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Abstract
State space models (SSMs) reduce the quadratic
complexity of transformers by leveraging linear
recurrence. Recently, VMamba has emerged
as a strong SSM-based vision backbone, yet
remains bottlenecked by spatial redundancy in
its four-directional scan. We propose Quar-
terMap, a post-training activation pruning method
that removes redundant spatial activations before
scanning and restores dimensions via nearest-
neighbor upsampling. Our method improves
throughput without retraining. On ImageNet-
1K, QuarterMap achieves up to 11% speedup
on VMamba with less than 0.9% accuracy drop,
and yields similar gains on ADE20K segmenta-
tion. Beyond VMamba, we validate QuarterMap
on MedMamba, a domain-specific model that
shares the same four-directional scanning struc-
ture, where it consistently improves throughput
while preserving accuracy across multiple med-
ical imaging tasks. Compared to token merging
methods like ToMe, QuarterMap is tailored for
SSMs and avoids costly merge-unmerge opera-
tions. Our method offers a plug-and-play tool for
deployment-time efficiency without compromis-
ing transferability.

1. Introduction
Advancements in computer vision have been significantly
driven by deep learning and the availability of large-scale
datasets. Convolutional Neural Networks (CNNs) have
served as the basis for tasks such as image classification
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015; He
et al., 2016) and object detection (Girshick et al., 2014; Gir-
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Figure 1. The accuracy-throughput trade-off when applying Quar-
terMap and Token Merging (ToMe). Our method demonstrates
that QuarterMap not only increases throughput but also maintains
comparable accuracy. In contrast, ToMe experiences a drop in
throughput due to the overhead of merge and unmerge operations.

shick, 2015; Redmon et al., 2016). However, CNNs exhibit
limitations in capturing long-range dependencies. Vision
Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al.,
2021a; Touvron et al., 2021), with their self-attention mecha-
nisms, effectively overcome these limitations, but incur high
computational costs due to their quadratic complexity. To
alleviate these computational demands, recent research has
focused on reducing the complexity of ViTs (Wang et al.,
2020; Beltagy et al., 2020; Liu et al., 2021a; 2022; 2023),
applied model compression techniques (Liu et al., 2021b;
Lin et al., 2021; Zhu et al., 2021; Touvron et al., 2021;
Lin et al., 2023), and investigated alternative architectures
such as RWKV (Peng et al., 2023) and State Space Models
(SSMs) (Gu et al., 2021; Fu et al., 2022; Gu & Dao, 2023).

State Space Models (SSMs) were initially introduced in
the natural language processing (NLP) domain to reduce
the computational cost associated with maintaining hidden
states during the decoding phase. In contrast, computer
vision tasks typically interpret the hidden state as a repre-
sentation of the entire image’s information. Recently, SSM
have emerged as efficient alternatives to ViTs in computer
vision, demonstrating competitive performance across multi-
ple tasks (Liu et al., 2024; Zhu et al., 2024; Yang et al., 2024;
Li et al., 2024; Teng et al., 2024). For instance, VMamba
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Figure 2. Illustration of the VMamba model architecture (left) and the proposed QuarterMap applied to the SS2D mechanism (right). The
top flow shows the original cross-scan and cross-merge operations, while the bottom applies QuarterMap, pruning activations before
scan and restoring spatial dimensions via nearest-neighbor upsampling. This reduces spatial redundancy and improves runtime efficiency
without retraining.

(Liu et al., 2024) achieves a top-1 accuracy of 82.6% on the
ImageNet-1K benchmark (Deng et al., 2009), outperform-
ing the Swin Transformer (Liu et al., 2021a) by 1.3% with
comparable FLOPs. However, within VMamba, the kernel
responsible for selective scanning, an operation analogous
to attention in transformer models, both serving as mecha-
nisms to capture global context, still accounts for 18.3% of
the total kernel execution time, highlighting a notable effi-
ciency bottleneck. To address this, we explored transformer
optimization techniques but identified a lack of optimiza-
tion methods specifically designed for SSMs. We prove
that conventional methods, such as token merging (Bolya
et al., 2023) widely used in transformers, are suboptimal
for VMamba due to computational tradeoffs arising from
frequent merging and unmerging operations, as illustrated in
Figure 1. Other recent approaches, such as Top-ViM (Zhan
et al., 2024) and R-MeeTo (Shi et al., 2025), introduce token
pruning and merging strategies tailored to ViM-based (Zhu
et al., 2024) models. However, both rely on retraining to
maintain performance, making them less applicable with
limited computational resources in post-training deployment
scenarios.

Motivated by these challenges, we explore whether a tech-
nique similar to token merging could be adapted for activa-
tion pruning in SSMs, and more broadly, how efficiency can
be further improved in already efficient linear SSMs without
retraining. We begin by analyzing VMamba’s cross-scan
and cross-merge mechanism, and the effective receptive
field (ERF) in VMamba (Liu et al., 2024). Our analysis re-
veals that the four-directional traversal in VMamba, which
introduces substantial spatial redundancy, with some to-
kens accumulating excessive and potentially unnecessary

information. This led us to hypothesize that specialized ac-
tivation pruning, aligned with the scanning structure, could
reduce the latency while preserving accuracy.

To this end, we propose QuarterMap, a training-free ac-
tivation pruning method specifically designed to improve
VMamba’s efficiency by reducing the feature map to one
quarter of its original spatial size before scanning. As il-
lustrated in Figure 2, QuarterMap introduces a lightweight
two-stage pipeline: spatial pruning is applied before the
cross-scan module, and nearest-neighbor upsampling is used
to restore resolution after cross-merge. During pruning,
QuarterMap retains every alternate element in both spatial
dimensions, leveraging the spatial redundancy inherent in
VMamba’s four-way scanning. We adopt nearest-neighbor
interpolation under the hypothesis that adjacent spatial posi-
tions convey similar information, making it an efficient yet
effective reconstruction strategy. This design significantly
reduces computation across the cross-scan, selective scan,
and cross-merge, all without modifying model weights or
requiring retraining.

We evaluate QuarterMap on both image classification and
semantic segmentation tasks, showing improved throughput
with minimal accuracy degradation. On ImageNet-1K, it
achieves up to a 1.11× speedup with less than a 0.9% drop
in top-1 accuracy. Similar trends are observed in seman-
tic segmentation and medical imaging benchmarks. Quar-
terMap proves particularly effective for VMamba and its
variants, as confirmed by comparisons with CNNs, ViTs,
and other SSMs like PlainMamba (Yang et al., 2024) and
ViM (Zhu et al., 2024). Visualizations of attention maps
and effective receptive fields (ERF) show that QuarterMap
removes redundant activations while preserving key spatial
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signals. Comprehensive ablation studies further explore
pruning intervals, layer selection strategies, and upsampling
methods, providing practical guidance for training-free de-
ployment in the real world.

2. Method
We introduce QuarterMap, a post-training pruning function
specifically designed to enhance the efficiency of VMamba
by reducing spatial redundancy in activation feature maps,
as illustrated in Figure 2. Formally, we define QuarterMap
as a function T that operates on an input activation map
x by selectively retaining spatial information. Given an
activation map x ∈ RH×W×D, where H and W represent
the spatial dimensions and D denotes the channel dimension,
QuarterMap operates through the following stages:

Block Selection QuarterMap applies pruning selectively to
specific blocks within the VMamba architecture, determined
by a block selection interval k. This high-level strategy
governs how frequently pruning is applied, balancing com-
putational efficiency and accuracy. Applying QuarterMap to
every three blocks (i.e., k=3), excluding the first layer, yields
the best accurarcy-latency trade-off (ref. Appendix E.) The
early layers are critical for encoding fundamental features,
whereas the deeper layers are more resilient to pruning,
making them suitable candidates for optimization.

Figure 3. Illustration of the pruning stage, where m represents the
interval size and n indicates the number of elements retained in
the spatial dimensions.

Pruning Stage Within each selected block, QuarterMap per-
forms a downsampling operation on the spatial dimensions
of x before cross-scan. For a specified interval m, the func-
tion T retains every n elements in both the H and W dimen-
sions, as depicted in Figure 3, resulting in a pruned activa-
tion map x′ = T (x) ∈ R⌈H∗n/m⌉×⌈W∗n/m⌉×D. This pro-
cess leverages the VMamba cross-scan mechanism, which
aggregates information from four directions, combined with
the SSM recurrence function. Together, these ensure that
each element of the feature map xi,j incorporates informa-
tion from neighboring spatial positions, improving pruning
effectiveness while minimizing the loss of accuracy. We

find that the setting m = 2 and n = 1 achieves the optimal
trade-off between computational efficiency and accuracy.
As the pruning stage is applied prior to cross-scan, the com-
putational savings primarily stem from the reduced size
of the input x for both the cross-scan and Mamba opera-
tions. Notably, in Mamba, this reduction leads to savings
in the input length for the SSM (Equation (3)) as well as
in the linear computation through the selective mechanism
(Equation (5)).

Upsampling Stage After processing through cross-scan, se-
lective scan, and cross-merge, QuarterMap restores the spa-
tial dimensions of the activation map using an upsampling
function U applied to y, the cross-merge output. Nearest-
neighbor interpolation is used to reconstruct the original
spatial dimensions, producing an output y′ = U(y) ∈
RH×W×D. This approach aligns with the assumption that
adjacent spatial elements contain similar information, en-
abling QuarterMap to balance computational efficiency with
minimal accuracy degradation.

3. Experiments
3.1. Classification and Segmentation

The results in Table 1 show that applying QuarterMap to
the base VMamba model yields a slight accuracy drop of
0.86% when k = 3, while improving throughput by 1.11×.
This gain primarily stems from reduced sequence length
within the selective scan mechanism, with minimal overhead
introduced by our pruning and upsampling stages. Profiling
reveals that QuarterMap reduces the scan kernel time from
1.4 to 0.6 ms, and introduces only 0.2 ms of additional
overhead. In contrast, ToMe incurs significantly higher
additional overhead (9.7 ms), despite a similar scan kernel
runtime (0.7 ms), due to the cost of merge and unmerge
operations. These comparisons highlight the efficiency of
QuarterMap in minimizing unnecessary computation while
retaining accuracy. Additional results on small and tiny
VMamba configurations, as well as detailed segmentation
metrics, are included in Appendix D.

3.2. QuarterMap on MedMamba for Medical Imaging

To evaluate QuarterMap’s applicability beyond VMamba,
we apply it to MedMamba-T (Yue & Li, 2024), a domain-
specific model built on VMamba’s architecture. We bench-
mark performance across four MedMNIST classification
datasets: BoodMNIST, OrganMNIST, RetinaMNIST, and
PathMNIST (Yang et al., 2021; 2023). As shown in Ta-
ble 2, QuarterMap consistently delivers a 1.21× throughput
improvement (from 854 to 1034 images/sec) with no degra-
dation in classification accuracy. These results demonstrate
QuarterMap’s generalization to VMamba-based models and
reinforce its utility for domain-specific deployments where
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Table 1. Performance of VMamba models on ImageNet-1K with and without QuarterMap (QM). QM improves throughput with minimal
accuracy drop, while incurring lower overhead than ToMe.

Model Method K Acc@1 (%) Throughput Speedup Scan Kernel Add. overheadd
VMamba-B Baseline - 83.88 590 1× 1.4ms -

ToMe 3 83.52 (-0.36) 424 0.72× 0.7ms 9.7msToMe 2 83.07 (-0.81) 389 0.66×
QM (ours) 3 83.02 (-0.86) 654 1.11× 0.6ms 0.2msQM (ours) 2 82.58 (-1.30) 682 1.16×

Table 2. QuarterMap on MedMamba-T across MedMNIST tasks.
TP = Throughput (img/s).

Dataset Base QM (Ours) Base QM (Ours)
Acc. Acc. TP TP

BloodMNIST 97.72% 97.78% 854.3 1033.7
OrganMNIST 81.85% 81.90% 854.5 1033.8
RetinaMNIST 54.25% 54.25% 853.6 1033.8
PathMNIST 29.44% 29.44% 854.0 1033.9

post-training efficiency and accuracy preservation are criti-
cal. For a breakdown of class-wise performance on Blood-
MNIST, see Appendix D.

Table 3. Accuracy comparison of QuarterMap (QM) on different
model types for ImageNet-1K classification.

Model Type Baseline QM (Ours)

ConvNeXtv2-B Conv 84.89 45.71
DeiT-B Transformer 81.80 79.50
Swin-B Transformer 85.17 82.91
ViM-B Mamba 80.40 71.00
VMamba-B Mamba 83.88 83.02

3.3. QuarterMap on Other Architectures

We evaluate QuarterMap on CNNs, ViTs, and SSMs to as-
sess whether its design is specifically suited for VMamba.
We focus on base variants of ConvNeXtv2 (Woo et al.,
2023), DeiT (Touvron et al., 2021), Swin Transformer (Liu
et al., 2021a), and ViM (Zhu et al., 2024), all pretrained
on ImageNet-1K with weights from Hugging Face (Wolf
et al., 2020). QuarterMap is applied to every third (i.e. k=3)
blocks after the first two. In CNNs, pruning disrupts spa-
tial continuity and significantly harms accuracy. ViTs and
ViM are more resilient, but still show non-trivial accuracy
drops. As shown in Table 3, our method reduces the latency
on VMamba with its four-directional scanning mechanism
while maintaining the accuracy. QuarterMap is less compat-
ible with CNNs and 1D-scanning SSMs like ViM, as these
models lack the redundant activation patterns presented in
VMamba. See Appendix D for results on other variants.

Figure 4. Comparison of (a) attention maps and (b) effective re-
ceptive fields before and after applying QuarterMap. The visu-
alizations highlight the differences introduced by QuarterMap,
demonstrating its selective pruning of redundant information while
preserving the model’s essential functionality.

3.4. Attention Map and Effective Receptive Field (ERF)

We visualize the attention maps and ERF before and after
applying QuarterMap to analyze its spatial impact. Follow-
ing the formulation in VMamba, we extract the attention
map of the 12th block (i.e., the deepest layer), after several
preceding blocks have been pruned. As shown in Figure 4,
the attention patterns remain largely unchanged, indicating
that QuarterMap preserves key contextual behavior. For the
ERF visualization, the gray regions represent the activations
removed by QuarterMap. These areas often overlap with
receptive field hotspots that were spatially redundant. This
supports our hypothesis that QuarterMap effectively elimi-
nates redundant information while preserving the functional
structure of the model.

4. Conclusion
We propose QuarterMap, a post-training pruning method
for VMamba that improves runtime efficiency with min-
imal accuracy loss and requires no retraining. Our ex-
periments show that QuarterMap aligns particularly well
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with VMamba’s four-directional scan and is also compat-
ible with derived applications based on its backbone. Al-
though designed for VMamba, QuarterMap is orthogonal to
techniques such as quantization, enabling further efficiency
gains. While this study focuses on VMamba, our findings
open new directions to understanding and extending pruning
strategies in SSMs.
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A. Related Work
A.1. State Space Models

State Space Models (SSMs) (Gu et al., 2020; 2021; Smith et al., 2022; Fu et al., 2022; Gu & Dao, 2023) have gained
notable traction in recent for their efficient scaling properties, offering linear computational complexity with respect to
sequence length, which provides an advantage over the quadratic complexity of transformers. This efficiency, combined
with their ability to capture global context, has made SSMs an appealing choice for handling long-range dependencies. To
further minimize the resource demands of SSMs, S4 (Gu et al., 2021) applied a structured approach using a diagonal matrix
configuration enhanced with a low-rank update, which reduced computational overheads. Building on this, subsequent
works such as S5 (Smith et al., 2022) and H3 (Fu et al., 2022) introduced innovations including parallel scanning methods
and optimized hardware utilization, further advancing the efficiency of SSM-based architectures. With Mamba (Gu & Dao,
2023), the introduction of the S6 block mark a key advancement by incorporating data-dependent parameters, breaking from
the Linear Time Invariant (LTI) constraints of earlier models and enabling SSMs to outperform transformers on large-scale
datasets.

In the field of vision tasks, S4ND (Nguyen et al., 2022) is one of the first models to adapt SSMs for visual data processing,
representing it as 1D, 2D, and 3D signals. ViM (Zhu et al., 2024) and VMamba (Liu et al., 2024) further integrated SSMs
into vision backbones, introducing the ViM and VSS blocks, respectively, which employ multiple scanning directions
to handle the non-sequential characteristics of image data. This adaptation enables these models to achieve competitive
performance with ViTs and CNNs. The success of ViM and VMamba has since inspired a range of Mamba-based methods
that address diverse vision tasks, including medical image segmentation (Ma et al., 2024; Wang et al., 2024; Xing et al.,
2024), video understanding (Li et al., 2025; Tang et al., 2024), and image generation (Hu et al., 2024; Teng et al., 2024).
Collectively, these contributions highlight the potential of SSM-based approaches to drive advancements in computer vision
applications.

A.2. Pruning

Neural network pruning has been a pivotal technique in the evolution of deep learning, aiming to enhance model efficiency
by reducing computational and memory demands. Early foundational work (LeCun et al., 1989) introduced the concept
of Optimal Brain Damage, which systematically removes less significant weights based on their second-order derivatives,
effectively reducing model complexity without substantial loss in performance. This approach lays the groundwork for
subsequent pruning methods, including weight pruning and activation pruning.

Weight pruning (Han et al., 2015; Frankle & Carbin, 2018; Li et al., 2016; He et al., 2018) involves eliminating less essential
weights from the model, effectively reducing the number of parameters and computational load, making it well-suited for
deployment in resource-constrained environments. In contrast, activation pruning (Zhuang et al., 2018; Yu et al., 2018;
Lin et al., 2020; He et al., 2017) focuses on the intermediate outputs of the network, pruning redundant activations during
inference to reduce computational costs without modifying the learned parameters.

The rise of ViTs (Dosovitskiy et al., 2020; Liu et al., 2022; Touvron et al., 2021) introduced significant computational
challenges, leading to the development of token pruning and token merging techniques to shorten sequence lengths in
the attention layers. Token pruning (Yin et al., 2022; Rao et al., 2023; 2021; Tang et al., 2022) selectively removes less
informative tokens, reducing the computational burden of self-attention layers while preserving accuracy. Alternatively,
token merging (Bolya & Hoffman, 2023; Bolya et al., 2023) combines similar tokens, effectively decreasing token count
and enhancing throughput, thereby preserving ViT performance while reducing the token dimension.

Pruning techniques in the context of State Space Models (SSMs) have limited explored. A pruning-aware hidden state
alignment method (Zhan et al., 2024) is introduced to stabilize the neighborhood of remaining tokens and improve
performance. They also propose a token importance evaluation method tailored for SSMs to guide token pruning, though this
method was applied only to ViM (Zhu et al., 2024). R-MeeTo (Shi et al., 2025) proposes a merged-token re-training strategy
that periodically combines similar token pairs in ViM and then fine-tunes the model to restore accuracy. While this achieves
good trade-offs, it requires retraining and is not applicable in purely post-training deployment pipelines. EfficientVMamba
(Pei et al., 2024) integrates an atrous-based selective scan approach with efficient skip sampling. This approach introduces a
concept similar to pruning, but it is applied before training.
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B. Preliminaries
In this section, we provide an overview of the State Space Model (SSM) (Kálmán, 1960) and introduce two recent methods
that leverage SSM in innovative ways: the selective state space model (Mamba) (Gu & Dao, 2023) and VMamba (Liu et al.,
2024).

B.1. State Space Model

The State Space Model is a mathematical framework for modeling the evolution of a system over time. It represents the
relationship between the system’s state and observations at each time step through a set of equations. The most general form
of an SSM is a continuous-time linear dynamical system, as shown in Equation (1).

h′(t) = A(t)h(t) +B(t)u(t)

y(t) = C(t)h(t) +D(t)u(t)
(1)

Here, h(t) ∈ Rn denotes the state variable at time t ∈ R, often referred to as the hidden state in recent machine learning
literature. The input is represented by u(t) ∈ Rm, and the output by y(t) ∈ Rp. The system matrices A(t) ∈ Rn×n,
B(t) ∈ Rn×m, C(t) ∈ Rp×n, and D(t) ∈ Rp×m govern the system dynamics at each time step. For simplicity, we consider
u(t) and y(t) as scalars, setting m = p = 1.

When the system matrices A(t), B(t), C(t), and D(t) remain constant over time, the continuous-time linear dynamical
system simplifies to a linear time-invariant (LTI) system, represented in Equation (2). This LTI system can be transformed
into a discrete-time linear dynamical system, defined by Equation (3), using discretization techniques. A common method in
the SSM literature is zero-order hold (ZOH) discretization (Franklin et al., 2002), shown in Equation (4).

h′(t) = Ah(t) +Bu(t)

y(t) = Ch(t) +Du(t)
(2)

ht = Āht−1 + B̄ut

yt = Cht +Dut

(3)

Ā = exp(∆A)

B̄ = (∆A)−1 exp(∆A− I)∆B
(4)

B.2. Selective State Space Model (Mamba)

Mamba (Gu & Dao, 2023) extends the discrete-time linear dynamical system by introducing a timescale parameter, ∆,
which transforms the continuous variables A and B into their discrete counterparts, Ā and B̄. Beyond discretization, Mamba
relaxes the time-invariance constraint on the system matrices by introducing a selection mechanism. This mechanism allows
certain parameters—specifically ∆, B, and C—to vary over time as functions, s, of the input u. The formulations are
defined in Equation (5).

sB(u) = LinearN (u)

sC(u) = LinearN (u)

s∆(u) = BroadcastD(Linear1(u))

∆ = τ∆(Parameter + s∆(u))

(5)

The Lineard is a parameterized linear projection to dimension d, and τ∆ = softplus. Since the selection mechanism loses
equivalence to the convolution form in equation (4), Mamba further incorporates a work-efficient parallel algorithm, called
associate scan (Sengupta et al., 2007), into its GPU kernel implementation to enable parallel computation of the system.

B.3. VMamba

The original Mamba block was designed for 1-dimensional input and output, making it unsuitable for computer vision tasks
that require 2-dimensional processing. To address this limitation, VMamba (Liu et al., 2024) introduced a new module
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called 2D-Selective-Scan (SS2D), which adapts Mamba for 2D input and output. The SS2D module consists of three steps:
cross-scan, selective scan (Mamba block), and cross-merge.

In the cross-scan step, the input feature map is unfolded into four 1D sequences, each capturing information from a distinct
spatial direction (Figure 2). These sequences, processed in parallel by the Selective Scan module, encode diverse spatial
perspectives critical for 2D feature processing. The cross-merge step then recombines the processed sequences into a 2D
feature map, enabling a global receptive field. VMamba stacks multiple SS2D blocks within each layer to construct the
complete model.

C. Experimental Setup
C.1. Datasets

QuarterMap is evaluated on two standard benchmarks: ImageNet-1K (Deng et al., 2009) for image classification and
ADE20K (Zhou et al., 2017) for semantic segmentation. For both datasets, only the validation sets are used.

C.2. Models

Experiments utilize VMamba backbone models (Liu et al., 2024), pre-trained on ImageNet-1K. For semantic segmentation,
the UperNet framework (Xiao et al., 2018) is used with the VMamba backbone, trained on ADE20K. The VMamba
backbone models are available in three configurations: tiny, small, and base, which vary primarily in the number of layers
and the dimensions of sequence length L and channel dimension D within the SS2D block.

Each backbone model consists of four layers. In the tiny configuration, these layers are arranged as [2, 2, 8, 2], while the
small and base versions use a configuration of [2, 2, 15, 2]. For each configuration, the dimensions L and D are consistent
within each layer but vary across layers. Specifically, the channel dimension D doubles, and the sequence length L decreases
by a factor of 4 as depth increases.

C.3. Additional information

The evaluation metric for the image classification task is top-1 accuracy, while for the semantic segmentation task, we utilize
all pixel accuracy (aAcc) and mean intersection over union (mIoU) (Everingham et al., 2008) to assess performance. The
batch size for image classification is set to 128, and for semantic segmentation, it is limited to 1 due to the variable input
sizes in the validation set. All experiments are conducted on a single NVIDIA A100-SXM4 GPU with 40GB of memory.

D. Additional Experiments
D.1. Classification Performance on VMamba Varients

Table 4. Performance comparison of VMamba models with and without QuarterMap (QM) on ImageNet-1K. The results demonstrate that
applying QM improves throughput while maintaining comparable accuracy. The additional overhead in ToMe stems from merge and
unmerge operations, whereas QM’s overhead arises from the proposed pruning and upsampling stages.

Model Method K Acc@1 (%) Throughput Speedup Scan Kernel Add. overheadd
VMamba-B Baseline - 83.88 590 1× 1.4ms -

ToMe 3 83.52 (-0.36) 424 0.72× 0.7ms 9.7msToMe 2 83.07 (-0.81) 389 0.66×
QM (ours) 3 83.02 (-0.86) 654 1.11× 0.6ms 0.2msQM (ours) 2 82.58 (-1.30) 682 1.16×

VMamba-S Baseline - 83.64 811 1× 1.1ms -
ToMe 3 83.09 (-0.55) 575 0.71x 0.5ms 7.3msToMe 2 82.79 (-0.85) 534 0.66x

QM (ours) 3 82.42 (-1.22) 890 1.10× 0.5ms 0.2msQM (ours) 2 81.56 (-2.08) 921 1.14×
VMamba-T Baseline - 82.60 1548 1× 0.5ms -

ToMe 3 82.15 (-0.45) 1218 0.79x 0.3ms 3.8msToMe 2 81.64 (-0.96) 1138 0.74x
QM (ours) 3 81.50 (-1.10) 1628 1.05× 0.2ms 0.1msQM (ours) 2 80.01 (-2.59) 1671 1.08×
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We provide full classification results for VMamba Tiny, Small, and Base on ImageNet-1K with and without QuarterMap. As
shown in Table 4, applying QuarterMap with k = 3 leads to modest accuracy drops of 1.1%, 1.22%, and 0.86% for the
Tiny, Small, and Base models, respectively. These losses are offset by consistent throughput improvements, with the Base
model achieving a 1.11× speedup, and up to 1.16× when using k = 2. The main gains stem from reduced sequence lengths
passed through the Mamba block, directly lowering the computational cost of SSM recurrence and selective attention.

Although VMamba-S achieves slightly higher accuracy and throughput than VMamba-B with QuarterMap, this comparison
does not account for the common deployment pipeline in real-world applications. In practice, larger models are often
chosen for their superior generalization and transferability, especially in downstream tasks. QuarterMap is designed to fit
this workflow by enabling efficient post-training compression of high-capacity models, without retraining or access to the
original training data, thus preserving transfer performance while meeting run-time constraints.

This post-training strategy is particularly relevant in scenarios where retraining is costly or infeasible, such as on-device
deployment, privacy-sensitive settings, or edge environments. QuarterMap supports this use case by offering a lightweight,
architecture-aware pruning method that requires no model reconfiguration or finetuning, making it well suited for efficient
deployment of pre-trained VMamba models.

D.2. Semantic Segmentation on ADE20K

Table 5. Performance comparison of VMamba-Upernet models with baseline and QuarterMap (QM) methods with k = 3 on ADE20K
semantic segmentation.

Backbone Method Acc (%) mIoU (%)
Base Baseline 83.7 50.96

QM (ours) 82.94 (-0.76) 49.21 (-1.75)
Small Baseline 83.47 50.6

QM (ours) 82.5 (-0.97) 48.81 (-1.79)
Tiny Baseline 82.44 47.93

QM (ours) 81.22 (-1.22) 44.99 (-2.94)

We evaluate QuarterMap on semantic segmentation using VMamba-Upernet (Liu et al., 2024; Xiao et al., 2018) backbones
on ADE20K (Zhou et al., 2017). As shown in Table 5, QuarterMap incurs only a 0.76% decrease in all-pixel accuracy
(aAcc) and a 1.75% drop in mean Intersection over Union (mIoU) in Base model. For the Small and Tiny variants, aAcc
decreases by 0.97% and 1.22%, and mIoU by 1.79% and 2.94%, respectively.

D.3. BloodMNIST Class-Wise Accuracy

Table 6. Class-wise accuracy on BloodMNIST before and after applying QuarterMap. QuarterMap preserves fine-grained classification
performance across all classes.

Class Baseline Acc. (%) QM Acc. (%)

Basophil 97.95 97.95
Eosinophil 99.68 99.68
Erythroblast 96.78 96.78
Immature granulocytes 96.55 96.72
Lymphocyte 99.59 99.59
Monocyte 94.72 94.72
Neutrophil 96.25 96.40
Platelet 100.00 100.00

To further evaluate QuarterMap’s stability in fine-grained settings, we report class-wise performance on BloodMNIST in
MedMNIST (Yang et al., 2021; 2023). As shown in Table 6, accuracy remains nearly identical across all categories, confirm-
ing that QuarterMap preserves semantic precision in medical imaging tasks. This finding demonstrate that QuarterMap
generalizes effectively to VMamba-derived architectures and can be confidently applied in domain-specific deployments
where accuracy preservation is critical.
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Figure 5. Pareto-optimal analysis from different block selection interval k.

D.4. Extended Restuls on Other Architectures

Table 7. Accuracy comparison of QuarterMap on CNN, Transformer, and Mamba models for ImageNet-1K classification. QM significantly
impacts CNNs, causes a larger accuracy drop in Transformers, and is specifically designed to work on VMamba models.

Model Type Baseline Acc. (%) QM (Ours) Acc. (%)

ConvNeXt-B Conv 84.89 45.71
ConvNeXt-T Conv 82.94 48.26
EfficientNetv2-L Conv 75.75 64.71
EfficientNetv2-M Conv 72.92 64.05
DeiT-B Transformer 81.80 79.50
DeiT-S Transformer 79.83 74.31
Swin-B Transformer 85.17 82.91
Swin-S Transformer 83.21 81.22
Swin-T Transformer 81.18 78.56
ViM-Base Mamba (1D) 80.40 71.00
ViM-Small Mamba (1D) 80.50 73.20
PlainMamba-L2 Mamba (4D variant) 81.60 79.30
PlainMamba-L1 Mamba (4D variant) 77.70 73.30
VMamba-B Mamba (4D) 83.88 83.02
VMamba-S Mamba (4D) 83.64 82.42
VMamba-T Mamba (4D) 82.60 81.50

To complement the analysis in the main text, we provide extended results of applying QuarterMap to additional CNNs,
Transformers, and SSM-based architectures. As shown in Table 7, the variants of each model are reported. The results
illustrate QuarterMap’s relative effectiveness across architecture families, with VMamba achieving the most favorable trade-
off between accuracy and throughput. In contrast, QuarterMap significantly degrades CNN performance and moderately
affects ViTs and 1D-scanning SSMs like ViM and PlainMamba (Yang et al., 2024).

E. Ablation Study
E.1. Block selection

We investigate the impact of the block selection interval (k) for applying QuarterMap to the VMamba-B model on the
ImageNet-1K classification task. As shown in Figure 5, selecting smaller values for (k) yields greater throughput gains but
comes at the cost of significant accuracy degradation. To guide this trade-off, we highlight the 1% accuracy difference in the
figure, demonstrating that k = 3 represents a reasonable choice based on the Pareto-optimal curve.

Additionally, we assess the impact of applying QuarterMap to different layers of the VMamba-B model, uniformly pruning
all blocks within a layer. As shown in Table 8, applying QuarterMap to the first layer results in the most significant accuracy
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Figure 6. Ablation studies on feature map pruning in QuarterMap on ImageNet-1K classification.

drop, highlighting the critical role of early blocks in encoding fundamental low-level features essential for downstream tasks.
This finding aligns with prior computer vision studies emphasizing the sensitivity of initial layers to pruning.

In contrast, applying QuarterMap to the third and deepest layer yields the largest throughput improvement due to its higher
computational load and greater resilience to pruning. These results underscore the trade-off between accuracy retention and
computational efficiency, emphasizing the importance of strategic layer selection when applying QuarterMap.

E.2. Feature map pruning methods

We conduct two ablation studies to investigate different methods for pruning feature maps when applying QuarterMap to the
ImageNet-1K classification task. These experiments utilize the VMamba-B model, applying QuarterMap with k = 3 starting
from the second layer. The ablation studies focus on varying the pruning interval m and and the number of consecutively
retained tokens n.

In the first study, we retain one pixel out of every m pixels in both spatial dimensions of the feature map (n = 1). For instance,
when m = 4, the original H ×W feature map is reduced to ⌈H/4⌉ × ⌈W/4⌉, as in top-left of Figure 6. Results indicate
that model accuracy decreases as m reflecting the trade-off between pruning granularity and accuracy. Smaller intervals
preserve more spatial information, leading to better performance, whereas larger intervals result in greater information loss.
Interestingly, comparable accuracy is observed across certain intervals (e.g., m = 5, 6 and m = 7, 8) likely due to similar
numbers of retained pixels despite differences in interval size.

In the second study, we select n continuous pixels out of every m pixels in both spatial dimensions, as depicted in the
top-right of Figure 6. The results, shown in the bottom-right of Figure 6, indicate that none of the tested configurations
outperformed the baseline (blue point). This observation supports our hypothesis that maintaining a critical density of spatial
information is crucial for preserving model accuracy.

Table 8. Ablation study on applying QuarterMap to different model layers. The throughput is measured in images per second (img/s).

Model Layer Acc@1 (%) Throughput Speedup

Baseline 83.88 590 1×
1 78.75 645 1.09×
2 83.00 618 1.05×
3 80.48 748 1.27×
4 83.79 597 1.01×

Table 9. Comparison of different upsampling methods in terms of accuracy and throughput measured in images per second.
Method Acc@1 (%) Throughput
Baseline 83.88 590
Nearest 83.02 654
Bilinear 82.97 205
Bicubic 82.04 161
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E.3. Upsampling

We assess the impact of different upsampling methods, specifically nearest neighbor, bilinear, and bicubic, on accuracy
(Acc@1) and throughput, utilizing the VMamba-B model on the ImageNet-1K classification task. As shown in Table 9, both
bilinear and bicubic upsampling lead to a notable reduction in throughput. This is attributed to their computationally intensive
interpolation processes, which involve calculations across multiple neighboring pixels, thereby imposing a substantial
computational burden. In contrast, nearest neighbor upsampling achieves higher throughput through simpler calculations,
making it a more efficient choice for implementing QuarterMap.
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