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ABSTRACT

Optimization problems aim to find the optimal solution, which is becoming in-
creasingly complex and difficult to solve. Traditional evolutionary optimization
methods always overlook the granular characteristics of solution space. In the real
scenario of numerous optimizations, the solution space is typically partitioned
into sub-regions characterized by varying degree distributions. These sub-regions
present different granularity characteristics at search potential and difficulty. Con-
sidering the granular characteristics of the solution space, the number of coarse-
grained regions is smaller than the number of points, so the calculation is more
efficient. On the other hand, coarse-grained characteristics are not easily affected
by fine-grained sample points, so the calculation is more robust. To this end,
this paper proposes a new multi-granularity evolutionary optimization method,
namely the Granular-ball Optimization (GBO) algorithm, which characterizes and
searches the solution space from coarse to fine. Specifically, using granular-balls
instead of traditional points for optimization increases the diversity and robustness
of the random search process. At the same time, the search range in different it-
eration processes is limited by the radius of granular-balls, covering the solution
space from large to small. The mechanism of granular-ball splitting is applied to
continuously split and evolve the large granular-balls into smaller ones for refining
the solution space. Extensive experiments on commonly used benchmarks have
shown that GBO outperforms popular and advanced evolutionary algorithms. The
code is available in the Supplementary Materials.

1 INTRODUCTION

Optimization is a key research area in science and engineering, focused on identifying optimal so-
lutions Molaei et al. (2021). It spans various fields, including engineering design Liu et al. (2012);
Saha et al. (2021); He et al. (2023), gene recognition Xu et al. (2022), traffic signal control Bi et al.
(2014); Li & Sun (2018), machine learning Barshandeh et al. (2022); Abdollahzadeh et al. (2024);
Li et al. (2023), and medical issues Lian et al. (2024), among others.

Early works focused on deterministic search methods such as gradient descent Tsitsiklis et al.
(1986); Ruder (2016), Newton’s method Fischer (1992), mixed integer programming Shen et al.
(2023), etc. These methods usually require mathematical calculations and are prone to getting stuck
in local optima. In large-scale environments, the solution space of optimization problems grows
exponentially, making such methods no longer effective.

Evolutionary optimization, inspired by natural evolution and biological behavior, has increasingly
been applied to algorithm design and complex problem-solving. Representative methods include ge-
netic algorithm, particle swarm algorithm, ant colony algorithm Holland (1992); Kennedy & Eber-
hart (1995); Dorigo et al. (2006), etc. These methods iteratively and randomly search for the optimal
solution through mutual learning and competition among individuals in the population. It does not
rely on strict mathematical models, and can effectively handle complex optimization characteristics
in big data environments.
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solution space solution space

Figure 1: A schematic of different granularity characteris-
tics in the solution space.

Despite providing high-quality solu-
tions to complex problems and at-
tracting significant research interest,
heuristic optimization methods often
overlook the granular characteristics
of different regions within the solu-
tion space (as shown in Figure 1). As
illustrated in Figure 1, the contours
delineate various regions within the
solution space, each exhibiting dis-
tinct levels of granularity. For in-
stance, regions proximate to the global optimum are characterized by finer granularity, whereas
regions farther from the optimum display coarser granularity. However, not all regions have the
same optimal solution potential.

Modeling the granular characteristics of the solution space is not easy. Because there are several
challenges: (1) The primary challenge is how to effectively characterize the granular characteristics
of the solution space. Existing studies typically employ fine individual granularity to search the
entire solution space, often neglecting its granular characteristics. This approach fails to address
the complexity and diversity present in different regions effectively. (2) The second challenge lies
in accurately assessing the potential optimality within each region. In the solution space, different
regions may harbor varying degrees of optimal solutions, and traditional methods often struggle to
precisely identify and evaluate these potentially optimal regions. Thus, it is crucial to develop an
optimization algorithm capable of capturing the connections and differences between sub-regions of
the solution space from a multi-granularity perspective.

To this end, we propose a multi-granularity optimization algorithm via granular-ball (GBO) for solv-
ing complex continuous optimization problems. Specifically, Multi-Granularity Solution Space Re-
finement involves initially covering the entire solution space with a coarse-grained granular-ball and
then using a splitting mechanism to split fine-grained child granular-balls. Furthermore, Granular-
ball Exploration and Exploitation involves the collaborative search among multiple child granular-
balls. The coarse-to-fine search process better exploits potential differences in optimal solutions
across various regions. These mechanisms replace the traditional point-based iterative search with a
regional search approach, allowing for a more comprehensive consideration of the complexity and
distinctiveness of the solution space. Experiments on benchmark and real-world problems show that
GBO surpasses the classic and popular algorithms. Our contributions are summarized as follows:

• We highlight the unique granular characteristics of sub-regions within the solution space
and investigate the potential of granular-balls in solving complex continuous optimization
problems.

• We propose a multi-granularity optimization algorithm via granular-ball (GBO). This
method characterizes the solution space from coarse-grained to fine-grained through two
stages, namely, coarse-grained granular-ball initialization and fine-grained granular-ball
splitting. Our method compensates for the drawbacks of potential large optimal region
deviations that may arise from single-point searches by utilizing set-based searches.

• We present a granular-ball exploration and exploitation process that includes the genera-
tion of guiding granular-balls and the elite granular-ball retention operations. Through the
multi-granularity characterization and search of the solution space, the evolutionary mech-
anism based on population and random search is maintained.

• We conduct extensive experiments on benchmark Liang et al. (2013) and real-world opti-
mization problem. The results verify the efficiency and accuracy of GBO in solving com-
plex continuous optimization problems.

2 RELATED WORK

Evolutionary Algorithms (EAs). Evolutionary Algorithms are global optimization techniques in-
spired by natural evolution, commonly used for complex problems. They are population-based
methods that iteratively improve solutions towards optimality Jin & Branke (2005). The earliest
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evolutionary algorithms were directly inspired by biological evolution processes, forming the foun-
dation of evolutionary computation through the simulation of natural selection and genetic variation.
A classic example is the Genetic Algorithm (GA) Holland (1992), which simulates biological ge-
netic evolution by using selection, crossover, and mutation operations to enhance individual fitness.
Later, Evolution Strategies (ES) Beyer & Schwefel (2002) were developed to focus on optimiz-
ing continuous variables and improving efficiency through adaptive mutation strength adjustments.
These algorithms not only focus on individual evolution but also emphasize collaboration and in-
formation sharing among populations. Ant Colony Optimization (ACO) Dorigo et al. (2006) is an
example that imitates the pheromone-based path selection process of ants during foraging, making
it particularly suitable for combinatorial optimization problems like the Traveling Salesman Prob-
lem. Particle Swarm Optimization (PSO) Kennedy & Eberhart (1995) simulates the behavior of bird
flocks searching for food, utilizing information exchange between individuals and their neighbors to
achieve dynamic optimization.

Evolutionary algorithms have also been successfully employed in combinatorial optimization prob-
lems. Specifically, Xiang et al. (2019) proposed a PSO strategy (PBS-PSO) based on proportional
integral differentiation (PID), which takes advantage of past, current, and global best changes to
update the search direction to accelerate convergence and adjust the search direction to get rid of
local optima. Zhang et al. (2018) proposed a multi-objective particle swarm optimizer based on a
competitive mechanism, in which the particles are updated based on pair competitions performed in
the current swarm in each generation.

Overall, evolutionary algorithms offer diverse tools and methods for solving complex optimization
problems by simulating various natural evolutionary and adaptive mechanisms. Their flexibility
and adaptability make them crucial for a wide range of real-world problems, and they continue to
advance in research and engineering applications.

Granular-ball Computing (GBC). Chen (1982) pointed out that human cognition has the law of
“global precedence” in his research published in Science. Based on the theoretical basis of tradi-
tional granular computing, Wang (2017) took the lead in proposing multi-granular cognitive com-
puting in combination with the cognitive law in human brain cognition. Xia et al. (2023) introduced
an innovative computational method known as granular-ball computing (GBC), celebrated for its
efficiency and robustness.

The reason for Xia et al. (2023)’s approach to multi-granularity feature representation using
granular-ball is that the geometry of a granular-ball is completely symmetric and has the most
concise, standard mathematical representation. Therefore, it facilitates expansion into higher di-
mensional space. Compared with the traditional method which takes the most fine-grained points
as input, the granular-ball computing takes the coarse-grained granular-balls as input, which is effi-
cient, robust, and interpretable Xia et al. (2023). Granular-ball computing has expanded into various
domains of artificial intelligence, as evidenced by works such as Xie et al. (2024); Quadir & Tan-
veer (2024); Zhang et al. (2023); Liu et al. (2024), etc. However, its application in optimization is
relatively under-explored. Thus, this paper proposes a multi-granularity granular-ball optimization
algorithm to explore this domain.

3 THE PROPOSED ALGORITHM

In this section, we present the multi-granularity optimization algorithm via granular-ball (GBO)
for solving optimization problems (shown in Figure 2), which is composed of two modules: ((1)
Multi-Granularity Solution Space Refinement: the solution space is refined from coarse-grained and
fine-grained perspectives, respectively; (2) Granular-ball Exploration and Exploitation: the optimal
solution is found through cooperative search among child granular-balls.

3.1 MULTI-GRANULARITY SOLUTION SPACE REFINEMENT

In this module, based on the “global precedence” cognitive law Chen (1982), a coarse-grained initial
granular-ball is used to cover the solution space of the objective function. Then the sampling points
operation is carried out inside the initial granular-ball to split many child granular-balls to refine the
solution space.
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Figure 2: The framework of the proposed GBO. The figure illustrates the process of GBO using
multi-granularity solution space refinement and granular-ball exploration and exploitation to solve
optimization problems.

Coarse-Grained Initialization. In any dimension, a granular-ball needs only two data points to
represent it: the center c and the radius r. In a space of arbitrary dimensions, a granular-ball (GB)
is defined by its center vector c and radius vector r. Given an initial granular-ball GB, the center
c represents the position of the granular-ball in space and is a vector pointing to the center of the
solution space. The radius r is a vector where each component corresponds to half of the range in
the respective dimension of the solution space. The initial granular-ball covers the entire solution
space to ensure that no potential optimal solutions are overlooked.

The fitness value, as the only solution quality evaluation indicator in evolutionary computation, is
indispensable for the algorithm. In this paper, due to the use of granular-balls instead of points
to evaluate the search potential of a certain region in the solution space during the algorithm op-
timization process, the fitness of the search individuals in the algorithm, that is, the quality of the
granular-balls, is redefined. The fitness value of the center of a granular-ball is taken as the quality
of the granular-ball:

quality(GB) = f(c). (1)

Fine-Grained Splitting. When each granular-ball splits, the radius of the granular-ball is gradually
reduced, and this process is also a transition from coarse-grained to fine-grained exploration. This
strategy makes up for the shortcoming of the traditional evolutionary method that can only search
on a single granularity and greatly improves the robustness of the algorithm to deal with problems
of different complexity. In other words, the radii of the parent granular-ball and child granular-balls
meet the following formula:

rt+1 = rt × ρ, t = 1, 2, .., tmax − 1 (2)

where rt+1 denotes the radii of child granular-balls in t + 1-th iteration, rt denotes the radius of
parent granular-ball in t-th iteration, ρ denotes the rate of radius reduction.
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3.2 GRANULAR-BALL EXPLORATION AND EXPLOITATION

Starting from an initial granular-ball that covers the solution space, each generation of granular-
balls will undergo three processes: sampling points within the granular-ball, splitting, and selection.
The radius of the granular-balls will gradually decrease, allowing for a more refined search of the
solution space.

Sampling points within the granular-ball. The process for generating n∗ sampling points within
a granular ball is as follows: First, n∗ uniform random numbers are generated in the interval [0, 1],
satisfying the condition randjk ∼ U(0, 1), where k = 1, 2, . . . , n∗ and j = 1, 2, . . . , D. Here,
randjk denotes the k-th random number in dimension j, and D represents the dimension of the
granular ball.

Then, the position of k-th sample point in dimension j in the granular-ball is calculated based on
random numbers:

xj
k = lbj + randjk × (ubj − lbj), k = 1, 2, ...n∗, j = 1, 2, ..., D, (3)

where lbj is the lower bound of the GB in the j-th dimension, and ubj is the upper bound of the GB
in the j-th dimension.After calculating the sampling points, randomly map xj

k that is out of range
back into the defined domain.

Determining the number of sampling points for each particle sphere in each generation is a crucial
process. The sampling points strategy can be mathematically expressed as n = fesmax

tmax
, where n

represents the total number of sampling points in each iteration, fesmax indicates the maximum
number of fitness evaluations, and tmax denotes the maximum number of iterations.

Thus, in each iteration, the number of sampling points for each granular ball, denoted as ñ, must
satisfy the condition ñ = n

|G| , where |G| represents the number of granular balls in that generation.
This sampling strategy enhances the algorithm’s adaptability across various problems.

Specifically, ñ1 sampling points are first generated randomly for each parent granular-ball. Then,
some child granular-balls are generated according to the no-overlapping generation strategy to main-
tain the diversity of granular-balls. Then, based on ñ1 sampling points, ñ2 guiding points are gener-
ated using the idea of gradient descent, and some guiding child granular-balls are generated at these
points. ñ1 and ñ2 satisfy ñ = ñ1 + ñ2.

No-overlaping child granular-balls generation strategy. In this strategy, to maintain better ex-
ploration of a parent granular-ball, we aim for the child granular-balls formed by its splitting to
be non-overlapping. Specifically, the centers of child granular-balls originating from the same par-
ent granular-ball should not fall within the volume of another child granular-ball from that par-
ent(Algorithm 1). For a parent granular-ball, initialize a set of child granular-balls C1. Each time,
randomly select a sampling point from the set of ñ1 sampling points as the set S. If the sampling
point is not inside any of the child granular-balls generated by the parent granular-ball, i.e., it satisfies
the condition for all child granular-balls in the set C1:

|xk − ci| ≥ rt+1, i = 1, 2, ..., |C1| (4)

where xk denotes the k-th sampling points, ci denotes the center of the i-th granular-ball, |xk −
ci| denotes the Euclidean distance between xk and ci. This formula indicates that the center of a
generated child granular-ball should not be inside the previously generated child granular-balls. If
this condition is satisfied, a child granular-ball is generated with the sampling point as its center and
a radius of rt+1, and it is added to the set C1.

Guiding child granular-balls generation strategy. The process of calculating the guiding vector
to generate child granular-balls can be described as follows(Algorithm 2). Firstly, sort the fitness
corresponding to the ñ1 sampling points in ascending order. Secondly, select the top and bottom
groups based on these sampling points. Calculate the centroids of two sets of sampling points as
follows:
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Algorithm 1 No-overlaping child granular-balls generation strategy

Input: Sampling point set S and granular-ball GB.
Output: The non-overlapping child granular-balls C1 in GB.

1: C1 ← {};
2: Obtain the radius r of granular-ball GB;
3: r ← r × ρ
4: for bp in S do
5: if bp is not within any granular-ball in C1 then
6: Generate a granular-ball centered at bp with radius r and add it to C1;
7: end if
8: end for
9: return C1;

cti =

∑ñ1×σ
j=1 f(sj)

ñ1 × σ
, cbi =

∑ñ1

j=ñ1−ñ1×σ+1 f(sj)

ñ1 × σ
, (5)

where sj is the sampling point in S with the j-th fitness value after sorting, f(sj) denotes the fitness
of sj , σ is a hyper-parameter to control the number of sampling points in each group, cti and cbi are
the centroids of the two groups by the i-th granular-ball. Then, the guiding vector ∆i is estimated
by the difference between the two centroids in the i-th granular-ball:

∆i = cti − cbi . (6)

Subsequently, the central position of ñ2 guiding granular-balls are given:

c̃ = cti +∆i × wi, (7)

where c̃ denotes the center of ñ2 guiding granular-balls, wis the weight that controls the length of the
guiding vector, and it satisfies a random uniform distribution in the interval [0.5, 1.5]. The guiding
granular-ball strategy further improves the convergence speed of GBO.

Algorithm 2 Guiding child granular-balls generation strategy

Input: Sampling point set S and granular-ball GB.
Output: The guiding child granular-balls in GB.

1: Obtain the radius r of granular-ball GB;
2: Sort the fitness values of the sampling points in S in ascending order;
3: C2 ← {};
4: r ← r × ρ;
5: ct ← 1

ñ1×σ

∑ñ1×σ
j=1 f (sj) ;

6: cb ← 1
ñ1×σ

∑ñ1

j=ñ1−ñ1×σ+1 f (sj);
7: ∆← ct − cb;
8: for i = 1 to ñ2 do
9: Sample w from a specific distribution;

10: c̃← ct +∆× w;
11: Generate a granular-ball centered at c̃ with radius r and add it to C2;
12: end for
13: return C2

Elite retention. Typically, a generation of parent granular-balls produces many child granular-
balls, which will waste lots of computational resources if they are all retained for the next iteration.
Therefore, if the number of balls exceeds N , we sort the quality of all child granular-balls and
select N elite child granular-balls as the new generation granular-ball population for iterative search,
otherwise all reserved.

6
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Iteration Loop. The above multi-granularity design mechanisms for solution space and search
methods work closely together to help GBO effectively find the optimal solution from coarse to
fine granularity, making the algorithm capable of solving different optimization problems. Usually,
after splitting to produce a new generation of granules, a new round of search will be conducted
with them as the main body, and the search will be iteratively repeated until the consumption of
computing resources is completed.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Benchmarks. To verify the effectiveness of the GBO proposed in this paper, we conduct exper-
iments on a commonly used CEC2013 benchmark Liang et al. (2013). There are 28 evaluation
functions in CEC2013 benchmark, including 5 unimodal functions, 15 basic multimodal functions,
and 8 composition functions. In addition, the CEC2011 real-world optimization problem set Das &
Suganthan (2010) was used to verify the effectiveness of GBO in solving real-world optimization
problems.

For a fair comparison, the number of given fitness evaluations for all algorithms is set to 10000 ×
D. This paper provides the mean errors (Mean) and standard deviations (Std.) obtained from 51
independent runs to assess the performance of all methods. Meanwhile, the specific experimental
setup for GBO is: ρ = 0.96, N = 30, tmax = 250, σ = 0.2, ñ2 = 2. We mainly presented the
results of all algorithms in 30 dimensions for illustration purposes. In addition, for the sake of strict
comparison, the Wilcoxon rank sum test was used at the significance level of α = 0.05. Moreover,
at a significance level of α = 0.05, the Friedman test was used to comprehensively analyze the
average rank (AR) obtained by each method on an overall problem set.

Comparison Methods. This paper first conducted a comprehensive comparison with classic evo-
lutionary algorithms, including PSO Kennedy & Eberhart (1995), DE Qin et al. (2008), GA Hol-
land (1992), ABC Karaboga et al. (2014), SHADE Tanabe & Fukunaga (2013) and LoTFWA Li
& Tan (2017). Subsequently, GBO is compared with several popular variants of single objective
global optimization algorithms including JADE Zhang & Sanderson (2009), MGFWA Meng & Tan
(2024) (the SOTA variant of FWA), NSHADE Ghosh et al. (2022), LSHADE Tanabe & Fukunaga
(2014) (CEC 2014’s champion algorithm), PVADE dos Santos Coelho et al. (2013) and SPSO2011
Zambrano-Bigiarini et al. (2013) to further verify the performance of GBO.

4.2 EXPERIMENTAL RESULTS

Overall Performance. The experimental results are shown in Table 1 and Table 2. For each func-
tion, the optimal result is displayed in bold for emphasis. The mean errors followed by “+” indicate
that GBO has good performance, the errors followed by “-” indicate that the comparison method
has good performance, and the errors followed by “≈” indicate that the performance of GBO and
comparison method is similar. It can be seen from the results in Table 1 that among the 28 eval-
uation functions, the performance of GBO exceeds that of comparison classic algorithms in 61%,
64%, 75%, 93%, 54%, and 71%, respectively. In addition, GBO has a mean rank of 2.52 across
the 28 functions, which is far better than that of the comparison classic algorithms. As can be seen
from Table 2, the performance of GBO is 57%, 71%, 54%, 57%, 75%, and 79% above the other six
algorithms, respectively. In addition, the AR of GBO in 28 functions is 2.82, which is better than
the comparison algorithms. The algorithm performs significantly better in testing complex functions
compared to simpler ones, mainly due to the independent search between different granular-balls,
resulting in good diversity.

Ablation Studies. We performed ablation experiments on the CEC2013 benchmark to examine
the effects of the strategies described in the previous section on GBO. It mainly includes GBO-
w/o guiding granular-balls. The results show that when GBO does not use a guiding strategy, the
performance across 28 test functions is shown in Table 3.

This demonstrates that the guiding granular-balls strategy plays a crucial role in helping the model
solve optimization problems and makes a significant contribution. This is because the centroids of
mass guiding the granular-balls effectively dictate the subsequent search directions for the elite

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparison of GBO with several classic optimization algorithms in 30-D.

f GBO ABC DE GA PSO SHADE LoTFWA
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F1 3.25E-05 5.79E-06 4.55E-13- 7.80E-14 0.00E+00- 0.00E+00 1.84E+00+ 5.09E-01 2.77E+02+ 5.05E+02 0.00E+00- 0.00E+00 1.27E-12- 9.85E-13
F2 8.30E+05 4.46E+05 1.00E+07+ 2.78E+06 3.88E+05- 2.31E+05 2.29E+07+ 1.08E+07 4.70E+06+ 4.93E+06 1.26E+04- 1.05E+04 9.55E+05≈ 4.25E+05
F3 3.37E+01 4.37E+00 7.04E+08+ 4.86E+08 3.00E+01- 1.34E+02 5.62E+08+ 5.26E+08 1.11E+10+ 8.57E+09 2.53E+05+ 1.26E+06 3.22E+07+ 3.33E+07
F4 3.60E+04 9.53E+03 7.58E+04+ 9.19E+03 1.54E+03- 5.83E+02 1.40E+04- 4.16E+03 3.36E+03- 1.55E+03 1.25E-04- 3.21E-04 1.97E+03- 7.33E+02
F5 3.53E-03 4.12E-04 7.80E-13- 9.29E-14 9.14E-14- 4.51E-14 1.20E+00+ 2.26E-01 4.19E+02+ 6.24E+02 1.14E-13- 1.26E-29 4.09E-03+ 6.43E-04
F6 2.08E+01 1.89E+01 1.41E+01≈ 4.59E+00 1.03E+01- 4.79E+00 6.64E+01+ 2.68E+01 7.24E+01+ 4.00E+01 5.18E-01- 3.66E+00 1.56E+01≈ 9.98E+00
F7 6.29E-02 8.95E-02 1.17E+02+ 1.47E+01 3.73E-01+ 7.13E-01 5.37E+01+ 1.28E+01 1.83E+02+ 1.08E+02 4.52E+00+ 5.20E+00 5.36E+01+ 1.37E+01
F8 2.09E+01 5.81E-02 2.09E+01≈ 4.59E-02 2.09E+01≈ 4.49E-02 2.10E+01+ 4.80E-02 2.09E+01≈ 6.19E-02 2.08E+01- 1.64E-01 2.09E+01≈ 6.61E-02
F9 3.66E+00 1.93E+00 2.99E+01+ 1.63E+00 3.76E+01+ 4.48E+00 2.37E+01+ 2.42E+00 3.48E+01+ 3.03E+00 2.78E+01+ 1.60E+00 1.71E+01+ 2.07E+00
F10 1.66E-03 2.72E-03 1.84E+00+ 4.33E-01 7.34E-03+ 7.73E-03 3.08E+01+ 1.37E+01 1.56E+02+ 1.30E+02 6.81E-02+ 3.18E-02 2.93E-02+ 1.53E-02
F11 2.10E+01 4.96E+00 1.10E-13- 2.08E-14 1.24E+02+ 2.93E+01 1.78E+00- 5.05E-01 2.67E+02+ 5.85E+01 0.00E+00- 0.00E+00 8.78E+01+ 1.46E+01
F12 2.13E+01 4.99E+00 2.73E+02+ 3.97E+01 1.81E+02+ 9.94E+00 7.90E+01+ 1.79E+01 3.06E+02+ 7.95E+01 2.26E+01≈ 3.85E+00 8.68E+01+ 1.67E+01
F13 3.85E+01 1.25E+01 3.10E+02+ 3.02E+01 1.79E+02+ 9.32E+00 1.57E+02+ 3.11E+01 3.82E+02+ 6.88E+01 4.99E+01+ 1.27E+01 1.64E+02+ 1.75E+01
F14 7.73E+02 2.74E+02 2.37E+00- 1.46E+00 5.38E+03+ 5.41E+02 1.12E+01- 2.82E+00 3.98E+03+ 8.49E+02 3.88E-02- 2.40E-02 2.78E+03+ 2.80E+02
F15 7.88E+02 2.56E+02 3.85E+03+ 2.98E+02 7.13E+03+ 2.64E+02 4.25E+03+ 6.34E+02 4.50E+03+ 6.37E+02 3.36E+03+ 3.12E+02 2.77E+03+ 2.59E+02
F16 6.71E-03 2.57E-03 1.39E+00+ 2.05E-01 2.48E+00+ 2.79E-01 1.67E+00+ 3.96E-01 1.48E+00+ 3.76E-01 1.00E+00+ 1.89E-01 1.59E-01+ 5.19E-02
F17 4.84E+01 3.93E+00 3.05E+01- 4.14E-02 1.85E+02+ 1.56E+01 3.65E+01- 1.02E+00 3.94E+02+ 7.39E+01 3.04E+01- 1.38E-14 1.34E+02+ 2.60E+01
F18 4.78E+01 3.65E+00 3.01E+02+ 3.05E+01 2.11E+02+ 9.98E+00 1.90E+02+ 2.24E+01 4.10E+02+ 7.85E+01 7.31E+01+ 4.80E+00 1.44E+02+ 2.21E+01
F19 3.00E+00 5.43E-01 4.50E-01- 1.18E-01 1.50E+01+ 1.08E+00 2.00E+00- 2.90E-01 6.33E+01+ 1.63E+02 1.36E+00- 1.11E-01 4.81E+00+ 8.81E-01
F20 8.68E+00 6.81E-01 1.44E+01+ 2.86E-01 1.23E+01+ 2.69E-01 1.19E+01+ 4.52E-01 1.41E+01+ 5.72E-01 1.10E+01+ 4.79E-01 1.30E+01+ 1.14E+00
F21 2.48E+02 9.67E+01 1.78E+02- 3.16E+01 2.77E+02≈ 6.18E+01 3.24E+02+ 6.79E+01 3.50E+02+ 1.10E+02 2.96E+02+ 5.63E+01 2.02E+02- 4.18E+01
F22 8.62E+02 2.21E+02 3.50E+01- 1.84E+01 5.24E+03+ 8.11E+02 1.29E+02- 4.09E+01 4.59E+03+ 1.02E+03 8.50E+01- 4.09E+01 3.31E+03+ 4.09E+02
F23 8.57E+02 2.66E+02 4.80E+03+ 4.81E+02 7.19E+03+ 2.54E+02 4.44E+03+ 6.21E+02 5.68E+03+ 8.87E+02 3.61E+03+ 4.39E+02 3.32E+03+ 4.02E+02
F24 2.00E+02 1.45E-02 2.87E+02+ 1.00E+01 2.25E+02+ 1.26E+01 2.63E+02+ 1.12E+01 3.11E+02+ 1.07E+01 2.15E+02+ 1.38E+01 2.42E+02+ 7.46E+00
F25 2.12E+02 1.94E+01 3.06E+02+ 4.65E+00 2.45E+02+ 5.76E+00 2.80E+02+ 9.25E+00 3.32E+02+ 1.45E+01 2.79E+02+ 9.04E+00 2.78E+02+ 9.95E+00
F26 2.00E+02 2.56E-02 2.01E+02+ 2.01E-01 2.03E+02+ 1.80E+01 2.11E+02+ 3.87E+01 3.17E+02+ 8.98E+01 2.08E+02+ 3.30E+01 2.00E+02≈ 2.06E-02
F27 3.03E+02 1.80E-01 4.00E+02+ 4.22E-01 5.87E+02+ 1.16E+02 9.28E+02+ 7.09E+01 1.25E+03+ 9.24E+01 8.24E+02+ 1.49E+02 7.80E+02+ 5.91E+01
F28 3.00E+02 1.25E-02 2.11E+02- 7.73E+01 3.00E+02≈ 5.68E-14 3.57E+02+ 1.00E+01 1.85E+03+ 1.14E+03 3.00E+02≈ 1.19E-13 2.49E+02- 8.71E+01
w/t/l - 17/2/9 19/3/6 21/1/6 26/1/1 15/2/11 20/4/4
Rank 2.52 4.04 4.16 4.75 6.43 2.52 3.59
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Figure 3: Comparison results of GBO based on 9 different parameter combinations on the 30-D
CEC2013 benchmark.

granular-balls within the solution space by aggregating information from high-quality sampling
points. This mechanism not only enhances the efficiency of the search but also ensures a more
precise approximation of the global optimal solution. Consequently, GBO is capable of rapidly
identifying potentially favorable areas within a complex solution space and conducting thorough
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Table 2: Comparison of GBO with several popular variants of single objective global optimization
algorithms in 30-D.

f GBO JADE MGFWA NSHADE LSHADE PVADE SPSO2011
Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

F1 3.25E-05 5.79E-06 0.00E+00- 0.00E+00 3.57E-14- 8.27E-14 2.23E-13- 3.15E-14 0.00E+00- 0.00E+00 0.00E+00- 0.00E+00 8.92E-14- 1.11E-13
F2 8.30E+05 4.46E+05 7.85E+03- 6.02E+03 1.41E+06+ 4.95E+05 4.86E+04- 2.97E+04 1.16E+04- 8.62E+03 2.12E+06+ 1.54E+06 2.31E+05 - 8.80E+04
F3 3.37E+01 4.37E+00 4.91E+05+ 2.09E+06 6.42E+06+ 9.46E+06 3.05E+06+ 1.55E+07 7.62E+05+ 2.14E+06 1.65E+03+ 2.80E+03 1.89E+07+ 1.97E+07
F4 3.60E+04 9.53E+03 3.44E+03- 1.82E+03 1.22E+03- 4.43E+02 2.18E+04- 3.26E+04 2.03E-04- 4.49E-04 1.70E+04- 2.82E+03 6.67E+03- 1.67E+03
F5 3.53E-03 4.12E-04 1.09E-13- 2.21E-14 6.57E-03+ 1.85E-03 2.76E-13- 9.35E-14 1.14E-13- 1.26E-29 1.40E-07- 1.84E-07 9.34E-04- 9.02E-05
F6 2.08E+01 1.89E+01 2.07E+00- 7.10E+00 1.49E+01- 2.12E-01 6.05E+00- 4.34E+00 2.77E+00- 6.97E+00 8.29E+00- 5.76E+00 2.13E+01+ 2.18E+01
F7 6.29E-02 8.95E-02 4.36E+00+ 4.80E+00 2.56E+01+ 8.42E+00 5.98E+01+ 1.51E+01 4.84E+00+ 4.55E+00 1.29E+00+ 1.20E+00 1.82E+01+ 9.34E+00
F8 2.09E+01 5.81E-02 2.09E+01≈ 5.07E-02 2.08E+01- 5.94E-02 2.09E+01≈ 5.26E-02 2.09E+01≈ 5.51E-02 2.09E+01≈ 4.77E-02 2.09E+01≈ 7.00E-02
F9 3.66E+00 1.93E+00 3.24E+01+ 1.40E+00 9.98E+00+ 1.82E+00 2.90E+01+ 1.43E+00 2.77E+01+ 1.84E+00 6.30E+00+ 3.24E+00 2.60E+01+ 5.07E+00
F10 1.66E-03 2.72E-03 3.30E-02+ 1.73E-02 2.53E-02+ 2.00E-02 5.91E-02+ 4.84E-02 7.60E-02+ 5.36E-02 2.16E-02+ 1.34E-02 1.96E-01+ 8.93E-02
F11 2.10E+01 4.96E+00 0.00E+00- 0.00E+00 2.54E+01+ 5.40E+00 5.80E-14- 1.37E-14 0.00E+00- 0.00E+00 5.84E+01+ 1.10E+01 5.43E+01+ 2.73E+01
F12 2.13E+01 4.99E+00 5.16E+01+ 1.45E+01 2.65E+01+ 5.70E+00 4.73E+01+ 1.00E+01 2.42E+01+ 3.26E+00 1.15E+02+ 1.13E+01 4.11E+01+ 1.21E+01
F13 3.85E+01 1.25E+01 7.01E+01+ 1.55E+01 5.60E+01+ 1.31E+01 1.04E+02+ 1.92E+01 4.79E+01+ 9.99E+00 1.31E+02+ 1.23E+01 8.91E+01+ 1.92E+01
F14 7.73E+02 2.74E+02 5.10E-02- 2.87E-02 2.39E+03+ 3.58E+02 4.36E+00- 1.41E+00 4.57E-02- 2.97E-02 3.20E+03+ 4.34E+02 4.82E+03+ 5.94E+02
F15 7.88E+02 2.56E+02 6.54E+03+ 3.86E+02 2.29E+03+ 3.25E+02 3.17E+03+ 3.46E+02 3.44E+03+ 3.27E+02 5.61E+03+ 3.15E+02 4.30E+03+ 4.18E+02
F16 6.71E-03 2.57E-03 2.37E+00+ 2.82E-01 4.97E-02+ 1.32E-02 8.00E-01+ 1.48E-01 1.12E+00+ 1.74E-01 2.39E+00+ 2.63E-01 1.39E+00+ 2.80E-01
F17 4.84E+01 3.93E+00 3.04E+01- 0.00E+00 5.60E+01+ 4.88E+00 3.05E+01- 3.01E-02 3.04E+01- 2.63E-14 1.02E+02+ 1.16E+01 1.28E+02+ 2.33E+01
F18 4.78E+01 3.65E+00 1.70E+02+ 9.47E+00 5.65E+01+ 5.44E+00 8.75E+01+ 8.04E+00 7.80E+01+ 5.75E+00 1.82E+02+ 1.19E+01 1.09E+02+ 9.87E+00
F19 3.00E+00 5.43E-01 3.50E+00+ 3.71E-01 2.39E+00- 4.13E-01 1.84E+00- 5.83E-01 1.46E+00- 1.21E-01 5.40E+00+ 8.02E-01 5.66E+00+ 2.93E+00
F20 8.68E+00 6.81E-01 1.18E+01+ 2.83E-01 1.27E+01+ 1.29E+00 1.50E+01+ 2.22E-01 1.11E+01+ 3.84E-01 1.13E+01+ 3.24E-01 1.07E+01+ 5.75E-01
F21 2.48E+02 9.67E+01 2.83E+02≈ 5.89E+01 2.11E+02- 3.00E+01 3.12E+02+ 7.38E+01 2.98E+02+ 5.99E+01 3.19E+02+ 6.20E+01 3.19E+02+ 5.73E+01
F22 8.62E+02 2.21E+02 2.01E+02- 2.40E+02 2.78E+03+ 4.07E+02 9.23E+01- 2.90E+01 1.06E+02- 1.29E+01 2.50E+03+ 3.82E+02 3.97E+03+ 6.60E+02
F23 8.57E+02 2.66E+02 6.51E+03+ 3.93E+02 2.93E+03+ 4.76E+02 3.98E+03+ 3.74E+02 3.74E+03+ 4.16E+02 5.81E+03+ 4.99E+02 4.21E+03+ 5.83E+02
F24 2.00E+02 1.45E-02 2.42E+02+ 2.40E+01 2.03E+02+ 2.46E+00 2.29E+02+ 9.82E+00 2.16E+02+ 1.37E+01 2.02E+02+ 1.38E+00 2.28E+02+ 6.79E+00
F25 2.12E+02 1.94E+01 2.85E+02+ 7.81E+00 2.47E+02+ 1.31E+01 2.91E+02+ 1.87E+01 2.83E+02+ 4.32E+00 2.30E+02+ 2.06E+01 2.65E+02+ 6.66E+00
F26 2.00E+02 2.56E-02 2.35E+02+ 6.37E+01 2.00E+02≈ 1.48E-02 2.00E+02≈ 3.52E-01 2.06E+02+ 2.91E+01 2.18E+02≈ 3.97E+01 2.17E+02+ 4.38E+01
F27 3.03E+02 1.80E-01 9.26E+02+ 1.98E+02 3.44E+02+ 2.96E+01 8.60E+02+ 1.22E+02 8.70E+02+ 1.17E+02 3.26E+02+ 1.13E+01 5.80E+02+ 5.55E+01
F28 3.00E+02 1.25E-02 3.00E+02≈ 2.26E-13 2.96E+02- 2.77E+01 2.96E+02- 2.77E+01 3.00E+02≈ 2.03E-13 3.00E+02≈ 3.22E-05 2.96E+02- 2.77E+01
w/t/l - 16/3/9 20/1/7 15/2/11 16/2/10 21/3/4 22/1/5
Rank 2.82 4.25 3.61 4.27 3.18 4.73 5.14

Table 3: Ablation Studies: GBO vs. GBO-w/o guiding granular-balls (w/t/l)

Function Type With Significance Level Direct Value Comparison
Unimodal Functions 3/2/0 5/0/0
Basic Multimodal Functions 6/8/1 14/0/1
Composition Functions 3/5/0 8/0/0
All Functions 12/15/1 27/0/1

explorations therein, thereby significantly improving both the quality of insights and the precision
of the search.
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Figure 4: The AR results of GBO are based on 9
different parameter combinations.

Hyper-Parameter Sensitivity Analysis. We
study the effect of different parameter combi-
nations on the performance of GBO. Specifi-
cally, we use ρ and tmax for experiments in the
ranges of 0.90, 0.93, 0.96, 200, 250, and 300,
respectively, and the results are shown in Fig-
ure 3. The AR for the combination of these 9
parameters is depicted in Figure 4.

From our observation, GBO has the best per-
formance when ρ and tmax are equal to 0.96
and 250, respectively. Under this combination
of parameters, when GBO converges, the radius
of the granular-ball becomes 10−5 of the initial
radius. However, when ρ and tmax are equal to
0.90 and 300, respectively, the performance of
GBO is the worst. Under this combination of
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parameters, when GBO converges, the radius of the granular-ball becomes 10−14 of the initial ra-
dius. When ρ is smaller, the larger tmax is, the less effective GBO is. However, performance does
not always improve when ρ is larger, and when tmax is also increased. This phenomenon may be
attributed to the fact that when the algorithm converges, the radius of the granular-ball should be
within a suitable range, otherwise if the radius of the granular-ball is too small, then on the one
hand, there is not much need to consume the number of fitness evaluations. On the other hand, ap-
proaching the local minimum too precisely may cause the algorithm to fall into the local minimum,
which will negatively affect the optimization performance of the algorithm.

Table 4: Detailed comparison between SAMODE, GA-
MPC, and GBO on CEC2011 real-world problem.

fes Metric SAMODE GA-MPC GBO

50000

Best 8.21E-01 7.75E-01 6.39E-01
Median 1.27E+00 1.74E+00 7.92E-01
Worst 1.70E+00 1.92E+00 1.06E+00
Mean 1.29E+00 1.62E+00 8.07E-01
Std. 1.93E-01 3.24E-01 8.81E-03

100000

Best 5.08E-01 5.08E-01 5.00E-01
Median 9.99E-01 7.95E-01 5.58E-01
Worst 1.33E+00 1.68E+00 7.69E-01
Mean 9.73E-01 8.58E-01 5.80E-01
Std. 1.79E-01 2.73E-01 6.54E-03

150000

Best 5.00E-01 5.00E-01 5.00E-01
Median 8.40E-01 7.58E-01 5.47E-01
Worst 9.94E-01 9.33E-01 7.57E-01
Mean 8.17E-01 7.48E-01 5.73E-01
Std. 1.19E-01 1.25E-01 6.10E-03

Case Study. We apply GBO to solve
the transmission network expansion
planning (TNEP) problems. The sim-
ple TNEP Abraham & Das (2010);
Silva et al. (2005) without safety con-
straints determines the new line set to
be built, minimizes the cost of the ex-
pansion plan, and does not generate
overloads within the planned range.
The detailed modeling is taken from
the CEC2011 test set Das & Sugan-
than (2010). We compare the results
with the champion algorithm GA-
CMP Elsayed et al. (2011b) and the
third-place algorithm SAMODE El-
sayed et al. (2011a) of the CEC2011
competition. The parameters of GBO
are N = 10, ρ = 0.94, the solution
is performed with tmax of 150, and
fesmax of each algorithm is 150,000. The results are shown in Table 3, from which it can be seen
that GBO has shown great advantages in this practical problem.

5 CONCLUSION

In this paper, we propose a multi-granularity optimization algorithm (GBO) via granular-ball. Aim-
ing at the multi-granularity of the solution space, GBO uses a splitting mechanism to cover the
solution space, carries out a global search from coarse-grained to fine-grained, and finds the op-
timal solution through synergistic search between granular-balls. It replaces the traditional point-
based iterative and regional search methods, allowing for a more comprehensive consideration of
the complexity and uniqueness of the solution space. Experiments on the CEC2013 benchmark and
CEC2011 real-world problems confirm the superiority of GBO. However, we have yet to design a
more adaptive method for the radius of each generation of granular-balls, allowing their offspring
to exhibit varying granularities to enhance the efficiency of the GBO method. To address this issue,
we plan to adopt more effective strategies in our future work.
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A BENCHMARK FUNCTIONS

The twenty-eight benchmark functions from CEC2013 are used to evaluate the performance of the
GBO algorithm Liang et al. (2013). These functions include five unimodal functions, fifteen multi-
modal functions, and eight composite functions, as shown in Table 3. These functions possess nu-
merous local minima and maxima, with the global optimum randomly distributed within the range
of [-100, 100]. Additionally, the integration of orthogonal (rotated) matrices into these functions
further enhances their complexity. In summary, these test functions are highly complex, presenting
significant challenges for the performance assessment of the algorithm.

Table 5: Benchmark functions used in CEC2013

No. Functions f∗i = fi (x
∗)

Unimodal
Functions

1 Sphere Function -1400

2 Rotated High Conditioned Elliptic Function -1300

3 Rotated Bent Cigar Function -1200

4 Rotated Discus Function -1100

5 Different Powers Function -1000

Basic
Multimodal
Functions

6 Rotated Rosenbrock’s Function -900

7 Rotated Schaffers F7 Function -800

8 Rotated Ackley’s Function -700

9 Rotated Weierstrass Function -600

10 Rotated Griewank’s Function -500

11 Rastrigin’s Function -400

12 Rotated Rastrigin’s Function -300

13 Non-Continuous Rotated Rastrigin’s Function -200

14 Schwefel’s Function -100

15 Rotated Schwefel’s Function 100

16 Rotated Katsuura Function 200

17 Lunacek Bi Rastrigin Function 300

18 Rotated Lunacek Bi Rastrigin Function 400

19 Expanded Griewank’s plus Rosenbrock’s Function 500

20 Expanded Scaffer’s F6 Function 600

Composition
Functions

21 Composition Function 1 (n=5, Rotated) 700

22 Composition Function 2 (n=3, Unrotated) 800

23 Composition Function 3 (n=3, Rotated) 900

24 Composition Function 4 (n=3, Rotated) 1000

25 Composition Function 5 (n=3, Rotated) 1100

26 Composition Function 6 (n=5, Rotated) 1200

27 Composition Function 7 (n=5, Rotated) 1300

28 Composition Function 8 (n=5, Rotated) 1400

Search Range: [−100, 100]D
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B THE PSEUDO-CODE OF GBO.

The complete pseudocode of the GBO algorithm is as follows. The algorithm framework is simple
and easy to implement.

Algorithm 3 The multi-granularity optimization algorithm via granular-ball (GBO)

Input: The optimization objective f and maximum number of iterations fesmax.
Output: The best fitness of f∗ and its corresponding solution position bp∗.

1: G← {};
2: n← fesmax

tmax
;

3: Initialize a granular-ball that covers the solution space and add it to G;
4: for j = 1 to tmax do
5: ñ← n

|G| ;
6: ñ1 ← ñ - ñ2;
7: Gchild ← {} ;
8: Calculate the fitness values of the sampling point set S;
9: for i = 1 to |G| do

10: Generate ñ1 sampling points within GBi as Si;
11: Perform random mapping on Si;
12: C1 ← Alg.1(Si,GBi);
13: C2 ← Alg.2(Si,GBi);
14: Gchild ← Gchild ∪ C1 ∪ C2;
15: end for
16: Sort the child granular-balls in Gchild in ascending order of mass;
17: Select min {|G| , N} elite granular-balls as G in Gchild;
18: Update f∗ and bp∗;
19: end for
20: return f∗ and bp∗;

C COMPARE THE PARAMETER SETTINGS OF THE ALGORITHMS.

In the experimental section, the parameters used for the comparison algorithms are as follows: the
population size is 100 for all algorithms except for the variants of the FWA algorithm, and all other
parameters are set to their optimal values.

Table 6: The parameter setting of comparison algorithms.

Algorithms Parameters Values

PSO N ,c1, c2, w 100,2, 2, 0.9-0.4
DE N , F , CR 100, 0.5, 0.9
GA N , MR, CR 100, 0.1, 0.8
ABC N , Limit, sn 100, 200, 1
SHADE N , H , F , CR 100, 100, 0.5, 0.5
LoTFWA fwsize, spsize, initamp, gmratio 5, 300, 200, 0.2
JADE N ,F , CR, pt, ap 100,0.5, 0.5, 0.1, 0.1
MGFWA fwsize, spsize, initamp, gmratio, parameterN , parameterb 5, 300, 200, 0.2, 10, 1.5
NSHADE N , F , CR 100, 0.5, 0.5
LSHADE N , F , CR 100, 0.5, 0.5
PVADE N 100
SPSO2011 N , w, c1, c2 100, 1

2×ln 2
, 0.5+ln 2, 0.5 + ln 2
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