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ABSTRACT

Continual learning is a challenging task in machine learning as models can learn
new tasks easily but suffer from catastrophic forgetting of previous tasks. In this
work, we propose a novel framework called Concept Controller that addresses
the issue of catastrophic forgetting by systematically controlling interpretable
concepts in deep neural networks. Our method has several advantages: (1) High
Performance: empirical results show that our method outperforms exemplar-free
methods and is comparable with exemplar-based methods in the standard metrics
such as average accuracy and average forgetting. Moreover, combining our method
with exemplar-based methods can further improve the performance of exemplar-
based methods. (2) Light: our method does not need extra memory space to store
previous tasks’ samples unlike the exemplar-based methods. (3) Interpretable: the
procedure of controlling concept units is transparent.

1 INTRODUCTION

Continual learning is an essential aspect of machine learning, that allows models to adapt their
behavior over time as new data becomes available. However, one major challenge of continual
learning is "catastrophic forgetting" phenomenon, where previously learned knowledge is lost in the
model after learning new tasks. This is mainly due to the distribution shift of inputs as the tasks
change. Continual learning has three common settings (van de Ven et al.| 2022; |De Lange et al.|
2021)): class incremental setting, task incremental setting, and domain incremental setting. In this
paper, we focus on the class incremental setting, which is the most challenging setting among all
in continual learning that exhibits serious catastrophic forgetting behavior (van de Ven et al.| 2022}
Chaudhry et al.| [2018a;|De Lange et al., 2021).

Existing approaches for continual learning mostly belong to three categories: (i) regularization-
based methods, (ii) architecture-based methods, and (iii) replay-based methods. The key idea of the
regularization-based methods (Kirkpatrick et al.,[2017} [Zenke et al., 2017} |Li & Hoieml 2017) is to
constrain the modification of important model parameters from previous tasks, while architecture-
based methods (Rusu et al., 20165 Yoon et al.,|2017) modify the model’s architecture or parameters
when learning new tasks. For replay-based methods (Lopez-Paz & Ranzato| [2017; Rebutffi et al.,
2017), they utilize replay buffers to store previous tasks’ information to update models. Category
(i) and (ii) are also known as exemplar-free methods, which do not replay data from old tasks;
while category (iii) is known as exemplar-based methods, which store previous data to replay. In
general, replay-based methods have better performance but require extra memory storage. While
these methods help to alleviate the issue of catastrophic forgetting, their performance is still far from
satisfactory. Moreover, these methods are not interpretable, which hinders the development of better
algorithms. Ideally, a more systematic and interpretable way to design methods is desirable.

On the other hand, there is an orthogonal line of work aim to understand the role of neurons in
neural networks (Bau et al.| 2017; 2020; |Oikarinen & Weng, |2022; |Hernandez et al., [2022; Mu
& Andreas,, 2020). If a neuron is highly related to a human-understandable concept, then it can
be denoted as a "concept unit". In the transfer learning setting, previous work (Bau et al., [2017)
discovered a positive correlation between the number of concept units and the classification accuracy
at the target task, which indicates that the existence of task-related concept units improves model’s
classification accuracy. Since continual learning and transfer learning share many similarities, we
expect that carefully manage and control task-related concept units will also improve continual
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Figure 1: Overview of the proposed Concept Controller.

learning performance. Meanwhile, we find out that existing continual learning algorithms don’t
really preserve human-understand concepts in continual learning, as Table [3|shows. Building upon
these insights, we propose a novel and interpretable framework called Concept Controller (CC)
to mitigate catastrophic forgetting in continual learning by systematically manage and control the
task-related concept units.

In this paper, our goal is to bring interpretability to continual learning, which allow us to improve
the "method design" in an interpretable manner. Our method enables models to retain knowledge
from previous tasks by effectively controlling the concepts learned from the tasks. Different from
existing works in continual learning which are not interpretable, we aim to systematically control
the human-understandable concepts retained in the model to mitigate catastrophic forgetting. With
Concept Controller, we show that it is possible to preserve the learned knowledge from the previous
tasks effectively — we outperform existing continual learning methods by up to 1.4% in average
incremental accuracy. In addition, we propose a new Concept Bottleneck Model (Koh et al., [2020)
for continual learning called Concept Controller CBM (CC-CBM). Our approach can convert
any neural network backbone to retain concept units related to previous tasks while adding new
concept-neurons related to the new tasks. We show that our technique can further reduce the average
incremental forgetting by up to 9.1% compared to existing approaches. In summary, CC belongs to
category (i), and CC-CBM belongs to category (ii). We demonstrate that our methods can improve
category (iii) when combined with them. This shows that our methods are broad and comprehensive.
Finally, our proposed methods have the following benefits:

* High Performance: Extensive experiments show that Concept Controller outperforms
exemplar-free methods by up to 1.4% in average incremental accuracy and is comparable
with exemplar-based methods in terms of average incremental accuracy and the average
incremental forgetting metric (Zhou et al., 2023 Zhu et al., [2022). Moreover, combining
Concept Controller with exemplar-based methods can further improve the performance of
exemplar-based methods by up to 6.7% in average incremental accuracy.

» Light: Concept Controller does not need extra memory space to store previous tasks’
samples unlike the exemplar-based methods.

* Interpretable: Concept Controller is transparent and allows us to understand and further
control the knowledge in the model retained from previous tasks.

2 BACKGROUND AND RELATED WORK

Continual learning aims to learn the model’s parameters 6 for a series of tasks. Let D; =
{(at,y) )Y, € (X, V*) be the data for task ¢, N; is the number of data samples, = € R is
the data sample, and y! is the class label. In the class incremental setting, tasks don’t share the class
labels, which means Y* N yt’ = (), Vt # t’. In the task incremental setting, tasks may share class
labels, and every test sample’s task label ¢ is provided in the testing phase. In the domain incremental
setting, tasks have the same possible outputs, which means Y! = ) 1 , Vt. In this work, we focus on
the class-incremental setting, which is the most challenging setting (van de Ven et al.,|2022; Chaudhry
et al.,[2018a;|De Lange et al., [2021]).
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2.1 CONTINUAL LEARNING

To mitigate catastrophic forgetting in continual learning, several methods have been proposed. First,
(i) regularization-based methods (Kirkpatrick et al., 2017; Zenke et al.l[2017; |Li & Hoiem, 2017}
Jung et al., 2016; Dhar et al.| 2019; [Castro et al., 2018; |Hu et al., 2019} Lee et al., 2019; |Aljundi
et al.,|2018; |Chaudhry et al.,|2018a; Lee et al., 2017;[Schwarz et al., 2018]) add additional terms in
the loss function to constrain model parameters to not change too much from previous tasks. Second,
(i) architecture-based methods (Rusu et al., [2016; |Yoon et al., 2017 | Xu & Zhul 2018} |Yan et al.|
20215 |L1 et al., [2019; Serra et al., 2018} Wang et al., 2021; Zhu et al., 2022)) modify the model’s
architecture or parameters when learning new tasks, by dynamic expansion or pruning. Third, (iii)
replay-based methods (Lopez-Paz & Ranzato, |2017} Rebutffi et al.| 2017; |Chaudhry et al.| 2018bj
Rolnick et al.,2019; Hou et al., 2019; |Wu et al., 2019; |Buzzega et al., |2020; Wang et al., [2022} |Guo
et al., [2022; [Liu et al., 2021} |/Aljundi et al., 2019) store previous tasks’ information and train the
model with new tasks jointly. The detailed introduction of (i) and (iii) is in Appendix Meanwhile,
some works focus on the theoretical aspect of continual learning (Peng et al., [2023} |Peng & Risteski,
2022 |Cao et al., 2022} [Ruvolo & Eaton, [2013; |[Pentina & Urner, |2016; |Chen et al., [2022; [Kim et al.|
2022). However, none of these methods is directly controlling human-interpretable concepts, which
makes them lack interpretability. Recent work (Marconato et al., [2023) design a framework to control
neuro-symbolic concepts for neuro-symbolic continual learning. However, their method is only
suitable to certain model architectures like DeepProbLog (Manhaeve et al.,2018) and datasets with
predefined concepts like CLE4EVR described in their paper. In contrast, our methods are suitable
to any CNN-based models and standard benchmark datasets. Another recent works (Rymarczyk
et al.} [2023) connects interpretability with continual learning. The method focuses on part-based
prototype concepts. Our work focuses on text-based concepts instead, which allows more general
interpretability. Meanwhile, it is only suitable for particular model architectures whereas our methods
are suitable for any CNN-based models.

The representative techniques in architecture-based methods category (ii) is Dynamic Expandable
Network (DEN) (Yoon et al.|2017), which is described in Appendix [A.3] Compared with DEN, our
method does not require retraining when learning new tasks. Moreover, our method is interpretable
as we identify neurons with human-understandable concepts, allowing a better understanding of
the retained knowledge from previous tasks. Indeed, interpretability is one of the main differences
between our methods and existing architecture-based methods in continual learning.

2.2 NEURON-LEVEL INTERPRETION AND CONCEPT BOTTLENECK MODELS

Several works (Bau et al.| [2017} 2020; |Oikarinen & Wengl [2022; Hernandez et al.| 2022} Mu &
Andreas), 2020) provide automated descriptions of the roles of individual neurons in deep vision
models, and do extensive studies for their methods’ interpretability. Typically these methods generate
a description by analyzing what kinds of inputs result in high activations for the given neuron. For
example, Network Dissection (Bau et al.| |2020) identifies the concepts of individual neurons by
comparing the neuron’s activation map to concept annotated data. A more recent work CLIP-Dissect
(Oikarinen & Weng} 2022) eliminates the need of concept annotated data by leveraging the Contrastive
Language-Image Pre-training (CLIP) model (Radford et al.| | 2021)) and several similarity functions.
Our proposed method works with both of them, but for efficiency we use CLIP-Dissect through out
the experiments.

Concept Bottleleck Model (CBM) (Koh et al.,|2020) has a layer called Concept Bottleleck Layer
(CBL) where each neuron corresponds to a human interpretable concept. Recent works (Oikarinen
et al., [2023} [Yuksekgonul et al.| |2022) try to address the problem that CBMs require training datasets
with concept annotations which maybe expensive and hard to collect. Specifically, (Oikarinen et al.,
2023) proposed Label-Free Concept Bottleneck Model (LF-CBM) to transform neural networks into
an interpretable CBM without labeled concept data. The procedure in LF-CBM is as follows: First,
it uses GPT-3 (Brown et al., 2020) to generate a set of text concepts important for the task based
on class labels, which is then filtered to improve quality. Second, LF-CBM learns a CBL where
each neuron corresponds to one of these concepts, by aligning the neurons with CLIP’s(Radford
et al., [2021) representation of the concepts. Given M concepts generated from the previous step, the
CBL is a linear transformation of the pretrained NN backbone f(x), expressed as W, € dy x M.
Here d is the output dimension of f(z). W is learned to maximize the similarity between CBL’s
output f.(x) = W, f(x) and CLIP’s activation matrix P. This incentivizes the k-th neuron to have an
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activation pattern similar to CLIP with the k-th concept. We denote k-th neuron’s, activation pattern
as ¢ = [fer(®1), .y for(zn)]T. W, is then optimized by minimizing the following objective:

=3 3
M q;-P>; _ . . S
> g “TELIE T where ¢ means the vector is normalized to have mean 0 and standard derivation

1. Finally, LF-CBM learns a sparse linear prediction layer with weight Wy and bias br. The
optimization goal is in Eq. (I):

min |Wr fo(Xuain) + br — y|3 + AR (Wr) 1)
WEg,bp

where R, = 0.5(1 — a)||Wr||3 + o||Wr||;. Compared with LF-CBM, our CC-CBM is tailored
for continual learning with a new learning procedure that enables it to learn a series of tasks, which
generalizes CBM-based methods to continual learning. Recent work (Marconato et al., 2022)
investigates CBM in continual learning setting. The main work of this paper is to find how concepts
diverse or conserve under fine-tune strategy. However, it’s not considering image classification
accuracy in continual learning setting, which is different than our goal. Meanwhile, their strategy
does not allow extension of concept set, which limits the ability in continual learning.

3 CONCEPT CONTROLLER - AN INTERPRETABLE REGULARIZATION-BASED
METHOD FOR CONTINUAL LEARNING

Overview. To mitigate catastrophic forgetting via interpretable methods, our objective is to control
human-understandable concepts that models learn from tasks. We propose two frameworks: the
Concept Controller (CC) in this section and another new approach, the Concept Controller CBM
(CC-CBM) in section 4] The CC framework first identity the interpretable neurons that a model has
learned from previous tasks, then it freezes these neurons to prevent forgetting and reuse them in
new tasks. Building upon this idea, CC-CBM aims to systematically insert and freeze interpretable
neurons relevant to tasks.
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Figure 2: Concept Controller’s procedure.

Key Idea. CC is presented in Figure[2] and works in 4 steps described in the following paragraphs.
To start with, let us introduce the notations: Convolutional neural networks can be divided into two
parts - the convolutional part and the prediction part. First, suppose the convolutional part {W), }lel
be L layers. For layer [, it has U] filters, and the parameter tensor is denoted as W;. Second, suppose
the prediction part W i has the Avgpool layer and the fully connected layers. The whole model
parameter 6 is defined as @ = {W;}L, U Wp.

Step 1: Initial Training. When training on the first task (¢ = 1), we try to promote the sparsity of
the neural network. For the convolutional layers, we train the neural network with matrix ¢ ; norm
regularization on its filters, which decreases the number of effective filters. Formally, the training
goal is to optimize Eq. (2):

L
; 1. 1
min £(6%,D1) + ) [Wi|
=1
where L is cross entropy loss function and p is the hyperparameter of the regularization term. We use
superscript on the model parameter to denote task number.

2,1 @)
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Step 2: Dissecting Network. For the training process on task ¢, ¢ > 1, we first use CLIP-Dissect
(Oikarinen & Weng, [2022) on the last convolutional layer. CLIP-Dissect returns n; concept units
U' = {u!}? in the last convolutional layer. A unit is a "interpretable unit" with a specific concept
when its similarity score exceeds the threshold . The detail of hyperparameter 1 and the accuracy

analysis of interpretable units are in CLIP-Dissect (Oikarinen & Weng|, |2022).

Step 3: Freeze Interpretable Neurons. Inspired by DEN (Yoon et al.
2017), we perform Breadth First Search (BFS) from the last convolutional
layer to the input layer, aim to find out all units that are related to a concept
unit. Specially, we define two units u;, u;—; from layer [ and [ — 1 are
connected if the ¢; norm of the filter meul_l exceeds threshold 7, and
the BFS result of a concept unit is denoted as a "subnetwork" (Yoon et al.}
2017). We find and freeze the subnetworks of all interpretable concept units.
We freeze the subnetworks by setting the gradient of the subnetwork’s
parameters to zero. We implement two ways to freeze the subnetworks:

* freeze-all Freeze all weights connected to neurons in any concept
units’ subnetwork.

* freeze-part Only freeze incoming weights to all neurons in the
subnetworks, leaving outgoing weights trainable.

An illustration of these two methods is in Figure [3] Note that the CC
framework is light since it does not need extra memory storage to store
previous tasks’ samples. Previous tasks’ knowledge is stored within the
model. Meanwhile, CC is transparent because the important neurons are
human-understandable.
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Step 4: Train. Previous works (Lesort et al., 2021;|Mirzadeh et al.,[2022b) 4 wets

state that the Avgpool and the last layer are important for continual learning.

Inspired by the EWC strategy, we train the neural network with regularization on the Avgpool and
fully-connected layer. The regularization term aims to prevent parameter W i from changing too
much. Formally, the training goal is to optimize Eq. (3):

L
min £(8% D) + Y [|Wilan + Wi = Wi ||
=1

3

We will repeat step [2]to[d] for task 2, 3 ... until the last task 7". CC’s algorithm is summarized in the
appendix

Discussion on Interpretability. CC uses CLIP-Dissect (Oikarinen & Wengl 2022) as the inter-
pretability tool to dissect network and find interpretable units in the model. CLIP-Dissect provides
very high concept accuracy for interpreting models as they studied in the Tables 2, 3 and 6 of the
paper, which means it can interpret individual units well.

Ability to Share Concepts Among Tasks. CC is designed to keep the learned concepts from old
tasks. Experiment results in Section[5.2and Appendix [A.7prove our method’s ability.

4 CONCEPT CONTROLLER CBM - AN INTERPRETABLE
ARCHITECTURE-BASED METHOD FOR CONTINUAL LEARNING

In Section |3} we described how we can use Concept Controller to discover concept units in models
without prior knowledge of the current task, and control these concept units to mitigate catastrophic
forgetting. CC is the first interpretable approach in regularization-based category. In this section,
we discuss how we can further leverage the task’s information to control the concept units based on
CC, which is a new approach in architecture-based category. We propose Concept Controller CBM
(CC-CBM), which can transform any neural network backbone to a interpretable CBM for continual
learning by combining CC with LF-CBM in section[2.2] CC-CBM is able to preserve concept units
learned from previous tasks, and insert new concept units for new tasks.
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Figure 4: CC-CBM’s procedure.

We illustrate CC-CBM’s procedure in Figure ] For the first task, the learning procedure is the same
as training LF-CBM (section[2.2) on the first task. In the continual learning setting, after learning the
task t € {1,...,T'}, the CBM has concept set C* with M concepts, concept bottleneck layer (CBL)
Wt e RM'*do and the prediction layer Wk € R%=*M" bt ¢ R where d, is the number of output
classes. The backbone f(z) is frozen, and the CBL function is f!(z) = W} f(x). Each task ¢ is
associated with additional concept set C!,_,, with N* concepts which are generated using GPT-3 as
described in (Oikarinen et al., [2023)). Follow LF-CBM (Oikarinen et al., [2023)) Section 3.1, we use
several techniques to improve the quality of C? . . In the following sections for CC-CBM’s learning
procedure, we consider the case that the model has learned ¢t — 1 tasks, and it is going to learn the
new task ¢.

Step 1: Concept Set Expansion. Given the concept set from ¢ — 1 tasks as C*~!, we form a new
concept set C! by adding all concepts in C¥_,, into C*~!. In the case some concepts in C?_, are
already in C*~!, we still add them since two same concepts in different tasks might have different
characteristics such as color and shape. For example, concept "ship" might refer to "vessel" or "cargo

ship" in different tasks. After the expansion, there are M* = M'~! + N* concepts in C°.

Step 2: Learning the Concept Bottleneck Layer (CBL). To preserve previously learned concepts,
we keep the weights of the existing concepts from the CBL of the previous task. Given a new CBL

for learning the task t is W! € RM "xdo we first inherit the CBL’s weights from the previous model.

Specifically, we copy the previous concepts’ weights in W/~ € RM "'xdo g the same concepts in
W, Therefore, M*~! concepts in W inherit the identical weights from W!~!. The second step is
to learn W! using the procedure of LF-CBM described in section to get W!. The second step can
be done in two ways:

1. Finetune: We learn W on task ¢ without additional constraints. We only initialize W} with
old concepts but these concepts will be changed on the new task.

2. Concept Controller: We freeze the previous concepts’ corresponding weights in W/ to
prevent them from changing. This strategy enables us to learn the weights of new concepts
without affecting the previously learned ones. This strategy makes CC-CBM light and
interpretable. It eliminates the need for additional memory storage for previous tasks’
samples, and provides transparency regarding the retained knowledge.

Step 3: Learning the Prediction Layer. First, we inherit concepts’ weights in Wf{l to Wt before
the learning process, and same for the b%.. The idea is similar to step [2, where M*~! concepts in
W inherit the same weights from Wlffl. Again, the Finetune strategy is to learn W}, without any
constraints. The optimization of W, is same as Eq. . On the other hand, the Concept Controller
strategy for LF-CBM follows the similar idea as CC’s step[d] We aim to learn the prediction layer
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with regularization. The training goal is to optimize Eq. (4):

Jmin, L(Wp, bp; fo(X%), V) + ARa (W) +7(I1Wp — Wi 5+ 1o =053 @)

where L is a specific loss function and + is the hyperparameter of the regularization term.

Discussion on Interpretability LF-CBM (Oikarinen et al.,[2023)) provides CC-CBM interpretability.
While we can’t directly measure its concept accuracy in our setting, the concepts learned by LF-CBM
were shown to be accurate in a crowdsourced evaluation (Oikarinen et al., [2023)).

Ability to Share Concepts Among Tasks CC-CBM is designed to keep the learned concepts from
old tasks. Experiment results in Section [5.2]and Appendix [A.§]prove our method’s ability.

5 EXPERIMENT

Dataset and Experiment setup To evaluate our methods, we perform experiments on three datasets:
CIFAR-10, CIFAR-100 (Krizhevsky et al., [2009), and TinyImageNet (Le & Yang,[2015). CIFAR-10/
CIFAR-100 and TinyImageNet are standard image classification benchmarks. Both CIFAR-10 and
CIFAR-100 have 50k training examples and 10000 testing examples with 10 classes and 100 classes
respectively. TinyImageNet has 200 classes with 500 training examples and 50 testing examples
per class. We consider T' = 5, 10, 20 tasks, where each task consists of 1;1—0% of classes and their
corresponding samples. Our experiments focus on the class incremental setting, which means tasks
don’t share the class labels. We use ResNet18 (He et al., 2016) as our experiment model. We split
each dataset by 3 different random seeds, and run each class distribution for 3 times.

Evaluation Metrics Following (Mirzadeh et al., [2022b; |[Chaudhry et al., 2018al), we use the
standard evaluation metrics to evaluate our methods. Define a; ; as model’s accuracy on j-th task
after learning i-th task, ¢ > j7.When testing the performance on ¢-th task, the metrics’ definitions are
as follows:

* Average Accuracy (4; = % Zle at.;): Measures the average model performance.

 Average Forgetting (F; = ﬁ Zi;} (max (@j,; — a,;)): Measures model performance
Je(,... t—1

drop on previous tasks.

However, these standard metrics only reflect models’ performance at the final stage. Following recent
works (Zhu et al., [2022; |Carta et al., 2023} [Zhou et al., [2023}; |Caccia et al., [2020; 2021}, Koh et al.}
2021)), we also evaluation models throughout the stream. Specifically, we also report:

* Average Incremental Accuracy (Ar = + 37, Ay)
« Average Incremental Forgetting (Fr = + 3/, F})

5.1 QUANTITATIVE COMPARISON RESULTS

We perform experiments on the following continual learning baselines:

* Finetune: the standard method where models are updated continuously on a series of tasks
* Exemplar-free methods
— Category (i): EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,2017), LwF (L1 & Hoiem,
2017)

— Category (ii): Adam-NSCL (Wang et al.| 2021), SSRE (Zhu et al.| 2022)) in Appendix[A.12]
* Exemplar-based methods

— Category (iii): GEM (Lopez-Paz & Ranzato, 2017), MIR (Aljundi et al., 2019), DER
(Buzzega et al., [2020)

For CC, "CC-freeze-x" (z € {all,part}) means Concept Controller with implementation freeze-all/
freeze-part in step[3] "CC-freeze-x-GEM" and "CC-freeze-x-MIR" means combining "CC-freeze-x"
with GEM and MIR respectively. For CBM based methods, "Finetune-CBM" means using Finetune
strategy in step [2]and step[3] "CC-CBM" means using Concept Controller strategy in step [2]and
step[3] Similarly, "CC-CBM-GEM and "CC-CBM-MIR" means combining "CC-CBM" with GEM
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and MIR respectively. For baseline strategies, we use the implementations from a continual learning
library Avalanche (Lomonaco et al.,[2021)). We also use Avalanche to implement our methods.

Here we discuss T = 5 experiment results in { A7, Fr}. For experiment results of {T' = 10,20},
different metrics {Ar, Fr} and comparison with SSRE (Zhu et al., 2022), please see Appendix
and respectively. For CC, the accuracy comparisons with existing works are in
Table[I] Compared with the exemplar-free methods, our method outperforms existing works by up
to 1.4% in Ap and up to 1.4% in Frp. Most of the time CC performs better using freeze-all than
with freeze-part. Meanwhile, the performance is comparable to or even better than exemplar-based
methods in some benchmarks. When combining CC with exemplar-based methods, both freeze-all
and freeze-part make exemplar-based methods have better accuracies in balanced average accuracy
A, and have lower balanced average forgetting Frr. The experiment results show that CC can make
models more effective and forget less, either working independently or combining with other methods.

Table 1: Accuracy comparison for CC. 1 means larger values are better, while | means smaller values
are better. The Improvement is compared with the strongest baseline for each block. Our methods
outperform the baselines on both A7 and F by large margins.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T
Ar 1 Frl Ar 1 Frl Ar 1 Fr|

Baseline in Category (i)

Finetune 2746 £0.89 9586 £1.28 2047+0.67 63.02+045 16.82+2.18 49.80+0.57

EWC 30.05+0.79 9413 £226 2097 £055 62.56+029 16.19+£2.65 48.42+0.39

SI 29.64 £035 9421 +1.66 17.75+£137 5931+£193 13.07+£2.57 4471 +£2.28

LwF 30.16 £0.23 9494+ 133 12.74+2.15 63.66 £240 16.09+3.25 4943+ 1.26
Baseline in Category (ii)

Adam-NSCL 3023 £1.02 9482+053 17454235 5954 +£3.04 1790257 4498 +£0.74
Ours

CC-freeze-all 31.55+0.13 92.69 +0.81 22.37+1.20 58.75+0.26 18.19+0.76 43.39 £+ 0.92

CC-freeze-part 30.55+0.84 9447 +1.12 21.73+£0.79 60.51 £0.35 18.08£0.56 46.00 £ 0.66
Improvement 1.32 1.44 1.40 0.56 0.29 1.32
Baseline in Category (iii)

GEM 3459 £0.05 90.00+3.80 23.02+1.65 60.63+4.12 11.29+2.62 41.30=+1.67

MIR 2897 £2.34 89.80£099 2726+093 53.02+2.84 17.81 £0.82 44.60+2.43

DER 3239+ 1.76 7224 +£1.32 2649 £1.64 54.06+ 141 1527 +£0.89 48.01 £0.06
Ours

CC-freeze-all-GEM 35.60 £0.62 9493 +0.66 28.18+2.36 42.61 +£2.12 1249+ 1.87 37.78 +1.04

CC-freeze-part-GEM 37.00 £ 0.96 9222 +£2.00 25.62+2.08 52.39+3.24 12.06+1.58 42.67+2.79

CC-freeze-all-MIR 3023 £1.54 91.04 +£257 27.04+1.08 51.66+3.11 19.95+241 43.08+0.95

CC-freeze-part-MIR 30.75 £1.37 91.07+£2.04 27.594+0.62 5277 £2.75 20.02+2.58 43.87+2.25
Improvement 241 -18.80 0.92 10.41 2.21 3.52

Since the backbone of our CBM is pre-trained on Places365 dataset (Zhou et al., 2017), we also
pre-trained existing methods’ models on Places365 dataset for a fair comparison. The accuracy
comparisons for CBM-based methods are in Table 2] Due to the architecture of Label-free CBM[2.2}
the Finetune-CBM outperforms existing exemplar-free methods in balanced average forgetting F'r.
CC-CBM even has better performance on both metrics. Compared with CC, the performance of CC-
CBM is better since it’s Frr outperforms baselines by up to 9.1%. Meanwhile, combining CC-CBM
with exemplar-based methods yields improved performance in both metrics for the exemplar-based
methods. We also did ablation studies in Appendix [A.5]to understand the impact of components in
CC and CC-CBM.

5.2 DIsCcUSSION ON CONCEPT EVOLUTION

In addition to analyzing the prediction accuracy of our methods, we also examine the learned concepts
of our methods by leveraging their interpretability. For CC, we study the evolution of the concepts
represented by neurons as we train across different tasks. We analyze the case which we group
similar classes into the same task, so we can recognize which task a concept belongs to easier. For
CIFAR-100 and TinyImagenet, the class distributions are in appendix [A.T5] We try to maximize
the diversity between tasks, which makes tasks share less concepts. First, we use CLIP-Dissect
(Oikarinen & Weng, 2022) to analyse how many units are still detecting the same concept after
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Table 2: Accuracy comparison for CC-CBM. All models are pre-trained on the Place365 dataset
Zhou et al.| (2017). 1 means larger values are better, while | means smaller values are better.
The Improvement is compared with the strongest baseline for each block. Our methods clearly
outperform the baselines on both A and Fir.

CIFAR-10, 5T CIFAR-100, 5T Tinylmagenet, 5T
Art Frl Ar 1 Fr| Ar? Fr|

Baseline in Category (i)

Finetune 29.13+£ 028 97.78 £0.78 22.68 £0.88 75.69 £2.25 20.50£0.45 66.52+2.10

EWC 30.79 £021 97.92+0.78 2220+ 1.56 7493 +234 19.68+1.82 65.26+2.54

SI 30.254+0.72 9655+ 1.70 2270+ 120 7444 +245 18.87 £ 1.71 62.44 +0.68

LwF 30.76 £ 0.31 97.75+0.84 2420+229 7441 +333 2048 +236 64.17+3.08
Baseline in Category (ii)

Adam-NSCL 30.78 £ 0.82 96.82 £2.35 2337 +2.14 53.87+£3.19 20.17 £2.04 58.28 £3.02
Ours

Finetune-CBM 30.39 £0.67 93.09+222 2499+0.79 5929+140 21.13+1.66 61.57+1.42

CC-CBM 32.25+0.76 88.58 +0.30 2425+ 0.86 47.62+1.52 21.30 +1.55 49.11 + 1.74
Improvement 1.46 7.97 0.79 6.25 0.80 9.17
Baseline in Category (iii)

GEM 36.27 £ 1.86 69.38 £2.88 2427 £1.57 7428 £2.54 10.54+£0.73 4149 +£1.62

MIR 3320+£292 7551+194 24324209 61.22+1.69 11.58+2.08 44.17 +2.06

DER 3377 £1.28 7675+ 124 24214266 68.11+2.15 19.18+0.78 57.51 +3.96
Ours

CC-CBM-GEM 3637+ 1.74 4472 +£2.71 2541 £2.06 6691 £2.16 12.14+0.53 38.23 +0.42

CC-CBM-MIR 36.61 +1.77 70.45+1.89 31.03+2.23 60.39+1.06 14.86+1.10 46.24 +2.81
Improvement 0.34 24.66 6.71 0.83 -4.32 3.26

learning a new task. The results are in Table [3] Compared with existing methods, our method has
better ability to retain knowledge of concepts learned from previous tasks. We also do a case study to
understand how well our method preserves the concept units from the previous tasks. Table [§] shows
results for some example neurons. Some concepts are preserved after learning unrelated new tasks,
which gives us insight on how our method helps avoid catastrophic forgetting.

For CC-CBM, we also studied the evolution of concepts across different tasks. Figure [5]shows an
example for CIFAR-100 under 5-tasks scenario, studies on other datasets is in appendix Com-
pared with Finetune-CBM, we can see CC-CBM is much better at retaining and using knowledge of
concepts learned from previous tasks, which help us understand how our method against catastrophic
forgetting.

Table 3: The ratio of units which still detect the same concepts they detected in the last task. Tasks’
classes are in appendix [A.T3] Our methods outperform existing works for preserving concepts.
Method CIFAR100, 5T Tinylmagenet, 5T
Task2 Task3 Task4 Task5 Task2 Task3 Task4 TaskS5

Baseline
Finetune 0 0 0 0 0 0 0 0.086
EWC 0 0 0 0 0 0.030 0.037 O
SI 0 0 0 0 0.028 0.191  0.200 0.250
LwF 0.019 0.011 0.176 0 0.114 0.191  0.393  0.365
GEM 0 0.125  0.076  0.153 0 0 0 0
MIR 0 0 0 0.250 0.028 0 0 0
Ours

CC-freeze-all ~ 0.500 0.500 0.571  0.700 0.739 0.771  0.812 0.812
CC-freeze-part 0.125 0.133  0.727  0.695 0.515 0.488  0.544  0.666

6 CONCLUSION

In this work, we have presented Concept Controller, a high performance, light and interpretable
framework to mitigate catastrophic forgetting problem in continual learning. We have shown Concept
Controller and its extended version (CC-CBM) outperforms previous continual learning methods by
up to 1.4% in average incremental accuracy, and it can further improve them by up to 24% in average
incremental forgetting. It can preserve learned knowledge in an effective and interpretable way.
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REPRODUCIBILITY STATEMENT

We describe training details and hyperparameters in Appendix [A.T] We also fix the task distribution
of 5-tasks scenario to reproduce our methods’ interpretability results. Please see Appendix [A.15]for
the details. The code and full training details will be released to public upon acceptance.
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A APPENDIX

In this section we provide a brief overview of the Appendix contents.

. Training and Computing Details

* [A.2} Broader Impacts

* [A:3} Previous Continual Learning Methods
. Concept Controller Algorithm

* [A:3} Ablation Study

. Ablation on CC-CBM Sparsity

. CC’s Concept Evolution

* [A:8} Discussion of Concept Evolution for CC-CBM
. 5 task Standard Metric Results

* [A.I0; 10, 20 tasks Experiment Results

. Computational efficiency

. Comparison with SSRE

. Class Distribution

A.1 TRAINING AND COMPUTING DETAILS

All models are trained on single NVIDIA V100s (32 GB SMX2). The hyperparameters used for our
methods are in Table[d] The code and full training details will be released to public upon acceptance.
For a fair comparison, the A and ~ in Eq. [3]and i are same as the hyperparameters in regularization
term of EWC (Kirkpatrick et al.,[2017), ST (Zenke et al.,[2017)) and LwF (Li & Hoiem, |2017). For
GEM (Lopez-Paz & Ranzato| 2017) MIR (Aljundi et al.,[2019) and DER (Buzzega et al.| [2020), we
experimented with the following memory buffer sizes per task: [20, 150, 500] and report results with
150 which has best average accuracy in 5-tasks scenario.

Table 4: Hyperparameters for our methods.
CIFAR-10/ CIFAR-100 TinyImageNet

w in Eq. 1076 1076
Ain Eq. 3] 0.4 0.4
7 in sectionfd] 0.2 0.35
A in Eq. 0 0

v in Eq. 0.4 0.4

A.2 BROADER IMPACTS

The improvement of mitigating forgetting by controlling concepts in models might have some
potential negative impact in terms of privacy. For example, if an adversary only has access to model
checkpoints but not model’s training data, they can analyse the concept units in the model. This will
give the attacker some information about how the model was trained, and may allow them to extract
some private information from the models without access to training data.

A.3 PREVIOUS CONTINUAL LEARNING METHODS

The representative method in regularization-based methods category (i) is Elastic Weight Consol-
idation (Kirkpatrick et al., 2017). Elastic Weight Consolidation (EWC) is a regularized-based
method. The loss function in this strategy L(6*) = Lcg(0%) + 3 >, Ff (0 — 0:7")? has a quadratic
penalty term which is related to the difference between the parameters of the old task and the new
task. Meanwhile, this penalty term is proportional to the diagonal of the Fisher information matrix F.
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A is a hyperparameter, and 8%, *~! stand for model parameters before and after training on a new
task ¢ respectively.

Similarly, Zenke et al.| (2017)) adds a quadratic penalty term in the loss function, while estimating
the importance of parameters during training. [Li & Hoiem| (2017) trains models with a knowledge
distillation loss for old tasks and a regularization loss to outperform joint training.

The classic method in architecture-based methods category (ii) is Dynamic Expandable Network
(DEN) (Yoon et al., 2017). DEN focuses on the neural network’s architecture aspect in the continual
learning setting. This method has three steps. First, they train the network to be sparse on task
t — 1. The loss function L(W/ ;" D;_1) 4+ p Zle [W/}~||1 has ¢;-regularization of each layer’s
parameter Wf_1 which boosts the network’s sparsity. Next, when training on the new task ¢, they
do a breadth-first search to find neurons that are connected to output oy, and the authors describe
the search result as a "subnetwork". Therefore, they only need to train a subnetwork instead of the
whole network, which is called selective retraining. This procedure can prevent parameters related
to the previous task from being changed. If the performance is bad, which means the loss function
exceeds the predefined threshold, they will expand the network’s layers with some neurons and
prune unnecessary ones. Finally, they measure the /5-distance of the hidden neurons before and after
training on a new task. If the distance exceeds the predefined threshold p, they will duplicate them
and train the model again.

The classic method in replay-based methods category (iii) is Gradient Episodic Memory (Lopez{
Paz & Ranzato, |[2017). Gradient Episodic Memory (GEM) is a replay-based method. It stores a
subset of the observed examples from previous tasks, which is described as episodic memory. When
training on new tasks, it regularizes the projection of the estimated gradient descent g on the gradient
descent of episodic memory gi. The optimization goal is formalized as (g, gx) > 0,Vk < t when
training on the task ¢. This regularization prevents the loss of episodic memory from increasing.
(Rebuffi et al., 2017) stores a subset of samples for each class and uses the nearest-mean classifier on
the data representation space.

A.4 CONCEPT CONTROLLER ALGORITHM

The algorithm [T| summarizes the procedure of Concept Controller.

Algorithm 1 Concept Controller: Freeze the subnetworks of the concept units

Require: Dataset D; regularization coefficient u; connection threshold 7; regularization factor A;
Neural network parameters 6

1: fort <1,....,T do
2 if ¢ is 1 then
3 Train 8* on D; by solving Eq.
4: else
5: Train 8 on D; by solving Eq.
6 ConceptUnit < CLIP-Dissect(W?)
7 Prev—-active < ConceptUnit
8: for layer [ + L,...,1 do > Find the subnetwork of the concept units
9: for Unit u; + 1,...,U; do
10: if Prev—active[uy;] is True then > w; is in subnetwork
11: for Unit u;_q1 +1,...,U;_1 do
12: if [W, ,,_,ll1 > 7 then > weight exceeds threshold
13: Activelu;_1]+ True
14: if Using freeze-all then
15: Freeze WZ“,VPrev—active[ul] is True
16: Freeze Wiu,,l ,V Active[u;_1]is True
17: else if Using freeze-part then
18: Freeze W!, .,V Prev-active[u]is True
19: Prev—-active < Active
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A.5 ABLATION STUDY

Besides comparing the results with existing methods, we perform ablation study to analyze the impact
of the key components in our methods. In Table[5] we compare CC with (i) not freezing subnetwork
in step [3] which is denoted as "CC w/o freeze", and (ii) not regularizing parameter W  in step
which is denoted as "CC-freeze-all w/o reg" or "CC-freeze-part w/o reg". The experiment results
show that combining two of them results in less forgetting and better average accuracy. We believe
it’s because they are necessary to each other. If the concept units’ subnetworks are not frozen, the
concepts might change and the regularization term may not work. On the other hand, if the W g
and by change when learning new tasks, then the concept units learned from previous tasks may not
contribute to the final prediction.

For CC-CBM, we do a similar ablation study with (i) not freezing previously learned concepts when
learning CBL in step 2] which is denoted as "CC-CBM w/o freeze", and (ii) not regularizing parameter
Wr and bp in step which is denoted as "CC-CBM w/o reg". The result Table [6]shows a similar
result. In conclusion, these ablation studies demonstrate the importance of both freezing subnetworks
and regularizing the W and b to achieving better performance and mitigating forgetting.

Table 5: Experiment results of CC’s ablation study. "CC w/o freeze": not freezing subnetwork.
"CC-freeze-all w/o reg" and "CC-freeze-part w/o reg": not regularizing parameter W and bp. 1
means larger values are better, while | means smaller values are better. Preserving two components
turns out have the best performances.

CIFAR-10, 5T CIFAR-100, 5T Tinylmagenet, 5T
Art Frl Apt Frl Apt Frl
CC w/o freeze 29.77 £0.12 9476 =148 19.27 +£2.53 60.23 £6.53 1551 £2.14 48.26 +4.57

CC-freeze-all wioreg ~ 30.13+£0.62 9550+ 1.27 19.324+2.02 59.77+4.99 14.56+237 50.69 + 3.88
CC-freeze-part wioreg 30.17 £0.58 9550+ 1.27 2121 £1.65 62.04 £4.58 15.07+£2.50 51.28+4.22
CC-freeze-all 31.55+0.13  92.69 +£0.81 2237 +£1.20 58.75+0.26 18.19+0.76 43.39 £ 0.92
CC-freeze-part 30.55+0.84 9447 +1.12 21.73+£0.79 60.51 £0.35 18.08+0.56 46.00 £ 0.66

Table 6: Experiment results of CC-CBM’s ablation study. "CC-CBM w/o freeze": not freezing
previous concepts. "CC-CBM w/o reg": not regularizing parameter W  and bg. Preserving both
has the best performance.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T
Ap 1 Fr| Ap 1 Frl Ap 1 Fr|
CC-CBM w/o freeze 29.78 +2.45 87.76 +1.07 18.01 £3.42 49.50+2.58 17.30£2.89 51.64 +4.00

CC-CBM w/o reg 28754+ 1.62 91.10£220 20424268 5872+1.04 19.76+226 62.24+2.85
CC-CBM 32.25+0.76 88.58 £0.30 24.25+0.86 47.62 +£1.52 21.30 +1.55 49.11+1.74
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A.6 ABLATION ON CC-CBM SPARSITY

In this section we experimented with some modifications to W in our CBM and report their results.
In our main results for CC-CBM and Finetune-CBM, we used a dense final layer Wy instead of the
sparse final layer used by (Oikarinen et al.,[2023)) as we found that to have best performance, and we
are less focused on interpretable final decisions. Below we compare the results for CBM between
dense W, and sparse W (-S). For the sparse W, we used A = 1076 in Eq. 4l The experiment
results are in Table[7] We found that sometimes sometimes sparse W makes models forget less.
However, dense W had the best performance in general.

Table 7: Experiment results of CBM based methods on 3 datasets. "S": sparse Wr. Dense Wr
results in best performance in average.

CIFAR-10,5T CIFAR-100, 5T TinyImageNet, 5T
Art Fry Art Fry Ar 1t Fry
Finetune-CBM 30.39 £0.67 93.09+£222 2499 +0.79 5929+140 21.13+1.66 61.57+1.42
CC-CBM 32.25+0.76 88.58+030 24254086 47.62+152 21.30+1.55 49.11+1.74
Finetune-CBM-S 28.84 £1.35 91.74 +£222 20.234+279 5829+3.12 19.50+2.33 61.57 +2.87
CC-CBM-S 30.11 =3.04 87.58 +£0.30 19.20+3.77 46.62 +2.52 19.50+3.03 46.11 + 3.48

CC-CBM-GEM 36.37 £ 1.74 4472 £2.71 2541 £2.06 6691 +£2.16 12.14+0.53 38.23 +0.42
CC-CBM-GEM-S 3632+£290 4528+4.17 2540+4.13 6521+328 532+1.06 39.23+0.85

A.7 CC’s CONCEPT EVOLUTION

Table [3] and [8] shows the CC’s concept evolution when grouping similar classes together. The analysis
is in Section

Table 8: Concept evolution for CC in freeze-all implementation. We analyse the concept evolution in
the layer 4 of ResNet18. The blue concept means the concept is related to the current task, while the
green concept means it is unrelated. "x" stands for non-interpretable units. The results show that CC
can preserve the concepts from previous classes while learning unrelated tasks.

Tinylmagenet, 5T

task 1 task 2 task 3 task 4 task 5

1 Bie obiect Human-made Big animals Small animals  Food & Clothes
asses 18 objects small objects & Natural scenes & Sea animals & Others
Unit 85 X Kitchen Kitchen Kitchen Kitchen
Unit 123 X Bedroom Bedroom Bedroom Bedroom
Unit 129 Bus Bus Bus Bus Bus
CIFAR-100, 5T
task 1 task 2 task 3 task 4 task 5
Small animals  Natural scenes . . . .

Classes & Sea animals & Plants Big animals Big objects Others
Unit 307 X Kitchen Kitchen X X
Unit 310 X X X Highway Highway

Besides grouping similar classes into the same task, we also analyse the cases where class labels are
distributed randomly. Following the same procedure as in section[5.2] we analyse how many units are
still detecting the same concept after learning a new task. The average results for three datasets are in
Table]and [T0} Similar to Table[3] our methods outperform existing methods to retain knowledge
of concepts learned from previous tasks. In general the concepts are more stable in random class
distribution since different tasks might share more overlapped concepts.
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Table 9: The ratio of units which still detect the same concepts they detected in the last task for
CIFAR-10 and CIFAR-100. Class labels are distributed randomly, and the results are average over

three runs. Our methods outperform the existing works for preserving learned concepts.

Method CIFARI10, 5T CIFAR100, 5T
Task 2 Task3 Task4 Task5 Task2 Task3 Task4 Task5
Baseline
Finetune 0 0 0 0 0.020 0.005 0.010 O
EWC 0 0 0 0 0.065 0.010 O 0
SI 0 0 0 0 0 0 0 0
LwF 0 0 0 0 0.020 0.030 O 0
GEM 0 0.031 O 0 0.138 0.043  0.006 0.023
MIR 0 0 0 0 0.028 0 0.050 0.052
Ours
CC-freeze-all 0.052 0.500 0.111  0.200 0.578 0.636 0.782 0.741
CC-freeze-part 0.023 0450 0.090 0.150 0.210 0466  0.687  0.869

Table 10: The ratio of units which still detect the same concepts they detected in the last task for
TinyImagenet. Class labels are distributed randomly, and the results are average over three runs. Our
methods outperform the existing works for preserving learned concepts.

Method

TinyImagenet, 5T

Task 2 Task3 Task4 Task5

Baseline
Finetune
EWC
SI
LwF
GEM
MIR

Ours
CC-freeze-all
CC-freeze-part

0.030
0.011
0.015

0.724
0.586

0.010
0.015
0
0
0.041
0

0.833
0.739

coocococo

0.741
0.666

0.030
0.010
0
0
0.029
0

0.812
0.821
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A.8 DIscUSSION OF CONCEPT EVOLUTION FOR CC-CBM

In this section, we study the evolution of the concepts represented by neurons and final layer weights
as we train CC-CBM across different tasks under 5-tasks scenario. We analyse a classes’ final layer
weights after learning its task, and after learning a new task. We visualize the final layer weights
of Finetune-CBM and CC-CBM by Sankey diagrams, only including weights with absolute value
greater than 0.05. Negative weights are reported as "NOT {concept}". The visualizations for random
classes in three datasets are in Figure 5[[6][7} Compared with Finetune-CBM, we can see CC-CBM is
much better at retaining and using knowledge of concepts learned from previous tasks. This helps
explain why CC-CBM performs better in Frr and Frp.

CIFAR-100 - Finetune-CBM Final layer weight visualization for random classes
Task 1 Task 2

Concept Class Concept Class

& bush =
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not & flattened body =
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not a shell =
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not an ocean = caterpillar
black and yeliow stripes | catarpillar

nat brown fur
camouflaged colorarldr?n -
rt

fins B
grass Il
larva not brown fur

black and yellow stripes |

leaves
long, amtennas-like feslers
plants Il

CIFAR-100 - CC-CBM Final layer weight visualization for random classes
Task 1 Task 2
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nol a Natened body B
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not a largs, colled shsll =
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Figure 5: Final weight visualization for random classes in Finetune-CBM (top) and CC-CBM (bottom)
trained on CIFAR-100 under 5-tasks scenario. We show the class "caterpillar"’s weight after training
on task 1 and task 2. Concepts generated from the caterpillar class itself are colored blue, and other
concepts from the original task for caterpillar are colored gray. The class distribution is in Table 26]
We can see CC-CBM keeps a similar final layer while Finetune-CBM loses most significant weights.
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CIFAR-10 - Finetune-CBM Final layer weight visualization for random classes
Task 4 Task 5

Concept Class Concept Class
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CIFAR-10 - CC-CBM Final layer weight visualization for random classes
Task 4 Task 5
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acab for the driver
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not a dock I
a flatbed for camying cargo

not a sail |

=

not sails |l a tailgate

a tailgate

a trailer

a truck stop

not the sea [
not watercraft B

Figure 6: Final weight visualization for random classes in Finetune-CBM and CC-CBM trained on
CIFAR-10 under 5-tasks scenario. We show the class "truck"’s weight after training on task 4 and
task 5. Concepts generated from the truck class itself are colored blue, and other concepts from the
original task for truck are colored gray. Concepts from the new task are colored green. The class
distribution is in Table 23] We can see both models change significantly, but CC-CBM keeps more
concepts from original task.
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TinylmageNet - Finetune-CBM Final layer weight visualization for random classes
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sand =
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Task 3

Concept Class

asecond hand or digital timer
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TinylmageNet - CC-CBM Final layer weight visualization for random classes
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a pressure gauge I

Task 3

Concept Class

a dial

a pressure gauge I

' a second hand or digital timar
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Figure 7: Final weight visualization for a random class in Finetune-CBM and CC-CBM trained on
TinylmageNet under 5-tasks scenario. We show the class "stopwatch"’s weight after training on task
2 and task 3. Concepts generated from the stopwatch class itself are colored blue, and other concepts
from the original task for stopwatch are colored gray. The class distribution is in Table[29] We can
see CC-CBM weights stay almost identical, while Finetune-CBM changes a lot.
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A.9 5 TASK STANDARD METRIC RESULTS

Table [11] and [12] report comparisons for CC and CC-CBM under 5-tasks scenario respectively.
Different from Table|l|and hat report A and Frp, Table|l1{and |12|report A and Frr that only
reflect models’ performance at the last stage.

Table 11: Accuracy comparison for CC. 1 means larger values are better, while | means smaller
values are better. The Improvement is compared with the strongest baseline for each block.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T
Ar 1 Frl Ar t Fr At Frl

Baseline in Category (i)

Finetune 1589+ 0.76 7854 +0.87 1648 £2.63 56.65+324 13.20+223 43.50+045

EWC 18.72£0.79 75.66 £226 1579 +1.58 55.79 £3.87 13.07+3.55 43.04+241

ST 18.96 £ 0.35 74.19£1.66 13.30+2.62 50.59 +3.50 10.51 £3.01 39.19+3.91

LwF 19.01 £0.23 75.00 £1.33 1792+ 0.10 56.85+2.54 1347 +148 43.75+1.15
Baseline in Category (ii)

Adam-NSCL 20.60 £0.71 7682+ 1.72 1770 £085 7235+125 1415+219 62.71 £2.93
Ours

CC-freeze-all 21.14+1.90 70.68 +£0.81 14.66+1.81 51.17+2.48 11.20+048 37.85+0.83

CC-freeze-part 20.71 £0.84 7142+ 1.12 1517+3.47 5299 +2.85 11.34+3.67 38.53+0.69
Improvement 0.54 3.51 -2.75 -0.58 -2.81 1.34
Baseline in Category (iii)

GEM 22.51+0.05 7350+3.80 19.07+0.62 52874274 11.12+1.79 3758 £1.15

MIR 2818 £2.34 4771+£099 9.75+£339 43.09+£0.68 1091 £3.89 3842+1.57

DER 28.85+234 70.81+099 19.74+£228 5455+£1.60 11.35+£1.68 47.39+2.26
Ours

CC-freeze-all-GEM 24.66 £0.62 6896+ 0.66 25.68+1.72 36.83 £0.26 9.89+2.56  33.45 =+ 3.05

CC-freeze-part-GEM 23224096 72.18£2.00 23.70+3.84 43.73+3.81 1091 +£226 36.37+2.35

CC-freeze-all-MIR 33.16 £ 1.54 42.00 £2.57 1449 £0.05 43.82+0.12 12.29+£0.60 38.42+1.78

CC-freeze-part-MIR 34.88 +1.37 42.11 £2.04 1457+299 44414138 12.47+1.02 38.50+3.76
Improvement 6.03 5.71 5.94 6.26 1.12 4.13

Table 12: Accuracy comparison for CC-CBM. All models are pre-trained on the Place365 dataset
Zhou et al.[(2017). 1 means larger values are better, while | means smaller values are better. The
Improvement is compared with the strongest baseline for each block.

CIFAR-10, 5T CIFAR-100, 5T TinyImagenet, 5T
A 1 Fr A ? Fr A 1 Frl

Baseline in Category (i)

Finetune 17.99 £ 0.28 79.66 £0.78 17.65+2.55 64.94+2.15 1534+3.83 54.81+0.71

EWC 19.00£0.21 76.92+0.78 17.444+3.98 64.43+1.84 15.07+223 54.77+0.54

SI 19314+0.72 7478 +1.70 17.12+3.89 63.11 £1.03 1447 £1.02 53.69 £ 1.32

LwF 19.11 £0.31 76.56 £0.84 19.98 £0.64 63.79 £2.65 17.08+1.50 55.40+1.85
Baseline in Category (ii)

Adam-NSCL 21.60 £ 048 7773 +£0.86 1623 +339 66.26+3.18 1344170 58.86+0.70
Ours

Finetune-CBM 21.14 £ 0.67 69.47 £222 1643 +£282 5576+£3.55 1491 +£0.65 51.39+£3.78

CC-CBM 22.16 +=0.76 67.92+0.30 1637 1+3.82 45.71+2.55 1568+ 1.84 39.40 & 2.86
Improvement 0.56 6.86 -3.55 17.40 -1.40 14.29
Baseline in Category (iii)

GEM 2411+186 59.84 £2.88 20.67+1.75 6349+3.15 5.64=+£038 37.52+£0.02

MIR 3399 +2.92 4850+194 833+0.64 4633+2.06 297+3.69 32.09+0.53

DER 28.88 +£2.14 7542+099 17.89+£043 6693 £139 13.64£2.09 57.98+248
Ours

CC-CBM-GEM 2893 +1.74 61.86+2.71 23.641+3.82 58544375 5374167 29.06+ 3.74

CC-CBM-MIR 3394+ 1.77 3893 +1.89 1381 +194 5476+159 5.07+£3.66 34.75+1.54
Improvement -0.05 9.57 2.97 -8.43 -8.27 3.03
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A.10 10, 20 TASKS EXPERIMENT RESULTS

Table [13] reports comparison for CC under 10-tasks scenario for CIFAR-100 and TinyImagenet.
Compared with exemplar-free baselines, CC generally forgets less as Frr and Frr shown. However,
CC sometimes is worse in A7 and A7, which is the limitation of our methods. We view this as
the future works to be improved, since this paper’s goal is to retain intepretable concepts in models.
Nevertheless, CC generally improves exemplar-based baselines when combined with them, which is
same as 5-tasks scenario.

Table [T4]reports comparison for CC-CBM under 10-tasks scenario for CIFAR-100 and Tinylmagenet.
Similar to CC, CC-CBM performs well in forgetting metrics Fr and Fp, but performs worse in A
and A7 when comparing with exemplar-free baselines. We believes this is partially because LF-
CBM’s training procedure is different than standard end-to-end training. As LF-CBM |Oikarinen et al.
(2023)) paper shown, LF-CBM’s classification accuracy is usually worse than standard model’s. Again,
we view this as future works to be improved. Besides, CC-CBM still can improve exemplar-based
baselines when combine with them.

Table T3] and [T6] report comparison for CC and CC-CBM under 20-tasks scenario in CIFAR-100
respectively. Similar to 10-tasks scenario, our methods can improve exemplar-based baselines when
combine with them, while the comparison with exemplar-free methods is still under the same trend.

Table 13: Accuracy comparison for CC. 1 means larger values are better, while | means smaller
values are better. The Improvement is compared with the strongest baseline for each block.

CIFAR-100, 10T Tinylmagenet, 10T
Ar t Fr Ar Fr| Ar ? Frl Ar 1 Frl

Baseline in Category (i)

Finetune 6494123 6531+132 13.87+0.83 6420+£1.52 515+2.13 49.07+0.57 1023 +135 4583 +0.21

EWC 6.71 £0.63 6532+ 1.12 13.88+045 6390+094 548 +235 47424147 10.11£2.12 4519+1.29

SI 6.74 £ 1.17 66.07 £191 14.01 £1.37 6439+133 539+1.57 44.68+1.40 1033 +1.32 46.21+1.36

LwF 7.85+221 64.13+2.19 15.02+2.85 62.66+125 595+235 52174126 10.82+235 4557+ 1.36
Baseline in Category (ii)

Adam-NSCL 795+277 6254+189 13.69+2.15 61.54+240 6.63 223 4943 +145 10.63+1.33 4943 +145
Ours

CC-freeze-all 699+ 120 6223+036 13.81+145 62.79+1.70 576+2.67 48.89+2.17 11.24+0.34 4939+ 1.92

CC-freeze-part 6.97+126 6403+132 13.71+136 6328+1.04 586+056 49.99+2.16 11.25+1.28 45.00+ 1.20
Improvement -0.96 0.31 -1.21 -1.74 -0.77 -4.21 0.43 0.19
Baseline in Category (iii)

GEM 825+ 1.07 6031+425 15714135 5877+242 6.00+234 47.13+1.25 10.74+£2.62 47.68+ 1.67

MIR 4.64+037 5937+£196 1261 +1.02 6051 +1.72 4.54+0.82 46.19+243 10.11 +1.34 46.19 £2.17

DER 7.67+093 64.86+2.84 13.81+203 63.76+2.19 649+0.82 57.60+243 13.10+1.34 5595+3.64
Ours

CC-freeze-all-GEM 15.61 £1.02 52.01 +1.34 29.83+2.15 5243+236 3.03+3.05 2239+391 7.75+£290 34.75+237

CC-freeze-part-GEM 7.65+185 60.12+137 1484+139 54124273 297+234 2491+£202 5524240 30.44 +£2.59

CC-freeze-all-MIR 543 £1.54 5222 £1.65 12.86+1.08 56.19+£230 5.09+321 4134+128 9.97+241 4321 £1.32

CC-freeze-part-MIR 5424134 5234+ 137 12.89+0.62 56.72+1.84 517+258 42.87+0.99 9.99+123 4323+ 141
Improvement 7.36 7.36 14.12 6.34 -1.32 24.74 -3.11 15.75
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Table 14: Accuracy comparison for CC-CBM. All models are pre-trained on the Place365 dataset
Zhou et al.|(2017). T means larger values are better, while | means smaller values are better. The
Improvement is compared with the strongest baseline for each block.

CIFAR-100, 10T TinyImagenet, 10T
Ar 1 Fri Ar 1 Fr Ar 1 Frl At Fr

Baseline in Category (i)

Finetune 8.09 £1.82 8043+142 17.34+1.87 81.23+£230 4.61+0.18 6640+342 14.62+0.58 70.70 + 1.56

EWC 7594132  8099+128 17.23+0.96 81.084+2.34 562+238 6727+130 14.88+1.28 71.25+1.38

SI 854+129 8143 +1.83 17.53+£0.65 81.60+245 7.90=+ 1.40 7159 £0.82 1565+ 1.19 7233 +£2.08

LwF 13.83+£1.26 7721 +£153 24994229 71.19+3.33 10404235 7140+1.59 20.42+1.86 66.78+3.95
Baseline in Category (ii)

Adam-NSCL 1429 +1.19 69.75+3.15 23.19+1.38 7624+£129 9.74+223 6687 +145 18.63+245 6997+ 1.24
Ours

Finetune-CBM 7314+0.82 6888+ 140 14914128 66.72+273 7.18+1.26 6576+ 142 1441+1.89 64.64+3.02

CC-CBM 7344+1.68 37.90+159 1498+1.09 61.96+1.73 7.37+254 56.80+1.27 1498 +293 60.02+ 3.09
Improvement -6.95 31.85 -10.01 9.23 -3.03 9.60 -5.44 6.76
Baseline in Category (iii)

GEM 1147 +£1.32 6644 £3.14 2221 +120 7054+£232 412+1.79 54294+1.62 13444133 6358+ 1.11

MIR 3244209 5877+1.69 14194221 73324093 337+084 5883+£2.06 940+£329 5929 +4.20

DER 7524195 7851+147 17.04+129 80.78+1.92 829+059 72.69+1.98 16.64+093 72.00+2.48
Ours

CC-CBM-GEM 8.68 £241 5313+371 2246+1.15 59.36+£233 620+3.07 47.95+148 14964348 57.94+1.26

CC-CBM-MIR 838 +1.35 71.02+£2.06 16.65+223 7049+190 7.13+£2.15 60.98 £2.38 14.07 £231 61.14 £2.36

CC-CBM-DER 9.63+2.17 7852+198 23294292 69.05+2.17 837+273 70.85+4.05 16.90+3.01 71.56+2.38
Improvement -1.84 5.64 1.08 11.18 0.08 6.34 0.26 135

Table 15: Accuracy comparison for CC. 1 means larger values are better, while | means smaller
values are better. The Improvement is compared with the strongest baseline for each block.

CIFAR-100, 20T

Ar T Fr| Ar 1 Frl

Baseline in Category (i)

Finetune 380+226 69.05+223 9.72+354 70.25+0.88

EWC 356 £0.16 68.67+0.71 9.72+272  70.11 £3.29

SI 3924237 7658 +£3.77 10.61 £1.65 76.19+0.00

LwF 4.14£2.12 77.06+£1.48 10.54£3.72 7525+2.74
Baseline in Category (ii)

Adam-NSCL 10.59 £ 099 67.32£3.52 19.45+2.85 6821 +2.80
Ours

CC-freeze-all 335+ 1.13 63.12+3.02 882+243  65.21 +2.34

CC-freeze-part 379 +£252  7240+£3.61 999+224 7252+ 142
Improvement -6.80 4.20 -9.46 3.00
Baseline in Category (iii)

GEM 1490 +£3.79 70.56 £3.06 24.88£3.34 66.55+0.44

MIR 11.32 £2.07 45314+0.08 1749 +£3.68 57.71 £2.67

DER 1259+ 141 56.85+042 18.60£1.19 65.39+0.59
Ours

CC-freeze-all-GEM 20.72 +0.88 3548 +2.14 27.73 £2.84 66.51 £1.72

CC-freeze-part-GEM 1740 £3.74 63.10+£2.51 2418 £234 68.03 +£2.30

CC-freeze-all-MIR 1275+ 0.68 3936 +246 17.17 £2.60 41.74 +0.31

CC-freeze-part-MIR 13.03 £ 1.71 52.47+030 18.02+£3.30 53.93+3.61
Improvement 5.82 9.83 2.85 15.97
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Table 16: Accuracy comparison for CC-CBM. All models are pre-trained on the Place365 dataset
Zhou et al.|(2017). T means larger values are better, while | means smaller values are better. The
Improvement is compared with the strongest baseline for each block.

CIFAR-100, 20T

Ar T Fr| Ar 1 Frl

Baseline in Category (i)

Finetune 403+0.60 71.17+0.86 10.35+1.38 77.07+3.09

EWC 392+£323  7390+241 10.65+1.20 78.75 £ 3.67

SI 3734+£045 7896 +£036 11.21 £2.85 82.57 +3.67

LwF 523 +£3.18 85314+2.62 1332+394 8545+3.49
Baseline in Category (ii)

Adam-NSCL 1093 £ 1.33 69.52 £ 0.54 17.96 +0.74 87.83 £2.50
Ours

Finetune-CBM 4.05+3.87 7740+3.48 10.67£0.05 74.86=+3.00

CC-CBM 404 +£2.87 6655+323 1148+ 1.18 73.06 +0.29
Improvement -6.88 2.97 -6.48 4.01
Baseline in Category (iii)

GEM 12.59 £2.84 5833 +2.69 2294+034 67.12+2.08

MIR 11.01 £1.01 29.39+281 16.68+041 51.33+1.35

DER 11.65 +3.07 5593 +£349 18.86+£2.72 69.70+3.52
Ours

CC-CBM-GEM 12.87 +£2.37 61.74 £3.69 25.62+2.83 68.64 +0.53

CC-CBM-MIR 1253 £0.08 36.31+1.58 19.55+190 55.79+1.79
Improvement 0.28 -6.92 2.68 -4.46
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A.11 COMPUTATIONAL EFFICIENCY

Table 17| shows the maximum GPU usage of Finetune, EWC, GEM and our CC on CIFAR-10 under
5-tasks scenario. Even integrated with the interpretable tool CLIP-Dissect (Oikarinen & Wengl [2022)),
CC’s maximum GPU usage is still lower than EWC and GEM. The experiment results show our
methods are efficient.

Table 17: Maximum GPU usage comparison for our CC, under CIFAR-10 5-tasks scenario. CC’s
maximum GPU usage is smaller than EWC and GEM, which shows CC’s computational efficiency.

Method Finetune EWC GEM CC-freeze-all/ CC-freeze-part
Max GPU usage (GB) 5.51 5.65 5.68 5.61

A.12 COMPARISON WITH SSRE

We compare our methods with SSRE (Zhu et al.| [2022). Since we can not access the pre-training
details described in SSRE paper, we compare our CC with SSRE which is trained from scratch.

Besides metrics described in Section |5, we also measure Learning Accuracy (Fp = % ZiTzl @i i)
(Mirzadeh et al.| 2022b; [Riemer et al.[[2018}; [Yin et al.| 2021} Mirzadeh et al.,[20224a)) to understand
model’s ability to learn new tasks.

Experiment results are in Table [I8 and [I9 CC forgets more as the performace in Frr is worse.
However, it has much better learning ability as L1 shown.

Table 18: Comparison between CC and SSRE [Zhu et al.| (2022) in CIFAR-10 and CIFAR-100. 1
means larger values are better, while | means smaller values are better. Even though CC forgets more,
it has better learning ability.

CIFAR-10, 5T CIFAR-100, 5T CIFAR-100, 10T CIFAR-100, 20T
Art Frl Lrt Art Fr| Lrt Art Frl| Lrt Art Frl Lr?
SSRE 28.44 1596 36.18 31.55 7.97 3273 17.72 7.46 11.29 894 6.73 4.51

CC-freezed-all 21.14 70.68 93.29 16.66 51.17 63.22 699 6223 6425 335 63.12 66.46

Table 19: Comparison between CC and SSRE [Zhu et al.[(2022) in TinyImagenet. T means larger
values are better, while | means smaller values are better. Even though CC forgets more, it has better
learning ability.

TinyImagenet, 5T TinyImagenet, 10T
Art Frl Lrt Art Frl Lr?
SSRE 1376 6.06 1359 11.44 733 1583

CC-freezed-all 13.20 37.85 4792 576 4889 49.81
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A.13 COMPARISON WITH ICICLE

We compare CC-CBM with ICICLE (Rymarczyk et all, [2023)) in the CUB200 (Wah et all, 20T1)

dataset. CUB200 is a bird species classification dataset that has 200 classes with 5994 training
examples and 5794 testing examples. The experiment results are in Table[20} Our method outperforms
ICICLE by 2.02% in A7 and 31.68% in Fr.

Table 20: Comparison between CC-CBM and ICICLE (Rymarczyk et al.,[2023) and other baselines
in CUB200 5-task scenario . T means larger values are better, while | means smaller values are better.
CC-CBM outperform ICICLE in both Ay and Fir.

CUB200, 5T
Art  Fr{
Baseline in Category (i) and (ii)
Finetune 10.16  60.73
EWC 11.02 6243
LwF 12.50 64.50
Adam-NSCL 13.27 40.73
ICICLE 11.40 53.66
Ours
CC-CBM 13.42 21.98
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A.14 DETAILS OF CONCEPT CONTROLLER

In this section, we study the technical details of the Concept Controller. ImageNet-10 is the 10-class
subset of ImageNet (Russakovsky et al] 2013)). For CC, Figure [§] shows the subnetwork sizes in
different datasets. Generally, a more complicated dataset has a bigger subnetwork, but the size is
adjustable by tuning hyperparameters.
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Figure 8: The subnetwork sizes in the last residual block after learning two tasks in the 5-task scenario.
A more complicated dataset will have bigger subnetworks.

For CC-CBM, Table 2T]and 22]show the number of concepts added per tasks. Overall, larger and
more complicated datasets have more concepts.

We build CC-CBM based on LF-CBM |Oikarinen et al.| (2023). Therefore, we would like to discuss
two properties related to LF-CBM. First, following LF-CBM’s procedure, we use CLIP to calculate
the activation matrix P as described in Section[2.2] We can replace CLIP with other vision language
aligned (VL-aligned) models as long as they have a text encoder and an image encoder to calculate
matrix P. One future work will be replacing CLIP with other suitable VL-aligned models. Second,
using GPT-3 to general concept sets is firstly proposed from an earlier work LF-CBM, which has
many concurrent and follow-up works that use language models to create concept bottleneck layers
(Yang et al| [2023b}, [Yan et al.}[2023). Introducing additional information is widely exploited when
designing CBM (Yuksekgonul et al.,[2022} [Zhou et al} 2018}, [Cosch et al} [2019)), and is reasonable
task-relevant information that we can leverage. Meanwhile, using additional information to enhance
a model’s performance is common in other fields as well (Hu et alll 2021} [Yang et al [2023a).
Even though LF-CBM has a potential leakage problem when using addtional text information, our
method is still under the setting of continual learning. This is because during the training phase, the
information for each class only appears in one task. One future work is to handle the potential leaking
of CBM.

Table 21: Average concepts added per task in the 5-task scenario.
CIFAR-10 CIFAR-100 CUB200 ImageNet-10 TinylmageNet

Number of Concept 37.4 133.1 276.6 35.6 301.8

Table 22: Average concepts added per task in the 10-task scenario.
CIFAR-100 TinyImageNet
Number of Concept  154.6 284.3
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A.15 CLASS DISTRIBUTION

Table 23: Classes distribution of CIFAR-10 separated by random seed 3456.
Task 1 | automobile, dog
Task 2 | deer, horse

Task 3 | bird, frog

Task 4 | ship, truck

Task 5 | airplane, cat

Table 24: Classes distribution of CIFAR-100 separated by random seed 3456.

bear,bee,butterfly,camel,caterpillar,chair,elephant, forest,hamster,lion,

Task 1 motorcycle,otter,plates, sea,shark,shrew,spider,tank,train,willow

beaver,bowls,boy,bridge,castle,cockroach,couch, dinosaur,house,keyboard,

Task 2 ; .

lawn mower,mushrooms,pears, pickup truck,poppies,possum,ray,skyscraper,wardrobe,whale
beetle,cloud,crocodile,lamp,leopard,lizard,palm,pine,porcupine,snail,

Task 3 . . )

streetcar,sweet peppers,table,telephone,television,tiger,tulips,turtle,woman,worm
Task 4 baby,bed,bicycle,bottles,cans,chimpanzee,crab,lobster,man,maple,
as mouse,oak,orchids,plain,road,rocket,roses,skunk,squirrel,trout
apples,aquarium fish,bus,cattle,clock,cups,dolphin,flatfish,fox,
Task 5 . . . ) )
girl, kangaroo,mountain,oranges,rabbit,raccoon,seal,snake,sunflowers,tractor,wolf
Table 25: Classes distribution of CIFAR-100 separated by random seed 5678.

Task 1 bowls, butterfly, cans, cloud, crab, girl, keyboard, leopard, lizard, mountain,
mushrooms, pickup truck, roses, seal, snail, spider, squirrel, sunflowers, train, trout
baby, bear, bridge, cattle, chimpanzee, cockroach, couch, crocodile, flatfish, lamp,

Task 2 . ,

lobster, orchids, palm, plates, sea, shark, shrew, skyscraper, tulips, whale
apples, bed, bicycle, bus, caterpillar, cups, elephant, fox, hamster, kangaroo,

Task 3 . . . .
lawn mower, maple, oak, plain, porcupine, rabbit, road, sweet peppers, tiger, wolf

bee, bottles, boy, chair, dinosaur, house, oranges, otter, pine, poppies,

Task 4 .

ray, snake, tank, telephone, tractor, turtle, wardrobe, willow, woman, worm
Task 5 aquarium fish, beaver, beetle, camel, castle, clock, dolphin, forest, lion, man,

motorcycle, mouse, pears, possum, raccoon, rocket, skunk, streetcar, table, television
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Table 26: Classes distribution of CIFAR-100 separated by grouping similar classes together.

beaver , dolphin , otter , seal , whale , aquarium fish , flatfish , ray , shark , trout,

Task 1 bee , beetle , butterfly , caterpillar , cockroach , crab , lobster , snail , spider , worm
Task 2 maple , oak , palm , pine , willow , orchids , poppies , roses , sunﬂowers‘, tulipg s
’ apples , mushrooms , oranges , pears , sweet peppers , cloud , forest , mountain , plain , sea
Task 3 hamster , mouse ,.rabbit s shrew , squirrel , fox , porcupine , possum , raccoon , skunk ,
crocodile , dinosaur , lizard , snake , turtle , bear , leopard , lion , tiger , wolf

Task 4 bicycle , bus , mqtorcycle , pickup truck , train , !awn mower , rocket , streetcar , tank , tractor ,
bed , chair, couch , table , wardrobe , bridge , castle , house , road , skyscraper

Task 5 baby , boy , girl , man , woman , camel , cattle , chimpanzee , elephant , kangaroo ,

bottles , bowls , cans , cups , plates , clock , keyboard , lamp , telephone , television

Table 27: Classes distribution of TinyImageNet separated by random seed 3456.

Task 1

Persian cat, clIff, plunger, German shepherd, teddy, American lobster, hourglass, seashore,
dumbbell, ice cream, nail, convertible, orangutan, coral reef, go-kart, king penguin,
sulphur butterfly, lesser panda, kimono, comic book, cockroach, projectile, lakeside, chimpanzee,
bannister, bucket, gondola, koala, lIfeboat, teapot, police van, pill bottle,
hog, crane, cash machine, mushroom, water tower, black stork, ice lolly, scorpion

Task 2

sewing machine, lemon, barn, Yorkshire terrier, stopwatch, lawn mower, thatch, pizza,
barbershop, organ, computer keyboard, bighorn, cardigan, baboon, snail, syringe,
spider web, Labrador retriever, pretzel, pomegranate, tarantula, pop bottle, trilobite, poncho,
remote control, European fire salamander, altar, obelisk, binoculars, CD player, ladybug, miniskirt,
cannon, wok, potter’s wheel, cougar, chest, sunglasses, water jug, picket fence

Task 3

rugby ball, steel arch bridge, refrigerator, espresso, dining table, monarch, brown bear, confectionery,
beach wagon, scoreboard, flagpole, potpie, brass, bow tie, brain coral, backpack,
chain, bison, pole, beer bottle, grasshopper, tailed frog, lion, torch,
abacus, magnetic compass, standard poodle, goose, bullet train, African elephant, gazelle, triumphal arch,
iPod, beacon, jinrikisha, fly, dugong, suspension bridge, ox, wooden spoon

Task 4

Egyptian cat, volleyball, rocking chair, bullfrog, apron, swimming trunks, fountain, bikini,
school bus, plate, guinea pig, oboe, maypole, goldfish, orange, drumstick,
centipede, mashed potato, viaduct, military unlform, banana, sock, bathtub, guacamole,
walking stick, pay-phone, alp, lampshade, bell pepper, meat loaf, tabby, tractor,
sombrero, gasmask, frying pan, spiny lobster, jellyfish, sandal, vestment, snorkel

Task 5

reel, basketball, parking meter, black widow, umbrella, trolleybus, Arabian camel, space heater,
American alligator, albatross, sea cucumber, sea slug, clIff dwelling, boa constrictor, mantis, freight car,
Chihuahua, fur coat, beaker, moving van, barrel, acorn, caullflower, birdhouse,
academic gown, golden retriever, neck brace, candle, desk, bee, dam, punching bag,
butcher shop, slug, dragonfly, limousine, sports car, turnstile, Christmas stocking, broom

Table 28: Classes distribution of TinylmageNet separated by random seed 5678.

Task 1

reel, lemon, refrigerator, swimming trunks, stopwatch, lawn mower, German shepherd, flagpole,
dumbbell, American alligator, backpack, clIff dwelling, sulphur butterfly, kimono, trilobite, sock,
bison, projectile, grasshopper, walking stick, lakeside, lion, pay-phone, bullet train,
African elephant, birdhouse, gazelle, miniskirt, spiny lobster, pill bottle, hog, cougar,
water tower, sunglasses, black stork, suspension bridge, ice lolly, broom, scorpion, picket fence

Task 2

Egyptian cat, bullfrog, basketball, apron, Yorkshire terrier, monarch, pizza, guinea pig,
umbrella, barbershop, drumstick, ice cream, nail, space heater, convertible, baboon,
snail, orangutan, centipede, syringe, sea slug, mashed potato, military unlform, chain,
cockroach, boa constrictor, tailed frog, academic gown, ladybug, golden retriever, cannon, neck brace,
iPod, slug, crane, limousine, dugong, water jug, Christmas stocking, wooden spoon

Task 3

sewing machine, cllff, plunger, brown bear, teddy, oboe, maypole, orange,
trolleybus, seashore, Arabian camel, brass, bighorn, brain coral, viaduct, king penguin,
tarantula, lesser panda, comic book, poncho, mantis, remote control, chimpanzee, alp,
lampshade, torch, tabby, lIfeboat, CD player, caullflower, sombrero, frying pan,
dam, beacon, jellyfish, cash machine, mushroom, jinrikisha, chest, ox

Task 4

volleyball, rocking chair, steel arch bridge, espresso, thatch, black widow, school bus, plate,
confectionery, beach wagon, American lobster, hourglass, computer keyboard, cardigan, coral reef, albatross,
spider web, sea cucumber, beer bottle, bathtub, freight car, altar, beaker, bannister,
magnetic compass, moving van, gondola, koala, binoculars, teapot, tractor, triumphal arch,
gasmask, desk, bee, punching bag, potter’s wheel, butcher shop, vestment, fly

Task 5

rugby ball, Persian cat, barn, parking meter, dining table, fountain, bikini, organ,
scoreboard, goldfish, potpie, bow tie, go-kart, Labrador retriever, pretzel, pomegranate,
pop bottle, banana, pole, guacamole, Chihuahua, European fire salamander, obelisk, fur coat,
bell pepper, bucket, abacus, meat loaf, barrel, standard poodle, goose, acorn,
candle, police van, wok, sandal, dragonfly, snorkel, sports car, turnstile
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Table 29:

Classes distribution of TinyImageNet separated by by grouping similar classes together.

Task 1

school bus,maypole,projectile,freight car,pay-phone,moving van,bullet train,birdhouse,
tractor,triumphal arch,cannon,police van,crane,cash machine,jinrikisha,water tower,
limousine,sports car,suspension bridge,turnstile,picket fence,refrigerator,barn,lawn mower,
barbershop,beach wagon,scoreboard,flagpole,trolleybus,convertible,go-kart,viaduct,
pole,bathtub,altar,obelisk,bannister,gondola,lIfeboat,bucket

Task 2

reel,volleyball,rocking chair,basketball,plunger,parking meter,dining table,umbrella,
oboe,hourglass,computer keyboard,space heater,backpack,pop bottle,beer bottle,remote control,
lampshade,torch,abacus,barrel,CD player,teapot,candle,desk,
frying pan,iPod,wok,potter’s wheel,pill bottle,snorkel,sunglasses,water jug,
broom,wooden spoon,rugby ball,sewing machine,stopwatch,plate,teddy,drumstick

Task 3

Egyptian cat,bullfrog,German shepherd,brown bear,guinea pig,Arabian camel,baboon,Labrador retriever,

king penguin,lesser panda,chimpanzee,tabby,goose,koala,gazelle,golden retriever,
hog,cougar,black stork,ox,Persian cat, Yorkshire terrier,bighorn,orangutan,
American alligator,bison,boa constrictor,Chihuahua,lion,standard poodle,African elephant,clIff,
seashore,lakeside,alp,dam,steel arch bridge,fountain,clIff dwelling,magnetic compass

Task 4

monarch,snail,albatross,spider web,sulphur butterfly,tarantula,cockroach,mantis,
European fire salamander,ladybug,bee,slug,dragonfly,fly,scorpion,black widow,
centipede,grasshopper,tailed frog,goldfish,coral reef,sea cucumber,spiny lobster,jellyfish,
American lobster,brain coral,sea slug,trilobite,lemon,banana,guacamole,mushroom,
thatch,orange,mashed potato,pomegranate,bell pepper,acorn,caullflower,binoculars

Task 5

cardigan,sock,fur coat,academic gown,miniskirt,neck brace,sombrero,gasmask,
punching bag,sandal,Christmas stocking,apron,swimming trunks,bikini,bow tie,military unlform,
kimono,poncho,espresso,pizza,organ,potpie,ice cream,nail,
pretzel,beacon,butcher shop,vestment,chest,dugong,ice lolly,confectionery,
brass,comic book,meat loaf,dumbbell,syringe,chain,walking stick,beaker
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