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ABSTRACT

Neural networks have shown great potential in accelerating the solution of par-
tial differential equations (PDEs). Recently, there has been a growing interest
in introducing physics constraints into training neural PDE solvers to reduce the
use of costly data and improve the generalization ability. However, these physics
constraints, based on certain finite dimensional approximation over the function
space, must resolve the smallest scaled physics to ensure the accuracy and stability
of the simulation, resulting in heavy computational costs from large input, output,
and neural networks. This paper proposes a general acceleration methodology
called NeuralStagger by spatially and temporally decomposing the original learn-
ing tasks into several coarser-resolution subtasks. We define a coarse-resolution
neural solver for each subtask, which requires fewer computational resources, and
jointly train them with the vanilla physics constrained loss by simply arranging
their outputs to reconstruct the original solution. Due to the perfect parallelism
between them, the solution is achieved as fast as a coarse-resolution neural solver.
In addition, the trained solvers bring the flexibility for users to simulate with mul-
tiple levels of resolution. We demonstrate the successful application of Neural-
Stagger on various fluid dynamics simulations, which leads to an additional 10 to
100 times speed-up. Moreover, the experiment also shows that the learned model
could be well used for optimal control.

1 INTRODUCTION

Partial differential equations (PDEs) are the critical parts of scientific research, describing vast cat-
egories of physical and chemical phenomena, e.g. sound, heat, diffusion, electrostatics, electrody-
namics, thermodynamics, fluid dynamics, elasticity, and so on. In the era of artificial intelligence,
neural PDE solvers, in some works called neural operators, are widely studied as a promising tech-
nology to solve PDEs (Guo et al., 2016; Zhu & Zabaras, 2018; Hsieh et al., 2019; Bhatnagar et al.,
2019; Bar-Sinai et al., 2019; Berner et al., 2020; Li et al., 2020b;a; Um et al., 2020; Pfaff et al., 2020;
Lu et al., 2021b; Wang et al., 2021; Kochkov et al., 2021). Once the neural solver is trained, it can
solve unseen PDEs with only an inference step, multiple magnitudes faster than that with traditional
numerical solvers. Recently, several works have introduced physics constraints in training the neural
PDE solvers in order to reduce the use of costly data and improve the generalization ability. They
define the physics constrained loss with certain finite dimensional approximations to transform the
PDEs into algebraic equations, which are further used to define the loss function (Zhu et al., 2019;
Geneva & Zabaras, 2020; Wandel et al., 2020; Shi et al., 2022). However, to ensure stability and ac-
curacy, they must define the loss in a relatively high resolution to resolve the smallest-scale physics
in the PDE, resulting in huge input and output as well as increased neural network size. The so-
lution by the neural network inference might still be slow, but it seems impossible to get further
accelerations as the bottleneck comes from the input and output complexity.

In this paper, we propose a simple methodology called NeuralStagger to jump out of the dilemma.
The basic idea is to evenly decompose the original physical fields into several coarser-resolution
fields. Then we jointly train a lightweight neural network to predict the solution in each coarse-
resolution field respectively, which can be naturally a coarse-resolution neural solver to the original
PDE. We design the decomposition rules so that the outputs of these lightweight networks can re-
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Figure 1: The training pipeline of NeuralStagger. Top: the spatial decomposition that splits the field
into several pieces of coarse-resolution fields; Bottom: the temporal decomposition combined with
spatial decomposition to construct the physics constrained loss.

construct the solutions in the original field with simple arrangements. For ease of reading, here and
also in most parts of the paper, we illustrate the decomposition methodology in the 2-dimensional
example with regular mesh and finite difference approximation. Figure 1 (top) shows the physi-
cal field in a 4 × 4 mesh is decomposed into 4 coarser-resolution fields, each of which is handled
by a small neural network. We could also do similar things along the temporal dimension, as is
shown in Figure 1 (bottom). The group of coarse-resolution solvers as well as the decomposition
and reconstruction operations can be seen as an end-to-end neural PDE solver, which can be trained
with the physics constrained loss that resolves small-scale physics in a sufficiently high resolution.
Because the neural networks can run in parallel, the original simulation is achieved as fast as a
coarse-resolution neural solver. In addition, the trained neural networks can predict the PDE’s so-
lution in various levels of resolution, ranging from the resolution of the individual coarse-resolution
solver to the resolution of the physics constrained loss by the combination of all these solvers. We
believe that such flexibility is vital in balancing the computational resources and the resolution.

We demonstrate the effectiveness of the NeuralStagger in the Navier-Stokes equation with three
parametric settings, e.g., periodic boundary conditions with varied initial conditions, lid-driven cav-
ity boundary conditions with varied initial conditions, and the flow around the obstacle with varied
obstacles and initial conditions. We find that with NeuralStagger, the learned networks can con-
duct accurate and stable simulation with 10∼100 times speed-up over SOTA neural PDE solvers.
In addition, we demonstrate that they can accurately tackle the optimal control task with auto-
differentiation.

Our contributions can be summarized in three parts:

• We propose a general methodology called NeuralStagger to accelerate neural PDE solving
by spatially and temporally decomposing the learning task and running a group of coarse-
resolution solvers in parallelism.

• The learned network group can provide solutions in multiple resolutions from the coarsest
one by a single network to the original resolution, which provides the flexibility to balance
the computational resources and the resolution.

• Empirically, we demonstrate that the methodology leads to 10 to 100 times speed-up over
SOTA neural PDE solvers as well as the efficient solution on optimal control.

In the following sections, we first briefly summarize the related works in Section 2 and then intro-
duce the preliminaries and the proposed NeuralStagger in Section 3. To showcase the efficiency and
accuracy of the proposed method, we present the settings of the experiment and results in Section 4.
Finally, we conclude and discuss the future work in Section 5.
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2 RELATED WORK

In general, two mainstream approaches have been widely used for solving PDEs. The first is to
approximate the PDE’s solution function with neural networks (Raissi et al., 2019; 2020; Jin et al.,
2021). They have proved to be successful in tackling high-dimensional problems and inverse prob-
lems. The second is to learn a PDE solver to solve parametric PDEs. The neural PDE solver can
learn the solutions of a class of PDEs, and thus can generalize to PDEs with different parameters.
Our work is mainly about the accelerating the second type. Many impressive works have been done
to improve the neural solver for parametric PDEs in terms of neural network design, e.g., convo-
lutional neural network (Guo et al., 2016; Tompson et al., 2017; Bhatnagar et al., 2019), graph
neural networks (Pfaff et al., 2020), the multipole graph kernel (Li et al., 2020b), Fourier neural
operators (Li et al., 2020a; Guibas et al., 2021), the message passing neural network (Brandstetter
et al., 2022b), deepOnet (Lu et al., 2021a), Clifford neural networks (Brandstetter et al., 2022a) and
so on. After being trained with pre-generated simulated data and labels, they can solve the PDE
several magnitudes faster than conventional numerical solvers with competitive accuracy. Recently
there are raising concerns about the cost of collecting training data and the generalization ability,
so several works have introduced the physics constrained loss for training. For example, (Wang
et al., 2021) combined the DeepOnet with a physics-informed way to improve the sample efficiency.
Zhu et al. (2019) proposed physics constrained loss for high-dimensional surrogate modeling and
(Geneva & Zabaras, 2020) introduced the use of a physics constrained framework to achieve the
data-free training in the case of Burgers equations. Wandel et al. (2020; 2021) proposed the physics
constrained loss based on the certain approximation of the Navier-Stokes equation to solve fluid-
like flow problems. Shi et al. (2022) proposed a general physics constrained loss called mean square
residual (MSR) loss as well as a neural network called LordNet for better performance. However, the
physics constrained loss by certain approximations require the approximation to be sufficiently close
to the continuous version, resulting in a relatively high-resolution discretization. Thus in complex
and large-scale problems, the neural solver must be large enough for expressiveness and its inference
would still be slow. Although some works (Wang et al., 2021) directly calculate the derivatives via
back-propagation through the neural network, they are known to have similar training problems as
PINN, e.g., converging to trivial solutions.

Interestingly in the case of regular mesh, the proposed spatial decomposition is the same in the
implementation as ‘pixel shuffle’ from computer vision. There are a huge number of works in this
direction, but the most related one might be (Ren et al., 2022) which leverages pixel shuffle and
physics constrained loss in the super-resolution task. However, we are fundamentally different in
target and solution. For example, we train multiple solvers to work in full parallelism and obtain the
solution in multiple levels of resolution without training them again.

We also find similar treatment on meshes in classical numerical methods, e.g., staggered-mesh and
leap-frog integration. However, they are also fundamentally different in target and implementation.
The numerical methods often place meshes of multiple fields with offsets to get more accurate
approximation while NeuralStagger splits the mesh of every single field into multiple sub-meshes
for defining the independent subtasks. In addition, they are orthogonal to NeuralStagger, i.e., one
can leverage both the staggered-mesh to define the physics constrained loss and NeuralStagger to
train multiple coarse-resolution solvers at the same time, as is done in our experiment.

3 METHODOLOGY

3.1 PRELIMINARIES

Consider a connected domain Ω ⊆ Rn with boundary ∂Ω, and let (A,U ,V) be separable Banach
spaces. Then the parametric PDEs can be defined as the form

S(u,a)(x) = 0, x ∈ Ω (1)

where S : U × A → V is a linear or nonlinear differential operator, a ∈ A denotes the parameters
under certain distribution µ, such as coefficient functions or boundary/initial conditions, and u ∈ U
is the corresponding unknown solution function. Further, we can define the solution operator of the
parametric PDE G : A → U , which maps two infinite-dimensional function spaces.
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A main branch of works in neural PDE solvers approximate the solution operator by discretizing
the functions into finite dimensional spaces denoted by Â and Û and learning the mapping fθ :

Â → Û . Correspondingly, we have the discretized version of the PDE’s operator S by certain
finite-dimensional approximations such as the finite difference method (FDM) and finite element
method (FEM), which is denoted by Ŝ. We denote the vector of the function values in a mesh with
the hat symbol, e.g., â is the vector of the PDE’s parameter a ∼ µ. Then the physics constrained
loss is defined by forcing the predicted solution û ∈ Û to satisfy Ŝ given â ∈ Â. For example,
LordNet (Shi et al., 2022) proposed the general form with the mean squared error as follows,

L(θ) = Ea∼µ||Ŝ(fθ(â), â)||2, (2)

In this paper, we mainly focus on time-dependent problems as follows,

S(u,a)(t,x) = 0, (t,x) ∈ [0, T ]× Ω (3)

The temporal dimension is discretized with the timestep ∆t and the neural solver solves the PDE in

Figure 2: Autoregressive model.

an auto-regressive way,

ût+∆t = fθ(ût, â) (4)

where ût is the corresponding discretized vector of the func-
tion u at time t. Figure 2 shows an example with a 4 × 4
rectangle mesh. Notice that similar to traditional numerical
methods, the resolution of the finite-dimensional approxima-
tion in physics constrained loss, either in the spatial dimension
or in the temporal dimension, must be sufficiently high, oth-
erwise, the approximation error will be too large to guide the
neural PDE solver. This leads to huge input and output as well as large neural networks to ensure
expressiveness, whose inference would also be slow.

3.2 NEURALSTAGGER

We propose a general methodology called NeuralStagger to gain further accelerations by exploiting
the potential parallelism in the neural PDE solver. NeuralStagger decomposes the original learning
task that maps ût to ût+∆t into several parallelizable subtasks in both spatial and temporal dimen-
sions. The meshes of the subtasks spread evenly in the original field and stagger with each other.
Then we can handle each subtask with a computationally cheap neural network. The decomposition
strategy is introduced as follows.

Spatial decomposition. The upper part of Figure 1 shows the 2-dimensional example with regular
mesh. We first split the grid into patches of the size sH × sW and construct a subgrid by selecting
only one point in each patch, resulting in sH ×sW subgrids evenly spread in the domain. We denote
the functions in each sub-grid as ûi,jt and âi,jt where i and j represents the relative position of the
sub-grid in horizontal and vertical directions. Then we use sH × sW neural networks to learn to
predict the solution at t+∆t as follows,

ûi,jt+∆t = fθi,j (û
i,j
t , âi,j), (5)

where fθi,j is the neural network for the sub-grid at the position (i, j). The outputs ûi,jt+∆t compose
the solution at the original grid. Then the neural networks can be jointly trained with the physics
constrained loss defined on the original grid. Notice that the neural networks are independent of
each other and can be fully paralleled. As the input and output decrease by sH × sW times, the
neural network can be much smaller and faster than the original one to be used for the neural solver.
The decomposition rules can be extended to higher-dimensional cases. In addition, the learning
tasks at the subgrids are quite close to each other, except for the difference in the boundary of the
domain, so we share the parameters of the neural networks fθi,j to reduce redundancy and accelerate
training. Meanwhile, because there are often tiny differences between the inputs of the subtasks, we
encourage the neural network to distinguish them by adding positional information of each grid
point as additional input channels.

Temporal decomposition. We can treat the temporal dimension as a 1-dimensional grid with a
fixed step ∆t. Thus we can also decompose the grid into sT sub-grids by selecting a point for every
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sT points, where instead of predicting ût+∆t, the neural network predicts ût+sT∆t,

ût+sT∆t = fθ (ût, â) , (6)

Given the solution sequence from t to t + (sT − 1)∆t denoted by ût,sT for simplicity, we can get
the next sequence of the solution ût+sT∆t,sT . Then the physics constrained loss is defined on the
sequence with timestep ∆t, as is shown in the lower part of Figure 1. Once the neural network is
trained, we can generate the sequence ût+sT∆t,sT by running the neural network inference of For-
mula 6 with sT threads in parallel with inputs ût,sT . The non-auto-regressive process can generate
the solution in sT time steps within one inference step, which can be much faster than the original
version (Figure 2) with sT inference steps. Note that though we only need the initial condition for
the coarsest-resolution test, we must prepare the first sT states with numerical solvers for training
and the high-resolution test. However, this drawback is neglectful for long-time simulations.

The spatial and temporal decompositions are orthogonal and can be used at the same time. We
denote the joint decomposition operator as Ds, the transformation operator of the neural networks
as FΘ and the reconstruction operator Es, where s represents all decomposition factors including
sH , sW and sT , Θ represents all parameters of the neural network group. The physics constrained
loss with the spatial-temporal decomposition can be written as,

L(Θ) = Eût,sT
||Ŝ (Es (FΘ (Ds (ût,sT , â))) , ût,sT , â) ||2. (7)

In addition, as the sub-grids spread evenly in the domain of the PDE, each of them can be seen as
the down-sampled version of the original problem, where a local patch is reduced to the point at
a fixed relative position in the patch. Therefore, the learned neural networks are naturally coarse-
resolution solvers to the PDE. Suppose (H,W, T ) is the tuple of the original height, width, and
time span that the physics constrained loss is conducted on. Then the coarse-resolution solvers are
conducted on the resolution ( H

sH
, W
sW
, T
sT

). Meanwhile, we can infer multiple levels of resolutions
ranging from that of coarse-resolution solvers to the original one, all of which can reach the same
speed by parallelism.

3.3 CHOICE OF THE DECOMPOSITION FACTORS

Obviously, the acceleration effect by NeuralStagger grows as we use larger sH , sW and sT . How-
ever, these decomposition factors cannot be arbitrarily large. We conclude two potential constraints,
i.e., the increased complexity of the learning task and the information loss in the input. We would
like to leverage the following 2-dimensional diffusion equation with the periodic boundary condition
as an example to explain the two constraints,

∂u(x, y, t)

∂t
= ∆u(x, y, t), x, y, t ∈ [0, 1], (8)

u(x, y, 0) = f(x, y), x, y ∈ [0, 1], (9)

where u is the density function of diffusing material, ∆ is the Laplacian operator and f is the func-
tion of the initial condition. We use the regular mesh with d points in total and leverage the central
difference scheme with the spatial step ∆x and temporal step ∆t. Then the PDE is transformed into
a matrix equation on the discretized solution at certain time t, denoted by ût ∈ Rd.

Increased complexity of learning task. For the temporal dimension, we find that the larger
decomposition factor might make the mapping from the input to the prediction more complex.
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Figure 3: The bandwidth curve.

For the linear diffusion equation, we can explicitly calculate the
transfer matrix from ûi to ûi+∆t based on the matrix equation.
Suppose the transfer matrix is Ti ∈ Rd×d. By iterative applying
the transfer matrix, we can get the transformation from the initial
condition û0 to the solution at any time step k as follows,

ûk∆t = û0

k−1∏
0

Ti. (10)

For notational simplicity, we denote the resulting transfer matrix
from û0 to ûk∆t as Tk. By certain arrangements, Tk is a band
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matrix where the non-zero values are centralized around the diagonal. The bandwidth indicates the
sparsity of the matrix as well as how local the points in the mesh entangle with each other. We
observe that the bandwidth grows linearly with regard to k. For example, Figure 3 shows the case of
d = 642. When the k ≥ 60, the matrix is dense and every element in ûk∆t is a weighted summation
of almost all the elements in ût. This indicates that increasing k may make the entanglements
between the grid points more complex, leading to a harder learning task for the neural network.

Information loss. By spatial decomposition, each subgrid only reserves a small part of the original
grid. Obviously, it may introduce the problem of information loss if the dropped points are important
for the prediction in the subtasks. Here we theoretically characterize the information loss caused by
spatial decomposition under the linear model setting, i.e., f(ût) = ûtW

∗. Consider the diffusion
equation and the corresponding matrix equation. With some abuse of notation, the superscript i
denotes the index of training samples, such as ûit and the bold symbol without the superscript i
denotes the matrix composed of all the samples, such as ût. With N training samples, the physics
constrained loss aims to learn the parameters W ∗ of the linear model that satisfies:

W ∗ = argmin
W

1

N

N∑
i=1

∥ûitW − yi∥2, (11)

where yi denotes the rest parts of the matrix equation. By applying spatial decomposition, the input
and output are equally partitioned into K = sHsW subgrids {û1t , · · · , ûKt } and {û1t+1, · · · , ûKt+1}.
Then according to the physics constrained loss, the optimization goal becomes:

W ∗
1 , · · · ,W ∗

K = argmin
W1,··· ,WK

1

N

N∑
i=1

K∑
k=1

∥(ûi,kt Wk − yi,k)∥2, (12)

where Wk ∈ Rm×m,m = d/K for k = 1, · · · ,K. The next proposition shows a sufficient condi-
tion for equal prediction for Eq.(11) and Eq.(12).
Proposition 1. If rank(ût) = rank(ûk

t ), the model ûtW
∗ and ûk

tW
∗
k will make the same predic-

tion on yk.

We put the proof in the appendix. In many physical scenarios, the local patches of size sHsW
do not distribute arbitrarily in the ambient space RsHsW , but rather live in some low-dimensional
manifold. Hence, there is much information redundancy in ût and with careful settings of sH and
sW , the rank after the decomposition does not change much, indicating similar predictions on yk.
With deep learning models fθ such as those we use in this paper, we believe that more complex local
patterns can be resolved and the spatial factors can be set larger.

4 EXPERIMENTS

To evaluate the acceleration effect and accuracy of the proposed method, we test three cases of
fluid dynamics simulation governed by the Navier-Stokes equation. We first target two bench-
mark settings, i.e., the periodic boundary condition and the lid-driven cavity boundary condi-
tion (Zienkiewicz et al., 2006) In both settings, the initial condition changes, and the neural PDE
solver learns to generalize to various initial conditions. Next, we test the more challenging case
called flow around obstacles, where several obstacles are placed inside the flow. The neural PDE
solver is trained to generalize to different obstacles as well as initial conditions. In addition, the state
of the fluid changes quite a lot over time. To ensure the neural solver generalizes to various states,
we must maintain a training pool to store states newly predicted during training. At last, we also
evaluate the capability to the inverse problem, i.e., the optimal control on the flow-around-obstacles
setting.

In general, we consider the 2-dimensional incompressible Navier-Stokes equation as follows:

ρ

(
∂v⃗

∂t
+ (v⃗ · ∇)v⃗

)
= −∇p+ µ∆v⃗ + f⃗ (13)

∇ · v⃗ = 0 (14)

where v⃗ is the fluid velocity field, p is the pressure field, µ is the viscosity, and f⃗ is the external force.
In all experiments, we trained neural networks with Adam optimizer and decayed learning rates. The
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speed test is done on Nvidia A100 GPUs under the assumption that we have sufficient computational
resources for each coarse-resolution solver. See Appendix Section 6.2 for more details.

4.1 PERIODIC AND LID-DRIVEN CAVITY BOUNDARY CONDITION

We first test the Navier-Stokes equation with the periodic boundary condition and the lid-driven
cavity boundary condition. In both cases, the physics constrained loss is obtained by discretizing the
vorticity-stream equation with the central-difference scheme and the Crank-Nicolson method in the
64× 64 regular mesh. The time step ∆t is 1e− 2 and the viscosity ν is 1e− 3. We use the popular
FNO (Li et al., 2020a) to test the accuracy and speed in different settings of decomposition factors.
The ground truth is obtained by FDM. We evaluate the accuracy by auto-regressively running the
inference of the neural solver across the target length along time LT and compare the terminal state
with that from the ground truth. Note that we compare all the results on the original mesh and thus
the spatially decomposed results reconstruct to the 64 × 64 resolution for evaluation. We measure
with the relative error which is calculated by dividing the L2 norm of the error by the L2 norm
of the ground truth. The measurement is denoted by Error-k where k is the number of time steps.
Following the notations in Section 3.2, the decomposition factors along x dimension, z dimension
and the temporal dimension are denoted by sW , sH and sT . In general, NeuralStagger achieves
acceleration in both cases without losing much accuracy. As you can see in Figure 5, the coarse-
resolution solver is also accurate when applied alone without reconstruction.

In the case of the periodic boundary condition, the target length along time LT equals 2, which
is 200 time steps. The flow is driven by the external force f⃗ , which is introduced in the ap-
pendix. As you can see in Figure 4 (left), the relative errors of the learned neural solvers
are lower than 0.2% in all settings of spatial and temporal decomposition factors. In terms

Figure 4: Tests on Navier-Stokes equation with (left) periodic boundary condition and (right) Lid-
driven cavity boundary condition.

of speed, with the most aggressive setting sT = 40, sH = sW = 2, and full parallelism,

{100x100, =8}Δt

{32x32, =1.08}Δt {64x64, =0.01}Δt

{100x300, =4}Δt

{32x32, =0.4}Δt {64x64, =0.01}ΔtReference Reference

Reference

Figure 5: The predictions in two resolutions. Top: lid-driven
cavity boundary condition (left) and periodic boundary condition
(right) and Bottom: flow around obstacles.

the inference time for the 200-
time-steps simulation is 0.076
seconds on average. Compared
to 0.36 seconds by the baseline
without NeuralStagger, there is
47× speed-up. We can also ob-
serve some trends in accuracy
with regard to the choice of spa-
tial and temporal factors. Error-
1 grows like a linear function
with the temporal factor sT in
both spatial factor settings. The
reason is that the learning task
becomes more complex as we
discuss in Section 3.3, and with
the neural network unchanged, the accuracy drops. Meanwhile, the accumulated errors, i.e., Error-
200, almost keep at the same level. This is because the steps in the auto-regressive procedure reduce
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as sT grows, e.g., when sT = 40, the neural networks for subtasks only predict 200/40 = 5 steps
ahead. The benefit perfectly neutralizes the detriment of the increased task complexity.

In the case of the lid-driven cavity boundary condition, the fluid acts in a cavity consisting of three
rigid walls with no-slip conditions and a lid moving with a steady tangential velocity 1. We set the
length of time LT = 27, much larger than that with the periodic boundary, to see if the simulation
converges to the right steady state. With larger LT , we try larger temporal skip factors such as
sT = 108. As is shown in Figure 4 (right), the relative errors are all controlled below 0.5% even
after 2700 time steps. Again, with the most aggressive setting sT = 108, sH = sW = 2 and full
parallelism, the neural solver finishes the 2700-time-steps simulation within 0.038 seconds, about
119× faster than the baseline, i.e., 4.49 seconds. Different from the periodic boundary condition, the
accuracy drops when we increase sT . The reason is that the increase of sT brings more detriments
of task complexity than the benefits from the shorter auto-regressive sequence.

4.2 FLOW AROUND OBSTACLES

In this section, we evaluate NeuralStagger in a larger and more complex setting called flow around
obstacles. The setting is the same as that used in (Wandel et al., 2020), which is also our baseline.
The fluid runs through a pipe, where we put different shapes of obstacles to affect the flow, including
rotating cylinders and walls constructing a folded pipe. The external forces in Eq. 13 are neglected
and set to 0. The neural solver is trained to generalize to different settings of the obstacles, including
the shape and the velocity on the surface as well as the inflow/outflow velocities. Then we evaluate
the neural solver in 5 randomly sampled configurations in both the cylinder case and the folded pipe
case. You may refer to the appendix for more details. We leverage the same configurations as those
in (Wandel et al., 2020) including the discretization method, the physics constrained loss, training
strategies, the input features, the predicted variables as well as the evaluation metric. Specifically,
the rectangular domain is discretized into a 100 × 300 regular mesh and ∆t = 4. The physics
constrained loss is used as the evaluation metric, measuring to what extent the prediction at the
next time step satisfies the PDE given the current fluid state and the boundary conditions. As the
fields of the fluid change much over time, we maintain a training pool initialized with a set of initial
conditions and incrementally enrich it as the training goes. This is achieved because the predictions
from the neural network can be seen as new data if the neural network has been well fitted in the
current pool. One can refer to (Wandel et al., 2020) for more details.

Wandel et al. (2020) leverages U-net as the neural solver, but to demonstrate the full potential of
NeuralStagger, we also try the other two neural network architectures, i.e., FNO and LordNet (Shi
et al., 2022) which also leverages the physics constrained loss to train the neural PDE solver. We
directly use the trained U-net from the official open-source repository of (Wandel et al., 2020)
for evaluation and train FNO and LordNet from scratch. The experiments in Table 1 show that
LordNet outperforms the other two neural networks in the baseline setting without NeuralStagger.
Therefore, we use LordNet for further experiments on the choice of spatial and temporal factors.
We find that in this case, the information from the 100 × 100 grid (sH = 1, sW = 3) is sufficient
to achieve comparable results to the U-net baseline, while larger spatial steps will introduce too
much information loss. In addition, it seems increasing the temporal factors hurts the accuracy more
obviously than those in the periodic boundary condition and the lid-driven boundary condition,
though the accuracy is still comparable to U-net even with sT = 16. We believe this is because
the dataset is incrementally explored by maintaining a training pool and enriching it with the neural
network’s predictions during training. However, the predictions may not be accurate. As the physics
constrained loss is defined on ût+(sT−1)∆t and ût+sT∆t, inaccurate ût+(sT−1)∆t may mislead the
neural network to the wrong direction. When we increase sT , more errors will be accumulated along
the sequence from ût the ût+(sT−1)∆t and the training will be harder. Designing training algorithms
to better support NeuralStagger remains unexplored and we leave it for future work.

In terms of speed, the choices of spatial and temporal factors lead to different levels of acceleration,
as is shown in Table 1, where GMACs (multiply-accumulate Operations) per card is the average
computational load of simulation for 16 timesteps. Specifically, the largest factor configuration
to keep the accuracy comparable to the baseline is sT = 16, sH = 1, sW = 3, leading to the
largest decrease in GMACs per card, i.e., 1/32 of the baseline U-net and 1/48 of LordNet without
NeuralStagger. Specifically, when tested with A100 cards, it leads to 28× speed-up over U-net and
17× over LordNet without NeuralStagger.
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Table 1: Performance of NeuralStagger with different decomposition factors and neural networks
in the flow-around-obstacles setting.

Config Temporal Spatial Folded Cylinder Time/step GMACs
factor factors pipe (ms) per card

U-net (Wandel et al., 2020) - - 1.67 e-4 1.24 e-4 3.386 29.60

FNO (Li et al., 2020a) - - 9.12e-4 1.00e-3 1.914 13.52

LordNet (Shi et al., 2022)

- - 8.97e-6 1.07e-5 2.003 71.04
1 (1, 3) 1.30e-5 5.01e-5 1.826 19.84
1 (2, 6) 6.74e-4 8.21e-3 1.758 4.46
2 (1, 1) 3.42 e-5 4.30 e-5 1.002 35.52
2 (1, 3) 5.51e-5 1.19e-4 0.912 9.92
8 (1, 3) 4.67e-5 4.41e-4 0.246 2.48

16 (1, 3) 4.48e-5 1.51e-4 0.124 1.24

4.3 APPLICATION IN OPTIMAL CONTROL

To further showcase the capability of the neural solver with NeuralStagger on the inverse
problem, we conduct the optimal control experiment introduced in Wandel et al. (2020).

0 50 100 150 200
iteration
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2
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10
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E[|V(f)|2]: NeuralStagger
E[|V(f)|2]: U-net

Figure 6: The optimization curve of the
frequency control for vortex streets. The
U-net converged after almost 72 iterations,
while the LordNet using NeuralStagger
converged after 55 iterations.

The task is to change the flow speed to control the
shedding frequency of a Kármán vortex street behind
an obstacle. The shedding frequency is estimated by
the frequency spectrum V (f) of the y-component of
the velocity field behind the obstacle over 200 time
steps, denoted by E

[
|V (f)|2

]
. We define the loss

function L =
(
E
[
|V (f)|2

]
− f̂

)2

, where f̂ is the
target frequency. Then we compute the gradient of the
velocity with regard to the loss by auto-differentiation
through the neural solver and leverage Adam opti-
mizer (Paszke et al., 2017; Kingma & Ba, 2014) to up-
date the velocity. We compare the result of the learned
model with the setting sH = 1, sW = 3, sT = 2 to
that shown in Wandel et al. (2020). As is shown in Fig-
ure 6, the velocity controlled by LordNet converges to
the target velocity with fewer iterations.

5 CONCLUSION AND LIMITATION

We present NeuralStagger, a general framework for accelerating the neural PDE solver trained by
physics constrained loss. By spatially and temporally decomposing the learning task and training
multiple lightweight neural networks, the neural solver is better paralleled and much faster with suf-
ficient computational resources. In addition, each lightweight neural network is naturally a coarse-
resolution solver and they bring the flexibility of producing the solutions on multiple levels of res-
olution, which is important for balancing the resolution and computational resources. We discuss
the choice of decomposition factors and empirically test their influence on accuracy and speed. The
experiments in fluid dynamics simulation show that NeuralStagger brings an additional 10 to 100×
speed-up over SOTA neural PDE solvers with mild sacrifice on accuracy.

There are also several limitations to be tackled in future works. Firstly, the accuracy drops with
the growing decomposition factors. A potential solution would be introducing historical states in
the neural network input to make up for the information loss. Secondly, we only define the spatial
decomposition over regular meshes, while it turns to the non-trivial vertex coloring problem for
irregular meshes. Heuristic coloring algorithms would be useful for this problem. Thirdly, our
experiments only show the generalization to different initial conditions and boundary conditions. In
the future, we would like to explore the generalization to different mesh sizes.
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6 APPENDIX

6.1 INFORMATION LOSS CAUSED BY SPATIAL DECOMPOSITION

In this section, we provide the proof to proposition 1 in the linear model setting. In this section, we
will theoretically characterize the information loss caused by spatial decomposition under the linear
model setting. Note that the proof is done on the 1-dimensional diffusion equation with the explicit
method for ease of understanding, but as we will see, the conclusion is the same in the case with 2
dimensions or the implicit method.

We consider a simple 1d partial differential equation with Dirichlet boundary condition:

∂tu = ∆u, x ∈ Ω (15)
ut(x) = ft(x), x ∈ ∂Ω (16)

Discretizing the function u on grid (x1, · · · , xd), we denote ûj = u(xj). We consider the finite
difference discretization:

ûjt+1 − ûjt
δt

=
(ûj+1

t − ûjt )− (ûjt − ûj−1
t )

δx2
, xj ̸= {x1, xd} (17)

ûjt+1 = ft+1(xj), xj = {x1, xd} (18)

Given the input ût ∈ Rd and output ût+∆t ∈ Rd, the output ût+∆t is parameterized by linear model
as ût+∆t = ûtW where W ∈ Rd×d denotes the learned parameters. The physics constrained loss
aims to learn the parameters W ∗ of the linear model that satisfies:

W ∗ = argmin
W

1

N

N∑
i=1

∥ûitW − yi∥2, (19)

where i denotes the index of training samples and yj = ft+1(xj), xj = {x1, xd}; yj = ûjt −
δt
δx2

(
(ûj+1

t − ûjt )− (ûjt − ûj−1
t )

)
, xj ̸= {x1, xd}.

By applying spatial decomposition, the input and output are equally partitioned into K blocks
{û1t , · · · , ûKt } and {û1t+∆t, · · · , ûKt+∆t}. Each block contains d/K coordinates Then according
to the MSR loss, the optimization goal becomes:

W ∗
1 , · · · ,W ∗

K = argmin
W1,··· ,WK

1

N

N∑
i=1

K∑
k=1

∥(ûi,kt Wk − yi,k)∥2, (20)

where Wk ∈ Rm×m,m = d/K for k = 1, · · · ,K.

Proof:We first consider the case that
∑N

i=1(û
i,k
t )τ ûi,kt is full rank. The minimizer of Eq.(20) is

W ∗
k = (

∑N
i=1(û

i,k
t )τ ûi,kt )−1(

∑N
i=1(û

i,k
t )τyi,k). We denote the matrix A = (

∑N
i=1(û

i,k
t )τ ûi,kt )−1,

We construct a d×dmatrixB by lettingB(k+id/K, k+jd/K) = A(i, j), for i = 0, · · · , d/K; j =
0, · · · , d/K; otherwise, B(i, j) = 0. Then it is easy to check that the matrixB is the pseudo-inverse
of

∑N
i=1(û

i
t)

τ ûit. The minimizer of Eq.(19) is (Bartlett et al., 2020)B(
∑N

i=1(û
t
i)

τyi). As the matrix
B only has non-zero values on the coordinates that correspond to the k-th block, we have the k-the
block of W ∗ equals W ∗

k and other blocks equal zero matrices. Denoting the matrix composed of all

the samples with the bold symbol without the superscript i such as ût for
{
ûit
}

and ûk
t for

{
ûi,kt

}
,

we have
∑N

i=1(û
i,k
t )τ ûi,kt = (ûk

t )
τ ûk

t and
∑N

i=1(û
i
t)

τ ûit = (ût)
τ ût. By Rank–nullity theorem, it

is easy to see that rank((ût)
τ ût) = rank(ût) and rank((ûk

t )
τ ûk

t ) = rank(ûk
t ). Then we get

the results in the proposition.

For the case that
∑N

i=1(û
t,k
i )τ ût,ki ≤ d/K, we can select its maximal linearly independent group

to obtain its pseudo-inverse and apply similar analyses to get the results. In the case of the implicit
method, the term ûitW in the physics constrained loss becomes ûitWV where V is an invertible
matrix. This also does not change the conclusion.
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6.2 IMPLEMENTATION DETAILS

We implemented FNO with the original 2-dimensional version in the official repository, where we
set the truncation mode to 12 and the width to 64. For the LordNet, we only stack 2 Lord modules
and fix the channel count to 64 in all layers. In the position-wise embedding of the 2 Lord modules,
we stack two 1×1 Convolutional layers, where the hidden embedding contains 256 and 128 channels
separately, and GELU activation is used between the Convolutional layers. The implementation of
Unet is based on the U-Net architecture (Ronneberger et al., 2015) with 20 hidden channels, which is
consistent with that in (Wandel et al., 2020) The learning rates and training samples are described as
follows. To keep out the potential influence of computational resources like cores and memory, we
test the speed of NeuralStagger under the setting that each coarse-resolution solvers have sufficient
resources to use. Therefore, we run each solver on Nvidia A100 GPUs with the batch size equals
to 1. The time per step shown in Table 1 is calculated by dividing the inference time of the coarse-
resolution solver by the temporal factor sT . The time of decomposition and reconstruction is ignored
because the operation supported by ‘pixel shuffle’ is super efficient. We also calculated GMACs
(multiply-accumulate Operations) per card, which is the average computational load of simulation
for 16 timesteps. Note that for the GMACs of FNO, we do not include the operation of Fourier
transform.

Periodic Boundary Condition We generate the data with random fields to generate a periodic
function on a 64×64 grid with a time-step of 1e-2 where we record the solution every time step,
where the external force is fixed f(x) = 0.1sin(2π(x + y)) + cos(2π(x + y)). For the perioidc
boundary and lid-driven boundary conditions, we use the vorticity-stream function form of Eq. 13 as
the physics-constrained loss. With the Helmholtz decomposition to Eq. 13, we rewrite the Navier-
Stokes equation:

∂ω

∂t
=
∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
+

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(21)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (22)

where ω is the vorticity function, ψ is the stream function, and Re is the Reynolds number. The ini-
tial condition ω0 is generated by random field satisfying the distribution N

(
0, 83(−∆+ 64I)−4.0

)
.

We use 6000 states for training. In this case, we use FNO to test NeuralStagger and decay the initial
learning rate 3e-3 with a factor of 0.9 every 5000 iterations.

Lid-driven Cavity boundary condition We generate data on a 64×64 but we train the neural net-
work to predict the values of ψ inside the boundary, which is a 2-dimensional matrix of the shape
(H − 2) × (W − 2). The random initial conditions are generated in the same way as the periodic
boundary conditions. To make the initial state consistent with the boundary condition, we solve with
the numerical solver for the first T0 = 1.98 and use ωT0

as the initial state. We use 8000 states for
training with FNO, and decay the initial learning rate 3e-3 with a factor of 0.9 every 10000 iterations.

Flow around Obstacles The data generation is the same as the setting used in (Wandel et al., 2020),
where the resolution of the domain is 100×300, ∆t = 4, ρ = 4, µ = 0.1. In training, different types
of environments are used including magnus, box, pipe, and wing. The locations and the velocity
are variable during the training, e.g., the velocity is ranged from 0.0 to 1 m/s, the diameter of the
obstacle is ranged from 10 to 40, and the coordinate x of the location is randomly from to 65 to 75
and the coordinate y of that is from 40 to 60. And then for the test, we randomly select the location
and flow velocity to test and in our experiment, the Reynolds number of tests is 517. In this case,
we train the model from scratch without any data for sT = 1. For sT > 1, we use the benchmark to
pre-generate the initial sequence û0,sT for training. The learning rate is 1e-3 for Lordnet and 3e-3
for FNO, both with a factor of 0.9 every 5000 iterations. The quantitative comparison in this paper
is conducted on a 100×300 grid. For the optimal control of vortex shedding experiment, the domain
size is 100x300, and used the trained neural PDE solver based on the above training settings. The
Reynolds number here is 880. The optimizer for both Unet and LordNet is Adam optimizer with a
learning rate of 1e-3.

6.3 THE RESULTS OF THREE CASES WITH DIFFERENT SPATIAL-TEMPORAL FACTORS
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Table 2: Tests on Navier-Stokes equation with periodic boundary condition.
Temporal LT = 2, (1,1) LT = 2, (2,2)
Skipping Error-1 Error-200 Error-1 Error-200.

1 0.0000058 0.0011939 0.0000074 0.0016352
5 0.0000297 0.0012140 0.0000308 0.0016848

10 0.0000626 0.0013126 0.0000654 0.0016719
20 0.0001074 0.0011042 0.0001321 0.0017580
30 0.0001826 0.0014243 0.0001975 0.0017017
40 0.0002501 0.0012091 0.0002545 0.0012931

Table 3: Tests on Navier-Stokes equation with Lid-driven cavity boundary condition.
Temporal LT = 27, (1,1) LT = 27, (2,2)
Skipping Error-1 Error-2700 Error-1 Error-2700.

1 1.82e-5 0.00228 1.78 e-5 0.00283
27 3.76e-4 0.00255 5.38 e-4 0.00390
54 8.78e-4 0.00404 1.18 e-3 0.00420
108 1.86e-3 0.00461 2.30 e-3 0.00478

Table 4: Performance of NeuralStagger with different decomposition factors and neural networks
in the flow-around-obstacles setting.

Config Temporal Spatial Folded pipe Cylinder GMACs
factor factors per card

U-net (Wandel et al., 2020)

- - 1.67 e-4 1.24 e-4 29.60
1 (1, 3) 1.93 e-4 2.51e-4 9.76
1 (2, 6) 4.31 e-4 7.93e-4 2.40
2 (1, 3) 6.76 e-4 9.12e-4 4.88
8 (1, 3) 6.43 e-4 2.02e-3 1.22
16 (1, 3) 1.11 e-3 3.70e-3 0.61

FNO (Li et al., 2020a)

- - 9.12e-4 1.00e-3 13.52
1 (1, 3) 1.11 e-3 1.05e-3 4.72
1 (2, 6) 1.84 e-3 3.70e-3 1.37
2 (1, 3) 1.08 e-3 6.24e-4 2.36
8 (1, 3) 1.18e-3 4.09e-3 0.59
16 (1, 3) 1.41e-3 8.20-e3 0.30

LordNet (Shi et al., 2022)

- - 8.97e-6 1.07e-5 71.04
1 (1, 3) 1.30e-5 5.01e-5 19.84
1 (2, 6) 6.74e-4 8.21e-3 4.46
2 (1, 3) 5.51e-5 1.19e-4 9.92
8 (1, 3) 4.67e-5 4.41e-4 2.48
16 (1, 3) 4.48e-5 1.51e-4 1.24
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