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ABSTRACT

Deep learning methods rely on massive data, resulting in substantial costs for stor-
age, annotation, and model training. Coreset selection aims to select a represen-
tative subset of the data to train models with lower cost while ideally performing
on par with the full data training. State-of-the-art coreset selection methods use
carefully-designed criteria to quantify the importance of each data example us-
ing ground truth labels and dataset-specific training, then select examples whose
scores lie in a certain range to construct a coreset. These methods work well
in their respective settings, however, they cannot consider candidate data that are
initially unlabeled. This limits the application of these methods, especially so con-
sidering that the majority of real-world data are unlabeled. To that end, this paper
explores the problem of coreset selection for unlabeled data. We first motivate
and formalize the problem of unlabeled coreset selection, which reduces annota-
tion requirements to enable greater scale relative to label-based coreset selection.
We then develop an unlabeled coreset selection method, Blind Coreset Selection
(BlindCS), that jointly considers overall data coverage on a distribution as well as
the relative importance of each example based on redundancy. Notably, BlindCS
does not use any model- or dataset-specific training, which increases coreset gen-
eralization and reduces computation relative to training-based coreset selection.
We evaluate BlindCS on four datasets and confirm the advance over several state-
of-the-art methods that use labels and training, leading to a strong baseline for
future research in unlabeled coreset selection. Notably, the BlindCS coreset for
ImageNet achieves a higher accuracy than previous label-based coresets at a 90%
prune rate, while removing annotation requirements for 1.15 million images. We
will make our code publicly available with the final paper.

1 INTRODUCTION

The computational cost to train a single state-of-the-art deep learning model in various fields doubles
every 3.4 months in the deep learning era due to increasingly large models and datasets (Amodei
et al., 2018; Zhao & Bilen, 2023). Since the introduction of AlexNet (Krizhevsky et al., 2012),
groundbreaking models in computer vision like ViT and DALLE all rely on massive datasets for
training (Dosovitskiy et al., 2021; Ramesh et al., 2022). However, there are substantial costs to col-
lecting, storing, transmitting, and pre-processing such a vast amount of data. Furthermore, training
models on vast datasets introduces yet another substantial cost for computation, sometimes hun-
dreds of thousands of GPU hours to achieve satisfactory performance, which frustrates applications
requiring repeat training over datasets such as hyparameter optimization (Maclaurin et al., 2015;
Lorraine et al., 2020) and neural architecture search (Elsken et al., 2019; Li & Talwalkar, 2020).

Coreset selection deals with large data to mitigate the above issues for data-efficient deep learning.
Specifically, coreset selection reduces the training set size by selecting a pruned subset that contains
only valuable examples (the core set), such that models trained on the coreset achieve similar per-
formance to those trained on the original, full dataset (Feldman et al., 2011). Several recent works
provide various coreset selection methods using carefully-designed criteria, including median class
values (Xia et al., 2023), diverse coverage of importance scores (Zheng et al., 2023), and gradient
dynamics during training (Zhang et al., 2024), which achieves 53.91% accuracy on ImageNet with
only 10% training data.
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Figure 1: Blind Coreset Selection Overview. To select coresets from unlabeled data, we first use
off-the-shelf models to generate a dataset embedding space (e.g., a 2-D slice of CLIP on CIFAR100,
left). Using the embeddings, we calculate an importance score that rewards examples individually
covering large portions of the embedding space while penalizing immediate neighbors to remove
redundancy. Finally, we output a coreset of examples for any given prune rate using the score rank.
Embeddings and data visualizations generated using the FiftyOne Library (Moore & Corso, 2020).

State-of-the-art coreset selection methods have demonstrated impressive results in experiment set-
tings. However, the current SOTA methods assume the full dataset is labeled and available for
training prior to coreset selection. Regarding labels, it is important to acknowledge that the majority
of real-world data are, in fact, unlabeled, preventing coreset consideration for label-based methods.
Furthermore, labeling massive amounts of image data just to consider selection is cost prohibitive,
with annotation taking anywhere between 7 s per bounding box to 1.5 hours for full semantic seg-
mentation (Jain & Grauman, 2013; Cordts et al., 2016). Some innovative coreset selection methods
use self-supervised learning in place of label-based training (Sorscher et al., 2022); however, this ap-
proach will still have substantial time and computation costs to select coresets at scale. Furthermore,
coupling coreset selection with training on a single model architecture decreases generalization.

To that end, this paper addresses the problem of coreset selection without labels or training using a
novel approach. First, we formulate the problem of unlabeled coreset selection, which reduces data-
and label-based costs by generating coresets from unlabeled data. After coreset selection from the
larger dataset, labels are only used by the actual model to train on the pruned dataset. Notably, if
coreset selections are for self-supervised training, no labels are used. Second, we use the unlabeled
coreset selection formulation to develop Blind Coreset Selection (BlindCS), a method which also
reduces computation costs by selecting coresets without training on the candidate dataset. Instead,
BlindCS uses off-the-shelf models to generate a candidate selection embedding space, which is then
iteratively sampled and scored to estimate the value of each example’s value based on coverage of
the embedding space and redundancy within the coreset (see Figure 1).

Our contributions are as follows:

1. We motivate and formalize the problem of unlabeled coreset selection, which substantially
reduces data- and label-based costs for efficient deep learning at scale.

2. We develop our Blind Coreset Selection method (BlindCS), which is computationally ef-
ficient and uses novel estimates of dataset distribution coverage and redundancy to select
coresets from larger, unlabeled datasets, enabling broader application.

3. We evaluate BlindCS against state-of-the-art label- and training-based coreset selection
methods with eight baselines on four different datasets spanning three orders of magnitude

2
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Table 1: Comparison of data and procedural requirements across coreset selection methods.
Selects Coreset Data

without Training without Ground without Prune
Methods on Data Truth Labels Specific Tuning

Blind Coreset Selection (ours), Random Yes Yes Yes
Self-Supervised Selection NeurIPS 2022 No Yes Yes
Moderate ICLR 2023, Dyn-Unc CVPR WS ‘24 No No Yes
TDDS CVPR 2024, Coverage ICLR 2023 No No No

for scale. Results demonstrate that our method performs best in multiple cases and overall
outperforms all label-based methods save one, while reducing label and computation costs.

From these results, BlindCS sets a new state-of-the-art for coreset selection work.

2 RELATED WORK

Dataset Distillation is similar to coreset selection in that it comprises many innovative methods
for data-efficient deep learning. On a functional level, the objectives of many coreset methods also
apply to dataset distillation, however, as opposed to selecting a subset of existing data for a coreset,
dataset distillation aims to generate a much smaller dataset with synthetic examples that yield the
same performance as the larger initial dataset (Yu et al., 2024). Notable dataset distillation methods
generate synthetic examples relative to the initial dataset by matching gradients (Zhao et al., 2021),
differentiable Siamese augmentation for better synthesis (Zhao & Bilen, 2021), aligning features
(Wang et al., 2022), multi-step parameter matching (Cazenavette et al., 2022), and embedding space
distribution matching (Zhao & Bilen, 2023). These dataset distillation methods are remarkable for
their creation of small but effective synthetic training datasets. On the other hand, our current work
focuses on evaluating and selecting coresets from existing real-world data.

Active Learning is another active research area with many contributions to data-efficient deep learn-
ing. The goal of active learning is to enable learning algorithms to perform better with less training
by letting them choose their own data (Settles, 2012), which is especially useful in cases where large
portions of data are unlabeled and manual labeling is expensive (Bernard et al., 2018). In fact, ac-
tive learning encompasses the particularly hard problem of starting selection with no initial labeled
examples, i.e., the cold start problem (McCallum & Nigam, 1998). Notably, some recent active
learning methods focus on the importance of coverage diversity in data selection (Ash et al., 2020;
Citovsky et al., 2021). However, these methods actively train and select data on an increasing set for
a specific model, which is not conducive for model-agnostic, one-shot coreset selection.

Coreset Selection prunes datasets down to a smaller, valuable core set to reduce costs and enable
more data-efficient deep learning. A basic solution to find the optimal coreset is to search through
and train on every subset to find the best corresponding model performance. However, this simple
approach is NP-hard, which has led to the development of many innovative coreset selection meth-
ods. Early coreset methods generally expect a consistent data distribution to the original dataset
(Feldman et al., 2011; Bachem et al., 2015), e.g., Welling (2009) greedily adds one sample at a time
to match embedding space centers. Other coreset methods can be broadly categorized as select-
ing by optimization (Wei et al., 2015; Yang et al., 2023), coverage or diversity (Sener & Savarese,
2018; Zheng et al., 2023), and importance criteria (Toneva et al., 2019; Tan et al., 2023). Recent
coreset innovations address ongoing challenges such as application on a wide range of dataset sizes
(Xia et al., 2023), making selections on data with label errors (Park et al., 2023), and fully utilizing
training dynamics (Zhang et al., 2024).

Our current work is inspired by the success of this previous coreset selection work. However, a
drawback for current state-of-the-art coreset selection methods is requiring labels and/or training on
the larger initial dataset (see Table 1). Thus, in this paper, we focus on extending coreset selection to
unlabeled data without any requirements for dataset- or architecture-specific training. This broadens
general applicability to new data and models while reducing costs associated with annotating data
with ground truth labels, sensitivity to label errors, and extensive computation at scale.
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3 PRELIMINARIES

We define the problem of labeled coreset selection for data-efficient deep learning. Formally, we
are given a labeled dataset SL = {(xi, yi)}Ni=1 with N examples drawn i.i.d. from an underlying
distribution P , where xi are the data and yi is the ground truth label for each example. The goal is
to select a subset of SL to reduce future storage and training consumption while closely maintaining
performance of full dataset training. We denote this coreset as SC = {(xi, yi)}ni=1 ⊂ SL, which has
n examples and a prune rate of (1−n)

N . We formulate coreset selection as (Sener & Savarese, 2018):

argmin
SC⊂SL| 1−n

N ≥p

Ex,y∼P [l(x, y; f(SC))], (1)

where p is a prune rate set before training, l is the loss function, and f(SC) is a model trained on SC.
Notably, many SOTA methods select SC by assigning an importance score to each example (e.g.,
Zhang et al. (2024)). For later use, we denote the importance score as s ∈ RN .

4 UNLABELED CORESET SELECTION

We define the problem of unlabeled coreset selection for data- and label-efficient deep learning.
Formally, given an unlabeled dataset S = {(xi)}Ni=1, the goal is to select SC ⊂ S without using
any ground-truth label yi. The motivation for this change is that it is preventative to label an entire
massive dataset when much of the data will be pruned. We formulate unlabeled coreset selection by
replacing SC ⊂ SL with SC ⊂ S in Equation (1). Notably, after selecting SC, we add n labels to the
coreset as SC = {(xi, yi)}ni=1 only to train the pruned model f(SC).

Along with the aforementioned benefits of coreset selection, unlabeled coreset selection uniquely
increases scale and reduces labeling costs. First, while we can use any xi from a labeled dataset
SL, we can also extensibly sample and consider more examples x from the underlying distribution
P without any annotation or labeling requirements. This extension enables us to source coresets
from a much larger initial dataset. In effect, unlabeled coreset selection extends dataset pruning to
the majority of unlabeled, real-world data. Second, we only label the n coreset examples after they
are selected for pruned model training, so there is a N − n reduction in labeling costs relative to
label-based coreset selection. As one specific example, using unlabeled coreset selection at a 90%
prune rate on ImageNet removes label requirements for 1.15 million images.

5 METHODOLOGY

Using the unlabeled coreset selection formulation, we develop a new method of “Blind” Coreset
Selection (BlindCS). In place of label- or training-based selection, BlindCS alternatively uses an off-
the-shelf model embedding space representation of the initial dataset (Section 5.1). BlindCS then
samples the embedding space to determine which examples provide valuable coverage (Section 5.2).
Subsequently, BlindCS determines which examples in proximity to those providing coverage are
redundant (Section 5.3). Finally, BlindCS uses the coverage and redundancy metrics to iteratively
sample and score each candidate training example to determine final coreset selections (Section 5.4).

5.1 FOUNDATIONAL EMBEDDING REPRESENTATION

BlindCS uses an embedding space representation of unlabeled dataset S. To generate embeddings
in this work, we use an off-the-shelf deep learning model denoted as f(·) = g(h(·)), where h is
the model component mapping input data to hidden representations at the penultimate layer and g
maps the embedding space to a previously learned output f . We use h(xi) ∈ RM to generate an
M -dimension embedding space for input data S = {(xi)}Ni=1 denoted as

Z = [h(x1), · · · , h(xN )] ∈ RN×M . (2)

Notably, Equation (2) lets us to use the previously learned hidden representation of h as an alternative
to label- or training-based coreset selection. Instead, we quantify the importance of each example in
terms of relative coverage (Section 5.2) and redundancy (Section 5.3) in feature-based embedding
space Z as a representation of the underlying data distribution x, y ∼ P in Equation (1).
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Figure 2: Comparison of real embedding data (gray) and sampling techniques. ResNet18 (left)
and CLIP (right) are the first dimension embeddings for 50,000 CIFAR100 train set examples, while
each corresponding distribution type is sampled 50,000 times. Relative to uniform or Gaussian, our
Triangular distribution uniquely achieves all objectives of: providing ample coverage for densely
populated regions of the embedding space, covering outliers, and not oversampling empty space.

Remarks on Z: For experiments in Section 6, we generate all model embeddings in advance using
off-the-shelf weights for a ResNet18 (He et al., 2016) and CLIP ViT-L-14 model (Radford et al.,
2021), which we concatenate as h(xi) =

[hRN18(xi)
hCLIP(xi)

]
∈ R1,280. Notably, relative to coreset methods

using full dataset training for 60-200 epochs, embedding space generation for BlindCS takes less
time than one epoch given that we use only one forward pass per sample, a subcomponent of the
overall model architecture (h), and no training-based back propagation or metric tracking.

5.2 COVERAGE OF THE EMBEDDING SPACE

Our first objective for coreset selection is to select examples that maximize coverage of embedding
space Z. To quantify coverage, we develop a Monte Carlo-inspired sampling technique (Metropolis
& Ulam, 1949), which estimates the relative contribution of each candidate training example xi ∈ S
in covering a carefully designed distribution over the embedding space.

We assume a Triangular distribution over each embedding space dimension j ∈ {1, · · · ,M} using

sj ∼ p(x, j) :=


2(x−zmin

j)
(zmax

j−zmin
j)(zmed

j−zmin
j)

for zmin
j ≤ x < zmed

j

2(zmax
j−x)

(zmax
j−zmin

j)(zmax
j−zmed

j)
for zmed

j ≤ x ≤ zmax
j

,

s := [s1, · · · , sM ]⊺ ∈ RM ,

(3)

where s is a full random sample of Z, zmin = {min(Z:,j)}Mj=1 ∈ RM is the minimum Z value
for each embedding dimension, and zmed, zmax ∈ RM are the corresponding median and maximum
Z values. In practice, our Triangular distribution robustly covers both exponential- (ResNet) and
Gaussian-shaped (CLIP) embedding distributions, naturally balancing between common and fringe
embeddings as shown in Figure 2.

We increase sample efficiency over Z ∈ RN×M by reducing its dimensionality to RN×m using

D :=[1d1 , · · · ,1dm ] ∈ RM×m,

Ẑ :=ZD ∈ RN×m,
(4)

where D linearly maps Z to m reduced embedding dimensions, d = [d1, · · · , dm]⊺ ∈ Nm is a set
of random indices chosen without replacement from {1, · · · ,M}, and 1i is a one-hot vector with
i-th element equal to 1. In plain words, we use D to randomly select a subset of m ≤ M indices to
represent Z in a lower dimensional subspace Ẑ. In addition to Z, we similarly reduce the dimension
of random sampling s ∈ RM in Equation (3) using Equation (4) to find ŝ := sD ∈ Rm.

We quantify coverage for each random sample ŝ by finding the closest existing dataset example

argmin
i

||ŝ− Ẑi||1, (5)

5
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where we denote k as the solution to i in Equation (5) and Ẑk is the dataset example closest to ŝ.
Finally, we quantify our importance score for coverage (sC) as

sC
i :=

{
1 for i = k

0 otherwise
,

sC :=[sC
1, · · · , sC

N ] ∈ RN ,

(6)

where sC adds to the estimated embedding coverage value for dataset example k. We repeat our
process of randomly sampling ŝ and subsequently adding coverage for the closest examples across
many iterations, which extends our estimated coverage score across all examples in S. Unlike ran-
dom sampling, our coverage score rewards hard examples that individually occupy large, unique,
low-density areas of the overall embedding space (see Figure 1), which improves coreset selection.

Remarks on m: For experiments in Section 6, we choose m = 2 (s.t. D ∈ RM×2) random em-
bedding dimensions per sample ŝ, which increases computational efficiency on large datasets while
enabling

(
M
2

)
≈ M2

2 unique 2-D embedding space slices of Z over numerous sampling iterations.

5.3 REMOVING EMBEDDING SPACE REDUNDANCY

To avoid redundant coreset selection in the embedding space, we develop a corresponding redun-
dancy estimate that operates subsequently to each coverage solution k in Equation (5). Specifically,
for each coverage example Ẑk, we quantify redundancy for the set of K ∈ Nα nearest neighbors as

vR :=

{
(||Ẑk − Ẑi||1)

-β
for i ∈ K

0 otherwise
, (7)

where exponential β determines how quickly the penalty changes between neighbors with varying
distances to Ẑk of ||Ẑk − Ẑi||1. Using vR ∈ RN , we define our redundancy score as

sR :=
vR

||vR||1
, (8)

where ||vR||1 ∈ R normalizes sR ∈ RN so that the coverage and redundancy scores for each sample
iteration are balanced as ||sR||1 = ||sC||1 = 1.

Remarks on α, β: For experiments in Section 6, we choose α = 1,000 to limit computation of
Equation (7) on large datasets while still reaching many examples per iteration, and we choose β = 4

to ensure that primarily the closest neighbors to each Ẑk are substantially estimated as redundant.

5.4 PRUNING PROCEDURE

Using the embedding sampling process for ŝ in Equation (5) and subsequent coverage sC and sR

scores, we define our final importance score s ∈ RN as

s :=

T∑
t=1

sC
t (ŝt)− sR

t (kt), (9)

where ŝt is the random embedding space sample ŝ at iteration t with corresponding coverage score
sC
t (ŝt), kt is the example solution in Equation (5) at iteration t with corresponding redundancy score

sR
t (kt), and T is the overall number of sample and score iterations. Notably, each iteration t is

independent, which enables us parallelize our importance score for accelerated computation.

Finally, after finding s as our importance score to rank all examples in unlabeled dataset S, we select
the n examples with highest scores as our pruned coreset for model training.

For experiments in Section 6, we also use s to weight the loss and gradient for model training using

w =
s+ min(s)

max(s)− min(s)
, (10)

where w = [w1, · · · , wN ]⊺ ∈ RN , wi ∈ [0, 1], and the loss is scaled each batch by the mean wi

score corresponding to the specific training examples in that batch. Basically, we already assign a
value to each example for coreset selection and want to influence model training accordingly.

6
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Table 2: Comparison of full training and coreset size across all datasets. Prune rate is the % of
training data removed. BlindCS uses constant parameter settings across all datasets and prune rates
and, relative to label-based selection methods, removes labeling requirements from the full dataset.

Number of Full Dataset Coreset Size at Various Prune Rates
Dataset Scale Classes Training Size 30% 50% 70% 80% 90%

ImageNet Large 1,000 1,281,167 896,817 640,584 384,350 256,233 128,117
CIFAR100 Medium 100 50,000 35,000 25,000 15,000 10,000 5,000
CIFAR10 Medium 10 50,000 35,000 25,000 15,000 10,000 5,000
EuroSAT 80 Medium 10 21,600 15,120 10,800 6,480 4,320 2,160
EuroSAT 40 Small 10 10,800 7,560 5,400 3,240 2,160 1,080
EuroSAT 20 Small 10 5,400 3,780 2,700 1,620 1,080 540
EuroSAT 10 Small 10 2,700 1,890 1,350 810 540 270

6 EVALUATION

6.1 EXPERIMENTAL SETUP

Datasets. We evaluate the effectiveness of Blind Coreset Selection (BlindCS) on four image clas-
sification datasets: CIFAR10 (Krizhevsky, 2009), CIFAR100, ImageNet (Deng et al., 2009), and
EuroSAT (Helber et al., 2019). We compare the full training and coreset size across each dataset in
Table 2. Notably, full dataset sizes span from 1.3 M to 2,700 examples and coreset sizes span from
896,817 to 270 examples (three orders of magnitude). EuroSAT has no explicit training set, so we
create “four” datasets using 80/20, 40/60, 20/80, and 10/90 training/validation splits to experiment
with dataset scale in the same distribution of satellite images.

Network Training. We use two different network models and training regimes to evaluate coresets.
For CIFAR10, CIFAR100, and EuroSAT, we train a ResNet18 model on selected coresets for 200
epochs with a batch size of 128. For ImageNet, we alternatively train a ResNet32 model for 60
epochs with a batch size of 256. Following the protocol of Zhang et al. (2024), we use an SGD
optimizer with momentum 0.9, weight decay 0.0005, and a learning rate of 0.1 that decays with
the cosine annealing scheduler via PyTorch (Paszke et al., 2019). After model training, we use the
model’s validation accuracy to quantitatively evaluate coreset selection performance.

BlindCS & Baselines. We implement BlindCS using the Section 5 formulation with constant pa-
rameter settings across all datasets and prune rates. We compare BlindCS against the current state-
of-the-art using eight methods. BlindCS is the only method that does not use ground truth labels and
dataset training aside from Random, which selects examples with uniform random sampling. En-
tropy selects examples with high entropy of predicted probabilities at the end of training (Coleman
et al., 2020). Forgetting selects examples that change to being misclassified after correct classifica-
tion the most times during training (Toneva et al., 2019). EL2N selects examples with high gradient
magnitude using the L2 norm of error vectors (Paul et al., 2021). AUM selects examples with high
area under the margin, i.e., the probability gap between between the target class and the next largest
class across all epochs (Pleiss et al., 2020). Moderate selects examples closest to the median class
value in the full dataset trained model embedding space (Xia et al., 2023). Dyn-Unc selects ex-
amples with high target class probability variance during training (He et al., 2024). Finally, TDDS
selects examples with high projected gradient variance across many epochs (Zhang et al., 2024).

6.2 CORESET PERFORMANCE COMPARISON

We provide coreset selection results for CIFAR10 and CIFAR100 in Table 3, which demonstrates
coreset selection on two medium-sized datasets. Relative to CIFAR10, CIFAR100 is more challeng-
ing with an order of magnitude more classes. Across both datasets, BlindCS achieves the best per-
formance over all label- and training-based methods at all prune rates, with the exception of TDDS,
which is a label- and training-based method. Notably, BlindCS and TDDS are the only methods
outperforming Random, with the largest relative performance gaps between methods occurring at
high prune rates.
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Table 3: Comparison of Unlabeled and Labeled coreset selection methods on CIFAR10 and CI-
FAR100. Full dataset training on the ResNet18 model achieves 95.23% (CIFAR10) and 78.21%
(CIFAR100) accuracy. Prune rate is the % of training data removed. “Rel. Rand.” is Mean accuracy
across all prune rates on both datasets relative to Random. BlindCS and TDDS prune selections out-
perform all other methods and Random on both datasets. A results plot is provided in the Appendix.

CIFAR10 CIFAR100
Prune Rate 30% 50% 70% 80% 90% 30% 50% 70% 80% 90% Mean

Rel. Rand.

Unlabeled Coreset Selection without Training
BlindCS 94.58

±0.09

93.46
±0.16

90.97
±0.17

89.06
±0.33

84.18
±0.21

76.04
±0.15

72.87
±0.18

65.92
±0.15

61.92
±0.39

52.11
±0.66

78.11
+1.34

Random 94.58
±0.04

93.38
±0.17

90.61
±0.44

88.87
±0.47

83.77
±0.26

75.53
±0.04

71.95
±0.16

64.59
±0.32

57.79
±0.24

46.68
±1.07

76.78
+0.00

Labeled Coreset Selection with Training-based Pruning
TDDS
CVPR 2024

95.47
±0.06

95.21
±0.04

93.03
±0.25

91.30
±0.25

85.46
±0.21

77.56
±0.06

74.04
±0.34

67.78
±0.44

63.01
±0.12

54.51
±0.22

79.74
+2.96

Moderate
ICLR 2023

93.96
±0.06

92.34
±0.09

89.71
±0.14

87.75
±0.27

83.61
±0.24

74.60
±0.10

70.29
±0.31

62.81
±0.08

56.52
±0.37

41.82
±1.12

75.34
-1.43

Entropy
ICLR 2020

94.45
±0.07

91.90
±0.16

86.24
±0.26

83.49
±0.21

72.06
±0.81

72.39
±0.20

64.44
±0.36

50.73
±0.86

42.86
±0.25

29.56
±0.54

68.81
-7.96

Forgetting
ICLR 2019

95.45
±0.24

95.05
±0.05

89.14
±2.04

76.18
±3.18

45.87
±1.87

77.38
±0.09

70.76
±0.40

49.92
±0.28

38.42
±1.13

25.82
±0.52

66.40
-10.38

Dyn-Unc
CVPR WS ‘24

95.08
±0.02

94.03
±0.14

89.40
±0.13

79.76
±1.09

37.12
±1.12

73.36
±0.10

65.90
±0.25

50.16
±0.47

39.19
±0.27

15.20
±0.41

63.92
-12.86

AUM
NeurIPS 2020

95.44
±0.09

95.19
±0.09

91.19
±0.63

69.60
±3.11

34.74
±0.11

77.35
±0.18

68.17
±0.52

31.69
±0.34

18.43
±0.47

9.29
±0.27

59.11
-17.67

EL2N
NeurIPS 2021

95.43
±0.10

95.06
±0.04

86.69
±1.71

68.64
±3.70

31.89
±1.51

76.89
±0.31

67.57
±0.15

36.45
±1.36

17.31
±0.33

9.10
±0.69

58.50
-18.27

We provide coreset selection results for ImageNet in Table 4, which demonstrates coreset selection at
a large scale. Overall, BlindCS and TDDS coreset selections outperform all other methods. Notably,
BlindCS selects the best performing coreset at the 90% prune rate without using any labels, which
removes label requirements for 1.15 million images.

We plot coreset selection results for all EuroSAT dataset splits in Figure 3, which demonstrates
coreset selection for the three leading methods at a much smaller scale. Except for the 90% prune
rate on small datasets, BlindCS cuts much of the performance gap between unlabeled Random
selection and label- and training-based TDDS. For 90% prune rates, BlindCS outperforms TDDS
on EuroSAT 40 but has a lower accuracy than TDDS and Random on EuroSAT 20 and EuroSAT
10, where the pruned coresets only have 540 and 270 training examples. Notably, unlike TDDS,
BlindCS is currently using constant parameter settings across all prune rates. On the other hand,
BlindCS small dataset performance improves with alternative settings (e.g., reducing the number of
nearest neighbors for redundancy in Equation (7)), which we will address in future work.

6.3 ABLATION STUDY

We provide BlindCS ablative results in Table 5. When using a single model to generate our em-
bedding space (Z), ResNet18 outperforms CLIP, but neither perform as well as the standard con-
catenated setting. Gaussian sampling (s) outperforms uniform but does not match Triangular perfor-
mance. However, given the narrow performance gap between Triangular and Gaussian sampling, we
postulate that exploring additional sampling strategies is a promising area for future work. Decreas-
ing or increasing the sample dimension of the embedding space (m) leads to lower performance,
with the worst performance occurring at highest dimensional sampling. We postulate this perfor-
mance drop occurs because the current distance measure in Equation (5) becomes less meaningful
in higher-dimensional space (Park et al., 2024). Changing the score selection to use a uniformly
random coverage sample k decreases performance, which validates our design choice to focus cov-
erage selection on embedding examples that occupy larger, lower-density areas. Removing redun-
dancy score (sR) decreases performance more substantially than any other ablative configuration,

8
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Table 4: Comparison of Unlabeled and Labeled coreset selection methods on ImageNet. Full dataset
training on the ResNet32 model training achieves 73.54% accuracy. Despite using unlabeled data,
BlindCS has the best 90% prune rate performance. A results plot is provided in the Appendix.

Method Coreset Selection Requirements 70% 80% 90% Mean / Rel. Rand.

BlindCS Unlabeled Data 64.43 61.31 53.99 59.91 +0.72

Random Unlabeled Data 64.19 60.76 52.63 59.19 +0.00

TDDS CVPR 2024 Full Training on Labeled Data 64.69 62.56 53.91 60.39 +1.19

Forgetting ICLR 2019 Full Training on Labeled Data 64.29 62.01 52.14 59.48 +0.29

Moderate ICLR 2023 Full Training on Labeled Data 64.04 61.35 52.45 59.28 +0.09

Entropy ICLR 2020 Full Training on Labeled Data 62.34 56.80 43.39 54.18 -5.02
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2,160

70%
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50%
5,400

30%
7,560

98

96

94

92

EuroSAT 40

90%
540

80%
1,080

70%
1,620

50%
2,700

30%
3,780

95

90

85

80

Data Prune Rate / Number of Coreset Training Examples (n)

A

EuroSAT 20

TDDS
Random
BlindCS

90%
270

80%
540

70%
810

50%
1,350

30%
1,890

95

85

75

65 EuroSAT 10

Figure 3: Comparison of Unlabeled (solid lines) and Labeled (dashed) coreset selection methods on
80/20, 40/60, 20/80, and 10/90 training/validation splits of EuroSAT. Dashed line indicates labeled
coreset selection with training-based pruning. x-axis is in log scale for Number of Coreset Training
Examples. BlindCS and TDDS prune selections outperform the mean accuracy of Random on all
EuroSAT splits. A results table is provided in the Appendix.

which validates our design choice to penalize nearest neighbors in the embedding space to reduce
redundancy. Finally, removing the score loss weight w from model training decreases performance.

We plot the runtime and accuracy performance of BlindCS over a wide range of score iterations in
Figure 4. The largest accuracy increase occurs when the coverage and redundancy score iterations
(T ) increase from 100 to 1,000, at which point, with the redundancy score reaching 1,000 neighbors
per iteration, the score likely reaches most of the 50,000 CIFAR100 candidate training examples.
Notably, the standard BlindCS configuration (T = 1M) runtime takes less than 400 s on a standard
laptop, which, in addition to being able to select coresets for unlabeled data, makes BlindCS a
computationally efficient alternative to label- and training-based coreset selection methods.

7 CONCLUSION

We motivate, formulate, and develop a method for unlabeled coreset selection, which enables data-
and label-efficient deep learning relative to prior label-based coreset selection methods. Further-
more, unlike current SOTA methods, our approach requires no training on the dataset being con-
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Table 5: Comparison of BlindCS ablations on CIFAR 100 with ResNet18. Accuracy is mean
across 30%, 50%, 70%, 80%, and 90% prune rates over five repeat trials. “ResNet18, CLIP” is a
concatenated embedding space that uses both off-the-shelf models.

Off-the-shelf Embedding Use Mean
Embedding Sampling Sample Full CIFAR100

Ablation Space Model Distribution Dimension Score Accuracy
Full Method (BlindCS) ResNet18, CLIP Triangular 2 Yes 65.77
Embedding Space (Z) ResNet18 Triangular 2 Yes 65.52

CLIP Triangular 2 Yes 64.84
Sampling Distribution (s) ResNet18, CLIP Gaussian 2 Yes 65.75

ResNet18, CLIP Uniform 2 Yes 64.84
Number of Embedding ResNet18, CLIP Triangular 1 Yes 64.59
Sample Dimensions (m) ResNet18, CLIP Triangular 3 Yes 65.10

ResNet18, CLIP Triangular 10 Yes 63.27
ResNet18, CLIP Triangular 100 Yes 62.20

Random Coverage Sample (k) NA NA NA No 64.74
No Redundancy Score (sR) ResNet18, CLIP Triangular 2 No 61.71
No Score Loss Weight (w) ResNet18, CLIP Triangular 2 No 63.53

100 1,000 10K 100K300K 1M 3M 10M

0.365

3.57
9.27

42.46
115.4

381.6

1,110

3,713

Number of Score Iterations (T )
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100 1,000 10K 100K300K 1M 3M 10M
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Figure 4: Comparison of number of score iterations vs. runtime (left) and accuracy (right) on
CIFAR100 with ResNet18. Accuracy is mean across 30%, 50%, 70%, 80%, and 90% prune rates
over five repeat trials. The accuracy peaks at 1 M iterations then converges on a slightly lower
accuracy. Runtime experiments measure coreset selection times using a M3 Max-equipped laptop.

sidered for selection, which also reduces computation costs. We evaluate our method against the
state-of-the-art using eight baselines across four datasets, ranging from initial datasets of over a mil-
lion images all the way down to pruned coresets of 270 training images. In these experiments, our
method outperforms all others save one, which requires full ground truth labels and model training
on the initial dataset prior to coreset selection. However, our method alone does not use labels or
dataset training, making it more efficient for coreset selection at the scale of current deep learning
research. From these results, our method sets a new state-of-the-art for coreset selection.

In future work, to further improve performance on very small datasets, we will develop a sampling
scheme that automatically determines the number of samples and nearest neighbors for redundancy
scoring. In addition to the coverage and redundancy scores in this paper, we postulate that there
are many more unlabeled features that can quantify coreset value for individual candidate examples.
Furthermore, since there is no domain-specific limitation to our method, we will explore how it and
the general coreset selection problem are applicable in other domains like point cloud and natural
language and other problems like object detection and segmentation.
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A APPENDIX

A.1 REPRODUCIBILITY STATEMENT

We provide detailed experimental settings in Sections 5-6. We generate all BlindCS experimental
results from a single attempt of five consecutive trials with the exception of ImageNet, which is from
a single attempt of one trial. We will make our code publicly available with the final paper.

A.2 ADDITIONAL TABLES & FIGURES

To supplement the evaluation in Section 6, we provide additional Figures and Tables. We plot coreset
selection results for CIFAR10 and CIFAR100 in Figure 5, which demonstrates coreset selection
for two medium-sized datasets. We plot coreset selection results for ImageNet in Figure 6, which
demonstrates coreset selection at a large scale. We provide coreset selection results for all EuroSAT
dataset splits in Table 6, which demonstrates coreset selection for the three leading methods at a
much smaller scale.
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Figure 5: Comparison of Unlabeled (solid lines) and Labeled (dashed lines) coreset selection meth-
ods on CIFAR10 and CIFAR100. Dashed line indicates labeled coreset selection with training-
based pruning. x-axis is in log scale for Number of Coreset Training Examples. Notably, BlindCS
and TDDS are the only methods outperforming Random, with the largest relative performance gaps
between methods occurring at high prune rates.
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Figure 6: Comparison of Unlabeled (solid lines) and Labeled (dashed lines) coreset selection meth-
ods on ImageNet. Dashed line indicates labeled coreset selection with training-based pruning.
x-axis is in log scale for Number of Coreset Training Examples. BlindCS achieves best 90% prune
rate performance without using label- or training-based prune selection.
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Table 6: Comparison of Unlabeled and Labeled coreset selection methods on different sized splits
of EuroSAT. Full dataset training on the ResNet18 model achieves 98.59% (EuroSAT 80), 98.20%
(EuroSAT 40), 98.59% (EuroSAT 20), and 93.64% (EuroSAT 10) accuracy. “Rel. Rand.” is Mean
accuracy across all prune rates relative to Random. “EuroSAT All” is Mean accuracy for all Eu-
roSAT splits. BlindCS and TDDS prune selections outperform the mean accuracy of Random on all
EuroSAT splits. Notably, the EuroSAT 10 90% prune rate coreset has only 270 training examples.

Prune Data Prune Rate / Number of Examples

Method Coreset Selection Requirements 30% 50% 70% 80% 90% Mean
Rel. Rand.

EuroSAT All
BlindCS Unlabeled Data 96.53 95.74 93.21 91.74 83.27 92.10

+1.14
Random Unlabeled Data 94.56 92.91 89.80 87.88 83.61 90.96

+0.00
TDDS
CVPR 2024

Full Training on Labeled Data 96.93 96.35 94.55 93.56 87.80 93.96
+ 3.01

EuroSAT 80 (21,600) 15,120 10,800 6,480 4,320 2,160

BlindCS Unlabeled Data 98.32
±0.08

98.15
±0.13

97.72
±0.13

97.31
±0.17

95.80
±0.18

97.46
+0.56

Random Unlabeled Data 98.20
±0.11

97.94
±0.10

96.98
±0.17

96.65
±0.29

94.72
±0.49

96.90
+0.00

TDDS
CVPR 2024

Full Training on Labeled Data 98.62
±0.05

98.58
±0.11

98.43
±0.03

98.09
±0.10

96.28
±0.11

98.00
+1.10

EuroSAT 40 (10,800) 7,560 5,400 3,240 2,160 1,080

BlindCS Unlabeled Data 97.59
±0.05

97.53
±0.16

96.45
±0.12

96.06
±0.19

92.94
±0.55

96.11
+1.54

Random Unlabeled Data 97.04
±0.07

96.43
±0.37

95.00
±0.67

93.73
±0.58

90.69
±0.53

94.58
+0.00

TDDS
CVPR 2024

Full Training on Labeled Data 97.97
±0.09

98.06
±0.06

97.55
±0.08

96.79
±0.16

92.78
±0.27

96.63
+2.05

EuroSAT 20 (5,400) 3,780 2,700 1,620 1,080 540

BlindCS Unlabeled Data 96.49
±0.16

95.45
±0.22

92.60
±0.29

91.80
±0.70

80.39
±3.91

91.35
+1.53

Random Unlabeled Data 95.14
±0.32

93.25
±0.59

89.36
±0.54

88.01
±0.22

83.30
±0.73

89.81
+0.00

TDDS
CVPR 2024

Full Training on Labeled Data 96.94
±0.10

96.45
±0.07

93.86
±0.56

94.70
±0.35

86.94
±0.55

93.78
+3.97

EuroSAT 10 (2,700) 1,890 1,350 810 540 270

BlindCS Unlabeled Data 93.71
±0.23

91.82
±0.23

86.08
±1.16

81.77
±2.68

63.96
±2.76

83.47
+0.92

Random Unlabeled Data 90.35
±0.64

87.55
±0.67

83.06
±1.61

78.97
±1.88

72.81
±2.25

82.55
+0.00

TDDS
CVPR 2024

Full Training on Labeled Data 94.62
±0.09

92.92
±0.33

89.41
±0.52

85.56
±0.67

74.74
±2.02

87.45
+4.90
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