |1138

www.ipnoze.com/publicite-sociale/ | www.1139

adsoftheworld.com/campaigns/scissors-11140

e569372-d5e7-488b-9e06-8bf46580801e1141

• Figure 5: www.adsoftheworld.com/campaign1142

s/words-1c383606-d2b3-4aea-9f19-c06271143

b6fb4ff | www.behance.net/gallery/6874751144

47/The-Great-Plastic-Wave | www.fanpop1145

.com/clubs/global-warming-prevention/1146

images/33088666/title/global-warming-p1147

hoto1148

J Prompts for Annotation1149

• Annotation for Visual Premises1150

1151 � �1152
Your task is to identify visual premises1153

↪→ from the image. These are visual1154
↪→ cues that support or illustrate the1155
↪→ conclusion, enhancing the overall1156
↪→ understanding and clarity of the1157
↪→ image.1158

1159
Example1160
Visual Premises (VP):1161
1. The image depicts a maze with entry1162

↪→ point and exit.1163
2. At the entry point of a maze labeled "1164

↪→ Start," there is a cigarette.1165
3. The exit of the maze is labeled "Lung1166

↪→ Cancer."1167
4. There’s a text saying, "Or you can start1168

↪→ here," with an arrow pointing to1169
↪→ another text that reads, "Make the1170
↪→ right choice. DON’T SMOKE."1171 � �1172

• Annotation for Constructing Arguments1173

1174 � �1175
Visual Premises (VP):1176
1. VP11177
2. VP21178
3. VP31179

1180
Given the visual premises of the image,1181

↪→ your task is to generate the1182
↪→ necessary commonsense premises and1183
↪→ conclusion of the image. The1184
↪→ conclusion should be one simple1185
↪→ sentence. Then show the reasoning1186
↪→ steps to reach the conclusion. The1187
↪→ reasoning steps should include all1188
↪→ visual premises and commonsense1189
↪→ premises. You can refer to the1190
↪→ following example.1191

1192
Example1193
Visual Premises (VP):1194
1. The image depicts a maze with entry1195

↪→ point and exit.1196

2. At the entry point of a maze labeled " 1197
↪→ Start," there is a cigarette. 1198

3. The exit of the maze is labeled "Lung 1199
↪→ Cancer." 1200

4. There’s a text saying, "Or you can start 1201
↪→ here," with an arrow pointing to 1202
↪→ another text that reads, "Make the 1203
↪→ right choice. DON’T SMOKE." 1204

1205
Commonsense Premises (CP): 1206
1. Mazes are often used to represent 1207

↪→ complex journeys or paths one must 1208
↪→ navigate. 1209

2. Cigarettes are known to be harmful to 1210
↪→ health and a major cause of lung 1211
↪→ cancer. 1212

3. The phrase "Make the right choice" 1213
↪→ implies that there is a decision to 1214
↪→ be made that can impact one’s health 1215
↪→ . 1216

4. Public health messages often use strong 1217
↪→ visuals to convey the importance of 1218
↪→ making healthy choices. 1219

1220
Conclusion (C): 1221
The image is a public health message that 1222

↪→ illustrates the dangerous path from 1223
↪→ smoking to lung cancer while 1224
↪→ encouraging individuals to choose 1225
↪→ not to smoke for their health. 1226

1227
Reasoning Steps: 1228
(VP1, CP1 -> IC1): The maze represents the 1229

↪→ difficult and potentially harmful 1230
↪→ journey. 1231

(VP2, CP2 -> IC2): The presence of a 1232
↪→ cigarette at the maze’s entry point 1233
↪→ indicates the start of this 1234
↪→ hazardous journey. 1235

(VP3, CP2 -> IC3): Labeling the maze’s exit 1236
↪→ as "Lung Cancer" directly links 1237
↪→ smoking to this deadly disease. 1238

(VP4, CP3, CP4 -> IC4): The additional text 1239
↪→ offers an alternative choice to 1240
↪→ avoid smoking, emphasizing the 1241
↪→ importance of preventive health 1242
↪→ measures. 1243

(IC1, IC2, IC3, IC4 -> C): The image is a 1244
↪→ public health message that warns 1245
↪→ about the risks of smoking and 1246
↪→ encourages making the right choice 1247
↪→ for one’s health. 1248

1249
Answer 1250� � 1251

K Prompts for Evaluation 1252

• GPTEval 1253

1254� � 1255
Task Description: You will be given a 1256

↪→ ground truth sentence that describes 1257
↪→ an image and a model-generated 1258
↪→ sentence. Your task is to evaluate 1259
↪→ the semantic similarity between the 1260
↪→ model-generated sentence and the 1261
↪→ ground truth sentence. You don’t 1262
↪→ need to give me any description. 1263
↪→ Just score should be answered. 1264
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Evaluation Criteria: T/F. False means the1265
↪→ sentences are completely different.1266
↪→ True means they mean exactly the1267
↪→ same thing.1268

1269
Ground Truth: {}1270
Generated: {}1271 � �1272

L Prompts for Identification of Retrieval1273

• Original Prompt1274
1275 � �1276

<image>1277
The following are multiple choice questions1278

↪→ (with answers) about image1279
↪→ understanding.1280

1281
When given an image, a conclusion, and1282

↪→ several visual cue options, you need1283
↪→ to identify the visual cue that1284
↪→ best relates to the conclusion. To1285
↪→ do this effectively, carefully1286
↪→ analyze how each visual cue connects1287
↪→ to the key elements of the1288
↪→ conclusion. Select the visual cue1289
↪→ that most directly supports or1290
↪→ illustrates the conclusion, ensuring1291
↪→ that it enhances the overall1292
↪→ understanding and clarity of the1293
↪→ message. Answer A), B), or C) with1294
↪→ no additional explanation.1295
↪→ Conclusion: {conclusion}1296

{vp_options}1297
ANSWER:1298 � �1299

• Paraphrase 11300
1301 � �1302

<image>1303
The following are multiple choice questions1304

↪→ (with answers) about image1305
↪→ understanding.1306

1307
When given an image, a conclusion, and1308

↪→ several visual cue options, identify1309
↪→ the visual cue that best relates to1310
↪→ the conclusion. Select the visual1311
↪→ cue that most directly supports or1312
↪→ illustrates the conclusion, ensuring1313
↪→ that it enhances the overall1314
↪→ understanding and clarity of the1315
↪→ message. To do this effectively,1316
↪→ carefully analyze how each visual1317
↪→ cue connects to the key elements of1318
↪→ the conclusion. Answer A), B), or C)1319
↪→ with no additional explanation.1320
↪→ Conclusion: {conclusion}1321

{vp_options}1322
ANSWER:1323 � �1324

• Paraphrase 21325
1326 � �1327

<image>1328
The following are multiple choice questions1329

↪→ (with answers) about image1330
↪→ understanding.1331

1332
Given an image, what is the visual cue most 1333

↪→ related to the given conclusion? 1334
↪→ Answer A), B), or C) with no 1335
↪→ additional explanation. Conclusion: 1336
↪→ {conclusion} 1337

{vp_options} 1338
ANSWER: 1339� � 1340

M Prompts for Deduction of Conclusion 1341

• Image -> C 1342
1343� � 1344

<image> 1345
Your task is to answer what the image wants 1346

↪→ to say. You should answer in only 1347
↪→ one sentence without an unnecessary 1348
↪→ prefix. ANSWER: 1349� � 1350

• Image, VP -> C 1351
1352� � 1353

<image> 1354
"Visual Premises (VP)" are the important 1355

↪→ features presented in the images. 1356
1357

Visual Premises (VP): 1358
1. VP1 1359
2. VP2 1360
3. VP3 1361

1362
Your task is to answer what the image wants 1363

↪→ to say. You should answer in only 1364
↪→ one sentence without an unnecessary 1365
↪→ prefix. ANSWER: 1366� � 1367

• Image, VP, CP -> C 1368
1369� � 1370

<image> 1371
"Visual Premises (VP)" are the important 1372

↪→ features presented in the images. " 1373
↪→ Commonsense Premises (CP)" are not 1374
↪→ visually depicted in the image but 1375
↪→ are commonly understood by people. 1376

1377
Visual Premises (VP): 1378
1. VP1 1379
2. VP2 1380
3. VP3 1381

1382
Commonsense Premises (CP): 1383
1. CP1 1384
2. CP2 1385
3. CP3 1386

1387
Your task is to answer what the image wants 1388

↪→ to say. You should answer in only 1389
↪→ one sentence without an unnecessary 1390
↪→ prefix. 1391

ANSWER: 1392� � 1393

• Image, VP, CP, Tree -> C 1394
1395

17



� �1396
<image>1397
"Visual Premises (VP)" are the important1398

↪→ features presented in the images. "1399
↪→ Commonsense Premises (CP)" are not1400
↪→ visually depicted in the image but1401
↪→ are commonly understood by people. "1402
↪→ Reasoning Steps" are the structure1403
↪→ of explanation of how we came up to1404
↪→ the "Intermediate Conclusion(IC) and1405
↪→ "Conclusion".1406

1407
Visual Premises (VP):1408
1. VP11409
2. VP21410
3. VP31411

1412
Commonsense Premises (CP):1413
1. CP11414
2. CP21415
3. CP31416

1417
Reasoning Step:1418
(VP1, CP1 -> IC1): IC11419
(VP2, CP2 -> IC2): IC21420
(VP3, CP3 -> IC3): IC31421
(IC1, IC2, IC3 -> C):1422

1423
Your task is to answer what the image wants1424

↪→ to say. You should answer in only1425
↪→ one sentence without an unnecessary1426
↪→ prefix. ANSWER:1427 � �1428

• Prompt Style 11429
1430 � �1431

<image>1432
"Visual Premises (VP)" are the important1433

↪→ features presented in the images. "1434
↪→ Commonsense Premises (CP)" are not1435
↪→ visually depicted in the image but1436
↪→ are commonly understood by people. "1437
↪→ Reasoning Steps" are the structure1438
↪→ of explanation of how we came up to1439
↪→ the "Intermediate Conclusion(IC) and1440
↪→ "Conclusion".1441

1442
Visual Premises (VP):1443
...1444

1445
Commonsense Premises (CP):1446
...1447

1448
Reasoning Step:1449
...1450

1451
Answer in one sentence what the image wants1452

↪→ to convey. ANSWER:1453 � �1454

• Prompt Style 21455
1456 � �1457

<image>1458
"Visual Premises (VP)" are the key visual1459

↪→ elements in the image. "Commonsense1460
↪→ Premises (CP)" are elements based on1461
↪→ general common sense. "Reasoning1462
↪→ Steps" are the process of reaching1463
↪→ the "Intermediate Conclusion (IC)"1464
↪→ and "Conclusion".1465

1466
Visual Premises (VP): 1467
... 1468

1469
Commonsense Premises (CP): 1470
... 1471

1472
Reasoning Step: 1473
... 1474

1475
Write the message of the image in one 1476

↪→ sentence. You should answer in only 1477
↪→ one sentence without an unnecessary 1478
↪→ prefix. RESPONSE: 1479� � 1480

• Prompt Style 3 1481
1482� � 1483

<image> 1484
"Visual Premises (VP)" represent the 1485

↪→ important features observed in the 1486
↪→ image. "Commonsense Premises (CP)" 1487
↪→ are things not visually depicted but 1488
↪→ generally understood. "Reasoning 1489
↪→ Steps" are the explanation process 1490
↪→ leading to the "Intermediate 1491
↪→ Conclusion (IC)" and "Conclusion". 1492

1493
Visual Premises (VP): 1494
... 1495

1496
Commonsense Premises (CP): 1497
... 1498

1499
Reasoning Step: 1500
... 1501

1502
Write the main message of the image in one 1503

↪→ sentence. RESPONSE: 1504� � 1505

• Prompt Style 4 1506
1507� � 1508

<image> 1509
"Visual Premises (VP)" are the key features 1510

↪→ observed in the image. "Commonsense 1511
↪→ Premises (CP)" are not visually 1512
↪→ depicted but can be understood 1513
↪→ through general knowledge. " 1514
↪→ Reasoning Steps" are the logical 1515
↪→ explanation process leading to the " 1516
↪→ Intermediate Conclusion (IC)" and " 1517
↪→ Conclusion". 1518

1519
Visual Premises (VP): 1520
... 1521

1522
Commonsense Premises (CP): 1523
... 1524

1525
Reasoning Step: 1526
... 1527

1528
Write the meaning the image wants to convey 1529

↪→ in one sentence. RESPONSE: 1530� � 1531
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Global Local

Random Visual Textual Mixed Semantic

Ads Cartoon All Ads Cartoon All Ads Cartoon All Ads Cartoon All Ads Cartoon All

Random 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33 33.33
Human 100.00 100.00 100.00 100.00 98.00 99.00 96.00 92.00 94.00 100.00 100.00 100.00 98.00 98.00 98.00

OFA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Qwen-VL-Chat 88.90 83.21 86.05 88.67 82.87 85.77 73.73 67.61 70.67 77.00 74.14 49.73 53.21 46.25 75.57
CogVLM 97.58 97.35 97.46 96.45 96.34 96.39 88.78 87.21 88.00 91.66 92.79 92.22 69.28 61.35 65.31
Idefics2 98.59 98.76 98.68 97.91 97.75 97.83 93.18 90.42 91.80 95.15 94.99 95.07 77.40 72.62 75.01
InstructBLIP 82.41 85.13 83.77 78.07 80.39 79.23 68.55 65.35 66.95 71.87 70.87 71.37 66.91 56.90 61.90
Unified-IO-2 98.31 98.54 98.42 97.29 96.68 96.99 88.78 84.96 86.87 92.28 93.35 92.81 34.67 34.82 34.74
LLaVA-1.5 98.82 98.48 98.65 98.08 97.75 97.91 84.44 83.04 83.74 89.23 90.48 89.86 73.34 61.52 67.43
LLaVA-NeXT 97.35 97.97 97.66 96.05 96.34 96.20 81.17 80.62 80.90 84.33 87.38 85.86 82.69 74.37 78.53
GPT-4-O - - - - - - - - - - - - 75.22 82.56 79.50

Table 12: Results on Identification of Premises.

Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 7.07 28.41 33.08 43.00
✓ ✓ 8.65 (↑ 1.58) 31.44 (↑ 3.03) 40.87 (↑ 7.79) 59.58 (↑ 16.58)
✓ ✓ ✓ 8.34 (↓ 0.31) 31.18 (↓ 0.26) 41.94 (↑ 1.07) 56.70 (↓ 2.88)

Mistral
✓ 2.95 19.84 23.28 24.86
✓ ✓ 4.95 (↑ 2.00) 25.13 (↑ 5.29) 33.90 (↑ 10.62) 39.92 (↑ 16.05)
✓ ✓ ✓ 6.15 (↑ 1.20) 27.06 (↑ 1.93) 38.34 (↑ 4.43) 49.54 (↑ 9.62)

Zephyr
✓ 2.78 16.35 24.06 16.15
✓ ✓ 3.25 (↑ 0.47) 17.44 (↑ 1.08) 30.41 (↑ 6.35) 31.38 (↑ 6.52)
✓ ✓ ✓ 5.20 (↑ 1.94) 22.70 (↑ 5.26) 36.29 (↑ 5.88) 45.23 (↑ 13.85)

OFA

✓ 0.00 0.13 0.01 -41.26
✓ ✓ 0.00 (-) 5.24 (↑ 5.10) 0.47 (↑ 0.47) -22.52 (↑ 18.75)
✓ ✓ ✓ 0.00 (-) 5.79 (↑ 0.55) 0.37 (↓ 0.10) -15.87 (↑ 6.65)
✓ ✓ ✓ ✓ 0.00 (-) 6.53 (↑ 0.75) 0.70 (↑ 0.33) -12.51 (↑ 3.36)

QwenVLChat

✓ 0.72 13.12 8.41 14.32
✓ ✓ 4.02 (↑ 3.30) 24.73 (↑ 11.61) 30.58 (↑ 22.17) 28.74 (↑ 14.41)
✓ ✓ ✓ 4.85 (↑ 0.83) 26.67 (↑ 1.94) 35.30 (↑ 4.72) 34.05 (↑ 5.31)
✓ ✓ ✓ ✓ 4.89 (↑ 0.03) 26.89 (↑ 0.23) 38.30 (↑ 3.00) 35.11 (↑ 1.06)

CogVLM

✓ 4.96 24.40 25.56 27.38
✓ ✓ 6.06 (↑ 1.09) 27.37 (↑ 2.97) 39.19 (↑ 13.63) 33.24 (↑ 5.87)
✓ ✓ ✓ 7.18 (↑ 1.13) 29.25 (↑ 1.88) 47.21 (↑ 8.02) 36.41 (↑ 3.17)
✓ ✓ ✓ ✓ 7.68 (↑ 0.50) 30.03 (↑ 0.78) 51.44 (↑ 4.23) 37.71 (↑ 1.29)

Idefics2

✓ 4.00 21.97 18.56 21.27
✓ ✓ 4.53 (↑ 0.53) 24.13 (↑ 2.17) 28.79 (↑ 10.24) 27.39 (↑ 6.12)
✓ ✓ ✓ 5.56 (↑ 1.03) 25.17 (↑ 1.04) 38.21 (↑ 9.42) 33.22 (↑ 5.83)
✓ ✓ ✓ ✓ 7.48 (↑ 1.92) 27.73 (↑ 2.56) 53.22 (↑ 15.01) 38.40 (↑ 5.17)

InstructBLIP

✓ 0.00 4.22 1.01 -15.92
✓ ✓ 3.27 (↑ 3.26) 18.94 (↑ 16.26) 22.16 (↑ 21.15) 23.15 (↑ 39.07)
✓ ✓ ✓ 6.00 (↑ 2.73) 26.91 (↑ 7.32) 44.23 (↑ 22.07) 35.20 (↑ 12.05)
✓ ✓ ✓ ✓ 6.27 (↑ 0.27) 28.29 (↑ 0.37) 45.53 (↑ 1.29) 35.52 (↑ 0.32)

Unified-io 2

✓ 0.07 10.02 0.89 -8.49
✓ ✓ 0.65 (↑ 0.58) 14.81 (↑ 4.79) 5.18 (↑ 4.29) -0.04 (↑ 8.45)
✓ ✓ ✓ 0.82 (↑ 0.17) 15.27 (↑ 0.46) 7.73 (↑ 2.55) 5.63 (↑ 5.68)
✓ ✓ ✓ ✓ 0.93 (↑ 0.11) 16.10 (↑ 0.83) 10.12 (↑ 2.39) 8.43 (↑ 2.79)

LLaVA

✓ 1.38 14.93 3.73 3.25
✓ ✓ 3.92 (↑ 2.54) 22.93 (↑ 8.01) 21.49 (↑ 17.76) 22.21 (↑ 18.96)
✓ ✓ ✓ 5.49 (↑ 1.58) 26.40 (↑ 3.47) 39.29 (↑ 17.80) 32.48 (↑ 10.28)
✓ ✓ ✓ ✓ 5.68 (↑ 0.19) 26.46 (↑ 0.06) 42.65 (↑ 3.36) 34.22 (↑ 1.74)

LLaVA-NeXT

✓ 3.62 21.08 15.23 18.05
✓ ✓ 6.78 (↑ 3.16) 28.31 (↑ 7.23) 42.17 (↑ 26.94) 32.98 (↑ 14.94)
✓ ✓ ✓ 7.51 (↑ 0.73) 30.03 (↑ 1.72) 50.54 (↑ 8.37) 37.93 (↑ 4.95)
✓ ✓ ✓ ✓ 8.51 (↑ 1.00) 31.19 (↑ 1.15) 61.70 (↑ 11.16) 40.96 (↑ 3.02)

GPT-4-O
✓ 2.38 17.20 23.08 25.96
✓ ✓ 5.44 (↑ 3.07) 24.47 (↑ 7.27) 46.05 (↑ 22.98) 36.09 (↑ 10.13)
✓ ✓ ✓ ✓ 6.82 (↑ 1.38) 26.36 (↑ 1.88) 61.20 (↑ 15.15) 41.08 (↑ 4.99)

Table 13: Results on Deduction of Conclusion in the Advertisement category.
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Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 5.51 27.67 31.28 26.46
✓ ✓ 6.65 (↑ 1.13) 29.95 (↑ 2.28) 48.01 (↑ 16.73) 33.71 (↑ 7.25)
✓ ✓ ✓ 8.81 (↑ 2.17) 32.17 (↑ 2.22) 61.74 (↑ 13.73) 39.20 (↑ 5.49)

Mistral
✓ 1.87 16.29 11.24 13.23
✓ ✓ 4.01 (↑ 2.14) 22.24 (↑ 5.95) 28.15 (↑ 16.91) 25.22 (↑ 11.99)
✓ ✓ ✓ 6.45 (↑ 2.44) 27.82 (↑ 5.59) 45.00 (↑ 16.85) 34.39 (↑ 9.17)

Zephyr
✓ 1.70 13.88 11.54 16.15
✓ ✓ 3.28 (↑ 1.58) 17.51 (↑ 3.63) 24.92 (↑ 13.38) 26.40 (↑ 10.25)
✓ ✓ ✓ 6.91 (↑ 3.63) 27.20 (↑ 9.69) 46.63 (↑ 21.71) 36.70 (↑ 10.29)

OFA

✓ 0.00 0.45 0.01 -41.35
✓ ✓ 0.00 (-) 5.30 (↑ 4.84) 0.27 (↑ 0.26) -27.23 (↑ 14.12)
✓ ✓ ✓ 0.00 (-) 8.15 (↑ 2.85) 0.26 (↓ 0.01) -17.30 (↑ 9.93)
✓ ✓ ✓ ✓ 0.00 (-) 8.45 (↑ 0.30) 0.58 (↑ 0.32) -15.74 (↑ 1.56)

QwenVLChat

✓ 0.49 13.98 4.23 10.79
✓ ✓ 3.18 (↑ 2.69) 23.80 (↑ 9.81) 18.02 (↑ 13.79) 17.18 (↑ 6.39)
✓ ✓ ✓ 4.23 (↑ 1.05) 26.40 (↑ 2.60) 26.76 (↑ 8.74) 25.03 (↑ 7.85)
✓ ✓ ✓ ✓ 4.79 (↑ 0.56) 27.87 (↑ 1.47) 32.10 (↑ 5.34) 29.49 (↑ 4.46)

CogVLM

✓ 4.89 27.48 24.56 23.51
✓ ✓ 5.49 (↑ 0.60) 28.50 (↑ 1.02) 32.11 (↑ 7.54) 27.24 (↑ 3.73)
✓ ✓ ✓ 6.43 (↑ 0.94) 29.64 (↑ 1.14) 38.02 (↑ 5.91) 29.88 (↑ 2.64)
✓ ✓ ✓ ✓ 7.89 (↑ 1.46) 31.72 (↑ 2.08) 53.05 (↑ 15.04) 34.45 (↑ 4.56)

Idefics2

✓ 3.50 21.74 16.07 16.36
✓ ✓ 3.61 (↑ 0.78) 23.47 (↑ 2.04) 20.02 (↑ 7.20) 16.70 (↑ 6.78)
✓ ✓ ✓ 5.42 (↑ 1.81) 26.58 (↑ 3.11) 29.96 (↑ 9.94) 24.50 (↑ 7.81)
✓ ✓ ✓ ✓ 8.28 (↑ 2.86) 31.01 (↑ 4.43) 54.64 (↑ 24.68) 34.27 (↑ 9.76)

InstructBLIP

✓ 0.00 3.24 0.40 -21.55
✓ ✓ 2.53 (↑ 2.53) 18.94 (↑ 15.14) 16.35 (↑ 15.60) 16.62 (↑ 34.98)
✓ ✓ ✓ 5.33 (↑ 2.80) 26.91 (↑ 7.98) 36.87 (↑ 20.52) 28.92 (↑ 12.30)
✓ ✓ ✓ ✓ 6.18 (↑ 0.85) 28.29 (↑ 1.38) 42.53 (↑ 5.65) 32.17 (↑ 3.25)

Unified-io 2

✓ 0.00 9.07 0.40 -11.68
✓ ✓ 0.56 (↑ 0.56) 11.32 (↑ 2.25) 2.60 (↑ 2.20) -7.80 (↑ 3.88)
✓ ✓ ✓ 0.62 (↑ 0.06) 13.79 (↑ 2.48) 5.40 (↑ 2.80) 2.39 (↑ 10.19)
✓ ✓ ✓ ✓ 1.33 (↑ 0.71) 16.50 (↑ 2.70) 12.63 (↑ 7.24) 7.47 (↑ 5.08)

LLaVA

✓ 1.46 17.84 3.55 0.92
✓ ✓ 3.73 (↑ 2.27) 23.22 (↑ 5.38) 12.56 (↑ 9.01) 14.92 (↑ 14.01)
✓ ✓ ✓ 5.61 (↑ 1.87) 27.63 (↑ 4.41) 28.99 (↑ 16.44) 25.89 (↑ 10.97)
✓ ✓ ✓ ✓ 7.87 (↑ 2.26) 30.46 (↑ 2.84) 47.25 (↑ 18.25) 33.11 (↑ 7.22)

LLaVA-NeXT

✓ 2.71 22.32 11.26 11.26
✓ ✓ 5.78 (↑ 3.07) 27.79 (↑ 5.48) 28.12 (↑ 16.86) 22.46 (↑ 11.20)
✓ ✓ ✓ 7.31 (↑ 1.52) 30.44 (↑ 2.65) 43.84 (↑ 15.73) 29.57 (↑ 7.11)
✓ ✓ ✓ ✓ 9.16 (↑ 1.85) 33.09 (↑ 2.65) 61.44 (↑ 17.60) 35.88 (↑ 6.32)

GPT-4-O
✓ 4.07 23.37 23.15 24.96
✓ ✓ 6.40 (↑ 2.34) 27.39 (↑ 4.02) 40.64 (↑ 17.50) 32.05 (↑ 7.09)
✓ ✓ ✓ ✓ 8.69 (↑ 2.29) 31.32 (↑ 3.93) 63.13 (↑ 22.48) 40.78 (↑ 8.73)

Table 14: Results on Deduction of Conclusion in the Cartoon category.

20



Inputs Automatic Semantic
I VP CP RS BLEU-4 ROUGE CIDEr BERT

LLaMA3
✓ 6.40 28.09 37.93 30.22
✓ ✓ 7.78 (↑ 1.39) 30.80 (↑ 2.71) 54.57 (↑ 16.65) 37.77 (↑ 7.55)
✓ ✓ ✓ 8.54 (↑ 0.76) 31.61 (↑ 0.82) 58.88 (↑ 4.31) 40.75 (↑ 2.98)

Mistral
✓ 2.48 18.30 18.41 18.93
✓ ✓ 4.54 (↑ 2.06) 23.88 (↑ 5.57) 34.83 (↑ 16.42) 30.15 (↑ 11.21)
✓ ✓ ✓ 6.28 (↑ 1.74) 27.39 (↑ 3.51) 47.58 (↑ 12.75) 36.63 (↑ 6.48)

Zephyr
✓ 2.31 15.28 19.10 20.64
✓ ✓ 3.26 (↑ 0.95) 17.47 (↑ 2.18) 28.59 (↑ 9.49) 28.67 (↑ 8.04)
✓ ✓ ✓ 5.94 (↑ 2.67) 24.65 (↑ 7.18) 45.84 (↑ 17.25) 36.47 (↑ 7.79)

OFA

✓ 0.00 0.27 0.01 -41.30
✓ ✓ 0.00 (-) 5.26 (↑ 4.99) 0.39 (↑ 0.38) -24.55 (↑ 5.68)
✓ ✓ ✓ 0.00 (-) 6.81 (↑ 1.55) 0.32 (↓ 0.06) -16.49 (↑ 1.73)
✓ ✓ ✓ ✓ 0.00 (-) 7.36 (↑ 0.55) 0.65 (↑ 0.32) -13.91 (↑ 1.22)

QwenVLChat

✓ 0.62 13.50 6.60 12.79
✓ ✓ 3.66 (↑ 3.04) 24.33 (↑ 10.83) 25.15 (↑ 18.54) 23.74 (↑ 10.94)
✓ ✓ ✓ 4.58 (↑ 0.92) 26.55 (↑ 2.23) 31.61 (↑ 6.46) 30.15 (↑ 6.41)
✓ ✓ ✓ ✓ 4.85 (↑ 0.26) 27.31 (↑ 0.76) 35.62 (↑ 4.01) 32.68 (↑ 2.53)

Idefics2

✓ 3.50 21.74 16.07 16.36
✓ ✓ 4.13 (↑ 0.64) 23.84 (↑ 2.11) 25.00 (↑ 8.92) 22.76 (↑ 6.41)
✓ ✓ ✓ 5.50 (↑ 1.37) 25.78 (↑ 1.93) 34.64 (↑ 9.64) 29.45 (↑ 6.69)
✓ ✓ ✓ ✓ 7.82 (↑ 2.32) 29.15 (↑ 3.37) 53.84 (↑ 19.20) 36.61 (↑ 7.16)

InstructBLIP

✓ 0.00 3.80 0.75 -18.36
✓ ✓ 2.53 (↑ 2.53) 18.94 (↑ 15.14) 16.35 (↑ 15.60) 16.62 (↑ 34.98)
✓ ✓ ✓ 5.33 (↑ 2.80) 26.91 (↑ 7.98) 36.87 (↑ 20.52) 28.92 (↑ 12.30)
✓ ✓ ✓ ✓ 6.18 (↑ 0.85) 28.29 (↑ 1.38) 42.53 (↑ 5.65) 32.17 (↑ 3.25)

CogVLM

✓ 4.93 25.73 25.13 25.53
✓ ✓ 5.81 (↑ 0.88) 27.86 (↑ 2.13) 36.13 (↑ 11.00) 30.65 (↑ 4.94)
✓ ✓ ✓ 6.86 (↑ 1.04) 29.42 (↑ 1.56) 43.23 (↑ 7.10) 33.59 (↑ 2.94)
✓ ✓ ✓ ✓ 7.77 (↑ 0.92) 30.76 (↑ 1.34) 52.14 (↑ 8.90) 36.30 (↑ 2.71)

Unified-io 2

✓ 0.04 9.61 0.68 -9.87
✓ ✓ 0.61 (↑ 0.57) 13.30 (↑ 3.69) 4.07 (↑ 3.39) -3.40 (↑ 6.47)
✓ ✓ ✓ 0.74 (↑ 0.12) 14.63 (↑ 1.33) 6.72 (↑ 2.66) 4.23 (↑ 7.63)
✓ ✓ ✓ ✓ 1.10 (↑ 0.37) 16.27 (↑ 1.64) 11.21 (↑ 4.48) 8.01 (↑ 3.78)

LLaVA

✓ 1.50 16.01 3.65 2.24
✓ ✓ 3.86 (↑ 2.36) 22.88 (↑ 6.87) 18.69 (↑ 15.04) 19.98 (↑ 17.74)
✓ ✓ ✓ 5.54 (↑ 1.69) 26.93 (↑ 4.05) 34.84 (↑ 16.14) 29.63 (↑ 9.66)
✓ ✓ ✓ ✓ 6.63 (↑ 1.09) 28.19 (↑ 1.26) 44.64 (↑ 9.80) 33.74 (↑ 4.11)

LLaVA-NeXT

✓ 3.23 21.62 13.51 15.11
✓ ✓ 6.35 (↑ 3.12) 28.09 (↑ 6.47) 36.09 (↑ 22.58) 28.43 (↑ 16.75)
✓ ✓ ✓ 7.42 (↑ 1.07) 30.21 (↑ 2.12) 47.64 (↑ 11.55) 34.31 (↑ 8.07)
✓ ✓ ✓ ✓ 8.46 (↑ 1.04) 31.69 (↑ 1.49) 61.14 (↑ 13.50) 39.50 (↑ 2.58)

GPT-4-O
✓ 3.11 19.87 23.11 24.50
✓ ✓ 5.86 (↑ 2.75) 25.74 (↑ 5.87) 43.71 (↑ 20.61) 31.89 (↑ 7.39)
✓ ✓ ✓ ✓ 7.63 (↑ 1.77) 28.51 (↑ 2.77) 62.03 (↑ 18.32) 38.42 (↑ 6.53)

Table 15: Results for the Deduction of Conclusion averaged across the two categories.
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 1. Below is the auto generated annotations. Please read them carefully and make any corrections following the instructions. 
 2. List all the visual elements necessary to understand the message conveyed by the image as visual premises. 

 3. List all the commonsense knowledge required to understand the message conveyed by the image as commonsense premises. 

 4. Write down the message that the image is trying to convey.

 5. Create the argument step by step to reach the conclusion. The reasoning tree must include all premises.


Image Annotation

Figure 6: Human annotation interface for collecting textual annotations.
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Bounding Box Annotation
Draw a bounding box around the image that captures its semantic meaning, 

ensuring it is the best-fitting box. 

Include all relevant objects within the bounding box.

Figure 7: Human annotation interface for collecting bounding boxes of visual premises.
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Figure 8: Human evaluation interface for Identification of Premises.
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Target Visual Premise:


Mannequins in a store window wearing fur coats.

IOU : 0.23

Target Visual Premise:


A garlic bulb and a chili pepper, both smaller than onion.

IOU : 0.29

Explanation: 


The model seems to be detecting the correct target,


but only for a single object.

Explanation: 


The model detecting on object related to the target,


but on wrong object.

Explanation: 


The model seems to be detecting the correct target, 


but only for a single object.

Target Visual Premise: 


A bird, made of water, is drinking from the water plant.

IOU : 0.00

Figure 9: Qualitative samples of open-set grounding results.
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I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CLLaVANeXT InstructBLIP

The image shows a man trying to fix a 
broken wall with a hammer and a chisel, 
but the elephant is causing chaos by 
knocking down the bricks.

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CLLaVANeXT InstructBLIP

The image illustrates the consequences of 
curiosity and the unexpected 
consequences of one's actions.

The image humorously illustrates the 
consequences of curiosity and the 
unexpected power of an elephant.

The image warns against curiosity or 
investigation that may lead to dangerous 
consequences.

elephant

The image wants to say that the man was 
knocked down by the elephant as it burst 
through the wall.

The image depicts a man using a stick to 
probe a small hole in the wall, and an 
elephant bursts through the wall, creating 
a large hole and knocking the man down.

The image suggests that curiosity can lead 
to unexpected and potentially harmful 
consequences.

The image wants to say that mcdonald's is 
everywhere.

mcdonalds

The image wants to say that McDonald's 
is a ubiquitous presence in urban 
environments, even at night.

The image is advertising McDonald's 
delivery service.

The image showcases the convenience of 
McDonald's delivery service in a city 
setting, emphasizing the brand's presence 
and the availability of nighttime delivery.

The image wants to showcase the 
convenience of McDonald's delivery 
service in an urban European setting, 
emphasized by the illuminated golden 
arches logos on various building facades.

The image showcases McDonald's 
delivery service in a city environment, 
highlighting the convenience of nighttime 
food delivery.

The image is advertising McDonald's 
delivery service in a nighttime urban 
setting with illuminated golden arches 
logos on various building facades.

Figure 10: Qualitative samples of Deduction of Conclusion, with inference results from LLaVA-NeXT and
InstructBLIP models.
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I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CCogVLM QwenVLChat

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> C

I, VP -> C

I, VP, CP -> C

I, VP, CP, T -> C

I -> CCogVLM QwenVLChat

the image wants to say that cyberbullying 
is not a joke.

The image wants to say that cyberbullying 
is a serious issue and should not be taken 
lightly.

The image wants to say that cyberbullying 
can be as harmful as physical violence, and 
it uses a keyboard and a knife to represent 
these concepts.

The image is a metaphorical representation 

of the dangers of cyberbullying, suggesting 
that it is as harmful as physical violence.

The image is conveying a message about 
the potential dangers of cyberbullying, 
suggesting that one's online actions can 
have real-world consequences.

The image is emphasizing the severity of 
cyberbullying by comparing it to physical 
violence, suggesting that both can have 
harmful consequences.

The image is emphasizing the harmful 
nature of cyberbullying by comparing it to 
physical violence, suggesting that one 
should be cautious and sure about their 
online actions.

The image wants to say that cyberbullying 
can be as harmful as physical violence, and 
it is a serious issue that should not be 
underestimated.

The image conveys the challenges and 
dangers faced by journalists in conflict 
zones.

the image wants to say that journalists are 
often threatened and attacked while doing 
their jobs.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones.

The image depicts a journalist kneeling in 
front of armed soldiers, symbolizing the 
danger and sacrifice of reporting in 
conflict situations.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones, emphasizing the sacrifices they 
make to report the truth.

The image portrays a journalist kneeling in 
front of armed soldiers, conveying the 
dangers and challenges faced by 
journalists in reporting from conflict zones.

The image conveys the dangers and 
challenges faced by journalists in conflict 
zones, highlighting the vulnerability of 
press freedom and the sacrifices made for 
the sake of truth.

Journalists often face danger and violence 
while reporting news, even in conflict 
zones where they are supposed to be 
protected by the "PRESS" label.

Figure 11: Qualitative samples of Deduction of Conclusion, with inference results from CogVLM and Qwen-VL-
Chat models.
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