
Learning on Large Graphs
using Intersecting Communities

Ben Finkelshtein
University of Oxford

İsmail İlkan Ceylan
University of Oxford

Michael Bronstein
University of Oxford / AITHYRA

Ron Levie
Technion -– Israel Institute of Technology

Abstract

Message Passing Neural Networks (MPNNs) are a staple of graph machine learning.
MPNNs iteratively update each node’s representation in an input graph by aggregat-
ing messages from the node’s neighbors, which necessitates a memory complexity
of the order of the number of graph edges. This complexity might quickly become
prohibitive for large graphs provided they are not very sparse. In this paper, we
propose a novel approach to alleviate this problem by approximating the input
graph as an intersecting community graph (ICG) – a combination of intersecting
cliques. The key insight is that the number of communities required to approximate
a graph does not depend on the graph size. We develop a new constructive version
of the Weak Graph Regularity Lemma to efficiently construct an approximating
ICG for any input graph. We then devise an efficient graph learning algorithm
operating directly on ICG in linear memory and time with respect to the number of
nodes (rather than edges). This offers a new and fundamentally different pipeline
for learning on very large non-sparse graphs, whose applicability is demonstrated
empirically on node classification tasks and spatio-temporal data processing.

1 Introduction

The vast majority of graph neural networks (GNNs) learn representations of graphs based on the
message passing paradigm [22], where every node representation is synchronously updated based on
an aggregate of messages flowing from its neighbors. This mode of operation hence assumes that the
set of all graph edges are loaded in the memory, which leads to a memory complexity bottleneck.
Specifically, considering a graph with N nodes and E edges, message-passing leads to a memory
complexity that is linear in the number of edges, which quickly becomes prohibitive for large graphs
especially when E ≫ N . This limitation motivated a body of work with the ultimate goal of making
the graph machine learning pipeline amenable to large graphs [24, 12, 13, 7, 65].

In this work, we take a drastically different approach to alleviate this problem and design a novel
graph machine learning pipeline for learning over large graphs with memory complexity linear in the
number of nodes. At the heart of our approach lies a graph approximation result which informally
states the following: every undirected graph with node features can be represented by a linear
combination of intersecting communities (i.e., cliques) such that the number of communities required
to achieve a certain approximation error is independent of the graph size for dense graphs. Intuitively,
this results allows us to utilize an “approximating graph”, which we call intersecting community
graph (ICG), for learning over large graphs. Based on this insight — radically departing from the
standard message-passing paradigm — we propose a new class of neural networks acting on the ICG
and on the set of nodes from the original input graph, which leads to an algorithm with memory and
runtime complexity that is linear in the number nodes.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Our analysis breaks the traditional dichotomy of approaches that are appropriate either for small
and dense graphs or for large and sparse graphs. To our knowledge, we present the first rigorously
motivated approach allowing to efficiently handle graphs that are both large and dense. The main
advantage lies in being able to process a very large non-sparse graph without excessive memory and
runtime requirements. The computation of ICG requires linear time in the number of edges, but this
is an offline pre-computation that needs to be performed once. After constructing the ICG, learning
to solve the task on the graph — the most computation demanding aspect — is very efficient, since
the architecture search and hyper-parameter optimization is linear in the number of nodes.

Context. The focus of our study is graph-signals: undirected graphs with node features, where the
underlying graph is given and fixed. This is arguably the most common learning setup for large
graphs, including tasks such as semi-supervised (transductive) node classification. As we allow
varying features, our approach is also suitable for spatiotemporal tasks on graphs, where a single
graph is given as a fixed domain on which a dynamic process manifests as time-varying node features.
Overall, our approach paves the way for carrying out many important learning tasks on very large
and relatively dense graphs such as social networks that typically have 108 ∼ 109 nodes and average
node degree of 102 ∼ 103 [19] and do not fit into GPU memory.

Figure 1: Top: ad-
jacency matrix of a
simple graph. Bot-
tom: approximating
5 community ICG.

Challenges and techniques. There are two fundamental technical challenges
to achieve the desired linear complexity, which we discuss and elaborate next.

How to construct the ICG efficiently with formal approximation guarantees?
Our answer to this question rests on an adaptation of the Weak Regularity
Lemma [20, 38] which proves the existence of an approximating ICG in
cut metric – a well-known graph similarity meausre1. Differently from the
Weak Regularity Lemma, however, we need to construct an approximating
ICG. Directly minimizing the cut metric is numerically unstable and hard
to solve2. We address this in Theorem 3.1, by proving that optimizing the
error in Frobenius norm, a much easier optimization target, guarantees a small
cut metric error. Hence, we can approximate uniformly “granular” adjacency
matrices by low-rank ICGs in cut metric. Uniformity here means that the
number of communities K of the ICG required for the error tolerance ϵ is
K = ϵ−2, independently of on any property of the graph, not even its size N .3
This result allows us to design an efficient and numerically stable algorithm.
Figure 1 shows an adjacency matrix with an inherent intersecting community
structure, and our approximated ICG, which captures the statistics of edge
densities, ignoring their granularity.

How to effectively use ICG for efficient graph learning? We present a signal
processing framework and deep neural networks based on the ICG represen-
tation (ICG-NN). As opposed to message-passing networks that require O(E) memory and time
complexity, ICG-NNs operate in only O(N) complexity. They involve node-wise operations to allow
processing the small-scale granular behavior of the node features, and community operations that
account for the large-scale structure of the graph. Notably, since communities have large supports,
ICG-NN can propagate information between far-apart nodes in a single layer.
Contributions. Our contributions can be summarized as follows:
• We present a novel graph machine learning approach for large and non-sparse graphs which enables

an O(N) learning algorithm on ICG with one-off O(E) pre-processing cost for constructing ICG.
• Technically, we prove a constructive version of Weak Regularity Lemma in Theorem 3.1 to

efficiently obtain ICGs, which could be of independent theoretical interest.
• We introduce ICG neural networks as an instance of a signal processing framework, which applies

neural networks on nodes and on ICG representations .
• Empirically, we validate our theoretical findings on semi-supervised node classification and on

spatio-temporal graph tasks, illustrating the scalability of our approach, which is further supported
by competitive performance against strong baseline models.

1[20] proposed an algorithm for finding the ICG, but it has impractical exponential runtime (see Section 7).
2The definition of cut metric involves maximization, so minimizing cut metric is an unstable min-max.
3Note that the optimal Frobenius error is not uniformly small, since adjacency matrices of simple graphs are

{0, 1}-valued, typically very granular, so they cannot be approximated well by low-rank R-valued ICG matrices.
Nevertheless, if we find an approximate Frobenius minimizer, we are guaranteed a small cut metric error.

2

2 A primer on graph-signals and the cut-metric

Graph signals. We are interested in undirected (weighted or simple), featured graphs G = (N , E ,S),
where N denotes the set of nodes, E denotes the set of edges, and S denotes the node feature
matrix, also called the signal. We will write N to represent the number of nodes and E to represent
the number of edges. For ease of notation, we will assume that the nodes are indexed by [N] =
{1, . . . , N}. Using the graph signal processing convention, we represent the graphs in terms of
a graph-signal G = (A,S), where A = (ai,j)

N
i,j=1 ∈ RN×N is the adjacency matrix, and S =

(si,j)i∈[N],j∈[d] ∈ RN×D is the D-channel signal. We assume that the graph is undirected, meaning
that A is symmetric. The graph may be unweighted (with ai,j ∈ {0, 1}) or weighted (with ai,j ∈
[0, 1]). We additionally denote by s⊤n the n-th row of S, and denote S = (sn)

N
n=1. By abuse of

notation, we also treat a signal S as the function S : [N] → RD with S(n) = sn. We suppose
that all signals are standardized to have values in [0, 1]. In general, any matrix (or vector) and
its entries are denoted by the same letter, and vectors are seen as columns. The i-th row of the
matrix A is denoted by Ai,:, and the j-th column by A:,j . The Frobenius norm of a square matrix

M ∈ RN×N is defined by ∥M∥F =
√

1
N2

∑N
n,m=1 |bn,m|2, and for a signal S ∈ RN×D by

∥S∥F =
√

1
N

∑N
n=1

∑D
j=1 |sn,j |

2. The Frobenius norm of a matrix-signal, with weights a, b > 0,

is defined to be ∥(M ,S)∥F :=
√
a ∥M∥2F + b ∥S∥2F. We define the degree of a weighted graph

as deg(A) := N2 ∥A∥2F. In the special case of an unweighted graph we get deg(A) = E. The
pseudoinverse of a full rank matrix M ∈ RN×K , where N ≥ K, is M † = (M⊤M)−1M⊤.
Cut-metric. The cut metric is a graph similarity, based on the cut norm. We show here the definitions
for graphs of the same size; the extension for arbitrary pairs of graphs is based on graphons (see
Appendix B.2). The definition of matrix cut norm is well-known, and we normalize it by a parameter
E ∈ N that indicates the characteristic number of edges of the graphs of interest, so cut norm remains
within a standard range. The definition of cut norm of signals is taken from [33].
Definition 2.1. The matrix cut norm of M ∈ RN×N , normalized by E, is defined to be

∥M∥□ = ∥M∥□;N,E :=
1

E
sup

U,V⊂[N]

∣∣∣∑
i∈U

∑
j∈V

mi,j

∣∣∣. (1)

The signal cut norm of Z ∈ RN×D is defined to be

∥Z∥□ = ∥Z∥□;N :=
1

DN

D∑
j=1

sup
w⊂[N]

∣∣∣∑
i∈w

zi,j

∣∣∣. (2)

The matrix-signal cut norm of (M ,Z), with weights α > 0 and β > 0 s.t. α+ β = 1, is defined to
be

∥(M ,Z)∥□ = ∥(M ,Z)∥□;N,E := α ∥M∥□;N,E + β ∥Z∥□;N . (3)

Given two graphs A,A′, their distance in cut metric is the cut norm of their difference, namely

∥A−A′∥□ =
1

E
sup

U,V⊂[N]

∣∣∣∑
i∈U

∑
j∈V

(ai,j − a′i,j)
∣∣∣. (4)

The right-hand-side of (4) is interpreted as the difference between the edge densities of A and A′

on the block on which these densities are the most dissimilar. Hence, cut-metric has a probabilistic
interpretation. Note that for simple graphs, A−A′ is a granular function: it has many jumps between
the values −1, 0 and 1. The fact that the absolute value in (4) is outside the integral, as opposed
to being inside like in ℓ1 norm, means that cut metric has an averaging effect, which mitigates the
granularity of A−A′. The graph-signal cut metric is similarly defined to be ∥(A,S)− (A′,S′)∥□.

Cut metric in graph machine learning. The cut metric has the following interpretation: two
(deterministic) graphs are close to each other in cut metric iff they look like random graphs sampled
from the same stochastic block model. The interpretation has a precise formulation in view of the
Weak Regularity Lemma [20, 38] discussed below. This makes the cut metric a natural notion of
similarity for graph machine learning, where real-life graphs are noisy, and can describe the same
underlying phenomenon even if they have different sizes and topologies. Moreover, [33] showed that

3

GNNs with normalized sum aggregation cannot separate graph-signals that are close to each other in
cut metric. In fact, cut metric can separate any non-isomorphic graphons [37], so it has sufficient
discriminative power to serve as a graph similarity measure in graph machine learning problems. As
opposed to past works that used the cut norm to derive theory for existing GNNs, e.g., [46, 40, 33],
we use cut norm to derive new methods for a class of problems of interest. Namely, we introduce a
new theorem about cut norm – the constructive weak regularity lemma (Theorem 3.1) – and use it to
build new algorithms on large non-sparse graphs.

3 Approximation of graphs by intersecting communities

3.1 Intersecting community graphs

Given a graph G with N nodes, for any subset of nodes U ⊂ [N], denote by 1U its indicator (i.e.,
1U (i) = 1 if i ∈ U and zero otherwise). We define an intersecting community graph-signal (ICG)
with K classes (K-ICG) as a low rank graph-signal (C,P) with adjacency matrix and signals given
respectively by

C =

K∑
j=1

rj1Uj
1
⊤
Uj
, P =

K∑
j=1

1Uj
f⊤
j (5)

where rj ∈ R, fj ∈ RD, and Uj ⊂ [N]. In order to allow efficient optimization algorithms, we relax
the {0, 1}-valued hard affiliation functions 1U to functions that can assign soft affiliation values in
R. Letting χ denote the set of all indicator functions of the form 1U , for subsets U ∈ [N], we can
formally define soft affiliation models as follows.

Definition 3.1. A set Q of functions q : [N] → R that contains χ is called a soft affiliation model.

Definition 3.2. Let d ∈ N, and let Q be a soft affiliation model. We define [Q] ⊂ RN×N ×RN×D to
be the set of all elements of the form (rqq⊤, qf⊤), with q ∈ Q, r ∈ R and f ∈ RD. We call [Q]
the soft rank-1 intersecting community graph (ICG) model corresponding to Q. Given K ∈ N, the
subset [Q]K of RN×N × RN×D of all linear combinations of K elements of [Q] is called the soft
rank-K ICG model corresponding to Q.

ICG models can be written in matrix form as follows. Given K,D ∈ N, any intersecting community
graph-signal (C,P) ∈ RN×N × RN×D in [Q]K can be represented by a triplet of community
affiliation matrix Q ∈ RN×K , community magnitude vector r ∈ RK , and community feature matrix
F ∈ RK×D. In the matrix form, (C,P) ∈ [Q]K if and only if it has the form

C = Qdiag(r)Q⊤ and P = QF ,

where diag(r) is the diagonal matrix in RK×K with r as its diagonal elements.

3.2 The Constructive Graph-Signal Weak Regularity Lemma

The following theorem is a semi-constructive version of the Weak Regularity Lemma for intersecting
communities. It is semi-constructive in the sense that the approximating graphon is not just assumed
to exist, but is given as the result of an optimization problem with an “easy to work with” loss, namely,
the Frobenius norm error. The theorem also extends the standard weak regularity lemma by allowing
soft affiliations to communities instead of hard affiliations.

Theorem 3.1. Let (A,S) be a D-channel graph-signal of N nodes, where deg(A) = E′. Let
K ∈ N, δ > 0, and Q be a soft affiliation model. Consider the matrix-signal cut norm with
weights α, β ≥ 0 not both zero, and the matrix-signal Frobenius norm with weights ∥(B,X)∥F :=√
αN2

E ∥B∥2F + β ∥X∥2F. Let m be sampled uniformly from [K], and let R ≥ 1 such that K/R ∈ N.

Then, in probability 1− 1
R (with respect to the choice of m), for every (C∗,P ∗) ∈ [Q]m,

if ∥(A,S)− (C∗,P ∗)∥F ≤ (1 + δ) min
(C,P)∈[Q]m

∥(A,S)− (C,P)∥F

then ∥(A,S)− (C∗,P ∗)∥□;N,E′ ≤
3N

2
√
E′

√
R

K
+ δ. (6)

4

The proof of Theorem 3.1 is given in Appendix B, where the theorem is extended to graphon-signals.
Theorem 3.1 means that we need not consider a complicated algorithm for estimating cut distance.
Instead, we can optimize the Frobenius norm, which is much more direct (see Section 4). The term δ
describes the stability of the approximation, where a perturbation in (C∗,P ∗) that corresponds to a
small relative change in the optimal Frobenius error, leads to a small additive error in cut metric.

3.3 Approximation capabilities of ICGs

ICGs vs. Message Passing. Until the rest of the paper we suppose for simplicity that the degree
of the graph E′ is equal to the number of edges E up to a constant scaling factor 0 < γ ≤ 1,
namely E′ = γE. Note that this is always true for unweighted graphs, where γ = 1. The bound
in Theorem 3.1 is closer to be uniform with respect to N the denser the graph is (the closer E is to
N2). Denote the average node degree by d = E/N . To get a meaningful bound in (6), we must
choose K > N2/E. On the other hand, for signal processing on the ICG to be more efficient than
message passing, we require K < d. Combining these two bounds, we see that ICG signal processing
is guaranteed to be more efficient than message passing for any graph in the semi-dense regime:
d2 > N (or equivalently E > N3/2).

Essential tightness of Theorem 3.1. In [2, Theorem 1.2] it was shown that the bound (6) is essentially
tight in the following sense4. There exists a universal constant c (greater than 1/2312) such that for
any N there exists an unweighted graph A ∈ RN×N with deg(A) = E, such that any B ∈ RN×N

that approximates A with error ∥A−B∥□;N,E ≤ 16 must have rank greater than cN
2

E . In words,

there are graphs of E edges that we cannot approximate in cut metric by any ICG with K ≪ N2

E .
Hence, the requirement K ≫ N2/E′ for a small cut metric error in (6) for any graph is tight.

ICGs approximations of sparse graphs. In practice, many natural sparse graphs are amenable to
low rank intersecting community approximations. For example, a simplistic model for how social
networks are formed states that people connect according to shared characteristics (i.e. intersecting
communities), like hobbies, occupation, age, etc [61]. Moreover, since ICGs can have negative
community magnitudes rk, one can also construct heterophilic components (bipartite substructures) of
graphs with ICGs5. Hence, a social network can be naturally described using intersecting communities,
even with K < N2/E. For such graphs, ICG approximations are more accurate than their theoretical
bound (6). In addition, Figure 5 in Appendix F.5 shows that in practice the Frobenius local minimizer,
which does not give a small Frobenius error, guarantees small cut metric error even if K < N2/E.
This means that Frobenius minimization is a practical approach for fitting ICGs also for sparse natural
graphs. Moreover, note that in the experiments in Tables 2 and 1 we take K < N2/E and still get
competitive performance with SOTA message passing methods.

4 Fitting ICGs to graphs

Let us fix the soft affiliation model to be all vectors q ∈ [0, 1]N . In this subsection, we propose
algorithms for fitting ICGs to graphs based on Theorem 3.1.

4.1 Fitting an ICG to a graph with gradient descent

In view of Theorem 3.1, to fit a soft rank-K ICG to a graph in cut metric, we learn a triplet
Q ∈ [0, 1]N×K , r ∈ RK and F ∈ RK×D that minimize the Frobenius loss:

L(Q, r,F) =
∥∥A−Qdiag(r)Q⊤∥∥2

F
+ λ ∥S −QF ∥2F , (7)

where λ ∈ R is a scalar that balances the two loss terms. To implement Q ∈ [0, 1]N×K in practice,
we define Q = Sigmoid(R) for a learned matrix R ∈ RN×K .

Suppose that A is sparse with K2,Kd ≪ N . The loss (7) involves sparse matrices and low rank
matrices. Typical time complexity of sparse matrix operations is O(E), and for rank-K matrices it

4We convert the result of [2] to our notations and definitions.
5Two sets of nodes (parts) U ,V ∈ [N] with connections between the parts but not within the parts can be

represented by the ICG (1U∪V1
⊤
U∪V − 1U1

⊤
U − 1V1

⊤
V).

5

is O(NK2). Hence, we would like to derive an optimization procedure that takes O(K2N + E)
operations. However, the first term of (7) involves a subtraction of the low rank matrix Qdiag(r)Q⊤

from the sparse matrix A, which gives a matrix that is neither sparse nor low rank. Hence, a naïve
optimization procedure would take O(N2) operations. The next proposition shows that we can write
the loss (7) in a form that leads to a O(K2N +KE) time and O(KN + E) space complexities.
Proposition 4.1. Let A = (ai,j)

N
i,j=1 be an adjacency matrix of a weighted graph with E edges.

The graph part of the Frobenius loss can be written as∥∥A−Qdiag(r)Q⊤∥∥2
F
=

1

N2
Tr
(
(Q⊤Q) diag(r)(Q⊤Q) diag(r)

)
+ ∥A∥2F

− 2

N2

N∑
i=1

∑
j∈N (i)

Qi,: diag(r)
(
Q⊤)

:,j
ai,j .

Computing the right-hand-side and its gradients with respect to Q and r has a time complexity of
O(K2N +KE), and a space complexity of O(KN + E).

The proof is in Appendix C. We optimize Q, r, and F using gradient descent (GD) on (7) implemented
via Proposition 4.1. After convergence, we further refine F by setting F = Q†S.

4.2 Initialization

In Appendix D we propose a good initialization for the GD minimization of (7). Suppose that K
is divisible by 3. Let ΦK/3 ∈ RN×K/3 be the matrix consisting of the leading eigenvectors of
A as columns, and ΛK/3 ∈ RK/3×K/3 the diagonal matrix of the leading eigenvalues. For each
eigenvector ϕ with eigenvalue λ, consider the three soft indicators

ϕ1 =
ϕ+

∥ϕ+∥∞
, ϕ2 =

ϕ−

∥ϕ−∥∞
, ϕ3 =

ϕ+ + ϕ−

∥ϕ+ + ϕ−∥∞
(8)

with community affiliation magnitudes r1 = 2λ ∥ϕ+∥2∞, r2 = 2λ ∥ϕ−∥2∞ and r3 =

−λ ∥ϕ+ + ϕ−∥2∞ respectively. Here, ϕ± is the positive or negative part of the vector. One can now
show that the ICG C based on the K soft affiliations corresponding to the leading K/3 eigenvectors
approximates A in cut metric with error O(K−1/2). Note that computing the leading eigenvectors
is efficient with any variant of the power iteration for sparse matrices, like any variant of Lanczos
algorithm, which takes O(E) operations per iteration, and requires just a few iteration due to its fast
super-exponential convergence [47]. We moreover initialize F optimally by F = Q†S.

4.3 Subgraph SGD for fitting ICGs to large graphs

In many situations, we need to process large graphs for which E is too high to read to the GPU
memory, but NK is not. These are the situation where processing graph-signals using ICGs is
beneficial. However, to obtain the ICG we first need to optimize the loss (7) using a message-passing
type algorithm that requires reading E edges to memory. To allow such processing, we next show
that one can read the E edges to shared RAM (or storage), and at each SGD step read to the GPU
memory only a random subgraph with M nodes.

At each interation, we sample M ≪ N random nodes n := (nm)Mm=1 uniformly and independently
from [N] (with repetition). We construct the sub-graph A(n) ∈ RM×M with entries a(n)

i,j = ani,nj
,

and the sub-signal S(n) ∈ RM×K with entries s(n)
i = sni

. We similarly define the sub-community
affiliation matrix Q(n) ∈ [0, 1]M×K with entries q(n)

i,j = qni,j . We consider the loss

L(n)(Q(n), r,F) =
∥∥∥A(n) −Q(n) diag(r)Q(n)⊤

∥∥∥2
F
+ λ

∥∥∥S(n) −Q(n) diag(r)F
∥∥∥2
F

(9)

which depends on all entries of F and r and on the n entries of Q. Each SGD updates all of the
entries of F and r, and the n entries of Q by incrementing them with the respective gradients of
L(n)(Qn, r,F). Hence, ∇QL(n)(Q(n), r,F) may only be nonzero for entries qn with n ∈ n.
Proposition E.1 in Appendix E shows that the gradients of L(n) approximate the gradients of L.
More concretely, M

N ∇Q(n)L(n) ≈ ∇Q(n)L, ∇rL
(n) ≈ ∇rL, and ∇FL

(n) ≈ ∇FL. Note that the
stochastic gradients with respect to Q(n) approximate a scaled version of the full gradients.

6

5 Learning with ICG

Given a graph-signal (A,S) and its approximating ICG (C,P), the corresponding soft affiliations
Q = (qk)

K
k=1 represent intersecting communities that can describe the adjacency structure A and can

account for the variability of S. In a deep network architecture, one computes many latent signals,
and these signals typically correspond in some sense to the structure of the data (A,S). It is hence
reasonable to put a special emphasis on latent signals that can be described as linear combinations of
(qk)

K
k=1. Next, we develop a signal processing framework for such signals.

Graph signal processing with ICG. We develop a signal processing approach with O(NK) com-
plexity for each elemental operation. Let Q ∈ RN×K be a fixed community matrix. We call RN×D

the node space and RK×D the community space. We process signals via the following operations:

• Synthesis is the mapping F 7→ QF from the community space to the node space, in O(NKD).

• Analysis is the mapping S 7→ Q†S from the node space to the community space, in O(NKD).

• Community processing refers to any operation that manipulates the community feature vector F
(e.g., an MLP in which a linear operator requires KD × KD parameters or a Transformer) in
O(K2D2) operations.

• Node processing is any function Θ that operates in the node space on nodes independently via
Θ(S) := (θ(sn))

N
n=1, where θ : RD → RD′

(e.g., an MLP) takes O(DD′) operations. Node
processing has time complexity of O(NDD′).

Analysis and synthesis satisfy the reconstruction formula Q†QF = F . Moreover, QQ†S is the
projection of S upon the space of linear combinations of communities {QF | F ∈ RK×D}. Note
that when A is not low rank, since Q is almost surely full rank when initialized randomly, the optimal
configuration of Q would avoid having repetitions of communities, as this would unnecessarily
reduce its rank. Therefore, Q is typically full rank, and in this generic case Q† = (Q⊤Q)−1Q⊤.

Deep ICG Neural Networks. In the following, we propose deep architectures based on the elements
of signal processing with an ICG, which take O(D(NK+K2D+ND)) operations at each layer. In
comparison, simplified message passing layers (e.g., GCN and GIN), where the message is computed
using just the feature of the transmitting node, have a complexity of O(ED + ND2). General
message passing layers, which define messages via a function applied on the concatenated pair of
node features of each edge, take O(ED2) operations for MLP message functions. Therefore, ICG
neural networks are more efficient than MPNNs if K ≪ Dd, where d is the average node degree.

We denote by D(ℓ) the dimension of the node features at layer ℓ and define the initial node repre-
sentations H(0) = S and the initial community features F (0) = Q†S. The node features at layers
0 ≤ ℓ ≤ L− 1 are defined by

H(ℓ+1) = σ
(
H(ℓ)W

(ℓ)
1 +QΘ

(
F (ℓ)

)
W

(ℓ)
2

)
, F (ℓ+1) = Q†H(ℓ),

where Θ is a neural network (i.e. multilayer perceptron or MultiHeadAttention), W (ℓ)
1 ,W

(ℓ)
2 ∈

RD(ℓ)×D(ℓ+1)

are learnable matrices acting on signals in the node space, and σ is a non-linearity. We
call this method ICG neural network (ICG-NN). The final representations H(L) can be used for
predicting node-level properties.

We propose another deep ICG method, where F (ℓ) ∈ RK×D(ℓ)

are taken directly as trainable
parameters. Namely,

H(ℓ+1) = σ
(
H(ℓ)W (ℓ)

s +QF (ℓ)W (ℓ)
)
.

We call this method ICGu-NN for the unconstrained community features. The motivation is that
QF (ℓ) exhausts the space of all signals that are linear combinations of the communities. If the number
of communities is not high, then this is a low dimensional space that does not lead to overfitting in
typical machine learning problems. Therefore, there is no need to reduce the complexity of F (ℓ) by
constraining it to be the output of a neural network Θ on latent representations. The term QF (ℓ) can
hence be interpreted as a type of positional encoding that captures the community structure.

7

ICG-NNs for spatio-temporal graphs. For a fixed graphs with varying node features, the ICG is
fitted to the graph once6. Given that there are T training signals, each learning step with ICG-NN takes
O(TN(K +D)) rather than O(TED2) for MPNNs. Note that T does not scale the preprocessing
time. Hence, the time dimension amplifies the difference in efficiency between ICG-NNs and MPNNs.

6 Experiments
We empirically validate our methods with the following experiments: 7

• Runtime analysis (Section 6.1): We report the forward pass runtimes of ICGu-NN and GCN [30],
empirically validating the theoretical advantage of the former. We further extend this analysis in
Appendices F.7 and F.8.

• Node classification (Appendix F.1): We evaluate our method on real-world node classification
datasets [43, 45, 36], observing that the model performance is competitive with standard approaches.

• Node classification using Subgraph SGD (Section 6.2 and Appendix F.3): We evaluate our
subgraph SGD method (Section 4.3) to identify the effect of sampling on the model performance on
the tolokers and Flickr datasets [43, 65]. We find the model’s performance to be robust on tolokers
and state-of-the-art on Flickr.

• Spatio-temporal tasks (Section 6.3): We evaluate ICGu-NN on real-world spatio-temporal tasks
[35] and obtain competitive performance to domain-specific baselines.

• Comparison to graph coarsening methods (Appendix F.2): We provide an empirical comparison
between ICG-NNs and a variety of graph coarsening methods on the Reddit [23] and Flickr [65]
datasets, where ICG-NNs achieve state-of-the-art performance.

• Additional experiments: We perform an ablation study over the number of communities (Ap-
pendix F.4) and the choice of initialization in Section 4.2 (Appendix F.6). We moreover experimen-
tally demonstrate a positive correlation between the Frobenius error and cut norm error as hinted
by Theorem 3.1 (Appendix F.5), and perform a memory allocation analysis (Appendix F.9).

6.1 How does the runtime compare to standard GNNs?

Figure 2: Runtime of K-ICGu-
NN (for K=100) as a function of
GCN forward pass duration on
graphs G ∼ ER(n, p(n) = 0.5).

Setup. We compare the forward pass runtimes of our signal
processing pipeline (ICGu-NN) and GCN [30] on Erdős-Rényi
ER(n, p(n) = 0.5) graphs with up to 7k nodes. Node features
are independently drawn from U [0, 1] and the initial feature di-
mension is 128. Both models use a hidden dimension of 128, 3
layers and an output dimension of 5.

Results. Figure 2 reveals a strong square root relationship be-
tween the runtime of ICGu-NN and the runtime of GCN. This
aligns with our expectations, as the time complexity of GCN is
O(E), while the time complexity of ICG-NNs is O(N), high-
lighting the computational advantage of using ICGs. We com-
plement this analysis with experiments using sparse Erdős-Rényi
graphs in Appendix F.7.

6.2 Node classification using Subgraph SGD

Figure 3: ROC AUC of ICGu-NN
and an MLP as a function of the %
nodes removed from the graph.

Setup. We evaluate ICGu-NN on the non-sparse graphs tolok-
ers [43], following the 10 data splits of [43]. We report the
mean ROC AUC and standard deviation as a function of the
ratio of nodes that are removed from the graph. We compare
to the baseline of MLP on the full graph.

Results. Figure 3 shows a slight degradation of 2.8% when a
small number of nodes is removed from the graph. However, the
key insight is that when more than 10% of the graph is removed,
the performance stops degrading. These results further support
our Proposition E.1 in Appendix E about the error between

6We either ignore the signal in the loss, or concatenate random training signals and reduce their dimension to
obtain one signal with low dimension D. This signal is used as the target for the ICG.

7All our experiments are run on a single NVidia L40 GPU. We made our codebase available online:
https://github.com/benfinkelshtein/ICGNN.

8

https://github.com/benfinkelshtein/ICGNN

subgraph gradients and full-graph gradients of the Frobenius loss, and establish ICG-NNs as a viable
option for learning on large graphs.

6.3 Spatio-temporal graphs

Table 1: Results on dense temporal
graphs. Top three models are colored by
First, Second, Third.

METR-LA PEMS-BAY
relative Frob. 0.44 0.34

DCRNN 3.22 ± 0.01 1.64 ± 0.00
GraphWaveNet 3.05 ± 0.03 1.56 ± 0.01
AGCRN 3.16 ± 0.01 1.61 ± 0.00
T&S-IMP 3.35 ± 0.01 1.70 ± 0.01
TTS-IMP 3.34 ± 0.01 1.72 ± 0.00
T&S-AMP 3.22 ± 0.02 1.65 ± 0.00
TTS-AMP 3.24 ± 0.01 1.66 ± 0.00

ICG-NN 3.42 ± 0.03 1.76 ± 0.00
ICGu-NN 3.12 ± 0.01 1.56 ± 0.00

Setup & baselines. We evaluate ICG-NN and ICGu-
NN on real-world traffic networks, METR-LA and
PEMS-BAY [35] following the methodology described
by [15]. We segment the datasets into windows of 12 time
steps and train the models to predict the subsequent 12
observations. For all datasets, these windows are divided
sequentially into 70% for training, 10% for validation,
and 20% for testing. We report the mean absolute error
(MAE) and standard deviation averaged over the forecast-
ings. The baselines DCRNN [35], GraphWaveNet [60],
AGCRN [8], T&S-IMP, TTS-IMP, T&S-AMP, and TTS-
AMP [15], are adopted from [15]. We incorporate a GRU
to embed the data before inputting it into our ICG-NN
models, we symmetrize the graph to enable our method
to operate on it, and we disregard the features in the ICG
approximation (setting λ = 0 in (7)). Additionally, we
use the Adam optimizer and detail all hyperparameters in Appendix I.

Results. Table 1 shows that ICG-NNs achieve competitive performance when compared to methods
that are specially tailored for spatio-temporal data such as DCRNN, GraphWaveNet and AGCRN.
Despite the small graph size (207 and 325 nodes) and the low ratio of edges (graph densities of
3.54 · 10−2 and 2.24 · 10−2), ICG-NNs perform well, corroborating the discussion in Section 3.3.

7 Related work

We provide the main related work in this Section. In Appendix G we give an additional review.

Intersecting communities and stochastic block models. We express graphs as intersections of
cliques, or communities, similarly to classical works in statistics and computer science [1, 62]. Our
approach can be interpreted as fitting a stochastic-block-model (SBM) to a graph. As opposed to
standard SBM approaches, our method is interpreted as data fitting with norm minimization rather
than statistical inference. Similarly to the intersecting community approach of BigCLAM [62],
our algorithm takes O(E) operations. Unlike BigCLAM, however, we can approximate any graph,
as guaranteed by the regularity lemma. This is possible since ICGs are allowed to have negative
coefficients, while BigCLAM only uses positive coefficients due to its probabilistic interpretation. To
the best of our knowledge, we are the first to propose a SBM fitting algorithm based on the weak
regularity lemma. For a survey on SBMs we refer the reader to [32].

The Weak Regularity Lemma. The Regularity Lemma is a central result in graph theory with many
variants and many proof techniques. One version is called the Weak Regularity Lemma (for graphs
[20], graphons [38], or graph-signals and graphon-signals [33]), and has the following interpretation:
every graph can be approximated in the cut metric by an ICG, where the error rate ϵ is uniformly
O(K−1/2)8. While [20, Theorem 2] proposes an algorithm for finding the approximating ICG, the
algorithm takes 2O(N2K) time to find this minimizer9. This time complexity is too high to be practical
in real-world problems. Alternatively, since the cut metric is defined via a maximization process,
finding a minimizing ICG by directly optimizing cut metric via a GD approach involves a min-max
problem, which appears numerically problematic in practice. Moreover, computing cut norm is
NP-hard [3, 44]. Instead, we introduce a way to bypass the need to explicitly compute the cut norm,
finding a K community ICG with error O(K−1/2) in the cut metric by minimizing the Frobenius
norm. We note that for the Szemerédi (non-weak) regularity lemma [49], it was shown by Alon et al.
[4] that a regular partition with error < ϵ into non-intersecting communities (the analogue to ICG in

8In the above papers the lemma is formulated for non-intersecting blocks
∑

i,j ri,j1Ui1Uj , where ·∪{Uj} =

[N], with error ϵ = O
(
(log(K))−1/2

)
. The intersecting community case is an intermediate step of the proof.

9One needs to convert the scaling of the Frobenius and cut norms used in [20] to our scaling to see this.

9

the Szemerédi regularity lemma) can be found in polynomial time with respect to N , provided that
N is very large (N ∼ 2ϵ

−20

). For more details on the Weak Regularity Lemma, see Appendix A.

Subgraph methods. Learning on large graphs requires sophisticated subgraph sampling techniques
for deployment on contemporary processors [24, 12, 13, 7, 65]. After the preprocessing step on the
ICG, our approach allows processing very large networks more accurately, avoiding subsampling
schemes that can alter the properties of the graph in unintended ways.

GNNs with local pooling. Local graph pooling methods, e.g., [63, 9], construct a sequence of
coarsened versions of the given graph, each time collapsing small sets of neighboring nodes into
a single “super-node.” At each local pooling layer, the signal is projected from the finer graph to
the coarser graph. This is related to our ICG-NN approach, where the signal is projected upon
the communities. As opposed to local graph pooling methods, our communities intersect and have
large-scale supports. Moreover, our method does not lose the granular/high-frequency content of the
signal when projecting upon the communities, as we also have node-wise operations at the fine level.
In pooling approaches, the graph is partitioned into disjoint, or slightly overlapping communities,
each community collapses to a node, and a standard message passing scheme is applied on this coarse
graph. In ICG-NNs, each operation on the community features has a global receptive field in the
graph. Moreover, ICG-NNs are not of message-passing type: the (flattened) community feature
vector F is symmetryless and is operated upon by a general MLP in the ICG-NN, while MPNNs
operate by the same function on all edges.

In terms of computational efficiency, GNNs with local pooling do not asymptotically improve run-
time, as the first layer operates on the full graph, while our method operates solely on the efficient
data structure.

Variational graph autoencoders. Our ICG construction is related to statistical network analysis
with latent position graph models [6]. Indeed, the edge weight between any pair of nodes n,m in the
ICG is the diagonal Bilinear product between their affiliation vectors, namely,

∑
j rj1Uj

(n)1Uj
(m),

which is similar to the inner produce decoder in variational graph autoencoders [29, 6]. However,
as opopsed to variational graph autoencoders, we have the coefficients rj , that can be negative and
hence allow a more expressive decoding.

8 Summary

We introduced an new approach for learning on large non-sparse graphs, using ICGs. We proved a
new constructive variant of the weak regularity lemma, which shows that minimizing the Frobenius
error between the ICG and the graph leads to a uniformly small error in cut metric. We moreover
showed how to optimize the Frobenius error efficiently. We then developed a signal processing
setting, operating on the ICG and on the node reprsentations in O(N) complexity. The overall
pipeline involves precomputing the ICG approximation of the graph in O(E) operations per iteration,
and then solving the task on the graph in O(N) operations per iteration. Both fitting an ICG to a
large graph, and training a standard subgraph GNNs, require an online subsampling method, reading
from slow memory during optimization. However, fitting the ICG is only done once, and does not
require an extensive hyperparameter optimization. Then, learning to solve the task on the graph with
ICG-NNs is efficient, and can be done directly on the GPU memory. Since the second learning phase
is the most demanding part, involving an extensive hyperparameter optimization and architecture
tuning, ICG-NN offer a potentially significant advantage over standard subgraph GNNs. This gap
between ICG-NNs and MPNNs is further amplified for time series on graphs.

The main limitation of our method is that the ICG-NN is fitted to a specific ICG, and cannot be
naïvely transferred between different ICGs approximating different graphs. Another limitation
is the fact that the current ICG construction is limited to undirected graphs, while many graphs,
especially spatiotemporal, are directed. One potential avenue for future work is thus to extend the
ICG construction to directed graphs. Additional future work will study the expressive power of ICGs.

Acknowledgement
This research was supported by the Israel Science Foundation (grant No. 1937/23), EPSRC Turing AI
World-Leading Research Fellowship No. EP/X040062/1, and the EPSRC AI Hub on Mathematical
Foundations of Intelligence: An "Erlangen Programme" for AI No. EP/Y028872/1. BF is funded by
the Clarendon scholarship.

10

References
[1] Edo M. Airoldi, David Blei, Stephen Fienberg, and Eric Xing. Mixed membership stochastic

blockmodels. NeurIPS, 2008.

[2] Noga Alon. Approximating sparse binary matrices in the cut-norm. Linear Algebra and its
Applications, 2015.

[3] Noga Alon and Assaf Naor. Approximating the cut-norm via grothendieck’s inequality. SIAM,
2006.

[4] Noga Alon, Richard A Duke, Hanno Lefmann, Vojtech Rodl, and Raphael Yuster. The algorith-
mic aspects of the regularity lemma. Journal of Algorithms, 1994.

[5] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In ICLR, 2021.

[6] Avanti Athreya, Minh Tang, Youngser Park, and Carey E Priebe. On estimation and inference
in latent structure random graphs. Statistical Science, 2021.

[7] Jiyang Bai, Yuxiang Ren, and Jiawei Zhang. Ripple walk training: A subgraph-based training
framework for large and deep graph neural network. IJCNN, 2020.

[8] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional
recurrent network for traffic forecasting. NeurIPS, 2020.

[9] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph
neural networks for graph pooling. In ICML, 2020.

[10] Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep
clustering network. In WWW, 2020.

[11] Christian Borgs, Jennifer T Chayes, László Lovász, Vera T Sós, and Katalin Vesztergombi.
Convergent sequences of dense graphs i: Subgraph frequencies, metric properties and testing.
Advances in Mathematics, 2008.

[12] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph convolutional networks
via importance sampling. In ICLR, 2018.

[13] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks. In KDD, 2019.

[14] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. In ICLR, 2020.

[15] Andrea Cini, Ivan Marisca, Daniele Zambon, and Cesare Alippi. Taming local effects in
graph-based spatiotemporal forecasting. NeurIPS, 2024.

[16] Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Latent-
graph learning for disease prediction. In Medical Image Computing and Computer Assisted
Intervention, 2020.

[17] Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. Slaps: Self-supervision improves
structure learning for graph neural networks. In NeurIPS, 2021.

[18] Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for
learning on molecular graphs. arXiv, 2020.

[19] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and
Federico Monti. Sign: Scalable inception graph neural networks. In ICML: Graph Representa-
tion Learning and Beyond (GRL+) Workshop, 2020.

[20] Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combina-
torica, 1999.

11

[21] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, 2019.

[22] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

[23] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. NeurIPS, 2017.

[24] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[25] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In KDD, 2021.

[26] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph
condensation for graph neural networks. arXiv, 2021.

[27] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In KDD, 2022.

[28] Anees Kazi, Luca Di Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein.
Differentiable graph module (dgm) for graph convolutional networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[29] Thomas Kipf and Max Welling. Variational graph auto-encoders. arXiv, 2016.

[30] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[31] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural
relational inference for interacting systems. In ICML, 2018.

[32] Clement Lee and Darren Wilkinson. A review of stochastic block models and extensions for
graph clustering. Applied Network Science, 2019.

[33] Ron Levie. A graphon-signal analysis of graph neural networks. In NeurIPS, 2023.

[34] Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In ICML, 2022.

[35] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural
network: Data-driven traffic forecasting. In ICLR, 2018.

[36] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. NeurIPS, 2021.

[37] László Miklós Lovász. Large networks and graph limits. In volume 60 of Colloquium Publica-
tions, 2012.

[38] László Miklós Lovász and Balázs Szegedy. Szemerédi’s lemma for the analyst. GAFA Geometric
And Functional Analysis, 2007.

[39] Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-
based semi-supervised learning. In NeurIPS, 2019.

[40] Sohir Maskey, Ron Levie, and Gitta Kutyniok. Transferability of graph neural networks: An
extended graphon approach. Applied and Computational Harmonic Analysis, 2023.

[41] Raffaele Paolino, Aleksandar Bojchevski, Stephan Günnemann, Gitta Kutyniok, and Ron Levie.
Unveiling the sampling density in non-uniform geometric graphs. In ICLR, 2023.

[42] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv, 2020.

12

[43] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. A critical look at the evaluation of GNNs under heterophily: Are we re-
ally making progress? In ICLR, 2023.

[44] Jiří Rohn. Computing the norm ∥a∥∞,1 is np-hard. Linear and Multilinear Algebra, 2000.

[45] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 2021.

[46] Luana Ruiz, Luiz F. O. Chamon, and Alejandro Ribeiro. Graphon signal processing. IEEE
Transactions on Signal Processing, 2021.

[47] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.

[48] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv, 2017.

[49] Endre Szemerédi. Regular partitions of graphs. Stanford University, 1975.

[50] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In ICLR, 2022.

[51] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra, Twenty-fifth Anniversary Edition.
Society for Industrial and Applied Mathematics, 2022.

[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

[53] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In ICLR, 2018.

[54] Petar Velivcković, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
Blundell. Pointer graph networks. In NeurIPS, 2020.

[55] Chun Wang, Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, and Chengqi Zhang. Attributed
graph clustering: A deep attentional embedding approach. In IJCAI, 2019.

[56] Lin Wang, Wenqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with
structure-based neural tangent kernel. In WWW, 2024.

[57] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics,
2019.

[58] Max Welling. Herding dynamical weights to learn. In ICML, 2009.

[59] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adver-
sarial examples for graph data: Deep insights into attack and defense. In IJCAI, 2019.

[60] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In IJCAI, 2019.

[61] Jaewon Yang and Jure Leskovec. Structure and overlaps of communities in networks. In
SNAKDD, 2012.

[62] Jaewon Yang and Jure Leskovec. Overlapping community detection at scale: a nonnegative
matrix factorization approach. In Association for Computing Machinery, 2013.

[63] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In NeurIPS, 2018.

[64] Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph
transformer networks. In NeurIPS, 2019.

13

[65] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. In ICLR, 2019.

[66] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching.
arXiv, 2020.

[67] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
NeurIPS, 2024.

[68] Houquan Zhou, Shenghua Liu, Danai Koutra, Huawei Shen, and Xueqi Cheng. A provable
framework of learning graph embeddings via summarization. In AAAI, 2023.

[69] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra.
Beyond homophily in graph neural networks: Current limitations and effective designs. NeurIPS,
2020.

14

A The weak regularity lemma

Let G = {N , E} be a graph and P = {N1, . . . ,Nk} be a partition of N . The partition is called
equipartition if ||Ni| − |Nj || ≤ 1 for every 1 ≤ i, j ≤ k. For any two subsets U ,S ⊂ N , the number
of edges from U to S are denoted by eG(U ,S). Given two node set U ,S ⊂ N , if the edges between
Ni and Nj were distributed randomly, then, the number of edges between U and S would have been
close to the expected value

eP(U,S) :=

k∑
i=1

k∑
j=1

eG(Ni,Nj)

|Ni| |Nj |
|Ni ∩ U| |Nj ∩ S| .

Thus, the irregularity, which measure of how non-random like the edges between {Nj} are, is defined
to be

irregG(P) = max
U,S⊂N

|eG(U ,S)− eP(U ,S)| / |N |2 . (10)

Theorem A.1 (Weak Regularity Lemma [20]). For every ϵ > 0 and every graph G = (N , E), there
is an equipartition P = {N1, . . . ,Nk} of N into k ≤ 2c/ϵ

2

classes such that irregG(P) ≤ ϵ. Here,
c is a universal constant that does not depend on G and ϵ.

The weak regularity lemma states that any large graph G can be represented by the weighted graph
Gϵ with node set N ϵ = {N1, . . . ,Nk}, where the edge weight between the nodes Ni and Nj is
eG(Ni,Nj)
|Ni|,|Nj | , which depicts a smaller, coarse-grained version of the large graph. The “large-scale”

structure of G is given by Gϵ, and the number of edges between any two subsets of nodes Ui ⊂ Ni

and Uj ⊂ Nj is close to the “expected value” eP(Ui,Uj). Hence, the deterministic graph G “behaves”
as if it was randomly sampled from the “stochastic block model” Gϵ.

It can be shown that irregularity coincides with error in cut metric between the graph and its coarsening
SBM. Namely, to see how the cut-norm is related to irregularity (10), consider a graphon WG induced
by the graph G = {N , E}. Let P = {N1, . . . ,Nk} be an equipartition of N . Consider the graph
GP defined by the adjacency matrix AP = (aPi,j)

|N |
i,j=1 with

aPi,j =
eG(Nqi ,Nqj)

|Nqi | ,
∣∣Nqj

∣∣ ,
where Nqi ∈ P is the class that contains node i. Now, it can be verified that

∥WG −WGP∥□ = irregG(P).

Hence, the weak regularity lemma can be formulated with cut norm instead of irregularity.

B Graphon-Signal Intersecting Communities and the Constructive
Regularity Lemma

In this section we prove a constructive weak regularity lemma for graphon-signals, where Theorem 3.1
is a special case. We start by defining graphon-signals in Subsection B.1. We define graphon-signal
cut norm and metric in Subsection B.2, and graphon-signal intersecting communities in B.3. In
Subsections B.4 and B.5 we formulate and prove the constructive graphon-signal weak regularity
lemma. Finally, in Subsection B.6 we prove the constructive graph-signal weak regularity lemma as a
special case.

For m,J ∈ N, the L2 norm of a measurable function f = (fi)
j
i=1 : [0, 1]m → RJ , where

fi : [0, 1]
m → R, is defined to be ∥f∥2 =

√∑J
j=1

∫
[0,1]m

|fj(x)|2 dx.

B.1 Graphon-signals

A graphon [11, 37] can be seen as a weighted graph with a “continuous” node set [0, 1]. The space
of graphons W is defined to be the set of all measurable symmetric function W : [0, 1]2 → [0, 1],
W (x, y) = W (y, x). Each edge weight W (x, y) ∈ [0, 1] of a graphon W ∈ W can be seen as the

15

probability of having an edge between nodes x and y. Graphs can be seen as special graphons. Let
Im = {I1, . . . , Im} be an interval equipartition: a partition of [0, 1] into disjoint intervals of equal
length.

A graph with an adjacency matrix A = (ai,j)
N
i,j=1 induces the graphon WA, defined by WA(x, y) =

a⌈xm⌉,⌈ym⌉
10. Note that WA is piecewise constant on the partition Im. We hence identify graphs

with their induced graphons. A graphon can also be seen as a generative model of graphs. Given
a graphon W , a corresponding random graph is generated by sampling i.i.d. nodes {un} from the
graphon domain [0, 1], and connecting each pair un, um in probability W (un, um) to obtain the
edges of the graph.

The space of grahon-signals is the space of pairs of measurable functions (W, s) of the form W :
[0, 1]2 → [0, 1] and s : [0, 1] → [0, 1]D, where D ∈ N is the number of signal channels. Note that
datasets with signals in value ranges other than [0, 1] can always be transformed (by translating and
scaling in the value axis of each channel) to be [0, 1]D-valued. Given a discrete signal S : [N] →
[0, 1]D, we define the induced signal sS over [0, 1] by sS(x) = s⌈xm⌉. We define the Frobenius
distance between two graphon-signals (W, s) and (W ′, s′) simply as their L2 distance, namely,

∥(W, s)− (W ′, s′)∥F :=

√√√√a ∥W −W ′∥22 + b

D∑
j=1

∥∥sj − s′j
∥∥2
2

(11)

for some a, b > 0.

B.2 Cut-distance

The cut metric is a natural notion of graph similarity, based on the cut norm. The graphon-signal cut
norm was defined in [33], extending the standard definition to a graphon with node features.
Definition B.1. The graphon cut norm of W ∈ L2[0, 1]2 is defined to be

∥W∥□ = sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

W (x, y)dxdy

∣∣∣∣ . (12)

The signal cut norm of s = (s1, . . . , sD) ∈ (L2[0, 1])D is defined to be

∥s∥□ =
1

D

D∑
j=1

sup
U⊂[0,1]

∣∣∣∣∫
U

sj(x)dx

∣∣∣∣ . (13)

The graphon-signal cut norm of (W, s) ∈ L2[0, 1]2 × (L2[0, 1])D, with weights α > 0 and β > 0, is
defined to be

∥(W, s)∥□ = α ∥W∥□ + β ∥s∥□ . (14)

Given two graphons W,W ′, their distance in cut metric is the cut norm of their difference, namely

∥W −W ′∥□ = sup
S,T⊂[0,1]

∣∣∣∣∫
S

∫
T

(
W (x, y)−W ′(x, y)

)
dxdy

∣∣∣∣ . (15)

The right-hand-side of (15) is interpreted as the similarity between the adjacencies W and W ′ on the
block on which they are the most dissimilar. The graphon-signal cut metric is similarly defined to
be ∥(W, s)− (W ′, s′)∥□. The cut metric between two graph-signals is defined to be the cut metric
between their induced graphon-signals.

In Subsection B.6 we show that the graph-signal cut norm of Definition 2.1 are a special case of
graphon-signal cut norm for induced graph-signals.

B.3 Intersecting community graphons

Here, we define ICGs for graphons. Denote by χ the set of all indicator function of measurable subset
of [0, 1]

χ = {1u | u ⊂ [0, 1] measurable}.
10In the definition of WA, the convention is that ⌈0⌉ = 1.

16

Definition B.2. A set Q of bounded measurable functions q : [0, 1] → R that contains χ is called a
soft affiliation model.
Definition B.3. Let D ∈ N. Given a soft affiliation model Q, the subset [Q] of L2[0, 1]2×(L2[0, 1])D

of all elements of the form (rq(x)q(y), bq(z)), with q ∈ Q, r ∈ R and b ∈ RD, is called the soft
rank-1 intersecting community graphon (ICG) model corresponding to Q. Given K ∈ N, the subset
[Q]K of L2[0, 1]2 × (L2[0, 1])D of all linear combinations of K elements of [Q] is called the soft
rank-K ICG model corresponding to Q. Namely, (C, p) ∈ [Q]K if and only if it has the form

C(x, y) =

K∑
k=1

rkqk(x)qk(y) and p(z) =

K∑
k=1

bkqk(z)

for (qk)Kk=1 ∈ QK called the community affiliation functions, (rk)Kk=1 ∈ RK called the community
affiliation magnitudes, and (bk)

K
k=1 ∈ RK×D called the community features.

B.4 A constructive graphon-signal weak regularity lemma

The following theorem is the semi-constructive version of the weak regularity lemma for intersecting
communities of graphons. Recall that α and β denote the weights of the graphon-signal cut norm
(14).
Theorem B.1. Let D ∈ N. Let (W, s) be a D-channel graphon-signal, K ∈ N, δ > 0, and let Q be
a soft indicators model. Let m be sampled uniformly from [K], and let R ≥ 1 such that K/R ∈ N.

Consider the graphon-signal Frobenius norm with weights
√
α ∥W∥2F + β

∑D
j=1 ∥sj∥

2
F. Then, in

probability 1− 1
R (with respect to the choice of m), for every (C∗, p∗) ∈ [Q]m,

if ∥(W, s)− (C∗, p∗)∥F ≤ (1 + δ) min
(C,p)∈[Q]n

∥(W, s)− (C, p)∥F

then ∥(W, s)− (C∗, p∗)∥□ ≤(3
2

√
α2∥W∥2F + αβ ∥s∥F +

√
αβ∥W∥2F + β2 ∥s∥F

)√R

K
+ δ.

B.5 Proof of the soft constructive weak regularity lemma

In this subsection we prove the constructive weak graphon-signal regularity lemma.

B.5.1 Constructive regularity lemma in Hilbert spaces

The classical proof of the weak regularity lemma for graphons is given in [38]. The lemma is a
corollary of a regularity lemma in Hilbert spaces. Our goal is to extend this lemma to be constructive.
For comparison, let us first write the classical result, from [38, Lemma 4], even though we do not use
this result directly.
Lemma B.2 ([38]). Let K1,K2, . . . be arbitrary nonempty subsets (not necessarily subspaces) of a
real Hilbert space H. Then, for every ϵ > 0 and g ∈ H there is m ≤ ⌈1/ϵ2⌉ and (fi ∈ Ki)

m
i=1 and

(γi ∈ R)mi=1, such that for every w ∈ Km+1∣∣∣∣
〈
w, g − (

m∑
i=1

γifi)

〉∣∣∣∣ ≤ ϵ ∥w∥ ∥g∥ . (16)

Next, we show how to modify the result to be written explicitly with an approximate minimizer of a
Hilbert space norm minimization problem. The proof follows the step of [38] with some modifications
required for explicitly constructing an approximate optimizer.
Lemma B.3. Let {Kj}j∈N be a sequence of nonemply subsets of a real Hilbert space H and let
δ ≥ 0. Let K > 0, let R ≥ 1 such that K/R ∈ N, and let g ∈ H. Let m be randomly uniformly
sampled from [K]. Then, in probability 1− 1

R (with respect to the choice of m), any vector of the
form

g∗ =

m∑
j=1

γjfj such that γ = (γj)
m
j=1 ∈ Rm and f = (fj)

m
j=1 ∈ K1 × . . .×Km

17

that gives a close-to-best Hilbert space approximation of g in the sense that

∥g − g∗∥ ≤ (1 + δ) inf
γ,f

∥g −
m∑
i=1

γifi∥, (17)

where the infimum is over γ ∈ Rm and f ∈ K1 × . . .×Km, also satisfies

∀w ∈ Km+1, |⟨w, g − g∗⟩| ≤ ∥w∥ ∥g∥
√

R

K
+ δ.

Proof. Let K > 0. Let R ≥ 1 such that K/R ∈ N. For every k, let

ηk = (1 + δ) inf
γ,f

∥g −
k∑

i=1

γifi∥2

where the infimum is over γ = {γ1, . . . , γk} ∈ Rk and f = {f1, . . . , fk} ∈ K1 × . . . × Kk. Note
that ∥g∥2 ≥ η1

1+δ ≥ η2

1+δ ≥ . . . ≥ 0. Therefore, there is a subset of at least (1 − 1
R)K + 1 indices

m in [K] such that ηm ≤ ηm+1 +
R(1+δ)

K ∥g∥2. Otherwise, there are K
R indices m in [K] such that

ηm+1 < ηm − R(1+δ)
K ∥g∥2, which means that

ηK < η1 −
K

R

R(1 + δ)

K
∥g∥2 ≤ (1 + δ) ∥g∥2 − (1 + δ) ∥g∥2 = 0,

which is a contradiction to the fact that ηK ≥ 0.

Hence, there is a set M ⊆ [K] of (1− 1
R)K indices such that for every m ∈ M, every

g∗ =

m∑
j=1

γjfj (18)

that satisfies
∥g − g∗∥2 ≤ ηm

also satisfies

∥g − g∗∥2 ≤ ηm+1 +
(1 + δ)R

K
∥g∥2 . (19)

Let w ∈ Km+1. By the definition of ηm+1, we have for every t ∈ R,

∥g − (g∗ + tw)∥2 ≥ ηm+1

1 + δ
≥ ∥g − g∗∥2

1 + δ
− R

K
∥g∥2 .

This can be written as

∀t ∈ R, ∥w∥2 t2 − 2 ⟨w, g − g∗⟩ t+ R

K
∥g∥2 + (1− 1

1 + δ
) ∥g − g∗∥2 ≥ 0. (20)

The discriminant of this quadratic polynomial is

4 ⟨w, g − g∗⟩2 − 4 ∥w∥2
(R
K

∥g∥2 + (1− 1

1 + δ
) ∥g − g∗∥2

)
and it must be non-positive to satisfy the inequality (20), namely

4 ⟨w, g − g∗⟩2 ≤ 4 ∥w∥2
(R
K

∥g∥2 + (1− 1

1 + δ
) ∥g − g∗∥2

)
≤ 4 ∥w∥2

(R
K

∥g∥2 + (1− 1

1 + δ
)ηm

)
≤ 4 ∥w∥2

(R
K

∥g∥2 + (1− 1

1 + δ
)(1 + δ) ∥g∥2

)
which proves

⟨w, g − g∗⟩ ≤ ∥w∥ ∥g∥
√

R

K
+ δ.

This is also true for −w, which concludes the proof.

18

B.5.2 Proof of the Soft Constructive Weak Regularity Lemma for Graphon-Signals

For two functions f, g : [0, 1] → R, we denote by f ⊗ g : [0, 1]2 → R the function
f ⊗ g(x, y) = f(x)g(y).

We recall here Theorem B.1 for the convenience of the reader.
Theorem B.1. Let (W, s) be a graphon-signal, K ∈ N, δ > 0, and let Q be a soft indicators
model. Let m be sampled uniformly from [K], and let R ≥ 1 such that K/R ∈ N. Consider the

graphon-signal Frobenius norm with weights
√

α ∥W∥2F + β
∑D

j=1 ∥sj∥
2
F. Then, in probability

1− 1
R (with respect to the choice of m), for every (C∗, p∗) ∈ [Q]m,

if ∥(W, s)− (C∗, p∗)∥F ≤ (1 + δ) min
(C,p)∈[Q]n

∥(W, s)− (C, p)∥F

then ∥(W, s)− (C∗, p∗)∥□ ≤(3
2

√
α2∥W∥2F + αβ ∥s∥F +

√
αβ∥W∥2F + β2 ∥s∥F

)√R

K
+ δ.

The proof follows the techniques of a part of the proof of the weak graphon regularity lemma from
[38], while tracking the approximate minimizer in our formulation of Lemma B.3. This requires
a probabilistic setting, and extending to soft indicators models. We note that the weak regularity
lemma in [38] is formulated for non-intersecting blocks, but the intersecting community version is an
intermediate step in its proof.

Proof. Let us use Lemma B.3, with H = L2[0, 1]2 × (L2[0, 1])D with the weighted inner product

⟨(W, s), (W ′, s′)⟩ = α

∫∫
[0,1]2

W (x, y)W ′(x, y)dxdy + β

D∑
j=1

∫
[0,1]

sj(x)s
′
j(x)dx,

and corresponding norm
√
α ∥W∥2F + β

∑D
j=1 ∥sj∥

2
F and corresponding weighted inner product,

and Kj = [Q]. Note that the Hilbert space norm is the Frobenius norm in this case. In the setting of
the lemma, we take g = (W, s), and g∗ ∈ [Q]m. By the lemma, in the event of probability 1− 1/R,
any approximate Frobenius minimizer (C∗, p∗), namely, that satisfies ∥(W, s)− (C∗, p∗)∥F ≤
(1 + δ)min(C,p)∈[Q]m ∥(W, s)− (C, p)∥F, also satisfies

⟨(T, y), (W, s)− (C∗, p∗)⟩ ≤ ∥(T, y)∥F∥(W, s)∥F

√
R

K
+ δ

for every (T, y) ∈ [Q]. Hence, for every choice of measurable subsets S, T ⊂ [0, 1], we have∣∣∣∣∫
S

∫
T
(W (x, y)− C∗(x, y))dxdy

∣∣∣∣
=

1

2

∣∣∣∣∫
S

∫
T
(W (x, y)− C∗(x, y))dxdy +

∫
T

∫
S
(W (x, y)− C∗(x, y))dxdy

∣∣∣∣
=

1

2

∣∣∣∣∫
S∪T

∫
S∪T

(W (x, y)− C∗(x, y))dxdy −
∫
S

∫
S
(W (x, y)− C∗(x, y))dxdy

−
∫
T

∫
T
(W (x, y)− C∗(x, y))dxdy

∣∣∣∣
≤
∣∣∣∣ 12α ⟨(1S∪T ⊗ 1S∪T , 0), (W, s)− (C∗, p∗)⟩

∣∣∣∣+ ∣∣∣∣ 12α ⟨(1S ⊗ 1S , 0), (W, s)− (C∗, p∗)⟩
∣∣∣∣

+

∣∣∣∣ 12α ⟨(1T ⊗ 1T , 0), (W, s)− (C∗, p∗)⟩
∣∣∣∣

≤ 1

2α
∥(W, s)∥F

(
∥(1S∪T ⊗ 1S∪T , 0)∥F + ∥(1S ⊗ 1S , 0)∥F + ∥(1T ⊗ 1T , 0)∥F

)√R

K
+ δ

≤ 3

2α

√
α∥W∥2F + β ∥s∥F

√
α

√
R

K
+ δ

19

Hence, taking the supremum over S, T ⊂ [0, 1], we also have

α ∥W − C∗∥□ ≤ 3

2

√
α2∥W∥2F + αβ ∥s∥F

√
R

K
+ δ.

Similarly, for every measurable T ⊂ [0, 1] and every standard basis element b = (δj,i)
D
i=1 for any

j ∈ [D], ∣∣∣∣∫
T
(sj(x)− p∗j (x))dx

∣∣∣∣
=

∣∣∣∣ 1β ⟨(0, b1T), (W, s)− (C∗, p∗)⟩
∣∣∣∣

≤ 1

β
∥(W, s)∥F∥(0, b1T)∥F

√
R

K
+ δ

≤ 1

β

√
α∥W∥2F + β ∥s∥F

√
β

√
R

K
+ δ,

so, taking the supremum over T ⊂ [0, 1] independently for every j ∈ [D], and averaging over
j ∈ [D], we get

β ∥s− p∗∥□ ≤
√

αβ∥W∥2F + β2 ∥s∥F

√
R

K
+ δ.

Overall, we get

∥(W, s)− (C∗, p∗)∥□ ≤
(3
2

√
α2∥W∥2F + αβ ∥s∥F +

√
αβ∥W∥2F + β2 ∥s∥F

)√R

K
+ δ.

B.6 Proof of the constructive weak regularity lemma for sparse graph-signals

We now show that Theorem 3.1 is a special case of Theorem B.1, restricted to graphon-signals
induced by graph-signals, up to choice of the graphon-signal weights α and β. Namely, choose
α = α′N2/E and β = β′ with α′ + β′ = 1 as the weights of the graphon-signal cut norm of
Theorem B.1, with arbitrary α′, β′ ≥ 0 satisfying α′ + β′ = 1. It is easy to see the following relation
between the graphon-signal and graph-signal cut norms

∥(WA, sS)− (WC∗ , sP ∗)∥□ = ∥(A,S)− (C∗,P ∗)∥□,N,E ,

where ∥(A,S)− (C∗,P ∗)∥□,N,E is based on the weights α′ and β′. Now, since
deg(A)/N2 = ∥A∥2F = E

N2 , and by ∥S∥F ≤ 1, the bound in Theorem B.1 becomes

∥(A,S)− (C∗,P ∗)∥□,N,E ≤

(
3

2

√
α′2N

4

E2

E

N2
+ α′β′N

2

E
+

√
α′β′N

2

E

E

N2
+ β′2

)√
R

K
+ δ

≤ C
N√
E

√
R

K
+ δ

where, since α′ + β′ = 1, and by convexity of the square root,

C =
3

2

√
α′ +

√
β′ ≤ 3

2

√
α′ +

3

2

√
β′ ≤ 3

2

√
α′ + β′ =

3

2
.

The only thing left to do is to change the notations α′ 7→ α and β′ 7→ β.

C Fitting ICGs to graphs efficiently

Here, we prove Proposition 4.1. For convenience, we recall the proposition.

20

Proposition 4.1. Let A = (ai,j)
N
i,j=1 be an adjacency matrix of a weighted graph with E edges.

The graph part of the Frobenius loss can be written as∥∥A−Qdiag(r)Q⊤∥∥2
F
=

1

N2
Tr
(
(Q⊤Q) diag(r)(Q⊤Q) diag(r)

)
+ ∥A∥2F

− 2

N2

N∑
i=1

∑
j∈N (i)

Qi,: diag(r)
(
Q⊤)

:,j
ai,j .

Computing the right-hand-side and its gradients with respect to Q and r has a time complexity of
O(K2N +KE), and a space complexity of O(KN + E).

Proof. The loss can be expressed as

∥∥A−Qdiag(r)Q⊤∥∥2
F
=

1

N2

N∑
i,j=1

(
ai,j −Qi,: diag(r)

(
Q⊤)

:,j

)2

=
1

N2

N∑
i=1

 ∑
j∈N (i)

(
ai,j −Qi,: diag(r)

(
Q⊤)

:,j

)2
+
∑

j /∈N (i)

(
−Qi,: diag(r)

(
Q⊤)

:,j

)2
=

1

N2

N∑
i=1

 ∑
j∈N (i)

(
ai,j −Qi,: diag(r)

(
Q⊤)

:,j

)2
+

+

N∑
j=1

(
Qi,: diag(r)

(
Q⊤)

:,j

)2
−
∑

j∈N (i)

(
Qi,: diag(r)

(
Q⊤)

:,j

)2
We expand the quadratic term

(
ai,j −Qi,: diag(r)

(
Q⊤)

:,j

)2
, and get∥∥A−Qdiag(r)Q⊤∥∥2

F

=
1

N2

N∑
i,j=1

(
Qi,: diag(r)

(
Q⊤)

:,j

)2
+

1

N2

N∑
i=1

∑
j∈N (i)

(
a2i,j − 2Qi,: diag(r)

(
Q⊤)

:,j
ai,j

)

=
∥∥Qdiag(r)Q⊤∥∥2

F
+

1

N2

N∑
i,j=1

a2i,j −
2

N2

N∑
i=1

∑
j∈N (i)

Qi,: diag(r)
(
Q⊤)

:,j
ai,j

=
1

N2
Tr
(
Qdiag(r)Q⊤Qdiag(r)Q⊤)+ 1

N2

N∑
i,j=1

a2i,j

− 2

N2

N∑
i=1

∑
j∈N (i)

Qi,: diag(r)
(
Q⊤)

:,j
ai,j

=
1

N2
Tr
(
Q⊤Qdiag(r)Q⊤Qdiag(r)

)
+

1

N2

N∑
i,j=1

a2i,j

− 2

N2

N∑
i=1

∑
j∈N (i)

Qi,: diag(r)
(
Q⊤)

:,j
ai,j

The last equality follows the identity ∀B,D ∈ RN×K : Tr(BD⊤) = Tr(D⊤B), with B =
Qdiag(r)Q⊤Qdiag(r) and D = Q⊤.

The middle term in the last line is constant and can thus be omitted in the optimization process.
The leftmost term in the last line is calculated by performing matrix multiplication from right to
left, or by first computing Q⊤Q and then the rest of the product. Thus, the time complexity is

21

O(K2N) and the largest matrix held in memory is of size O(KN). The rightmost term is calculated
by message-passing, which has time complexity of O(KE). Thus, Computing the right-hand-side
and its gradients with respect to Q and r has a time complexity of O(K2N + KE) and a space
complexity of O(KN + E).

D Initializing the optimization with eigenvectors

Next, we propose a good initialization for the GD minimization of (7). For that, we consider a
corollary of the constructive soft weak regularity for grapohns, with the signal weight in the cut norm
set to β = 0, using all L2[0, 1] functions as the soft affiliation model, and taking relative Frobenius
error with δ = 0. In this case, the best rank-K approximation theorem (Eckart–Young–Mirsky
Theorem [51, Theorem 5.9]), the minimizer of the Frobenius error is the projection of W upon its
leading eigenvectors. This leads to the following corollary.

Corollary D.1. Let A ∈ [0, 1]N×N be a matrix with deg(A) = N2 ∥A∥2F = E′. Let K ∈ N, let m
be sampled uniformly from [K], and let R ≥ 1 such that K/R ∈ N. Let ϕ1, . . . ,ϕm be the leading
eigenvectors of A, with eigenvalues λ1, . . . , λm of highest magnitudes |λ1| ≥ |λ2| ≥ . . . ≥ |λm|,
and let C∗ =

∑m
k=1 λkϕkϕ

⊤
k . Then, in probability 1− 1

R (with respect to the choice of m),

∥A−C∗∥□;N,E′ ≤ 3N

2
√
E′

√
R

K
.

The initialization is based on Corollary D.1 as follows. We consider the leading K/3 eigen-
vectors, assuming K is divisible by 3, for reasons that will become clear shortly. Hence, for
C = ΦK/3ΛK/3Φ

T
K/3, where ΦK/3 ∈ RN×K/3 is the matrix consisting of the leading eigenvectors

of A as columns, and ΛK/3 ∈ RK/3×K/3 the diagonal matrix of the leading eigenvalues, we have

∥A−C∥□;N,E <
3N

2
√
E′

√
3R

K
. (21)

To obtain soft affiliations with values in [0, 1], we now initialize Q as described in (8).

E Learning ICG with subgraph SGD

In this section we prove that the gradients of the subgraph SGD approximate the gradients of the full
GD method.
Proposition E.1. Let 0 < p < 1. Under the above setting, if we restrict all entries of C, P , Q, r
and F to be in [0, 1], then in probability at least 1− p, for every k ∈ [K], d ∈ [D] and m ∈ [M]∣∣∣∣∇qnm,k

L− M

N
∇qnm,k

L(n)

∣∣∣∣ ≤ 4

N

√
2 log(1/p3) + 2 log(N) + 2 log(K) + 2 log(2)

M
,

∣∣∣∇rkL−∇rkL
(n)
∣∣∣ ≤ 4

√
2 log(1/p1) + 2 log(N) + 2 log(K) + 2 log(2)

M
,∣∣∣∇fk,d

L−∇fk,d
L(n)

∣∣∣ ≤ 4λ

D

√
2 log(1/p2) + 2 log(K) + 2 log(D) + 2 log(2)

M
.

Proposition E.1 means that the gradient with respect to r and F computed at each SGD step
approximate the full GD gradients. The gradients with respect to Q approximate a scaled version of
the full gradients, and only on the sampled nodes, where the unsampled nodes are not updated in the
SGD step. This means that when optimizing the ICG with SGD, we need to scale the gradients with
resect to Q of the loss by M

N . To use the same entry-wise learning rate in SGD as in GD one must
multiply the loss (9) by M/N . Hence, SGD needs in expectation N/M times the number of steps
that GD requires. This means that in SGD we trade the memory complexity (reducing it by a factor
M/N) by time complexity (increasing it by a factor N/M). Note that slower run-time, while not
desirable, can be tolerated, while higher memory requirement is often prohibitive due to hardware
limitations.

22

From here until the end of this section we prove Proposition E.1. For that, we compute the gradients
of the full loss L and the sampled loss L(n).

To avoid tensor notations, we treat by abuse of notation the gradient of a function as a linear operator.
Recall that the differential DrT = DrT (r′) of the function T : RR → RU at the point r′ ∈ RR is
the unique linear operator RR → RU that describes the linearization of T about r′ via

T (r′ + ϵr′′) = T (r′) + ϵDrTr′′ + o(ϵ)

where ϵ ∈ R. Given an inner product in RR, the gradient ∇rT = ∇rT (r′) ∈ RU×R of the function
T : RR → RU at the point r′ ∈ RR is defined to be the vector (guaranteed to uniquely exist by the
Riesz representation theorem) that satisfies

DrTr′′ = ⟨r′′,∇rT ⟩

for every r′′ ∈ RR. Here, the inner product if defined row-wise by

⟨r′′,∇rT ⟩ :=
(
⟨r′′,∇rT [u, :]⟩

)U
u=1

,

where T [u, :] is the u-th row of ∇rT . In our analysis, by abuse of notation, we identify ∇rT with
DrT for a fixed given inner product.

Define the inner product between matrices

⟨B,D⟩2 =
∑
i,j

bi,jdi,j .

Denote
L(C,P) = ∥A−C∥2F + λ ∥S − P ∥2F .

First, the gradient of ∥A−C∥2F with respect to C is

∇C ∥A−C∥2F = − 2

N2
(A−C),

which is identified by abuse of notation by the linear functional RN2 → R

D 7→ ∇C ∥A−C∥2F (D) =

〈
D,− 2

N2
(A−C)

〉
2

.

Similarly,

∇P ∥S − P ∥2F = − 2

ND
(S − P) : RND → R.

Given any parameter z ∈ RR on which the graph C = C(z) and the signal P = P (z) depend, we
have

∇zL(C,P) =
2

N2
(C −A)∇zC + λ

2

ND
(P − S)∇zP , (22)

where ∇zC : RR → RN2

and ∇zC ∈ RR → RND are linear operators, and the products in
(22) are operator composition, namely, in coordinates it is elementwise multiplication (not matrix
multiplication).

Let us now compute the gradients of C = Qdiag(r)Q⊤ and P = QF with respect to Q, r and F
in coordinates. We have

∇rkci,j = qi,kqj,k,

and
∇qm,k

ci,j = rkδi−mqj,k + rkδj−mqi,k,

where δl is 1 if l = 1 and zero otherwise. Moreover,

∇fk,l
pi,d = qi,kδl−d,

and
∇qm,k

pi,d = fk,dδi−m.

23

Hence,

∇rkL =
2

N2

N∑
i,j=1

(ci,j − ai,j)qi,kqj,k,

∇qm,k
L =

2

N2

N∑
j=1

(cm,j−am,j)rkqj,k+
2

N2

N∑
i=1

(ci,m−ai,m)rkqi,k+λ
2

ND

D∑
d=1

(pm,d−sm,d)fk,d,

and

∇fk,l
L = λ

2

ND

N∑
i=1

(pi,l − si,l)qi,k.

Similarly,

∇rkL
(n) =

2

M2

M∑
i,j=1

(cni,nj − ani,nj)qni,kqnj ,k,

∇qnm,k
L(n) =

2

M2

M∑
j=1

(cnm,nj − anm,nj)ckqnj ,k

+
2

M2

M∑
i=1

(cni,nm − ani,nm)ckqni,k + λ
2

MD

D∑
d=1

(pnm,d − snm,d)fk,d,

and

∇fk,l
L(n) = λ

2

MD

M∑
i=1

(pni,l − sni,l)qni,k.

We next derive the convergence analysis, based on Hoeffding’s Inequality and two Monte-Carlo
approximation lemmas.

Theorem E.2 (Hoeffding’s Inequality). Let Y1, . . . , YM be independent random variables such that
a ≤ Ym ≤ b almost surely. Then, for every k > 0,

P
(∣∣∣ 1

M

M∑
m=1

(Ym − E[Ym])
∣∣∣ ≥ k

)
≤ 2 exp

(
− 2k2M

(b− a)2

)
.

The following is a standard Monte Carlo approximation error bound based on Hoeffding’s inequality.

Lemma E.3. Let {im}Mm=1 be uniform i.i.d in [N]. Let v ∈ RN be a vector with entries vn in the set
[−1, 1]. Then, for every 0 < p < 1, in probability at least 1− p∣∣∣∣∣ 1M

M∑
m=1

vim − 1

N

N∑
n=1

vn

∣∣∣∣∣ ≤
√

2 log(1/p) + 2 log(2)

M
.

Proof. This is a direct result of Hoeffding’s Inequality on the i.i.d. variables {vim}Mm=1.

The next lemma derives a Monte Carlo approximation error bound based on Hoeffding’s inequality
for 2D arrays, in case one samples only 1D independent sample points, and the 2D sample points are
all pairs of the 1D points (which are hence no longer independent).

Lemma E.4. Let {im}Mm=1 be uniform i.i.d in [N]. Let A ∈ RN×N be symmetric with ai,j ∈ [−1, 1].
Then, for every 0 < p < 1, in probability more than 1− p∣∣∣∣∣∣ 1

N2

N∑
j=1

N∑
n=1

aj,n − 1

M2

M∑
m=1

M∑
l=1

aim,il

∣∣∣∣∣∣ ≤ 2

√
2 log(1/p) + 2 log(N) + 2 log(2)

M
.

24

Proof. Let 0 < p < 1. For each fixed n ∈ [N], consider the independent random variables
Y n
m = aim,n, with

E(Y n
m) =

1

N

N∑
j=1

aj,n,

and −1 ≤ Ym ≤ 1. By Hoeffding’s Inequality, for k =
√

2 log(1/p)+2 log(N)+2 log(2)
M , we have∣∣∣∣∣∣ 1N

N∑
j=1

aj,n − 1

M

M∑
m=1

aim,n

∣∣∣∣∣∣ ≤ k

in an event En of probability more than 1− p/N . Intersecting the events {En}Nn=1, we get

∀n ∈ [N] :

∣∣∣∣∣∣ 1N
N∑
j=1

aj,n − 1

M

M∑
m=1

aim,n

∣∣∣∣∣∣ ≤ k

in the event E = ∩nEn probability at least 1− p. Hence, by the triangle inequality, we also have in
the event E ∣∣∣∣∣∣ 1

NM

M∑
l=1

N∑
j=1

aj,il −
1

M2

M∑
l=1

M∑
m=1

aim,il

∣∣∣∣∣∣ ≤ k,

and ∣∣∣∣∣∣ 1

N2

N∑
n=1

N∑
j=1

aj,n − 1

NM

N∑
n=1

M∑
m=1

aim,n

∣∣∣∣∣∣ ≤ k.

Hence, by the symmetry of A and by the triangle inequality,∣∣∣∣∣∣ 1

N2

N∑
n=1

N∑
j=1

aj,n − 1

M2

M∑
l=1

M∑
m=1

aim,il

∣∣∣∣∣∣ ≤ 2k.

Now, since all entries of A, S, C, P , Q, r and F are in [0, 1], we may use Lemmas E.3 and E.4
to derive approximation errors for the gradients of L. Specifically, for any 0 < p1 < 1, for every
k ∈ [K] there is an event Ak of probability at least 1− p1 such that∣∣∣∇rkL−∇rkL

(n)
∣∣∣ ≤ 4

√
2 log(1/p1) + 2 log(N) + 2 log(2)

M
.

Moreover, for every k ∈ [K] and j ∈ [D], and every 0 < p2 < 1 there is an event Ck,j of probability
at least 1− p2 such that∣∣∣∇fk,l

L−∇fk,l
L(n)

∣∣∣ ≤ 4λ

D

√
2 log(1/p2) + 2 log(2)

M
.

For the approximation analysis of ∇qnm,l
L, note that the index nm is random, so we derive a uniform

convergence analysis for all possible values of nm. For that, for every n ∈ [N] and k ∈ [K], define
the vector

˜∇qn,k
L(n) =

2

M2

M∑
j=1

(cn,nj − an,nj)ckqnj ,k

+
2

M2

N∑
i=1

(cni,n − ani,n)ckqni,k + λ
2

MD

D∑
d=1

(pn,d − sn,d)fk,d,

Note that ˜∇qn,k
L(n) is not a gradient of L(n) (since if n is not a sample from {nm} the gradient

must be zero), but is denoted with ∇ for its structural similarity to ∇qnm,k
L(n). Let 0 < p3 < 1. By

25

Lemma E.3, for every k ∈ [K] there is an event Bk of probability at least 1− p3 such that for every
n ∈ [N] ∣∣∣∣∇qn,k

L− M

N
˜∇qn,k

L(n)

∣∣∣∣ ≤ 4

N

√
2 log(1/p3) + 2 log(N) + 2 log(2)

M
.

This means that in the event Bk, for every m ∈ [M] we have∣∣∣∣∇qnm,k
L− M

N
∇qnm,k

L(n)

∣∣∣∣ ≤ 4

N

√
2 log(1/p3) + 2 log(N) + 2 log(2)

M
.

Lastly, given 0 < p < 1, choosing p1 = p3 = p/3K and p2 = p/3KD and intersecting all events
for all corrdinates gives and event E of probability at least 1− p such that∣∣∣∇rkL−∇rkL

(n)
∣∣∣ ≤ 4

√
2 log(1/p1) + 2 log(N) + 2 log(K) + 2 log(2)

M
,

∣∣∣∇fk,l
L−∇fk,l

L(n)
∣∣∣ ≤ 4λ

D

√
2 log(1/p2) + 2 log(K) + 2 log(D) + 2 log(2)

M
,

and ∣∣∣∣∇qnm,k
L− M

N
∇qnm,k

L(n)

∣∣∣∣ ≤ 4

N

√
2 log(1/p3) + 2 log(N) + 2 log(K) + 2 log(2)

M
.

F Additional experiments

F.1 Node classification

Setup. We evaluate ICG-NN and ICGu-NN on the non-sparse graphs tolokers [43], squirrel [45]
and twitch-gamers [36]. We follow the 10 data splits of Platonov et al. [43] for tolokers, the 10
data splits of Pei et al. [42], Li et al. [34] for squirrel and the 5 data splits of Lim et al. [36], Li
et al. [34] for twitch-gamers. We report the mean ROC AUC and standard deviation for tolokers and
the accuracy and standard deviation for squirrel and twitch-gamers. We also evaluate the relative
Frobenius error between the graph and the ICG as a measure of the quality of the ICG approximation.

The baselines MLP, GCN [30], GAT [53], H2GCN [69], GPR-GNN [14], LINKX [36], GloGNN
[34] are taken from Platonov et al. [43] for tolokers and from Li et al. [34] for squirrel, twitch-gamers
and penn94. We use the Adam optimizer and report all hyperparameters in Appendix I.

Results. All results are reported in Table 2. Observe that ICG-NNs achieve state-of-the-art results
across the board, despite the low ratio of edge (graph densities of 2.41 · 10−4 to 8.02 · 10−3). ICG-
NNs surpass the performance of more complex GNN models such as GT, LINKX and GloGNN,
which solidify ICG-NNs as a strong method and a possible contender to message-passing neural
networks.

F.2 Comparison with graph coarsening methods over large graphs

In this section we highlight the main differences and similarities between graph coarsening methods
and ICG-NNs, followed by an empirical comparison over large graphs.

F.2.1 Conceptual comparison

Graph coarsening methods [18, 25], graph condensation methods [26] and graph summarization
methods [68] replace the original graph by one which has fewer nodes, with different features and
a different topological structure, while sometimes preserving certain properties, such as the degree
distribution [68].

Theoretical guarantees. Graph coarsening methods do not typically stem from theoretical guarantees,
whereas ICG-NNs provably approximate the graph.

Computational complexity. Graph coarsening methods usually account for the graph’s structure by
apply message-passing on the coarsened graph. Condensation methods require O(EM) operations

26

Table 2: Results on large graphs. Top three models are colored by First, Second, Third.
tolokers squirrel twitch-gamers

nodes 11758 5201 168114
edges 519000 217073 6797557
avg. degree 88.28 41.71 40.43
relative Frob. 0.69 0.39 0.8

MLP 72.95 ± 1.06 28.77 ± 1.56 60.92 ± 0.07
GCN 83.64 ± 0.67 53.43 ± 2.01 62.18 ± 0.26
GAT 83.70 ± 0.47 40.72 ± 1.55 59.89 ± 4.12
GT 83.23 ± 0.64 - -
H2GCN 73.35 ± 1.01 35.70 ± 1.00 OOM
GPR-GNN 72.94 ± 0.97 34.63 ± 1.22 61.89 ± 0.29
LINKX - 61.81 ± 1.80 66.06 ± 0.19
GloGNN 73.39 ± 1.17 57.88 ± 1.76 66.34 ± 0.29

ICG-NN 83.73 ± 0.78 58.48 ± 1.77 65.27 ± 0.82
ICGu-NN 83.51 ± 0.52 64.02 ± 1.67 66.08 ± 0.74

Table 3: Comparison with graph coarsening methods over large graphs. Top three models are colored
by First, Second, Third.

Reddit Flickr
nodes 232965 89250
edges 11606919 899756
avg. degree 49.82 10.08

Coarsening 47.4 ± 0.9 44.6 ± 0.1
Random 66.3 ± 1.9 44.6 ± 0.2
Herding 71.0 ± 1.6 44.4 ± 0.6
K-Center 58.5 ± 2.1 44.1 ± 0.4
One-Step - 45.4 ± 0.3

DC-Graph 90.5 ± 1.2 45.8 ± 0.1
GCOND 90.1 ± 0.5 47.1 ± 0.1
SFGC 89.9 ± 0.4 47.1 ± 0.1
GC-SNTK - 46.6 ± 0.2

ICG-NN 89.6 ± 1.2 50.4 ± 0.1
ICGu-NN 93.6 ± 1.2 52.7 ± 0.1

to construct a smaller graph [26, 67, 56], where E is the number of edges of the original graph
and M is the number of nodes of the condensed graph. Conversely, ICGs estimate the ICG with
O(K2N +KE) operations, where K is typically smaller than M .

Node processing. Graph coarsening methods process representations on an iteratively coarsened
graph, while ICG-NN also process the fine node information at every layer.

Graphs larger than memory. ICG-NNs offer a subgraph sampling approach when the original
graph cannot fit in memory. In contrast, the aforementioned methods lack a strategy for managing
smaller data structures when computing the compressed graph.

F.2.2 Empirical comparison

Setup. We evaluate ICG-NN and ICGu-NN on the large graph datasets Flickr [65] and Reddit [23].
We follow the splits of [67] and report the accuracy and standard deviation.

The standard graph coarsening baselines Coarsening [25], Random [25], Herding [58], K-Center [48],
One-Step [27] and the graph condensation baselines DC-Graph [66], GCOND [26], SFGC [67] and
GC-SNTK [56] are taken from [67, 56]. We use the Adam optimizaer and report all hyperparameters
in Appendix I.

Results. ICG-NNs present state-of-the-art performance in Table 3 when compared to a vareity of
both graph coarsening methods and graph condensation methods, further solidifying its effectiveness.

27

Figure 4: Test ROC AUC of tolokers (left) and test accuracy of squirrel (right) as a function of the
number of communities.

F.3 Node classification on large graphs using Subgraph SGD

Table 4: Results on Flickr using 1% node
sampling. Top three models are colored
by First, Second, Third.

Model Accuracy

Coarsening 44.6 ± 0.1
Random 44.6 ± 0.2
Herding 44.4 ± 0.6
K-Center 44.1 ± 0.4
One-Step 45.4 ± 0.3

DC-Graph 45.8 ± 0.1
GCOND 47.1 ± 0.1
SFGC 47.1 ± 0.1
GC-SNTK 46.5 ± 0.2

ICG-NN 50.4 ± 0.1
ICGu-NN 50.8 ± 0.1

Setup. We evaluate ICG-NN and ICGu-NN on the large
graph Flickr [65]. We follow the splits of [67] and report
the accuracy and standard deviation. We set the ratio of
condensation r = M

N to 1%, where N and M are the
number of nodes in the graph and the number of sampled
nodes.

The graph coarsening baselines Coarsening [25], Ran-
dom [25], Herding [58], K-Center [48], One-Step [27]
and the graph condensation baselines DC-Graph [66],
GCOND [26], SFGC [67] and GC-SNTK [56] are taken
from [67, 56]. We use the Adam optimizaer and report all
hyperparameters in Appendix I.

Results. Table 4 shows that ICGu-NN with subgraph
ICGm with 1% sampling rate, achieves competitive per-
formance with coarsening and condensation methods that
operate on the full graph in memory.

F.4 Ablation study over the number of communities

Setup. We evaluate ICG-NN and ICGu-NN on non-sparse graphs tolokers [43] and squirrel [45].
We follow the 10 data splits of Platonov et al. [43] for tolokers and Pei et al. [42], Li et al. [34] for
squirrel. We report the the mean ROC AUC and standard deviation for tolokers and the accuracy and
standard deviation for squirrel.

Results. Figure 4 shows several key trends across both datasets. First, as anticipated, when a very
small number of communities is used, the ICG fails to approximate the graph accurately, resulting in
degraded performance. Second, the optimal performance is observed when using a relatively small
number of communities, specifically 25 for tolokers and 75 for squirrel. Lastly, using a large number
of communities does not appear to negatively impact performance.

F.5 The cut-norm and Frobenius norm

While the cut norm is the theoretical target of the ICG approximation, it is expensive to estimate
directly. However, Theorem 3.1 implies that optimizing the Frobenius norm, which is computationally
inexpensive, leads to a small cut norm.

In this experiment, we first aim to demonstrate the positive correlation between the Frobenius error
and the cut norm error. Moreover, we show that even though the Frobenius error cannot be made
close to zero in general, it is still correlated with cut norm. We show that when the relative Frobenius

28

Figure 5: Cut-norm as a function of Frobenius norm on the tolokers (left) and squirrel (right) datasets.
The number of communities used is indicated next to each point.

Table 5: Time until convergence in seconds on large graphs.
tolokers squirrel twitch-gamers

nodes 11758 5201 168114
edges 519000 217073 6797557
avg. degree 88.28 41.71 40.43

random init. 83.30 ± 0.92 62.03 ± 0.98 64.73 ± 0.44
eigenvector init. 83.31 ± 0.64 62.10 ± 1.67 66.10 ± 0.42

error is reduced below a specified threshold (not close to zero in general), the ICG approximation
allows ICG-NNs to achieve state-of-the-art results.

Setup. We evaluate our ICG approximation on non-sparse graphs tolokers [43] and squirrel [45].
We vary the number of communities used by the approximation and report the relative cut-norm
(estimated by [3]) as a function of the relative Frobenius norm. We also present the resulting relative
Frobenius error for our node classification experiments in Table 2.

Results. As expected, the cut-norm and Frobenius norm are positively correlated, both decreasing as
more communities are used, as shown in Figure 5. We also observe in Table 2 that ICG-NNs perform
best on the squirrel dataset and worst on twitch-gamers, aligning with their relative Frobenius error.
The lower the relative Frobenius error, the more accurate the ICG approximation, leading to better
performance. Table 2 and Figure 5 also revealed a useful rule of thumb: when the relative Frobenius
error is below 0.8, it correlates with a very small cut norm error. This, in turn, leads to an accurate
ICG approximation, enabling ICG-NNs to achieve state-of-the-art results.

F.6 Initialization

We repeated the node classification experiments presented in Table 2, using random initialization
when optimizing the ICG, and compared the results to those obtained with eigenvector initialization.

Setup. We evaluate ICG-NN and ICGu-NN on the non-sparse graphs tolokers [43], squirrel [45]
and twitch-gamers [36]. We follow the 10 data splits of Platonov et al. [43] for tolokers, the 10 data
splits of Pei et al. [42], Li et al. [34] for squirrel and the 5 data splits of Lim et al. [36], Li et al.
[34] for twitch-gamers. We report the mean ROC AUC and standard deviation for tolokers and the
accuracy and standard deviation for squirrel and twitch-gamers.

Results. Table 5 indicates that eigenvector initialization generally outperforms random initialization
across all datasets. While the improvements are minimal in some cases, such as with the tolokers and
squirrel datasets, they are more pronounced in the twitch-gamers dataset.

Additionally, eigenvector initialization offers a practical advantage in terms of training efficiency.
On average, achieving the same loss value requires 5% more time when using random initialization

29

compared to eigenvector initialization. This efficiency gain further supports the utility of the proposed
initialization method.

F.7 Run-time analysis

In this subsection, we compare the forward pass run times of our ICG approximation process, signal
processing pipeline (ICGu-NN) and the GCN [30] architecture. We sample graphs of sizes up to
7,000 from a dense and a sparse Erdős-Rényi distribution ER(n, p(n) = 0.5) and ER(n, p(n) = 50

n),
correspondingly. Node features are independently drawn from U [0, 1] and the initial feature dimension
is 128. ICGu-NN and GCN use a hidden dimension of 128, 3 layers and an output dimension of 5.

Figure 6: Empirical runtimes: K-ICG approximation process as a function of GCN forward pass
duration on the dense (left) and sparse (right) Erdős-Rényi distribution ER(n, p(n) = 0.5) and
ER(n, p(n) = 50

n) for K=10, 100.

Results. Figure 6 demonstrates a strong linear relationship between the runtime of our ICG approxi-
mation and that of the message-passing neural network GCN for both sparse and dense graphs. Unlike
GCN, our ICG approximation is versatile for multiple tasks and requires minimal hyperparameter
tuning, which reduces its overall time complexity. Additionally, Appendix F.7 reveals a strong square
root relationship between the runtime of ICGu-NN and the runtime of GCN for both sparse and
dense graphs. This aligns with our expectations, as the time complexity of GCN is O(E), while the
time complexity of ICG-NNs is O(N), highlighting the computational advantage of using ICGs
over message-passing neural networks.

F.8 Time until convergence

Setup. We measured the average time until convergence in seconds for the GCN and ICGu-NN
architectures on the non-sparse graphs tolokers [43], squirrel [45] and twitch-gamers [36]. We follow

Figure 7: Empirical runtimes: K-ICGu-NN as a function of GCN forward pass duration on the dense
(left) and sparse (right) Erdős-Rényi distribution ER(n, p(n) = 0.5) and ER(n, p(n) = 50

n) for
K=10, 100.

30

Table 6: Time until convergence in seconds on large graphs.
tolokers squirrel twitch-gamers

GCN 510 3790 1220
ICGu-NN 33 225 49

the 10 data splits of Platonov et al. [43] for tolokers, the 10 data splits of Pei et al. [42], Li et al. [34]
for squirrel and the 5 data splits of Lim et al. [36], Li et al. [34] for twitch-gamers. We ended the
training after 50 epochs in which the validation metric did not improve. We set the hyper-parameters
with best validation results.

Results. Table 6 shows that ICGu-NN consistently converges faster than GCN across all three
benchmarks. Specifically, converges approximately 15 times faster on the tolokers dataset, 17 times
faster on the squirrel dataset, and 25 times faster on the twitch-gamers dataset compared to GCN,
indicating a significant improvement in efficiency.

F.9 Memory allocation analysis

In this subsection, we compare the memory allocated during the ICG approximation process and
during a forward pass of the GCN [30] architecture. We sample graphs of sizes up to 2,000 from a
dense Erdős-Rényi distribution ER(n, p(n) = 0.5). Node features are independently drawn from
U [0, 1] and the initial feature dimension is 128. ICGu-NN and GCN use a hidden dimension of 128,
3 layers and an output dimension of 5.

Figure 8: Memory allocated for K-ICG approximation (K=10,100) as a function of the memory
allocated for GCN on graphs G ∼ ER(n, p(n) = 0.5).

Results. Appendix F.9 demonstrates a strong linear relationship between the the memory allocated
during the ICG approximation process and during a forward pass of the message-passing neural
network GCN. This aligns with our expectations: the memory allocation for the GCN architecture is
O(ED), and of ICG-NNs O(EK +NKD), where D is the feature dimension and K is the number
of communities used for the ICG approximation.

31

G Additional related work

Latent graph GNNs. One way to interpret our ICG-NNs are as latent graph methods, where the
ICG approximation of the given graph G is seen as a latent low complexity “clean version” of the
observed graph G.

In latent graph methods, the graph on which the GNN is applied is inferred from the given data graph,
or from some raw non-graph data. Two motivations for latent graph methods are (1) the given graph
is noisy, and the latent graph is its denoised version, or (2) even if the given graph is “accurate”, the
inferred graph improves the efficiency of message passing. Our ICG GNN can be cast in category
(2), since we use the latent ICG model to define an efficient “message passing” scheme, which has
linear run-time with respect to the number of nodes.

Some examples of latent graph methods are papers like [31, 57, 16, 10, 17] which learn a latent
graph from non-graph raw data. Papers like [39, 59, 28, 21] treat the given graph as noisy or partially
observed, and learn the “clean” graph. Papers like [54, 50] modify the given graph to improve the
efficiency of message passing (e.g., based on the notion of oversquashing [5]), and [41] modifies the
weights of the given graph if the nodes were sampled non-uniformly from some latent geometric graph.
Additionaly, attention based GNN methods, which dynamically choose edge weights [53, 55, 52, 64],
can be interpreted as latent graph approaches.

H Dataset statistics

The statistics of the real-world node-classification, spatio-temporal and graph coarsening benchmarks
used can be found in Tables 7 to 9.

Table 7: Statistics of the node classification benchmarks.
tolokers squirrel twitch-gamers

nodes (N) 11758 5201 168114
edges (E) 519000 217073 6797557
avg. degree (EN) 88.28 41.71 40.32
node features 10 2089 7
classes 2 5 2
metrics AUC-ROC ACC ACC

Table 8: Statistics of the spatio-temporal benchmarks.
METR-LA PEMS-BAY

nodes (N) 207 325
edges (E) 1515 2369
avg. degree (EN) 7.32 7.29
node features 34272 52128

Table 9: Statistics for graph coarsening benchmarks.
Reddit Flickr

nodes (N) 232965 89250
edges (E) 114615892 899756
avg. degree 491.99 10.08
node features 602 500
classes 41 7

32

I Hyperparameters

In Tables 10 to 12, we report the hyper-parameters used in our real-world node-classification, spatio-
temporal and graph coarsening benchmarks.

Table 10: Hyper-parameters used for the node classification benchmarks.
tolokers squirrel twitch-gamers

communities 25 75 50
Encoded dim - 128 -
λ 1 1 1
Approx. lr 0.01, 0.05 0.01, 0.05 0.01, 0.05
Approx. epochs 10000 10000 10000

layers 3,4,5 3,4,5 3,4,5,6
hidden dim 32, 64 64, 128 64, 128
dropout 0, 0.2 0, 0.2 0, 0.2
residual connection - ✓ ✓
Fit lr 0.001, 0.003, 0.005 0.001, 0.003, 0.005 0.001, 0.003, 0.005
Fit epochs 3000 3000 3000

Table 11: Hyper-parameters used for the spatio-temporal benchmarks.
METR-LA PEMS-BAY

communities 50 100
Encoded dim - -
λ 0 0
Approx. lr 0.01, 0.05, 0.1 0.01, 0.05, 0.1
Approx. epochs 10000 10000

layers 3,4,5 3,4,5, 6
hidden dim 32, 64, 128 32, 64, 128
Fit lr 0.001, 0.003 0.001, 0.003
Fit epochs 300 300

Table 12: Hyper-parameters used for graph coarsening benchmarks.
Reddit Flickr

communities 50, 600 50, 500
Encoded dim - -
λ 0 0,1
Approx. lr 0.05 0.01, 0.05
Approx. epochs 10000 10000

layers 2, 3 2, 3, 4
hidden dim 128, 256 128, 256
dropout 0, 0.2 0
residual connection ✓ ✓
Fit lr 0.005, 0.01 0.001, 0.003, 0.005
Fit epochs 3000 1500

For spatio-temporal dataset, we follow the methodology described in [15], where the time of the day
and the one-hot encoding of the day of the week are used as additional features.

33

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We prove our proposed constructive version of the Weak Graph Regularity
Lemma. We use the construction to then develop a new pipeline for learning on large
non-sparse graphs efficiently, following what is written in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

34

Justification: We discuss the model’s limitations in the conclusions section. Primarily, our
approach is constrained to the single, relatively large, undirected graph setting. Consequently,
this restricts the number of datasets we can experiment on and, by extension, limits the
scope of our experimental analysis.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The appendix contains the complete proofs for all of our theoretical results,
along with the full set of assumptions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

35

Justification: The main paper details the models, datasets, data splits, and optimizer used.
Additionally, the appendix includes the complete hyperparameter grids tested for each
experiment and any other relevant implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a URL to our reproducible repository, which includes detailed
operation instructions. Additionally, the appendix contains the complete hyperparameter
grids tested for each experiment and any other relevant implementation details.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We follow the standard train and test splits and optimizer. The train/test splits
and optimizer are detailed in Section 6 and are present in our repository. The appendix
contains the complete hyperparameter grids tested for each experiment and any other relevant
implementation details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We include standard deviation error bars in our figures and tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

37

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use a single NVidia L40 GPU (with a standard memory and time of
execution) in all of our experiments. This is reported in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper proposes a general purpose computational pipeline for efficient
learning on large non-sparse graphs, focusing mainly on theoretical/mathematical results,
e.g., a new constructive version of the Weak Graph Regularity Lemma,. We believe there
are no societal consequences of our work that require specific highlighting here.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

38

https://neurips.cc/public/EthicsGuidelines

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the owners of each dataset and state the version and splits that are used
in Section 6.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]

39

paperswithcode.com/datasets

Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40

	Introduction
	A primer on graph-signals and the cut-metric
	Approximation of graphs by intersecting communities
	Intersecting community graphs
	The Constructive Graph-Signal Weak Regularity Lemma
	Approximation capabilities of ICGs

	Fitting ICGs to graphs
	Fitting an ICG to a graph with gradient descent
	Initialization
	Subgraph SGD for fitting ICGs to large graphs

	Learning with ICG
	Experiments
	How does the runtime compare to standard GNNs?
	Node classification using Subgraph SGD
	Spatio-temporal graphs

	Related work
	Summary
	The weak regularity lemma
	Graphon-Signal Intersecting Communities and the Constructive Regularity Lemma
	Graphon-signals
	Cut-distance
	Intersecting community graphons
	A constructive graphon-signal weak regularity lemma
	Proof of the soft constructive weak regularity lemma
	Constructive regularity lemma in Hilbert spaces
	Proof of the Soft Constructive Weak Regularity Lemma for Graphon-Signals

	Proof of the constructive weak regularity lemma for sparse graph-signals

	Fitting ICGs to graphs efficiently
	Initializing the optimization with eigenvectors
	Learning ICG with subgraph SGD
	Additional experiments
	Node classification
	Comparison with graph coarsening methods over large graphs
	Conceptual comparison
	Empirical comparison

	Node classification on large graphs using Subgraph SGD
	Ablation study over the number of communities
	The cut-norm and Frobenius norm
	Initialization
	Run-time analysis
	Time until convergence
	Memory allocation analysis

	Additional related work
	Dataset statistics
	Hyperparameters

