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Abstract
Parallel tempering is a meta-algorithm for Markov
Chain Monte Carlo (MCMC) methods which uses
multiple chains to sample from tempered versions
of the target distribution, improving mixing on
multi-modal distributions that are difficult to ex-
plore for traditional methods. The success of
this technique depends critically on the choice
of chain temperatures. We introduce an adap-
tive temperature selection algorithm which ad-
justs temperatures during sampling using a policy
gradient method. Experimental results using tech-
niques from Reinforcement Learning show that it
can outperform traditional geometrically-spaced
temperatures and uniform acceptance rate temper-
ature ladders in terms of integrated autocorrela-
tion time on test distributions.

1. Introduction
The core of many Bayesian inference problems is estimat-
ing the parameters of a model whose underlying probability
distribution is too complex to solve or sample from directly.
MCMC methods address this challenge by generating corre-
lated random samples to represent the distribution. However,
traditional MCMC algorithms often struggle to effectively
sample target distributions that are strongly multimodal or
have rugged energy landscapes, as the chains may become
trapped in local modes and fail to explore the entirety of the
space, resulting in slow convergence.

To mitigate this problem, parallel tempering MCMC in-
troduces auxillary tempered chains which exchange infor-
mation by periodically swapping states with their neigh-
bors. While low temperature chains are prone to becoming
trapped into local energy minima, hot chains can more easily
traverse entropic barriers in the flattened energy landscape
to jump between modes. Having adjacent chains swap states
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allows the colder chain to explore new modes which would
otherwise take much longer to reach. However, determin-
ing the optimal temperatures to maximize the efficiency
of parallel tempering remains an open problem since the
temperatures at which a chain can effectively cross entropic
barriers (e.g. near a phase transition) varies widely accord-
ing to the target distribution. Adaptive approaches which
can automatically adjust the temperature ladder to the fea-
tures of the target distribution have thus become popular in
recent works (Katzgraber et al., 2006; Miasojedow et al.,
2012; Vousden et al., 2015).

In this paper, we introduce a novel reinforcement learning
approach to optimizing parallel tempering Markov Chain
Monte Carlo (MCMC). We conceptualize the selection of
the temperature ladder as a stateless policy optimization
problem with an associated reward function. The term
”stateless” reflects that updating the temperature ladder does
not alter the chain’s positions. The reward function is de-
signed to measure the efficiency of the sampler, such that
optimizing this reward enhances the mixing of the Markov
chain by minimizing sample autocorrelation. While most
adaptive algorithms in the literature assume that uniform
acceptance rates between chains optimize sampler efficiency
(Miasojedow et al., 2012; Vousden et al., 2015), we explore
several alternative reward formulations in our approach.

Our contributions in this paper are:

Novel algorithm for optimizing parallel tempering
MCMC. We introduce a policy gradient-based approach for
the temperature ladder selection problem. Our algorithm
gradually shapes the temperatures to maximize the long-
term average reward. We show that, with diminishing update
magnitudes, it satisfies the necessary ergodic properties to
ensure convergence to the target distribution. Furthermore,
our algorithm does not require separated train/sampling
phases, due to its statelessness.

Distance metric for estimating the efficiency of swaps.
We propose the use of a swap mean distance metric as
the primary component of the reward function. Intuitively,
for each swap attempt with the coldest chain, this metric
measures how surprising the new swapped state is compared
to its most recent states, measured by its mean distance.
We show that the swap mean-distance metric is strongly
correlated with ACT.
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Experimental findings. We run experiments to demonstrate
the effectiveness of our method compared to benchmarks
in the literature. Our results show that the algorithm is sta-
ble and roughly replicates state-of-the-art results (Vousden
et al., 2015). Additionally, when optimizing for the swap
mean-distance metric, we are able to achieve lower ACT
than both geometrically spaced temperatures and uniform
acceptance rate chains on test distributions. This suggests
that incorporating both metrics in the objective function is
better than achieving uniform acceptance rates alone.

2. Related Work
Many authors have advocated choosing a temperature lad-
der which achieves a fixed, uniform acceptance rate across
all chains (Roberts & Rosenthal, 1997; Sugita & Okamoto,
1999; Kofke, 2002; Kone & Kofke, 2005). To achieve this,
the prevailing heuristic set forth by Kofke et al. (2002) is
geometrically spacing the temperatures so that the ratio of
the temperatures of any two adjacent chains is constant. It
has been shown that geometric spacing is optimal for the
Gaussian distribution but not sufficient to achieve uniform
acceptance rates in general (Katzgraber et al., 2006; Vous-
den et al., 2015).

Adaptive Affine-Invariant Sampler

Vousden et al. (2015) proposed an adaptive algorithm which
aims to achieve uniform acceptance rates across chains
(Vousden et al., 2015). Their algorithm periodically up-
dates the temperatures based on adjacent acceptance rates
so that neighbors with low acceptance rates are moved closer
together in temperature, while high acceptance rate neigh-
bors are pushed apart. The maximum temperature is fixed
to infinity so that the target distribution becomes flat in the
hottest chain, bypassing the need to manually select a maxi-
mum temperature which could be insufficient to overcome
pathological features in the distribution. Conseqeuntly, ev-
ery update only modulates the temperatures of intermediate
chains. The eventual acceptance rate, then, is dependent
only on the chosen number of chains and the target distri-
bution. The authors show that their method converges and
empirically achieves lower ACT than the geometric tempera-
ture ladder in non-Gaussian cases. In this work, we use their
implementation of parallel tempering MCMC, which uses
as its base the ensemble affine invariant sampler (Goodman
& Weare, 2010). See Appendix A for details.

Conceptual RL for MCMC

Optimization problems in MCMC often display properties
which make a reinforcement learning approach appealing.
For example, Markovian sequential decision-making mir-
rors the typical settings in which RL excels in, and agent-
based learning methods are usually well-suited to deal with
the curse of dimensionality and the exploration-exploitation

trade-off inherent in optimization problems. Some authors
have begun creating conceptual frameworks for using re-
inforcement learning to improve MCMC sampling (Boje-
sen, 2018; Chung et al., 2020; Wang et al., 2024). For
Metropolis-Hastings, the state of the MDP is identified with
the state of the Markov chain, while the action is identi-
fied with the proposal mechanism. This naturally leads to
a policy learning scenario where the objective is to learn
a stochastic policy that represents the optimal proposal
distribution for maximizing sampler efficiency. Empiri-
cally, a DDPG implementation of a policy gradient adaptive
Metropolis-Hastings algorithm was shown to outperform
existing benchmarks (Wang et al., 2024), demonstrating the
potential of RL for optimizing MCMC.

3. Problem Setup
3.1. Background

Let X be the phase space and f the target distribu-
tion. In parallel tempering MCMC, M replica chains
{(X(1)

t )t∈N, . . . (X
(M)
t )t∈N} run simultaneously at differ-

ent temperatures T = {T1, ..., TN} where T1 < T2 < ... <
TM and T1 = 1. The inverse of the temperatures are the
betas: βi = 1/Ti, and the stationary distribution fβi of
(X(i)) is defined as

fβi(x(i)) := (f(x(i)))βi ∀x(i) ∈ X .

The joint chain (X
(1)
t . . . X

(M)
t )t∈N is also a Markov chain,

whose canonical distribution is

f̃(x(1), ..., x(M)) = fβ1(x(1)) . . . fβM (x(M)),

from which the coldest chain marginally has stationary dis-
tribution f . While the chains run independently, they will
periodically attempt a Metropolis swap move where two
adjacent chains X(i)

t and X
(i+1)
t propose to switch states

(x, y) 7→ (y, x). This move is accepted with probability

A(x, y) = min

(
1,

(
π(y)

π(x)

)βi
(
π(x)

π(y)

)βi+1
)

(1)

to preserve the detailed balance of the joint chain, where π
is the unnormalized density.

Denote the acceptance rate Ai of a chain as the proportion
of attempted swaps between itself and any adjacent chains
which are successful.

3.2. Maximizing Average Reward

Suppose that each temperature ladder T is associated with
a reward distribution RT which represents the average re-
ward obtained after running all chains some fixed N steps,
assuming stationarity. We consider the problem of selecting

T ∗ = argmaxT E[RT ].
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In this setup, the action is identified with the temperature
ladder T , and the state is null. The lack of a state presents
a unique challenge compared to previous works in RL for
adaptive Metropolis-Hastings.

This problem is also known as the infinite-horizon Lipschitz
bandits problem, for which the finite-time case has been
studied (Agrawal, 1995; Magureanu et al., 2014). However,
our goal is not to maximize the cumulative reward in a fixed
number of samples, but to achieve convergence towards the
optimal temperature configuration with the highest mean
reward over time. This motivates gradient-based methods,
which are guaranteed to converge to local minima. They
are especially powerful since certain reward functions may
further be convex. For example, the variance of all accep-
tance rates is convex, since the acceptance rate between two
chains increases monotonically with the difference in their
temperatures.

3.3. Policy Gradient Methods

Policy gradient methods are popular for problems where
the action space is continuous and high-dimensional—such
as temperature selection—because parameterizing the pol-
icy allows us to output a continuous action directly, rather
than relying on action-value estimation as in value-based
methods. In addition, far fewer parameters are needed to
be learned for the policy, compared to the value function,
which is often complex to approximate.

Given an MDP (S,A, Pa, Ra) with states S, actions A, tran-
sition kernel Pa, and reward function Ra associated with
action a, policy gradient methods attempt to learn a pa-
rameterized policy mapping πθ : S × A → [0, 1] which
maximizes the cumulative reward GL where t = 1, · · · , L.

In the infinite time horizon context, we want πθ which max-
imizes the expected reward at stationarity: define the objec-
tive function as J(θ) := Eπθ

[Ra]. Notice that in the context
of parallel tempering MCMC, the Markov chain we refer to
in this section corresponds to the sequence of temperatures
(Ti)i≤L, and not the Markov chain of the sampler.

4. Policy Gradients for Temperature Selection
The temperature selection problem can be modeled as a
single-state RL problem in which the temperatures at are
sampled from the stochastic policy πθ, parameterized by
some θ. If the density πθ is centered around θ, we have a
natural interpretation of θ as the best estimate of the optimal
action.

The action space is taken to be the space of log temperature
differences. That is, for Di = log βi−log βi+1, the space of
configurations A = (D1, . . . , DM−1) is [0,∞)M−1, which
can further be made compact (and thus the reward function

is Lipschitz continuous) by choosing reasonable bounds
A = [Dmin, Dmax]

M−1 for constants 0 < Dmin < Dmax.
Considering the log-differences between temperatures en-
sures that the scale of all parameters are similar, which
contributes to learning stability, and allows us to easily
fix β1 = 1 and βM = 0. In our experiments, we take
Dmin = 0.01, Dmax = 10, and N = 500.

Note that in the single-state case, the gradient of the objec-
tive function J(θ) reduces to

∇θJ(θ) =

∫
A

∇θπθ(a)Eπ[Rt|At = a] da

=

∫
A

πθ(a)∇θ log πθ(a)Eπ[Rt|At = a] da.

via the Policy Gradient Theorem (See Appendix C). Thus,
we may obtain an unbiased Monte Carlo estimate of∇θJ(θ)
by calculating ∇θ log πθ(a)Eπ[Rt|At = a] for every ac-
tion of the current policy πθ. The update is performed as
the last step:

θt+1 = θt + α∇θJ(θ)|θ=θn

for learning rate α.

In Algorithm 1, we describe our method generally, so that
it remains applicable to other optimization problems in
MCMC which may have similar setups.

Algorithm 1 Single-State Policy Gradient for Maximizing
Average Reward
input Initialize policy parameters θ0, initial positions of

walkers {x(i)
0 }Mi=1, policy distribution πθ(·)

1: for t = 1 to L do
2: Generate a set of sampler parameters at by drawing

from policy distribution πθ

3: Run sampler with parameters at, observe reward rt
4: Normalize rt and use it to estimate the average re-

ward R̄ based on observed rewards
5: Calculate the gradient of the policy ∇θ log πθ(at)

w.r.t. θ and clip it
6: Update the policy parameters:

θ ← θ + α(rt − R̄)∇θ log πθ(at)
7: end for

output Samples {x(1)
j }Lj=1, Policy parameters θL

In our experiments, we take the policy function to be normal
centered at θ: πθ(·) ∼ N (θ, σI) so that the gradient is
simply

∇θ log πθ(at) = −σ−1(at − θ).

The average reward R̄ is estimated as the average of the last
500 rewards. Initial θ0 values are spaced such that ∆θi = 1.
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4.1. Convergence Analysis

In general, if the temperature ladder is changed during
sampling, there is no guarantee that the coldest chain con-
verges to the target distribution. However, it has been shown
(Roberts & Rosenthal, 2007; Saksman & Vihola, 2010) that
the convergence of an adaptive MCMC method is preserved
if the following conditions hold.
Theorem 4.1. Let {Xt}t∈N be Markov chain and PΓt

(x, ·)
the tth adapted conditional density for Xt+1 given Xt = x.
Then the Strong Law of Large Numbers holds for {Xt} if
two conditions are met:

(a) (Diminishing Adaptation) For every starting x ∈ X ,

lim
t→∞

sup
x∈X
∥PΓt+1

(x, ·)− PΓt
(x, ·)∥ = 0.

(b) (Containment) For any ϵ > 0, the sequence

{Mϵ(Xt,Γt)}t∈N

is bounded in probability, where

Mϵ(x,Γt) := inf{n ≥ 1 : ∥Pn
Γt
(x, ·)− π(·)∥ ≤ ϵ}.

The Diminishing Adaptation condition requires that changes
to the transition kernel decay to zero, and Containment
requires the convergence time of the chain to be bounded
in probability—note that this is trivially satisfied with a
compact phase space. Subsequent works extended Theorem
4.1 for weaker forms of the Containment condition (Bai
et al., 2011; Rosenthal & Yang, 2018).

Diminishing Adaptation. To modify our algorithm to
satisfy the Diminishing Adaptation condition, we artifi-
cially dampen the variance of the sampling from the policy
πθt(·) ∼ N (θt, ϵtσI) by decaying ϵt → 0. The gradient
∇θ log πθ(T ) = −σ−1(T − θ) is not scaled with ϵt, so it
also diminishes to 0 as t→∞.

This ensures that adaptations vanish over sufficiently long
time scales, and all temperatures approach a fixed value. In
fact, exponential decay of ϵt also ensures that the policy
πθt converges fairly quickly to θt, so the optimal tempera-
ture ladder T ∗ is solved for by estimating θ∗. Not scaling
the gradient does bias the estimates of ∇θJ(θ), but our
experiments show that it does not significantly affect the
convergence of the algorithm.

Containment. We are only concerned with the convergence
of the coldest chain to the target distribution, so a sufficient
condition for Containment is that the convergence time of
the coldest chain is bounded in probability. Since its temper-
ature is invariant, convergence fails only if the independent
chain fails to converge. This is a very weak condition for
most practical problems. Ergodicity of the coldest chain
is typically a concern for the design of underlying sampler
rather than the adaptive scheme.

5. Swap Mean Distance
With guarantees on our algorithm’s convergence, the next
step is choosing a reward function which approximates sam-
pler efficiency. Efficiency is generally measured in terms
of the autocorrelation between successive samples—highly
autocorrelated Markov chains are slow to mix. Frequently
swapping states with hotter chains in parallel tempering
helps reduce autocorrelation. However, developing a feed-
back mechanism for the swap mechanism that effectively
captures this goal remains an open challenge. In this sec-
tion, we review some potential reward functions and their
implications for mixing. We propose a new metric based on
the distance between the states of a swap.

Integrated Autocorrelation Time

The most direct metric for measuring sampler efficiency is
the integrated autocorrelation time (ACT). For any function
h suppose ⟨hN ⟩ is a Monte Carlo estimator for E[h(X)].
Its variance when the samples are correlated converges:

V ar[⟨hN ⟩] −→ τh
N

V ar[hπ]

where τh is the integrated autocorrelation time of the
Markov chain (Xt)t∈N, given by

τh =

∞∑
i=−∞

ρi. (2)

and ρi = Cov[h(X1), h(X1+i)] is the autocorrelation of
the ith lag.

As N is quite large in most MCMC applications, the asymp-
totic variance is usually approximated quite well by the ACT.
Optimizing the efficiency of the sampler is then achieved by
minimizing the integrated autocorrelation time.

In practice, estimating the autocorrelation time of a sampler
is inconsistent with limited samples, so it is not necessarily
a good feedback mechanism to use for distributions whose
densities are not known a-priori.

Uniform Acceptance Rate

Achieving uniform acceptance rates across chains is a rather
intuitive objective, as consistent swaps between chains al-
lows information to be exchanged effectively down the en-
tire temperature ladder. Empirical implementations has been
shown to be more efficient than geometrically spaced tem-
peratures (Vousden et al., 2015; Sugita & Okamoto, 1999).
Various reward functions can be employed to optimize for
uniform acceptance rates. For example, in our experiments,
we find that maximizing the negative standard deviation of
the acceptance rates achieves this goal.

Expected Squared Jumping Distance

Another metric for assessing sampler efficiency proposed
by (Atchadé et al., 2011) is the expected squared jumping
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distance (ESJD). Suppose we have some fixed chain at tem-
perature β, and we propose a swap with some other chain at
temperature β + ϵ. Let γ = β + ϵ if the swap is accepted,
or γ = β if the swap is rejected. Then, define

ESJDβ := Eπ[(γ − β)2]

= ϵ2Eπ[A].

The acceptance rate serves as a swap-dependent metric,
primarily assessing the efficiency of the swap mechanism
without addressing the impact of each swap in enhancing
mixing. In contrast, information-theoretic metrics, such
as the Kullback-Leibler (KL) divergence between adjacent
chains, are swap-independent. The greater the divergence,
the more information the colder chain is expected to gain
per swap (Vousden et al., 2015). However, estimating KL-
divergence becomes increasingly computationally expensive
as t → ∞. The Expected Squared Jump Distance (ESJD)
scales the expected acceptance rate by the squared difference
in temperatures, ϵ2. This approach aims to balance swap
efficiency with swap effectiveness, as a large ϵ indicates
significant differences between neighboring chains, thus
assigning greater weight to successful swaps.

Swap Mean Distance

We propose a metric which is sensitive to both the underly-
ing dynamics of tempered chains and the efficiency of the
swap mechanism. For the first, a tempered chain which is
sufficiently different from the colder chain should tend to
propose states which are far from previously well-explored
regions. Thus, an accepted swap to a distant state should be
weighted more heavily than to one that is close. Secondly, a
rejected proposal should be measured proportionate to its
actual impact. Accepting a swap right next to the current
state is not much better than rejecting it. This induces a
rather natural continuous metric based on distance.

The m-mean swap distance ωm (referred to as the swap
mean-distance) is defined as

ω(i)
m (t) :=

1

m

m∑
j=1

(d(x
(i+1)
t , x

(i)
t−j))

where d(x, y) denotes the Euclidean distance between
points x, y ∈ Rn.

The finite m > 1 term represents the ”memory” of the chain
which persists through swaps. Consider a distribution with
three separated modes, for which two chains are initialized
at separate modes. If neither have the sufficient energy
to hop to the third mode, consistent swapping would still
only explore two of the three modes. However, neither the
acceptance rate nor the 1-swap mean-distance metrics would
capture this behavior, since immediate swap distances are
high and likely. Choosing some m greater than the swap

period of X(i)
t and X

(i+1)
t ensures that at least some of the

states prior to a successful swap are remembered, so that
ω
(i)
m (t) is controlled in such scenarios.

We tested several choices of m, and found that larger m is
typically more strongly correlated with the ACT. This can
be explained by the fact that an extended memory captures
a larger subset of previously explored states. However, too
large an m devalues the influence of the most immediate
states. Additionally, it is essential to maintain m << N to

control the variance of ω(i)
m estimates. We use m = 50 in

our experiments. Some alternative formulations of the swap
mean-distance are discussed in Appendix ??.

Empirically, we find strong correlations between the swap
mean-distance and ACT. Figure 5 presents scatterplots for
three distinct distributions, namely the multimodal Gaus-
sian, egg-box, and Rosenbrock distributions. The Spearman
correlation coefficients for these distributions are found to
be are−0.997,−0.998,−0.856, respectively, with p-values
less than 1e − 100. These findings strongly indicate that
swap mean-distance is an effective proxy for ACT. Conse-
quently, the application of swap mean-distance as a reward
function is substantiated, with the assumption that ACT
generally exhibits non-decreasing behavior in relation to it.

6. Results
To evaluate the performance of our algorithm, we ran it
on three distributions characterized by pronounced multi-
modality or rugged features: a mixture of ten 8-dimensional
Gaussians, a 5-dimensional egg-box distribution with 243
modes, and the Rosenbrock distribution. Detailed specifica-
tions can be found in Appendix B. For each distribution, the
algorithm was run on 15 temperatures for 4000 iterations.
The reward functions tested were the swap mean-distance,
expected squared jumping distance, and the negative stan-
dard deviation of acceptance rates. Each combination of
distribution and reward function was tested over 10 inde-
pendent trials. We derived an average ACT estimate for
each trial by sampling N = 10000 iterations from the final
temperature configuration after the algorithm terminated.
These values are reported in Table 6.1.

6.1. ACT Comparison

Notably, our policy gradient method consistently outper-
formed geometric spacing across all reward functions, with
the swap mean-distance yielding the lowest ACT for every
test distribution. This is consistent with our earlier observa-
tion that the swap mean-distance is highly correlated with
ACT.

In Figure 1, we see that for the egg-box distribution, both the
swap mean-distance and acceptance rate standard deviation
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Table 1. ACT estimates for policy gradient algorithm and associated reward functions, and geometric spacing.

DISTRIBUTION SWAP MEAN-DISTANCE ACCEPTANCE RATE STD ESJD GEOMETRIC

MULTIMODAL GAUSSIAN 1.138 ± 0.06 1.222 ± 0.03 2.717 ± 0.09 4.670 ± 0.05
EGG-BOX 1.097 ± 0.08 2.772 ± 0.22 4.817 ± 0.46 9.670 ± 0.09
ROSENBROCK 24.08 ± 4.32 43.55 ± 3.66 41.21 ± 8.54 81.32 ± 8.21

achieves near-optimal performance after only 800 iterations.
Comparatively, ESJD takes longer to converge and exhibits
greater variance across its trials throughout all stages of
sampling.

Figure 1. Plot of the ACT over time for geometrically spaced tem-
peratures, uniform acceptance rate (Vousden et al., 2015), and
policy gradient algorithm with different reward functions. Target
is the egg-box distribution. Each step represents 400 iterations of
the policy gradient update.

6.2. Improving on Uniform Acceptance Rates

The findings from Section 6.1 suggest a need for a critical
review of the longstanding assumption regarding the opti-
mality of uniform acceptance rates. While analogies to phys-
ical systems provide and intuitive basis to this assumption
(Sugita & Okamoto, 1999), from a statistical perspective, it
lacks a rigorous foundation to justify its presumed optimal-
ity across general distribution. The evidence suggests that
more nuanced reward shaping strategies may offer superior
performance.

As a baseline, we demonstrate that uniform acceptance rates
is achievable via policy gradients by setting our reward
function to the scaled negative standard deviation of the
acceptance rates. As illustrated in Fig. 2, the acceptance
rates of all chains converge uniformly.

We emphasize that improvement over the uniform accep-
tance rate paradigm was achieved simply by modifying

the reward function of the policy gradient algorithm. This
method is applicable to nearly any desired temperature con-
figuration for which a respective reward can be shaped,
opening doors for understanding of the efficiency of its
swapping mechanism.

Note, however, that because the swap mean-distance met-
ric is based only on the coldest chain, it is not particularly
sensitive to the dynamics of hot chains. For example, figure
C.3 demonstrates that across all the trials for the egg-box
distribution first four temperature When M is large, it is
possible that hotter chains are slow to converge to optimal
temperatures. It may be advantageous to use a weighted
combination of the swap mean-distance metric and a func-
tion of acceptance rates (e.g. minimum, harmonic mean,
standard deviation, etc.) as the reward function, or impos-
ing penalties on bottleneck pairs of adjacent chains whose
acceptance rate is close to 0.

Figure 2. Evolution of log β and acceptance rates over 4000 update
steps for a . Data is thinned by a factor of 100.

Conclusion
In this paper, we propose a policy gradient-based optimiza-
tion method for the temperature ladder of parallel tempering
MCMC. The algorithm is validated with theoretical results
on convergence and experiments to illustrate its effective-
ness. To design an objective function which best captures
the dynamics of the swap mechanic, we introduce a new
swap distance metric and show that it is strongly associated
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with the sampler ACT. Empirical experiments show that the
swap mean-distance metric can be used to achieve lower
sampler ACT than uniform acceptance rate temperature lad-
ders.
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A. Adaptive Affine Algorithm Details.
In Sections 2 and 6.1, we reference an adaptive parallel tempering algorithm (Vousden et al., 2015) that results in uniform
acceptance rates, and the ensemble-based affine invariant sampler (Goodman & Weare, 2010) on which it is built. We
provide details on these algorithms.

A.1. Affine Invariant Ensemble Sampler.

The core idea behind the affine invariant sampler is that it can use context information from other chains in an ensemble
of chains to perform well under affine transformations of the parameter space. An affine transformation involves linear
transformations such as scaling, translation, rotation, and shearing. Metropolis-Hastings proposal distributions have trouble
navigating these features, but the ensemble sampler makes use of the ”stretch move” to overcome this issue.

Algorithm 2 Affine Invariant Ensemble Sampler

input Initial positions of walkers {x(0)
i }Ni=1, target distribution π(x), stretch move parameter a

1: Initialize the ensemble of walkers {x(0)
i }Ni=1

2: for t = 0 to T − 1 do
3: for each walker i do
4: Randomly select another walker j ̸= i from the ensemble
5: Draw z from the distribution g(z) ∝ 1√

z
defined over

[
1
a , a
]

6: Propose a new position x′
i = xj + z(x

(t)
i − xj)

7: Compute acceptance probability α = min

(
1, zd−1 π(x′

i)

π(x
(t)
i )

)
8: Draw a uniform random number u ∼ U(0, 1)
9: if u < α then

10: Accept the proposal: x(t+1)
i = x′

i

11: else
12: Reject the proposal: x(t+1)

i = x
(t)
i

13: end if
14: end for
15: end for
output {x(t)

i }Ni=1

In context of parallel tempering, this method is adapted so that an ensemble sampler is constructed at each temperature level.
Each ensemble only considers the samplers in its own temperature level when performing the stretch move. Independently,
after each stretch move, a random permutation of swaps are proposed between every sampler of ensembles in adjacent
temperature levels. In our experiments, each ensemble is composed of 16 samplers.

A.2. Adaptive Parallel Tempering Ensemble.

The adaptive parallel tempering algorithm constructs an ensemble sampler for each temperature in the ladder and updates
the log differences Si := log(Ti+1 − Ti) between temperatures based on neighboring acceptance rates:

Si(t+ 1) = Si(t) + κ(t)[Ai(t)−Ai+1(t)].

The function κ(t) is a hyperbolic decay function which dampens the amplitude of adaptations over time to ensure convergence.
This updating mechanism is quite intuitive—each Si is adjusted to close the gap between two chains with relatively low
acceptance rates, or repel if they have high acceptance rates.

B. Toy Distributions.
We provide specifics on the toy distributions we used to test our algorithm. The following three distributions all exhibit
multimodality to varying degrees. The Rosenbrock function additionally possesses a narrow, curved valley between modes,
testing the algorithm’s capability to navigate extreme topographies.
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Multimodal Gaussian Distribution. Given parameters {wi, µi,Σi}1≤i≤n, the Multimodal Gaussian is a mixture of
Gaussian distributions, which has likelihood

L(θ) ∝
n∑

i=1

wi · p(θ|µi,Σi)

where

p(x|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
.

In our experiments, n = 10 and each µi is chosen uniformly at random in the interval [−1, 1]. Furthermore, Σi = σiI
where σi ∼ [0.01, 0.3] uniformly. The parameter space is restricted to [−2, 2]8.

Egg-box Distribution. The egg-box distribution is a popular test distribution in machine learning and optimization because
it presents several isolated modes. Its density is

L(θ) ∝

(
1

2

d∏
i=1

cos θi +
1

2

)β

.

Under large β, these modes look locally Gaussian and do not overlap unless the distribution is sufficiently tempered. We
take β = 1000 in our experiments and restrict the parameter space to [−3π/2, 3π/2]5.

Rosenbrock Distribution. The Rosenbrock distribution contains two modes with extremely narrow, curved valleys which
are difficult to traverse. Its density is given by

L(x, y) ∝
(

1

c+ f(x, y)
+

1

c+ f(−x, y)

)β

where
f(x, y) = (a− x2)2 + b(y − x2)2.

In our experiments, we take a = 4, b = 1, c = 0.1, β = 1000.
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C. Experiments Extended.
C.1. Markov Chain Convergence in Log-Likelihood.

A possibility when sampling from complex distributions (ie. Rosenbrock) is that the Markov chain does not converge to the
target within the given finite number of time steps. Stationarity is required to make estimates of the ACT. To check that our
algorithm converges, we plot the negative log likelihood of the samples over the 4000 iterations.

Figure 3. Plotted negative log likelihoods of the samples each time step of the algorithm. The shaded region indicates a 95% confidence
interval over 10 trials.

C.2. Swap Mean Distance Correlation with ACT.

We plot the scatterplot between swap mean-distance and estimated ACT for three distributions in Figure 5. Data is generated
by randomly selecting 1000 temperature ladders for each m value and estimating the average swap mean-distance and ACT
with N = 1000 MCMC iterations.

Figure 4. Scatter plot of swap mean-distance against ACT.
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C.3. Distribution of Final Betas.

Although we present guarantees on the ergodicity of our adaptive algorithm, the temperature ladder to which it converges is
not fixed. This is especially true for non-convex reward functions such as the swap mean-distance. Different random seeds
have led to significantly different outcomes in. Figure C.3 is a box plot showing the distribution of final parameters in terms
of ∆ log βi using the swap mean-distance reward function.

Figure 5. Box plot of final temperatures after 4000 iterations with the swap mean-distance reward function.
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