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Surprisingly Popular Voting with Concentric Rank-Order Models
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Abstract
An important problem on social information sites is the recovery

of ground truth from individual reports when the experts are in the

minority. The wisdom of the crowd, i.e. the collective opinion of a

group of individuals fails in such a scenario. However, the surpris-

ingly popular (SP) algorithm [15] can recover the ground truth even

when the experts are in the minority, by asking the individuals to

report additional prediction reports–their beliefs about the reports

of others. Several recent works have extended the surprisingly pop-

ular algorithm to an equivalent voting rule (SP-voting) to recover

the ground truth ranking over a set of𝑚 alternatives. However, we

are yet to fully understand when SP-voting can recover the ground

truth ranking, and if so, how many samples (votes and predictions)

it needs. We answer this question by proposing two rank-order

models and analyzing the sample complexity of SP-voting under

these models. In particular, we propose concentric mixtures of Mal-

lows and Plackett-Luce models with 𝐺 (≥ 2) groups. Our models

generalize previously proposed concentric mixtures of Mallows

models with 2 groups, and we highlight the importance of 𝐺 > 2

groups by identifying three distinct groups (expert, intermediate,

and non-expert) from existing datasets. Next, we provide condi-

tions on the parameters of the underlying models so that SP-voting

can recover ground-truth rankings with high probability, and also

derive sample complexities under the same. We complement the

theoretical results by evaluating SP-voting on simulated and real

datasets.

CCS Concepts
• Information systems → Rank aggregation; Probabilistic re-
trieval models.
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1 Introduction
The recovery of ground truth from individual reports is one of

the most vital aspects of social information sharing and online
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discourse. The wisdom of the crowds phenomenon refers to the ob-

servation that the collective value of a group of noisy individual

opinions can be used to recover the ground truth [7]. Such a collec-

tive value cancels out the biases of individual opinions when the

number of participants is large and is often deployed to recover the

ground truth on online polling and Q&A platforms (e.g. Reddit).

However, when the experts are in the minority, approaches that

rely on the collective opinion of a group of individuals fail to re-

cover the ground truth. The Surprisingly Popular (SP) algorithm

[15] is a promising technique capable of recovering the ground

truth even when experts are in the minority. In addition to asking

individuals’ opinion (aka vote), it asks them to predict how they

believe the majority’s answer is (aka prediction). The SP algorithm

then picks the outcome which is surprisingly popular i.e. whose
actual frequency in the votes is greater than its average predicted

frequency. It provably recovers the ground truth as the number of

individuals grows, even with a minority of experts.

This approach has been extended to voting rules, called SP-voting,
in order to recover the ground truth rankings over a set of𝑚 alter-

natives. The naive application of SP-algorithm to voting requires

that individuals submit their prediction as a distribution over𝑚!

possible permutation of alternatives, which implies that the amount

of information elicited from each voter is exponential in𝑚. Sur-

prisingly, it was shown that SP-voting can effectively recover the

ground truth in practice even when prediction is of size𝑚 [10]. In

particular, Hosseini et al. [9] has shown that eliciting the most likely

top-alternative or ranking can provide a significant improvement

compared to classical voting rules. Furthermore, SP-voting has been

extended to partial ranks where the voters provide reports (votes

and predictions) over subsets of size 𝑘 with 𝑘 ≪𝑚 [9].

While SP-voting has been shown to be effective in full or partial

rankings, we are yet to fully understandwhen SP-voting can recover

the ground truth ranking, and if so, how many samples (votes and

predictions) it needs. To the best of our knowledge, this question

is unexplored even for the basic SP algorithm. The main difficulty

of analyzing such algorithms is that they are non-parametric i.e.
they don’t make any assumptions about the underlying distribution

of votes and predictions, and it’s not immediately clear what type

of parametric models would be a good fit for real-world datasets

and are also amenable to analysis under the surprisingly popular

framework. For the setting of partial rankings, Hosseini et al. [9]

performed a preliminary analysis of SP-voting under a mixture of

Mallows model with two groups. However, we observe that the real

datasets need more than two groups and more general rank-order

models. Thus, we ask the following questions:

What general rank-order models can explain rank-

ing datasets (both votes and predictions) with a

ground truth ranking? Furthermore, can we ana-

lyze SP-voting under such rank-order models, and

determine its sample complexity, and conditions

for identifying the ground truth ranking?

1
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1.1 Our Contributions
We propose various rank-order models with a ground truth ranking,

and analyse the SP-voting rule under these models. In particular,

our contributions are the following.

• We propose two rank-order models, the Concentric Mixture

of Mallows and the Concentric Mixture of Plackett-Luce,

and generalize them to accommodate populations of𝐺 ≥ 2

groups.

• We derive the conditions required for the identification of

ground truth ranking under the SP-voting and the proposed

concentric rank-order models. The derived conditions high-

light a tension between the fraction of different groups and

the "expertise" (i.e. noise levels) of different groups.

• To evaluate practical viability, we fit these models to real-

world datasets for populations with 𝐺 = 2 and 𝐺 = 3

groups. When 𝐺 = 3, besides the expert and non-expert

groups, we identify an intermediate group of voters of large

fraction that explains the observed datasets better than

prior approaches with two groups.

• Furthermore, we generate synthetic data based on these

models and provide empirical results on the sample com-

plexity of SP-Voting, comparing it against the Copeland

rule. Finally, experiments on real-world datasets show that

SP-voting performs significantly better than the Copeland

voting rule even when the dataset size is small.

1.2 Related Work
The challenge of ground truth recovery using the wisdom of the

crowd has been extensively explored in social choice theory [6, 7,

17]. Several vote aggregation rules [1, 5, 6, 19] have been proposed

based on this concept to aggregate voters’ preferences and recover

the underlying ground truth. However, this approach falters when

the majority of participants are misinformed [16], biased [3], or

when expert opinions are underrepresented within the population

[15]. To address this limitation, Prelec et al. [15] introduced the Sur-

prisingly Popular (SP) algorithm, which requires voters to provide

two types of information: their individual vote and their prediction

of the consensus vote. However, Prelec et al. [15]’s SP algorithm

becomes impractical when the objective is to recover true ordinal

ranking, since it necessitates information across all𝑚! possible vote

configurations. Hosseini et al. [10] extended the surprising popular

algorithm to recover full rankings while reducing its complexity to(𝑚
2

)
votes, making it more practical for smaller values of𝑚. Further

extending this line of work, Hosseini et al. [9] proposed algorithms

that generalize SP-Voting to handle any number of alternatives,

while also introducing mechanisms for partial preference elicita-

tion to improve the efficiency of ground truth recovery. However,

it is still unclear under what conditions SP-Voting is effective for a

large number of alternatives when eliciting rankings. Specifically,

the structure of the voting population and whether their voting

behavior can be mathematically modeled need to be studied in

detail.

The modeling of ranked data can be approached from two per-

spectives: modeling the population of voters and modeling the rank-

ing process itself [13]. To date, the SP-Voting framework has been

examined primarily by classifying voters into two distinct groups.

Our work extends this analysis by generalizing it to account for any

number of groups, denoted as 𝐺 . In terms of modeling the ranking

process, several probabilistic models have been developed to rep-

resent voter preference generation. These include Order Statistic

models, such as the Thurstonian model [18]; Pairwise Comparison

models, like the Bradley-Terry model [2]; Multistage models, such

as the Plackett-Luce model [11, 14]; and Distance-based models,

like the Mallows’ model [12], among others. Marden [13] provides

a more comprehensive review of these models.

The SP-Voting framework was recently studied by Hosseini et al.

[9] under the assumption that voters’ preferences are drawn from

an underlying probability distribution known as the Concentric

Mixture of Mallows model, a variant of Mallows’ model. In this

work, we extend the SP-Voting framework by investigating two

different vote distribution assumptions: the distance-basedMallows’

model and themultistage Plackett-Lucemodel. Specifically, we build

on prior work by extending the Mallows’ model to account for𝐺

groups, allowing for a more general analysis of voter populations.

Additionally, we propose a novel Concentric Plackett-Luce Mixture

model, a variant of the multistage Plackett-Luce model, which

similarly incorporates 𝐺 groups.

2 Model
Here we formally introduce the setting and the necessary notations.

We will first introduce surprisingly popular voting considering

reports over full rankings, and then cover the setting with partial

rankings. Let𝐴 = {𝑎1, 𝑎2, ..., 𝑎𝑚 } be the set of𝑚 possible alternatives.

The set L(𝐴) represents all possible complete rankings over the

alternatives. Let 𝜎 ∈ L(𝐴) represent a complete ranking of the𝑚

possible alternatives. We assume that there is a true ranking by

𝜎★ ∈ L(𝐴); which is drawn from a prior 𝑃 (·) over L(𝐴). Voter
𝑖 observes a ranking 𝜎𝑖 that is assumed to be a noisy version of

the ground truth ranking 𝜎★. We will write Pr𝑠 (𝜎𝑖 | 𝜎★) to denote

the probability that the voter 𝑖 observes her ranking 𝜎𝑖 given the

ground truth ranking 𝜎★.

Given voter 𝑖’s ranking 𝜎𝑖 and the prior 𝑃 (·), voter 𝑖 can compute

the posterior distribution over the ground truth using the Bayes

rule.

Pr𝑔 (𝜎★ | 𝜎𝑖 ) =
Pr𝑠 (𝜎𝑖 | 𝜎★) · 𝑃 (𝜎★)∑

𝜎 ′∈L(𝐴) Pr𝑠 (𝜎𝑖 |𝜎′) · 𝑃 (𝜎′)
(1)

Using the posterior over the ground truth, voter 𝑖 can also compute

a distribution over the rankings observed by another voter.

Pr𝑜 (𝜎 𝑗 | 𝜎𝑖 ) =
∑︁

𝜎 ′∈L(𝐴)
Pr𝑠 (𝜎 𝑗 | 𝜎′) · Pr𝑔 (𝜎

′
| 𝜎𝑖 ) (2)

The surprisingly popular algorithm asks voters to report their

votes, and posterior over others’ votes. For each ranking 𝜎′, it then
computes the frequency 𝑓 (𝜎′) = 1

𝑛

∑
𝑖 1[𝜎 = 𝜎′], and posterior

ℎ(𝜎 | 𝜎′) = 1

|{𝑖 : 𝜎𝑖 = 𝜎′}|
∑︁

𝑖:𝜎𝑖=𝜎
′
Pr𝑜 (𝜎 | 𝜎𝑖 ),

2
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and finally picks the ranking with highest prediction normalized
votes.1

𝜎 ∈ argmax𝜎𝑉 (𝜎) = 𝑓 (𝜎) ·
∑︁

𝜎 ′∈L(𝐴)

ℎ(𝜎′ | 𝜎)
ℎ(𝜎 | 𝜎′) (3)

Hosseini et al. [10] observed that asking for full posterior over𝑚!

rankings might be prohibitive and introduced surprisingly popular
voting (SP-voting) that only asks voters about ranking according to

the posterior.

We will also consider the setting when voters report partial

rankings over subsets of size 𝑘 ≪ 𝑚. Let us fix a subset 𝑇 ⊆ 𝐴 of

size 𝑘 . Then the probability of a partial ranking 𝜋𝑖 given the ground

truth ranking 𝜎★ is

Pr𝑠 (𝜋𝑖 | 𝜎★) =
∑︁

𝜎 :𝜎▷𝜋𝑖

Pr𝑠 (𝜎 | 𝜎★)

Here 𝜎 ▷ 𝜋𝑖 means that the ranking 𝜎 when restricted to the subset

𝑇 is 𝜋𝑖 . We can also naturally extend definition 1 to define the

posterior distribution given a partial ranking.

Pr𝑔 (𝜎★ | 𝜋𝑖 ) =
Pr𝑠 (𝜋𝑖 | 𝜎★) · 𝑃 (𝜎★)∑

𝜎 ′∈L(𝐴) Pr𝑠 (𝜋𝑖 |𝜎′) · 𝑃 (𝜎′)
(4)

Using the posterior over the ground truth, voter 𝑖 can also compute

the distribution over partial rankings observed by another voter.

Pr𝑜 (𝜋 𝑗 | 𝜋𝑖 ) =
∑︁

𝜎 ′∈L(𝐴)
Pr𝑠 (𝜋 𝑗 | 𝜎′) · Pr𝑔 (𝜎′ | 𝜋𝑖 ) (5)

Finally, we can compute the prediction-normalized vote (as defined
in eq. (3) but over partial rankings) and pick the partial ranking 𝜋

over the subset 𝑇 with the maximum value. We are interested in

extension of SP-voting to partial rankings as proposed by Hosseini

et al. [9]. Namely, the partial-SP algorithm first applies SP-voting

to a collection of subsets to recover ground truth partial rankings

over these subsets, and then aggregates them using a voting rule

[9].

In the next section, we describe in detail the exact distribution

that Pr𝑠 takes to accurately model the voter behavior and reason

about our choices.

3 Concentric Mixtures Models
Concentric Mixture Models are a class of probabilistic models used

to represent how different groups within a population rank a set of

alternatives, all relative to a single underlying ground truth ranking.

These models capture variations in group behavior by incorporat-

ing parameters that reflect the degree and nature of each group’s

deviation from this central ranking. Our main goal in this section

is to analyze the performance of SP-voting under different concen-

tric mixture models, by first identifying the conditions required

to identify the ground truth, and then providing upper bounds on

the sample complexity of SP-voting. We begin with the Concentric
Mixture of Mallows Model in Section 3.1 , followed by the Concentric
Mixture of Plackett-Luce Model in Section 3.2, which is a new model

proposed in this work.

1
This is the direct application of SP algorithm [15] by considering𝑚! possible ground

truths.

3.1 The Concentric Mixture of Mallows Model
The Concentric Mixture of Mallows Model (CMM) [4] uses a distance-
based approach to quantify deviations from the central ranking.

Specifically, group𝑔’s ranking is modeled as aMallowsmodel with a

group-specific dispersion parameter 𝜙𝑔 , which controls the degree

of expertise of the group. The following equation describes the

ranking observed by a voter where the voting population has 𝐺

distinct groups:

Pr𝑠 (𝜎 | 𝜎★) =
𝐺∑︁
𝑔=1

𝑝𝑔 · Pr𝑠 (𝜎 | 𝜎★, 𝜙𝑔) (6)

Here 𝜎★ is the underlying ground-truth ranking, and Pr𝑠 (𝜎 |
𝜎★, 𝜙𝑔) is the probability of a voter observing the ranking 𝜎 given

the ground-truth ranking 𝜎★ and the dispersion parameter 𝜙𝑔 for

group 𝑔. The parameter 𝑝𝑔 represents the probability of voter 𝑖

belonging to group𝑔, where
∑𝐺
𝑔=1 𝑝𝑔 = 1. In the Concentric Mixture

of Mallows model, the probability Pr𝑠 (𝜎 | 𝜎★, 𝜙𝑔) is defined as:

Pr𝑠 (𝜎 | 𝜎★, 𝜙𝑔) =
𝜙
𝑑 (𝜎,𝜎★)
𝑔

𝑍 (𝜙𝑔,𝑚) (7)

where𝑑 (𝜎, 𝜎★) is the Kendall-Tau distance between the observed
ranking 𝜎 and the central ranking 𝜎★, and 𝑍 (𝜙𝑔,𝑚) is the normal-

ization constant that ensures that the probabilities sum to 1 across

all possible rankings. We will assume that 𝜙1 ≤ 𝜙2 ≤ . . . ≤ 𝜙𝐺 .

Note that, a smaller value of the dispersion parameter implies that

the group is more expert i.e. likely to observe a ranking closer to

the ground truth ranking.

For the case of two groups (i.e. 𝐺 = 2), Collas and Irurozki [4]

analyzed the identifiability and sample complexity of the concentric

mixture model under the Borda voting rule. Our first goal is to

analyze the same model under the SP-Voting rule and an arbitrary

number of groups. There are two main steps in the analysis of

SP-Voting

(1) Identification: determine the condition needed to ensure

𝑉 (𝜎★) ≥ 2 · max

𝜏 :𝑑 (𝜏,𝜎★)≥1
𝑉 (𝜏),

so that maximizing prediction-normalized-vote returns the

ground truth.

(2) Sample Complexity: when the identification condition holds,
determine the number of samples necessary to ensure

𝑉 (𝜎★) > max

𝜏 :𝑑 (𝜏,𝜎★)≥1
𝑉 (𝜏),

so that maximizing the prediction-normalized votes from

samples returns the ground truth.

For the setting of 𝐺 = 2, Hosseini et al. [9] proved the following

result regarding identifying the CMM model.
2

Lemma 3.1 (Hosseini et al. [9]). Suppose 𝑝1 ≤ 1/2 and the
following condition holds.(

𝑝1

1 − 𝑝1

)
2

≥ 2 · 𝑍 (𝜙2)
3

𝑍 (𝜙1)2
𝜙
𝑚 (𝑚−1)/2
1

2
Hosseini et al. [9] actually proved the results for the case of partial rankings, and

𝐺 = 2. Here we state a simplified version for full rankings.

3
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Then for any 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1 we have 𝑉 (𝜎★) ≥ 2𝑉 (𝜏).

The above result says that if the non-experts are too noisy (i.e.

𝜙2 ≫ 𝜙1) then the fraction of experts 𝑝1 cannot be too small. Next

we generalize the lemma for the case of arbitrary number of groups.

Lemma 3.2. Suppose the set 𝐺 can be partitioned into sets 𝐺1 =

{1, 2, . . . , 𝑠} and 𝐺2 = {𝑠 + 1, . . . ,𝐺}. Let 𝛼 =
∑

𝑗∈𝐺1
𝑝 𝑗 and the

following condition holds.

𝛼

𝑍 (𝜙𝑠 )
+ 1 − 𝛼

𝑍 (𝜙𝐺 )
≥ 2

(
𝜙𝑠

𝑍 (𝜙1)
𝛼 + 𝜙𝐺

𝑍 (𝜙𝑠+1)
(1 − 𝛼)

)
Then we are guaranteed that 𝑉 (𝜎★) ≥ 2𝑉 (𝜏) for any 𝜏 such that
𝑑 (𝜏, 𝜎★) ≥ 1.

The proof is provided in the appendix where we generalize

lemma 3.1 and also simplify the conditions required for identifica-

tion. One way to interpret the result is that when the experts are

in the minority i.e. 𝛼 ≪ 1/2 then we need 𝑍 (𝜙𝑠+1) ≥ 2𝜙𝐺𝑍 (𝜙𝐺 )
i.e. the dispersion parameter of the best non-expert should be suffi-

ciently large. In the next subsection, we derive identifiability results

under a different concentric mixture model, and then later provide

sample complexity of SP-Voting under different rank-order models.

3.2 The Concentric Mixture of Plackett-Luce
Model

In this subsection, we introduce the Concentric Mixture of Plackett-
Luce Model (CMPL), which uses an element-specific probabilistic

framework to rank alternatives based on their relative probabili-

ties within each group. Specifically, group 𝑔’s ranking is models

as a Plackett-Luce model with a group specific parameter vector

𝜃𝑔 ∈ R
𝑚
+ . As before, the following equation describes the ranking

observed by a voter, where the voting population is divided into 𝐺

distinct groups:

Pr𝑠 (𝜎 | 𝜎★, 𝜽 ) =
𝐺∑︁
𝑔=1

𝑝𝑔 · Pr𝑠 (𝜎 | 𝜎★, 𝜃𝑔) (8)

Here 𝜎★ is the ground-truth ranking, and 𝜃𝑔 is the vector of

strength parameters for group 𝑔. The parameter 𝑝𝑔 represents the

probability that voter 𝑖 belongs to group 𝑔, where the mixture

weights satisfy the constraint

∑𝐺
𝑔=1 𝑝𝑔 = 1. In the Concentric mix-

ture of Plackett-Luce model, the probability Pr𝑠 (𝜎 | 𝜎★, 𝜃𝑔) is de-
fined as:

Pr𝑠 (𝜎 | 𝜎★, 𝜃𝑔) =
𝑚∏
𝑗=1

𝜃
𝑔,𝜎★−1 (𝜎 ( 𝑗 ) )∑𝑚

ℓ=𝑗 𝜃𝑔,𝜎★−1 (𝜎 (ℓ ) )
(9)

Here, 𝜎 ( 𝑗) denotes the alternative assigned to the 𝑗-th position in

the ranking 𝜎 , while 𝜎★
−1 (𝜎 ( 𝑗)) denotes the position of the alterna-

tive 𝜎 ( 𝑗) in the ranking 𝜎★. Equation (9) describes a Plackett-Luce

model with ground truth 𝜎★ and strength parameter vector 𝜃𝑔 , as

𝜃
𝑔,𝜎★−1 (𝜎 ( 𝑗 ) ) represents the strength parameter for that alternative

within group 𝑔, and, the denominator,

∑𝑚
ℓ=𝑗 𝜃𝑔,𝜎★−1 (𝜎 (ℓ ) ) , ensures

that the probability of selecting each alternative is normalized,

considering only the alternatives that remain to be ranked.

3.2.1 Constraints on Strength Parameters. Recall that in the concen-
tric mixture of Mallows model the groups were ranked according

to their dispersion parameters, i.e. 𝜙𝑔1 ≤ 𝜙𝑔2 implies that group

𝑔1 is more expert compared to the group 𝑔2. We now impose a

similar condition on the parameters of the concentric mixture of

Plackett-Luce model.

The strength parameters 𝜃𝑔 for each group are subject to two

key constraints:

• Within-group constraint: For each group 𝑔, the sum of

the strength parameters equals 1
3
, ensuring that the sum

of the parameters is identical across the 𝐺 groups.

𝑚∑︁
𝑗=1

𝜃𝑔,𝑗 = 1 ∀𝑔 ∈ {1, . . . ,𝐺}.

Additionally, the entries in 𝜃𝑔 are non-increasing i.e. 𝜃𝑔,𝑖 ≥
𝜃𝑔,𝑗 for 𝑖 ≥ 𝑗 .

• Between-group constraint: The strength parameters for

the higher-expertise group should stochastically dominate

those of the lower-expertise groups. In particular, for any

location ℓ the following condition must hold.

ℓ∑︁
𝑗=1

𝜃1, 𝑗 ≥
ℓ∑︁
𝑗=1

𝜃2, 𝑗 ≥ · · · ≥
ℓ∑︁
𝑗=1

𝜃𝐺,𝑗 ∀ℓ ∈ {1, . . . ,𝑚}.

This hierarchical constraint ensures that the behavior of

the groups is ordered in a way that reflects their relative

strengths, with group 1 being closest to the ground-truth

ranking, and subsequent groups deviating further from it.

We now turn to derive the identification condition to ensure

that the ground truth ranking is the unique ranking to maximize

the prediction-normalized vote. The next lemma gives a sufficient

condition under the CMPL model and two groups.

Lemma 3.3. Suppose 𝑝1 ≤ 1/2 and the following condition holds.(
𝑝1

1 − 𝑝1

)
2

≥ 2·©­«
𝑚∏
𝑗=1

𝜃2, 𝑗∑𝑚
𝑖=𝑗 𝜃2,𝑖

ª®¬ ©­«
𝑚∏
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖

ª®¬
−1 ©­«

𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

ª®¬
Then for any ranking 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1 we are guaranteed that
𝑉 (𝜎★) ≥ 2𝑉 (𝜏).

In order to interpret the condition, let us choose a simple setting

of strength parameters. Let 𝜃1 = (𝛾1, 1, . . . , 1)/(𝛾1 +𝑚 − 1) and
similarly 𝜃2 = (𝛾2, 1, . . . , 1)/(𝛾2 +𝑚 − 1). Then it can be verified

that condition of Lemma 3.3 simplifies to the following,(
𝑝1

1 − 𝑝1

)
2

≥ 2

𝛾2

𝛾2 +𝑚 − 1

𝛾1 +𝑚 − 1

𝛾1

𝑚−1∏
𝑗=1

1

𝛾1 +𝑚 − 𝑗

and for large enough𝑚 we need
𝑝1

1−𝑝1 ≳
√︁
2𝛾2/𝛾1 ·𝑚−(𝑚−1)/2

. This

means that as 𝛾2 approaches 𝛾1 (i.e. non-experts become close to

experts), we need a larger value of 𝑝1 (i.e. fraction of experts) to

succeed. The next lemma generalizes the identifiability condition

to an arbitrary number of groups.

3
The constant 1 can be arbitrary, but must be the same across the groups.

4
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Lemma 3.4. Suppose the set 𝐺 can be partitioned into sets 𝐺1 =

{1, 2, . . . , 𝑠} and 𝐺2 = {𝑠 + 1, . . . ,𝐺}. Let 𝛼 =
∑

𝑗∈𝐺1
𝑝 𝑗 and the

following condition holds.

𝛼

𝑚∏
𝑗=1

𝜃𝑠,𝑗∑𝑚
𝑖=𝑗 𝜃𝑠,𝑖

+ (1 − 𝛼)
𝑚∏
𝑗=1

𝜃𝐺,𝑗∑𝑚
𝑖=𝑗 𝜃𝐺,𝑖

≥
2𝛼

∏𝑚
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖

+ 2(1 − 𝛼)∏𝑚
𝑗=1

𝜃𝑠+1, 𝑗∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑖

𝛼 · ∏𝑚
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+ (1 − 𝛼) · ∏𝑚
𝑗=1

𝜃𝑠+1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑚−𝑖+1

Then for any ranking 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1 we are guaranteed that
𝑉 (𝜎★) ≥ 2𝑉 (𝜏).

3.3 Sample Complexity Bounds
Once we have derived the identifiability conditions, the deriva-

tion of sample complexity is relatively straightforward. When the

number of samples is large, the empirical prediction-normalized

vote𝑉 (𝜎) cocnentrates around𝑉 (𝜎) with high probability, and the

condition 𝑉 (𝜎★) ≥ 2𝑉 (𝜏) guarantees that we can always ensure

𝑉 (𝜎★) ≥ 𝑉 (𝜏) for any 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1. Therefore, picking a

ranking that maximizes the empirical prediction-normalized votes

returns the ground truth ranking. The next lemma states the sample

complexity for the CMM model.

Lemma 3.5. Under the same setting as Lemma 3.2, suppose the

number of samples is 𝑛 ≥ 𝑂

(
𝑚!

√︁
𝑚 log(𝑚/𝛿)

)
. Then SP-voting re-

covers the ground truth ranking with probability at least 1 − 𝛿 .

The proof is very similar to the proof of Corollary 1 from [9].

4 Experiments
In this section, we describe how we infer the parameters for both

the CMM and the CMPL using a real-world dataset.

Dataset. We use a real-world dataset from a recent online ex-

periment run on SP-voting by Hosseini et al. [9].
4
The dataset

consists of real participants who provide both Vote and Prediction
data across three distinct domains: Geography, Movies, and Paint-
ings. The dataset contains rankings over five alternatives that are
selected from a universe of 36 alternatives. The dataset contains

reports from 432 participants over 12 questions from each domain.

The alternatives are ranked based on the following domain-specific

metrics:

• Countries: Ranked by population.

• Movies: Ranked by gross lifetime box-office earnings.

• Paintings: Ranked by auction prices.

In addition to their Votes over these alternatives, each participant
provides their Prediction report based on the posterior belief about

another participant’s votes. The types of prediction reports are

based on ranking and can be Top (most likely alternative), Rank
(most likely ranking), Top-𝑡 (approval of top 𝑡 alternatives).

We fit both variants of the Concentric Mixture Models— Mallows

and Plackett-Luce— to the dataset to infer the parameters governing

the group-specific ranking behaviors. The objective is to capture

4
The dataset can be found here - https://github.com/amrit19/Surprisingly-Popular-

Voting-Partial

how different population groups deviate from a shared underlying

ground truth ranking.

Inference Methodology. To estimate the parameters of the

models, we employ a Bayesian inference approach, which allows us

to estimate the posterior distributions of the parameters given the

observed rankings. In particular, we useNo-U-Turn Sampling (NUTS)
[8], an advanced variant of Hamiltonian Monte Carlo (HMC), to

sample from the posterior distribution of the parameters. By uti-

lizing this sampling technique, we can obtain accurate estimates

of the model parameters, such as the proportion parameters (𝑝𝑘 ),

dispersion parameters (𝜙𝑔) for the Mallows model, and strength

parameters (𝜃𝑔) for the Plackett-Luce model, for each of the pop-

ulation groups. The use of NUTS also enables us to quantify the

uncertainty in the parameter estimates, providing credible intervals

for the inferred parameters. This is particularly important when

analyzing real-world ranking data, as it allows us to account for

variability across different population groups and rankings. Next

we discuss the parameter inference for the CMM and CMPL models.

4.1 Concentric Mixture of Mallows
We fit the CMM with 𝐺 = 2 and 3 groups to the dataset described

earlier in this section. Below we describe the parameter inference

procedure for 𝐺 = 3 groups, the more general case. The three

groups are categorized as experts, intermediates, and non-experts.

We infer several key parameters, including the proportion of each

group (𝑝𝑘 ), the dispersion parameters for experts’ votes (𝜙𝐸-votes)

and predictions (𝜙𝐸-predictions), the dispersion parameters for in-

termediates’ votes (𝜙𝐼 -votes) and predictions (𝜙𝐼 -predictions), and the

dispersion parameters for non-experts’ votes (𝜙𝑁𝐸-votes) and pre-

dictions (𝜙𝑁𝐸-predictions).

We first compute the Kendall-Tau distances between each partic-

ipant’s vote and prediction rankings and the ground-truth ranking.

These Kendall-Tau distances (𝜏votes and 𝜏predictions) serve as a mea-

sure of how much each participant’s rankings deviate from the

central ground-truth ordering. The model’s priors for the disper-

sion parameters and the group proportions are specified as follows:

𝑝 ∼ Dirichlet(2, 2, 4)
𝜙𝐸-votes ∼ 𝑁 (0.1, 0.2), 𝜙𝐸-predictions ∼ 𝑁 (0.4, 0.3)
𝜙𝐼 -votes ∼ 𝑁 (0.4, 0.2), 𝜙𝐼 -predictions ∼ 𝑁 (0.4, 0.3)

𝜙𝑁𝐸-votes ∼ 𝑁 (0.8, 0.2), 𝜙𝑁𝐸-predictions ∼ 𝑁 (0.8, 0.3)

These priors represent our assumptions about the behavior of

the three groups, where votes of experts are expected to have the

tightest alignment with the ground-truth ranking (small dispersion),

intermediates show moderate dispersion, and non-experts have the

highest dispersion. On the other hand, the predictions of experts,

intermediates, and non-experts have a lot of overlap, representing

each voter’s opinion of the consensus ranking.

The likelihood function is structured to account for the possibil-

ity that each participant could belong to any of the three groups.

This implies that the observed Kendall-Tau distances for votes and

predictions are modeled as a mixture of normal distributions in

the rank space, and we can set a maximum likelihood estimation

problem to infer various parameters. In particular, we run the NUTS

algorithm with four chains, each consisting of 8000 iterations, with

2000 iterations reserved for warm-up.

5
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Figure 1: Dispersion parameters for Votes and Predictions for 𝐺 = 2 and 3 of CMMmodel. We see that the CMMmodel with 𝐺 = 3

identifies an intermediate group whose peak lies between experts and non-experts.

Figure 1a and Figure 1b depict the distribution of dispersion

parameters for Votes (𝜙votes) and Predictions (𝜙
predictions

) across

different groups for 𝐺 = 2 and 𝐺 = 3. For votes, experts peak at

a lower dispersion parameter in both 𝐺 = 2 and 𝐺 = 3, indicat-

ing more agreement, while non-experts peak at higher dispersion,

showing greater spread in their voting. Experts show a widespread

distribution for predictions since they reflect the majority belief,

which deviates from the true belief, while non-experts are even

farther away. The addition of the intermediate group in𝐺 = 3 adds

valuable insights – their peak lies between experts and non-experts

in votes, and their prediction distribution is similarly widespread as

experts, reflecting the majority belief. This indicates that modeling

voter behavior with more than two groups provides a more accurate

and nuanced understanding of the data.

4.2 Concentric Mixture of Plackett-Luce
We fit the CMPL with 𝐺 = 2 and 3 groups. For 𝐺 = 3, the groups are

labeled as experts, intermediates, and non-experts. Similar to the

CMM model, we infer the proportion of each group (𝑝𝑘 ). Addition-

ally, we infer the strength parameters for experts’ votes (𝜃𝐸-votes)

and predictions (𝜃𝐸-predictions), intermediates’ votes (𝜃𝐼 -votes) and

predictions (𝜃𝐼 -predictions), and non-experts’ votes (𝜃𝑁𝐸-votes) and

predictions (𝜃𝑁𝐸-predictions). We use the Inference Method described

earlier in this section, utilizing the No-U-Turn Sampler (NUTS) to

explore the parameter space and infer posterior distributions for

the model parameters.

Before sampling, the rankings provided by participants (both

votes and predictions) are converted into indices, which correspond

to the options being ranked. The strength parameters, which reflect

the relative probability of ranking an alternative higher than the

others within a group, are inferred separately for experts, intermedi-

ates, and non-experts. The model’s priors for the group proportions

and the strength parameters are defined as follows:

𝑝 ∼ Dirichlet(1, 2, 3),
𝜃𝐸-votes ∼ Dirichlet(3, 3, . . . , 3︸     ︷︷     ︸

𝑚

), 𝜃𝐸-predictions ∼ Dirichlet(1, 1, . . . , 1︸     ︷︷     ︸
𝑚

),

𝜃𝐼 -votes ∼ Dirichlet(2, 2, . . . , 2︸     ︷︷     ︸
𝑚

), 𝜃𝐼 -predictions ∼ Dirichlet(1, 1, . . . , 1︸     ︷︷     ︸
𝑚

),

𝜃𝑁𝐸-votes ∼ Dirichlet(1, 1, . . . , 1︸     ︷︷     ︸
𝑚

), 𝜃𝑁𝐸-predictions ∼ Dirichlet(1, 1, . . . , 1︸     ︷︷     ︸
𝑚

)

These priors reflect the assumption that experts are expected to

have higher strengths, indicating that they consistently rank the

correct alternatives higher. Intermediates have moderate strengths,

and non-experts are assumed to have the lowest strengths, indicat-

ing a less accurate ranking behavior.

In addition, we impose the model constraints described in Sec-

tion 3.2.1, ensuring that the strength parameters for each group fol-

low the expected relationships (e.g., ensuring that expert strengths

are higher and decrease in a structured manner across groups).

The likelihood function is structured to account for the mixture

model, where participants may belong to one of the three groups.

The observed rankings (in the form of indices) are used to com-

pute the log-likelihood based on the Plackett-Luce model, where

each group’s strength parameters determine the probability of a

particular ranking.

Similar to the CMM model, we run the NUTS algorithm with

four chains, each consisting of 6000 iterations, with 2000 iterations

reserved for warm-up. Figure 2a and Figure 2b show the distribution

of strength parameters of Votes and Predictions for the first, third,

and fifth positions in the ranking. We again observe the benefit

of having 𝐺 = 3 where the intermediate group peaks between

the experts and non-experts (Figure 2b, Position 1). Additionally,

the recovered strength parameters also demonstrate the stochastic

dominance property. Looking at position 1 in both Figure 2a and

Figure 2b, the strength parameter of the expert peaks at a higher

value than the non-experts and intermediates. For positions 3 and 5

the peaks of the experts’ strength parameter shifts left and gradually

merges with non-experts, in order to ensure that

∑
𝑖 𝜃𝑔,𝑖 = 1.

4.3 Predicting Complete Rankings from Partial
Rankings using CMM and CMPL

We predict the complete ranking of 36 alternatives from partial

rankings, for each population group (experts, intermediates, and

non-experts) using the CMM and CMPL models. The dataset contain-

ing 36 alternatives is divided into 12 subsets, each containing 5

alternatives and we collect vote information over these subsets.

In both models, we use a hierarchical approach. We first fit

each model to the subsets independently, learning the parameters

for the alternatives within each subset. Since some alternatives

appear in multiple subsets, this creates transitive relationships that

help predict a global ranking across all 36 alternatives accurately.

Once the parameters are inferred, we sample from the posterior

6
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Figure 2: Strength parameters for Votes at Positions 1, 3, and 5 for𝐺 = 2 and 3 of CMPLModel. We observe a stochastic dominance
relationship. Initially, the strength parameter of the expert peaks at a large value, but gradually decreases at higher positions
to ensure normalization.
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Figure 3: Distribution of complete rankings (predicted) for each population group. The data contains partial preferences over
subsets. The CMPLmodel provides fine-grained inferences because it learns the weight of each position in the full ranking.

distributions and input these samples into the respective CMM or

CMPL model to generate the full ranking.

CMM. For each subset, we infer the group-specific posterior

distribution of dispersion parameters for each population group

(experts, intermediates, and non-experts). Using these inferred pa-

rameters, we generate rankings by inputting the values into CMM
model. This allows us to compute a distribution of Kendall Tau

distances by comparing the predicted subset-level rankings to the

ground truth for each group. We then sample from the posterior

of these group-specific distributions- both the dispersion parame-

ters and Kendall Tau distances- and use these samples in the CMM
model to generate full rankings for all 36 alternatives. To quantify

uncertainty in these predicted rankings, we apply bootstrapping,

which provides a range of plausible full rankings derived from the

posterior samples.

CMPL. For each subset, we infer the posterior distribution of

group-specific strength parameters for each alternative, providing

a probabilistic estimate of each alternative’s rank. We use the CMPL
model to iteratively select the alternative with the highest sampled

strength parameter at each position, repeating the process for the

remaining positions to generate a complete ranking. To quantify

uncertainty, we apply bootstrapping, generating a full distribution

of plausible complete rankings.

Figure 3a and Figure 3b show the distribution of Kendall Tau

distance for each group (experts, intermediates, and non-experts)

when the complete rankings are inferred from CMM and CMPL re-

spectively. For the CMPL model, Figure 3b, the distributions reflect

that experts are closest to the ground truth, followed by intermedi-

ates, and then non-experts. This distinction is less pronounced in

CMM model, Figure 3a. The CMPL model provides more fine-grained

inferences because it learns the distribution over each position in

the full ranking through the posterior estimates, allowing for more

precise predictions of the rank order of alternatives. In contrast, the

CMMmodel is less fine-grained, as it estimates how close the ranking

is to the ground truth based on a single dispersion parameter, per

population group, that represents the overall distance but lacks

detailed information about specific positions within the ranking.

5 Sample Complexity Results
In this section, we analyze the impact of sample size on ground

truth recovery by generating synthetic data using the CMM and CMPL
models with𝐺 = 3. We generate 500 samples with the proportion of

experts in the population being 1%. Figure 4 present a comparison

of how sample size affects the performance of two aggregation

methods: Copeland Rule [5] and SP-Voting. Figure 5 shows the

same comparison on real data. Refer to Figure 6 in Appendix B for

results with 𝐺 = 2.
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Figure 4: Comparison of sample complexity for data gen-
erated from CMM and CMPLmodels with G=3, and aggregated
using Copeland and SP-Voting rule.

From Figure 4, it is evident that SP-Voting outperforms the

Copeland Rule in terms of accurately recovering the ground-truth

ranking as the sample size increases. For both CMM and CMPLmodels,

the Kendall Tau distance between the estimated and ground truth

rankings consistently decreases with increasing sample sizes. How-

ever, the SP-Voting method shows a sharper decline compared to

the Copeland Rule, indicating its superior performance in reaching

the ground truth. The confidence intervals (shaded areas) for SP-

Voting are consistently narrower compared to those for Copeland,

implying higher stability and lower variability of SP-Voting across

different sampling scenarios. Figure 5 shows the analysis on a lim-

ited 48 samples of real data, where we can see a gradual decrease

in the mean value and the confidence around it for SP-Voting as

compared to Copeland, indicating that with more samples, ground-

truth recovery can be achieved faster and with higher certainty

using SP-Voting.
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Figure 5: Comparison of sample complexity on real data
when votes are aggregated using Copeland and SP-Voting.

Overall, the comparison between the two models— CMM and

CMPL—shows similar trends, with SP-Voting consistently outper-

forming the Copeland Rule across both models. Increasing sample

size notably helps both methods, but SP-Voting achieves ground

truth recovery with fewer samples and more consistency. This in-

dicates that the prediction information involved in SP-Voting helps

correct the effect of non-expert votes and thus helps reach the

ground truth faster. These findings reinforce the efficacy of SP-

Voting over traditional aggregation rules like the Copeland Rule, in

terms of both accuracy and reliability when aggregating rankings

to recover the ground truth.

6 Discussion and Future Work
In this work, we have analyzed SP-voting under two concentric

rank-order models (Mallows and Plackett-Luce) with an arbitrary

number of groups. We observed that real-world datasets often have

multiple groups of experts (𝐺 ≥ 3) and SP-voting performs better

in terms of sample complexity when compared to standard voting

rules. There are many interesting directions for future work. First,

Prelec et al. [15] have proposed the self-predicting property for the

general SP algorithms. Although this condition is not sufficient to

derive finite sample complexity bounds, it would be interesting to

see how it compares with the conditions we derived for various

concentric rank-order models. Second, we have seen that moving

from 𝐺 = 2 to 𝐺 = 3 groups gives a significantly better fit (and

explanation) with respect to the real data but the improvement

is marginal for larger values of 𝐺 . Then a natural question is can

we choose the number of groups 𝐺 in a a data-dependent way?

Finally, in terms of sample complexity, we have analyzed SP-voting

for recovering ground truth ranking over𝑚 alternatives, and the

bound growswith𝑚!. This can be reduced to𝑂 (𝑚2) for the pairwise
version of SP-voting considered in prior work [10] with additional

assumptions. However, when the number of alternatives𝑚 is large,

we want the sample complexity to be independent of𝑚. SP-voting

with partial preferences [9] help in such contexts, and we leave a

fine-grained analysis of the partial variants of SP (under various

concentric rank-order models) as future work.
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A Missing Proofs
A.1 Proof of Lemma 3.2

Proof. We can proceed similar to the proof of Lemma 2 from [9] and establish the following upper and lower bounds on prediction

normalized vote.

𝑓 (𝜎)∑
𝜎̃ Pr𝑠 (𝜎 |𝜎̃)

≤ 𝑉 (𝜎) ≤ 𝑓 (𝜎)
min𝜎̃ Pr𝑠 (𝜎 |𝜎̃)

We can express the probability Pr𝑠 (𝜎★ |𝜎̃) as follows

Pr𝑠 (𝜎 |𝜎̃) =
∑︁
𝑗∈𝐺1

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜎 )
𝑗

𝑍 (𝜙 𝑗 )
+

∑︁
𝑗∈𝐺2

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜎 )
𝑗

𝑍 (𝜙 𝑗 )

This gives us the following lower bound on 𝑉 (𝜎★).

𝑉 (𝜎★) =

∑
𝑗∈𝐺1

𝑝 𝑗

𝑍 (𝜙 𝑗 ) +
∑

𝑗∈𝐺2

𝑝 𝑗

𝑍 (𝜙 𝑗 )∑
𝜎̃

(∑
𝑗∈𝐺1

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜎★)
𝑗

𝑍 (𝜙 𝑗 ) + ∑
𝑗∈𝐺2

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜎★)
𝑗

𝑍 (𝜙 𝑗 )

)
≥

1

𝑍 (𝜙𝑠 )
∑

𝑗∈𝐺1
𝑝 𝑗 + 1

𝑍 (𝜙𝐺 )
∑

𝑗∈𝐺2
𝑝 𝑗∑

𝑗∈𝐺1
𝑝 𝑗

∑
𝜎̃

𝜙
𝑑 (𝜎★,𝜎̃ )
𝑗

𝑍 (𝜙 𝑗 ) + ∑
𝑗∈𝐺2

𝑝 𝑗
∑
𝜎̃

𝜙
𝑑 (𝜎★,𝜎̃ )
𝑗

𝑍 (𝜙 𝑗 )

=

𝛼
𝑍 (𝜙𝑠 ) +

1−𝛼
𝑍 (𝜙𝐺 )∑

𝑗∈𝐺1
𝑝 𝑗 +

∑
𝑗∈𝐺2

𝑝 𝑗

=
𝛼

𝑍 (𝜙𝑠 )
+ 1 − 𝛼

𝑍 (𝜙𝐺 )

We can also obtain the following upper bound on 𝑉 (𝜏).

𝑉 (𝜏) ≤

∑
𝑗∈𝐺1

𝑝 𝑗 ·
𝜙 𝑗

𝑍 (𝜙 𝑗 ) +
∑

𝑗∈𝐺2
𝑝 𝑗 ·

𝜙 𝑗

𝑍 (𝜙 𝑗 )∑
𝜎̃

(∑
𝑗∈𝐺1

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜏 )
𝑗

𝑍 (𝜙 𝑗 ) + ∑
𝑗∈𝐺2

𝑝 𝑗 ·
𝜙
𝑑 (𝜎̃,𝜏 )
𝑗

𝑍 (𝜙 𝑗 )

)
≤

𝜙𝑠

𝑍 (𝜙1 )
∑

𝑗∈𝐺1
𝑝 𝑗 + 𝜙𝐺

𝑍 (𝜙𝑠+1 )
∑

𝑗∈𝐺2
𝑝 𝑗∑

𝑗∈𝐺1
𝑝 𝑗

∑
𝜎̃

𝜙
𝑑 (𝜎̃,𝜏 )
𝑗

𝑍 (𝜙 𝑗 ) + ∑
𝑗∈𝐺2

𝑝 𝑗 ·
∑
𝜎̃

𝜙
𝑑 (𝜎̃,𝜏 )
𝑗

𝑍 (𝜙 𝑗 )

=
𝜙𝑠

𝑍 (𝜙1)
𝛼 + 𝜙𝐺

𝑍 (𝜙𝑠+1)
(1 − 𝛼)

Therefore, in order to ensure 𝑉 (𝜎★) ≥ 2𝑉 (𝜏) we need the following condition.

𝛼

𝑍 (𝜙𝑠 )
+ 1 − 𝛼

𝑍 (𝜙𝐺 )
≥ 2

(
𝜙𝑠

𝑍 (𝜙1)
𝛼 + 𝜙𝐺

𝑍 (𝜙𝑠+1)
(1 − 𝛼)

)
□

A.2 Proof of Lemma 3.3
Proof. We can proceed similarly to the proof of Lemma 2 from Hosseini et al. [9] and establish the following upper and lower bounds on

prediction normalized vote.

𝑓 (𝜎)∑
𝜎̃ Pr𝑠 (𝜎 | 𝜎̃) ≤ 𝑉 (𝜎) ≤ 𝑓 (𝜎)

min𝜎̃ Pr𝑠 (𝜎 | 𝜎̃) (10)

Suppose 𝜎★ is the true ranking and consider any ranking 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1. Without loss of generality, we can assume that 𝜎★ = 1 ≻ 2 ≻
. . . ≻𝑚. This also implies that 𝜃𝑔,1 ≥ 𝜃𝑔,2 ≥ . . . ≥ 𝜃𝑔,𝑚 for any group 𝑔.

Under the assumption of Concentric mixture of Plackett-Luce model we have,

Pr𝑠 (𝜎★ | 𝜎̃) = 𝑝 · Pr𝑠 (𝜎★ | 𝜃1, 𝜎̃) + (1 − 𝑝) · Pr𝑠 (𝜎★ | 𝜃2, 𝜎̃)

= 𝑝 ·
𝑚∏
𝑗=1

𝜃
1,𝜎̃−1 (𝜎★ ( 𝑗 ) )∑𝑚

𝑖=𝑗 𝜃1,𝜎̃−1 (𝜎★ (𝑖 ) )
+ (1 − 𝑝) ·

𝑚∏
𝑗=1

𝜃
2,𝜎̃−1 (𝜎★ ( 𝑗 ) )∑𝑚

𝑖=𝑗 𝜃2,𝜎̃−1 (𝜎★ (𝑖 ) )
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When 𝜃1 stochastically dominates 𝜃2 we have Pr𝑠 (𝜎★ | 𝜃1, 𝜎★) ≥ Pr𝑠 (𝜎★ | 𝜃2, 𝜎★). Moreover, using the fact 𝑝 < (1 − 𝑝) we obtain the

following lower bound on 𝑉 (𝜎★).

𝑉 (𝜎★) ≥
2𝑝 · ∏𝑚

𝑗=1

𝜃2, 𝑗∑𝑚
𝑖=𝑗 𝜃2,𝑖

(1 − 𝑝) · ∑𝜎̃

∏𝑚
𝑗=1

𝜃
1,𝜎̃−1 ( 𝑗 )∑𝑚

𝑖=𝑗 𝜃1,𝜎̃−1 (𝑖 )
+ ∏𝑚

𝑗=1

𝜃
2,𝜎̃−1 ( 𝑗 )∑𝑚

𝑖=𝑗 𝜃2,𝜎̃−1 (𝑖 )

=
𝑝

1 − 𝑝
·
𝑚∏
𝑗=1

𝜃2, 𝑗∑𝑚
𝑖=𝑗 𝜃2,𝑖

The last equality uses lemma A.1. We now provide an upper bound on 𝑉 (𝜏).
Pr𝑠 (𝜏 | 𝜎★) = 𝑝 · Pr𝑠 (𝜏 | 𝜃1, 𝜎★) + (1 − 𝑝) · Pr𝑠 (𝜏 | 𝜃2, 𝜎★)

≤ 𝑝 · Pr𝑠 (𝜎★ | 𝜃1, 𝜎★) + (1 − 𝑝) · Pr𝑠 (𝜎★ | 𝜃2, 𝜎★)
≤ 2(1 − 𝑝) · Pr𝑠 (𝜎★ | 𝜃1, 𝜎★)

The first inequality follows because the elements of 𝜃1 and 𝜃2 are arranged in non-decreasing order. The second inequality follows because

𝜃1 stochastically dominates 𝜃2. On the other hand,

min

𝜎̃
Pr𝑠 (𝜏 | 𝜎̃) ≥ 𝑝

©­«
𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+
𝑚∏
𝑗=1

𝜃2,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃2,𝑚−𝑖+1

ª®¬
≥ 2𝑝 ·

𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

The last inequality follows since 𝜃1 stochastically dominates 𝜃2. Now we have the following upper bound on 𝑉 (𝜏).

𝑉 (𝜏) ≤ 1 − 𝑝

𝑝
·

∏𝑚
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖∏𝑚

𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

Therefore, as long as (
𝑝

1 − 𝑝

)
2

≥ 2 · ©­«
𝑚∏
𝑗=1

𝜃2, 𝑗∑𝑚
𝑖=𝑗 𝜃2,𝑖

ª®¬ ©­«
𝑚∏
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖

ª®¬
−1 ©­«

𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

ª®¬
we are guaranteed that 𝑉 (𝜎★) ≥ 2𝑉 (𝜏). □

Lemma A.1. For any vector 𝑢 = (𝑢1, . . . , 𝑢𝑚) we have, ∑︁
𝜎̃

𝑚∏
𝑗=1

𝑢𝜎̃−1 ( 𝑗 )∑𝑚
𝑖=𝑗 𝑢𝜎̃−1 (𝑖 )

= 1

Proof. We prove this result by induction on𝑚. For𝑚 = 1, there is only one permutation and the base case holds. Suppose, the claim is

true for𝑚. Then we have, ∑︁
𝜎̃

𝑚+1∏
𝑗=1

𝑢𝜎̃−1 ( 𝑗 )∑𝑚+1
𝑖=𝑗 𝑢𝜎̃−1 (𝑖 )

=
∑︁
𝑎

∑︁
𝜎̃ :𝜎̃ [1]=𝑎

𝑚+1∏
𝑗=1

𝑢𝜎̃−1 ( 𝑗 )∑𝑚+1
𝑖=𝑗 𝑢𝜎̃−1 (𝑖 )

=
∑︁
𝑎

𝑢𝑎∑𝑚+1
𝑗=1 𝑢 𝑗

∑︁
𝜎̃ :𝜎̃∈S

𝑚∏
𝑗=1

𝑢𝜎̃−1 ( 𝑗 )∑𝑚+1
𝑖=𝑗 𝑢𝜎̃−1 (𝑖 )

=
∑︁
𝑎

𝑢𝑎∑𝑚+1
𝑗=1 𝑢 𝑗

= 1

□

A.3 Proof of Lemma 3.4
Proof. We can proceed similarly to the proof of Lemma 2 from Hosseini et al. [9] and establish the following upper and lower bounds on

prediction normalized vote.

𝑓 (𝜎)∑
𝜎̃ Pr𝑠 (𝜎 | 𝜎̃) ≤ 𝑉 (𝜎) ≤ 𝑓 (𝜎)

min𝜎̃ Pr𝑠 (𝜎 | 𝜎̃) (11)

Suppose 𝜎★ is the true ranking and consider any ranking 𝜏 with 𝑑 (𝜏, 𝜎★) ≥ 1. Without loss of generality, we can assume that 𝜎★ = 1 ≻ 2 ≻
. . . ≻𝑚. This also implies that 𝜃𝑔,1 ≥ 𝜃𝑔,2 ≥ . . . ≥ 𝜃𝑔,𝑚 for any group 𝑔.
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Under the assumption of Concentric mixture of Plackett-Luce model we have,

Pr𝑠 (𝜎★ | 𝜎̃) =
𝐺∑︁
ℓ=1

𝑝ℓ · Pr𝑠 (𝜎★ | 𝜃ℓ , 𝜎̃)

=

𝐺∑︁
ℓ=1

𝑝ℓ ·
𝑚∏
𝑗=1

𝜃ℓ,𝜎̃−1 (𝜎★ ( 𝑗 ) )∑𝑚
𝑖=𝑗 𝜃ℓ,𝜎̃−1 (𝜎★ (𝑖 ) )

=

𝐺∑︁
ℓ=1

𝑝ℓ ·
𝑚∏
𝑗=1

𝜃ℓ,𝜎̃−1 ( 𝑗 )∑𝑚
𝑖=𝑗 𝜃ℓ,𝜎̃−1 (𝑖 )

When 𝜃 stochastically dominates 𝜃 ′ we have Pr𝑠 (𝜎★ | 𝜃, 𝜎★) ≥ Pr𝑠 (𝜎★ | 𝜃 ′, 𝜎★). This gives us the following lower bound on 𝑉 (𝜎★).

𝑉 (𝜎★) ≥

∑
ℓ∈𝐺1

𝑝ℓ ·
∏𝑚

𝑗=1

𝜃𝑠,𝑗∑𝑚
𝑖=𝑗 𝜃𝑠,𝑖

+ ∑
ℓ∈𝐺2

𝑝ℓ ·
∏𝑚

𝑗=1

𝜃𝐺,𝑗∑𝑚
𝑖=𝑗 𝜃𝐺,𝑖∑

ℓ 𝑝ℓ ·
∑
𝜎̃

∏𝑚
𝑗=1

𝜃
ℓ,𝜎̃−1 ( 𝑗 )∑𝑚

𝑖=𝑗 𝜃ℓ,𝜎̃−1 (𝑖 )

= 𝛼

𝑚∏
𝑗=1

𝜃𝑠,𝑗∑𝑚
𝑖=𝑗 𝜃𝑠,𝑖

+ (1 − 𝛼)
𝑚∏
𝑗=1

𝜃𝐺,𝑗∑𝑚
𝑖=𝑗 𝜃𝐺,𝑖

The last equality uses lemma A.1. We now provide an upper bound on 𝑉 (𝜏).

Pr𝑠 (𝜏 | 𝜎★) =
𝐺∑︁
ℓ=1

𝑝ℓ · Pr𝑠 (𝜏 | 𝜃ℓ , 𝜎★)

=

𝑠∑︁
ℓ=1

𝑝ℓ · Pr𝑠 (𝜏 | 𝜃ℓ , 𝜎★) +
𝐺∑︁

ℓ=𝑠+1
𝑝ℓ · Pr𝑠 (𝜏 | 𝜃ℓ , 𝜎★)

Now using the stochastic dominance relation, we obtain the lower bound.

min

𝜎̃
Pr𝑠 (𝜏 | 𝜎̃) ≥

𝑠∑︁
ℓ=1

𝑝ℓ

𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+
𝐺∑︁

ℓ=𝑠+1
𝑝ℓ

𝑚∏
𝑗=1

𝜃𝑠+1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑚−𝑖+1

≥ 𝛼 ·
𝑚∏
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+ (1 − 𝛼) ·
𝑚∏
𝑗=1

𝜃𝑠+1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑚−𝑖+1

Now we have the following upper bound on 𝑉 (𝜏).

𝑉 (𝜏) ≤
𝛼

∏𝑚
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖

+ (1 − 𝛼)∏𝑚
𝑗=1

𝜃𝑠+1, 𝑗∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑖

𝛼 · ∏𝑚
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+ (1 − 𝛼) · ∏𝑚
𝑗=1

𝜃𝑠+1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑚−𝑖+1

Therefore, as long as

𝛼

𝑚∏
𝑗=1

𝜃𝑠,𝑗∑𝑚
𝑖=𝑗 𝜃𝑠,𝑖

+ (1 − 𝛼)
𝑚∏
𝑗=1

𝜃𝐺,𝑗∑𝑚
𝑖=𝑗 𝜃𝐺,𝑖

≥
2𝛼

∏𝑚
𝑗=1

𝜃1, 𝑗∑𝑚
𝑖=𝑗 𝜃1,𝑖

+ 2(1 − 𝛼)∏𝑚
𝑗=1

𝜃𝑠+1, 𝑗∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑖

𝛼 · ∏𝑚
𝑗=1

𝜃1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃1,𝑚−𝑖+1

+ (1 − 𝛼) · ∏𝑚
𝑗=1

𝜃𝑠+1,𝑚− 𝑗+1∑𝑚
𝑖=𝑗 𝜃𝑠+1,𝑚−𝑖+1

we are guaranteed that 𝑉 (𝜎★) ≥ 2𝑉 (𝜏). □

B Missing Results
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Figure 6: Comparison of sample complexity for data generated from CMM and CMPL models with G=2, and aggregated using
Copeland and SP-Voting rule.
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Figure 7: Comparison of sample complexity on real data when votes are aggregated using Copeland and Partial-SP.
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