
JADE: Joint Alignment and Deep Embedding for Multi-Slice Spatial Transcriptomics

Yuanchuan Guo

Department of Statistics
Harvard University
yguo1@g.harvard.edu

Jun S. Liu*

Department of Statistics
Tsinghua University
junsliu@tsinghua.edu.cn

Huimin Cheng*

Department of Biostatistics
Boston University
huimin23@bu.edu

Ying Ma*

Department of Biostatistics
Center for Computational Molecular Biology
Brown University
ying_ma@brown.edu

Abstract

As spatially resolved transcriptomics (SRT) datasets increasingly span multiple adjacent or replicated slices, effective joint analysis across slices is needed to reconstruct tissue structures and identify consistent spatial gene expression patterns. This requires resolving spatial correspondences between slices while capturing shared transcriptomic features, two tasks that are typically addressed in isolation. Multi-slice analysis remains challenging due to physical distortions, technical variability, and batch effects. To address these challenges, we introduce Joint Alignment and Deep Embedding for multi-slice SRT (JADE), a unified computational framework that simultaneously learns spatial location-wise alignments and shared low-dimensional embeddings across tissue slices. Unlike existing methods, JADE adopts a roundtrip framework in which each iteration alternates between alignment and embedding refinement. To infer alignment, we employ attention mechanisms that dynamically assess and weight the importance of different embedding dimensions, allowing the model to focus on the most alignment-relevant features while suppressing noise. To the best of our knowledge, JADE is the first method that jointly optimizes alignment and representation learning in a shared latent space, enabling robust multi-slice integration. We demonstrate that JADE outperforms existing alignment and embedding methods across multiple evaluation metrics in the 10x Visium human dorsolateral prefrontal cortex (DLPFC) and Stereo-seq axolotl brain datasets. By bridging spatial alignment and feature integration, JADE provides a scalable and accurate solution for cross-slice analysis of SRT data.

1 Introduction

Spatially resolved transcriptomics (SRT) technologies provide high-throughput measurements of gene expression within tissue sections while preserving spatial context [6, 44, 48, 61, 29]. By enabling the joint study of molecular states and tissue architecture, SRT has transformed our understanding of developmental processes [9, 72], disease microenvironments [47, 83], and spatial cellular organization across diverse biological systems, from cancer [56, 5, 60, 27, 47, 1, 16] to neuroscience [43, 45, 53, 77]. As the resolution and scale of SRT continue to improve, there is growing interest in multi-slice SRT datasets, where multiple adjacent or replicated tissue sections are profiled to reconstruct 3D structures, map spatial trajectories, or assess reproducibility across individuals and conditions [19, 57, 21, 42, 14, 31, 41, 35]. However, analyzing multi-slice SRT data introduces a set of unique

*Co-corresponding authors

challenges. Each tissue slice may undergo non-linear spatial deformation during sectioning and mounting, while also exhibiting substantial variation in transcript capture efficiency and local tissue composition [79, 37]. These factors confound the alignment of corresponding regions across slices and obscure shared biological signals. Effective multi-slice integration must therefore address two tightly coupled tasks: spatial alignment and representation learning [39, 67, 36]. Alignment resolves spatial location -level correspondences across slices, while representation learning compresses high-dimensional gene expression data into a shared latent space that supports robust downstream analysis. Despite their interconnected nature, existing methods typically address these tasks in isolation, limiting their ability to perform coherent, biologically meaningful integration.

Previous approaches fall into two broad categories. Alignment-based methods [37, 75, 12, 28, 20], such as PASTE [79], estimate spatial location - level mappings across adjacent slices by jointly considering spatial coordinates and gene expression similarity, enabling reconstruction of 3D tissue volumes. However, these methods operate directly on raw expression profiles, which are often sparse, noisy, and affected by batch effects. These batch effects refer to systematic technical variations introduced during sample processing or sequencing, which can obscure true biological signals. As a result, they do not provide low-dimensional representations that are essential to downstream tasks such as spatial domain detection or trajectory inference. Conversely, representation learning-based methods [22, 34, 82, 80, 52, 23, 7, 74, 78], such as GraphST [38] and STAGATE [15], leverage graph neural networks to extract informative low-dimensional embeddings. While effective for extracting latent embeddings and identifying spatial domains, these methods typically process slices independently or jointly without explicitly resolving anatomical correspondences. As a result, homologous tissue regions may be represented inconsistently across slices, undermining interpretability and cross-slice comparison. To address the need for joint analysis across samples, integration methods originally developed for single-cell RNA sequencing data [73, 18], including Harmony [33], Seurat [57], and scVI [40], do not account for spatial context and assume shared coordinate systems across samples, assumptions that rarely hold in spatial data. Recently, approaches such as STAligner [81] and PRECAST [36] have extended integration techniques to spatial transcriptomics, but they either require additional input (e.g., batch id or histology image) or do not explicitly model spatial location-level alignment. These methods focus on harmonizing latent features across slices but cannot account for physical tissue distortions that are critical for spatial reconstruction.

Together, these limitations highlight the need for a unified framework that can resolve spatial correspondences and learn biologically meaningful representations across multiple slices, allowing alignment to guide representation learning, and vice versa. To address this need, we introduce JADE (Joint Alignment and Deep Embedding), a computational framework that integrates multi-slice SRT data by simultaneously learning (1) a probabilistic alignment between spatial locations and (2) a shared low-dimensional embedding space. JADE performs alignment in the latent space via attention-based optimal transport and enforces spatial and transcriptomic consistency through graph-based contrastive learning. This coupling ensures that learned embeddings are mutually aligned and biologically coherent, while correspondences between spatial locations across tissue slices respect both spatial geometry and gene expression structure.

To the best of our knowledge, JADE is the first method to jointly optimize spatial location-level alignment and representation learning within a unified, spatially informed model. We benchmark JADE on multi-slice SRT datasets from the human dorsolateral prefrontal cortex (DLPFC) [45] and the regenerating axolotl brain [68], and show that it consistently outperforms state-of-the-art alignment and embedding methods in spatial clustering accuracy, alignment fidelity, and biological interpretability. JADE offers a scalable and robust solution for integrative spatial analysis, particularly in settings that require the joint resolution of anatomical correspondence and functional representation across complex tissue landscapes.

2 Methods

Problem Definition. Before we present our method JADE, we first formally introduce the problem setup. Consider a pair of SRT slices (S_1, X_1) and (S_2, X_2) , where $S_1 \in \mathbb{R}^{n_1 \times 2}$ and $S_2 \in \mathbb{R}^{n_2 \times 2}$ represent the spatial coordinates of n_1 and n_2 spatial locations in the two tissue slices, and $X_1 \in \mathbb{R}^{n_1 \times p}$ and $X_2 \in \mathbb{R}^{n_2 \times p}$ correspond to their respective gene expression matrices, where p represents the same set of genes measured across tissue slices. Given both gene expression and spatial coordinates for the two slices, our objective is to jointly learn: (1) an alignment matrix $\Pi \in \mathbb{R}^{n_1 \times n_2}$ between

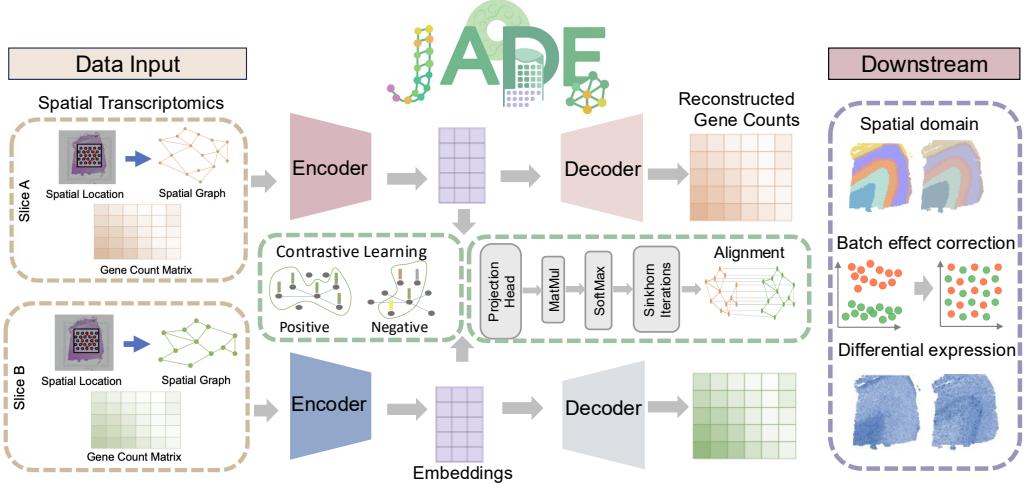


Figure 1: Workflow of JADE. Given two slices of SRT data (left box), JADE learns a probabilistic alignment and low-dimensional embeddings simultaneously. One unique feature of JADE is that embedding and alignment are updated in a roundtrip way in which each iteration alternates between alignment and embedding refinement. Downstream applications (right box) include spatial domain detection, batch effect correction, and differential expression analysis.

these spatial locations, where Π_{ij} encodes the correspondence between spatial location i in slice 1 and spatial location j in slice 2, and (2) the low-dimensional embedding representations H_1 and H_2 .

Overview of JADE. Figure 1 illustrates the workflow of JADE. The pipeline begins with the input of SRT data from two slices (left panel). These inputs are passed through encoders to extract low-dimensional embeddings. Simultaneously, JADE infers cross-slice correspondences via a graph attention module to obtain embedding-space alignment. This module consists of a projection head, matrix multiplication, softmax, and iterative sinkhorn operations. To enhance generalizability, we employ a contrastive learning module that maximizes agreement between spatially neighboring locations while distinguishing dissimilar ones. A key innovation of JADE is its roundtrip learning scheme, in which embeddings and alignments are refined alternately within each training iteration. The outputs of JADE include a probabilistic alignment matrix between spatial locations across two tissue slices and embedding representation of each spot. These outputs support downstream analyses such as 3D tissue reconstruction (via the alignment matrix), spatial domain detection (via the learned embeddings), batch effect correction, and differential expression analysis. Detailed descriptions of each module are provided in the following sections and the pseudo code is shown in Appendix A. The implementation of JADE, along with data preprocessing scripts and pretrained models, is publicly available at <https://github.com/YMa-lab/JADE>.

2.1 Graph Autoencoder

Let $A_1 \in \mathbb{R}^{n_1 \times n_1}$, and $A_2 \in \mathbb{R}^{n_2 \times n_2}$ denote the two adjacency matrices of the spatial graph in two slices obtained using the method described in Appendix B. Given two SRT slices (A_1, X_1) and (A_2, X_2) , we first encode them independently using graph convolutional networks (GCNs) [32] to obtain initial embeddings. Each encoder aggregates information from neighboring spatial locations to learn low-dimensional embeddings using a one-layer GCN: $H_1 = \text{Relu}(A_1 X_1 W_{1e} + b_{1e})$, $H_2 = \text{Relu}(\tilde{A}_2 X_2 W_{2e} + b_{2e})$, where $\tilde{A}_i = D_i^{-\frac{1}{2}} A_i D_i^{-\frac{1}{2}}$ is the degree normalized adjacency matrix, ensuring proper feature scaling across neighboring locations. Without normalization, a node with more neighbors would accumulate disproportionately large feature values, leading to biased representations. W_{ie} and b_{ie} are trainable weight and bias parameters of the encoder for slice $i \in \{1, 2\}$. ReLU is applied as a nonlinear activation function to enhance feature expressiveness. $H_1 \in \mathbb{R}^{n_1 \times d}$ and $H_2 \in \mathbb{R}^{n_2 \times d}$ are the latent embeddings of two slices, where d is a hyperparameter that defines the latent dimension.

To ensure that the learned embeddings retain key biological information, we decode them back into the original feature space using a GCN-based decoder: $\hat{X}_1 = \text{Relu}(\tilde{A}_1 H_1 W_{1d} + b_{1d})$, $\hat{X}_2 = \text{Relu}(\tilde{A}_2 H_2 W_{2d} + b_{2d})$, where W_{id} and b_{id} represent trainable parameters of the decoder for slice

$i \in \{1, 2\}$. The reconstruction loss ensures that the decoded outputs \hat{X}_1, \hat{X}_2 accurately recover the original gene expression profiles $\mathcal{L}_{\text{recon}} = \frac{1}{n_1} \|X_1 - \hat{X}_1\|_F^2 + \frac{1}{n_2} \|X_2 - \hat{X}_2\|_F^2$, where $\|\cdot\|_F$ denotes the Frobenius norm, measuring the difference between the reconstructed and original feature matrices.

2.2 Graph Attention for Embedding-Space Alignment

Given embeddings H_1, H_2 , we obtain the alignment matrix Π through the following steps.

Step 1: Compute cross-attention weights. We first compute an attention-based similarity matrix $C \in [0, 1]^{n_1 \times n_2}$ to measure correspondences between embeddings of two slices:

$$C = \text{Softmax} \left(\frac{-H_1^T M M^T H_2}{\sqrt{d}} \right). \quad (1)$$

Here $M \in \mathbb{R}^{d \times d}$ is a learnable linear projection implementing an attention mechanism [64], enabling the model to focus on key cross-slice features.

Step 2: Obtain the alignment matrix from cross-attention weights. The cross-attention weights C encode pairwise embedding similarities, but it is only row-stochastic: each row sums to 1, yet the column totals are unrestricted. This imbalance can lead to biased mappings, where some target locations accumulate disproportionately high mass, while others receive very little.

To achieve a balanced alignment, we reinterpret the alignment problem within an *optimal transport* (OT) [62] framework, enforcing both rows and columns to satisfy uniform marginal constraints. In this framework, the alignment matrix satisfy $\Pi \in [0, 1]^{n_1 \times n_2}$, $\sum_{i,j} \Pi_{ij} = 1$. Each element Π_{ij} denotes the amount of probability mass transported from source point i to target point j , with the constraint that the entire matrix satisfies specific marginal distributions. Specifically, we apply the Sinkhorn-Knopp algorithm [55, 13] to transform the raw similarity scores in C into a doubly-stochastic alignment matrix Π . This iterative procedure alternately normalizes rows and columns, enforcing each row sum to $1/n_1$ and each column sum to n_2 , ensuring that every spatial location contributes and receives an equal amount of alignment mass. Thus, the alignment becomes fair and balanced, avoiding situations where a few locations dominate the mappings. Additionally, we introduce a marginal regularization term into our objective function: $\mathcal{L}_{\text{marginal}} = \text{KL} \left(\frac{1_{n_1}}{n_1} \cdot \Pi \parallel \frac{1_{n_2}}{n_2} \right)$. This penalty is defined as the KL divergence between the column sums of Π and the desired uniform marginal distribution. In doing so, we explicitly discourage deviations from uniformity, further reinforcing balanced alignments.

Step 3: Spatial and embedding aware alignment losses. To refine the alignment and maintain spatial structure, we define two primary losses motivated by the fused Gromov-Wasserstein distance [46, 65]: (1) Spatial structure preservation loss (Mis-Maintain Loss) ensures that spatial relationships in both slices remain consistent after alignment $\mathcal{L}_{\text{maintain}} = \frac{1}{n_1} \|D_1 - n_2^2 \Pi D_2 \Pi^T\|_F + \frac{1}{n_2} \|D_2 - n_1^2 \Pi^T D_1 \Pi\|_F$, where D_1 and D_2 are pairwise spatial distance matrices. Each entry d_{1ij} (for slice 1) and d_{2ij} (for slice 2) represents the squared Euclidean distance between spatial locations i and j . The scaling factors n_2^2 and n_1^2 ensure that the transported distance matrices $\Pi D_2 \Pi^T$ and $\Pi^T D_1 \Pi$ remain on the same scale as the original D_1 and D_2 , compensating for the normalization inherent in Π . Minimizing $\mathcal{L}_{\text{maintain}}$ encourages spatial locations that were close to each other before alignment to remain close after alignment, while spatial locations that were far apart should continue to be far apart. (2) Embedding alignment loss (Mis-Alignment Loss) ensures that the aligned embeddings are close to each other, maintaining meaningful biological correspondence $\mathcal{L}_{\text{align}} = \frac{1}{n_1} \|H_1 - n_2 \Pi H_2\|_F + \frac{1}{n_2} \|H_2 - n_1 \Pi^T H_1\|_F$. Similarly, the scaling factors n_2 and n_1 ensure that the transported embedding matrices $n_2 \Pi H_2$ and $n_1 \Pi^T H_1$ remain on the same scale as the original H_1 and H_2 . The first term in the above equation minimizes the discrepancy between slice 1 embeddings and their aligned counterparts from slice 2. The second term enforces the same alignment constraint in the reverse direction.

2.3 Self-supervised Graph Contrastive Learning

We refine our embeddings via self-supervised contrastive learning similar to GraphST [38], using the Graph Infomax objective [66] to maximize mutual information between each spot and its local neighborhood. This drives adjacent, biologically similar spots closer in latent space while pushing structurally distinct or distant spots apart.

For each spatial location i , we define its local spatial proxy r_i as: $r_i = \frac{1}{|N(i)|} \sum_{j \in N(i)} h_j$, where $N(i)$ denotes the set of immediate neighbors of spatial location i , h_j is the embedding of neighboring spatial location j . The pair (h_i, r_i) forms a positive pair, reflecting spatial proximity and biological similarity. To create negative examples, we generate a shuffled embedding matrix H' by randomly permuting the rows of H , destroying spatial coherence. For each i , let h'_i be the shuffled embedding and r'_i its corresponding shuffled proxy, forming a negative pair (h'_i, r'_i) . Finally, we train a discriminator Φ via binary cross-entropy loss to distinguish these positive from negative pairs. The slice-specific contrastive loss is: $\mathcal{L}_{\text{SCL}}^k = -\frac{1}{n_k} \sum_{i=1}^{n_k} [\log \Phi(h_{ki}, r_{ki}) + \log(1 - \Phi(h'_{ki}, r'_{ki}))]$ for $k = 1, 2$. The overall contrastive loss is $\mathcal{L}_{\text{SCL}} = \mathcal{L}_{\text{SCL}}^1 + \mathcal{L}_{\text{SCL}}^2$.

2.4 Final Loss Function

In summary, the training objective of JADE comprises three components:

$$\mathcal{L}_{\text{SCL}} + \lambda_2 \mathcal{L}_{\text{recon}} + \lambda_3 \mathcal{L}_{\text{maintain}} + \lambda_4 \mathcal{L}_{\text{align}} + \lambda_5 \mathcal{L}_{\text{marginal}}.$$

Throughout the paper, we set $\lambda_2 = 10$, $\lambda_4 = 0.1$, $\lambda_5 = 1$. We use a data-driven method to select λ_3 from 0.2 to 2.0 depending on a calculated similarity score between slices. If two slices are similar, we use a larger λ_3 encourage information sharing; otherwise, we use a smaller λ_3 to prevent negative transfer. A comprehensive description of hyperparameter tuning procedures is provided in Appendix E. Furthermore, the contribution of each individual component in JADE is evaluated through systematic ablation studies, as detailed in Appendix F. Results show that performance deteriorates markedly when any loss term is omitted, demonstrating that both the misalignment and mismaintain losses are crucial for optimal embedding and alignment quality.

Downstream analysis. After training, we obtained two sets of low-dimensional embeddings. We normalized the length of each embedding vector and applied the `mc1ust` algorithm independently, specifying the cluster number based on prior knowledge. Following [81, 38], we set the cluster number from 5 through 7 for the DLPFC dataset, and following [20], from 16 through 17 for the axolotl brain dataset, with each cluster corresponding to a distinct cell type. We then leveraged the inferred domains to conduct differential expression analysis. For the batch-effect correction evaluation, we projected the embeddings into a 2-dimensional space using UMAP, visualized their spatial distribution, and computed the local Simpson diversity index to quantify how well the embeddings from different slices are intermingled. To assess alignment quality, we visualized and quantified the highest-probability correspondences in the alignment matrix within each ground-truth domain, explicitly marking correct and incorrect matches, and computed accuracy scores to measure alignment performance.

3 Fast Computation for JADE

A major challenge for SRT alignment methods is their high computational cost, scaling quadratically with the number of spatial locations. Methods such as PASTE [79] and our JADE algorithm require computing similarity matrices between all location pairs, resulting in prohibitive runtime and memory usage for high-resolution datasets. The primary computational bottleneck in JADE is the cross-attention step, which calculates pairwise similarities and scales as $O(n_1 n_2 d)$. To accelerate this, we introduce an approach that aligns at a coarser resolution using aggregated spatial units ("hyperspots"), significantly reducing computational complexity. Despite this approximation, Fast-JADE achieves performance comparable to JADE on the DLPFC dataset (see Appendix G for detailed comparison).

Hyperspot embedding construction. For each tissue slice, we apply K -means clustering to group spatial locations into fewer, coarser spatial units, resulting $m_1 \ll n_1$ and $m_2 \ll n_2$ hyperspots respectively. The number of hyperspots is set to approximately 10-20% of the original number of spatial locations for each slice. Each hyperspot embedding is computed by averaging embeddings of the spatial locations within the cluster, resulting in compact representations.

Compute cross-attention between hyperspots. We compute the cross-attention weights and alignment matrix at the hyperspot level. Specifically, $C^{\text{hyper}} = \text{Softmax} \left(-H_1^{\text{hyper}, T} M M^T H_2^{\text{hyper}} / \sqrt{d} \right)$ is similar to (1). Using these hyperspot-level attention weights, we then compute the alignment and maintenance losses, $\mathcal{L}_{\text{maintain}}$ and $\mathcal{L}_{\text{align}}$ at the hyperspot level.

From hyperspot-level to spatial location-level Alignment. After training, we transfer the learned alignment back to the full-resolution space. Specifically, we reuse the same projection head M to com-

pute the fine-grained spatial location-wise attention weights: $C = \text{Softmax} \left(-H_1^T M M^T H_2 / \sqrt{d} \right)$, where $H_1 \in \mathbb{R}^{n_1 \times d}$ and $H_2 \in \mathbb{R}^{n_2 \times d}$ are the original spatial location embeddings. This ensures consistency between coarse and fine levels and avoids retraining at full resolution. The resulting matrix C is then passed through the Sinkhorn-Knopp algorithm to obtain an alignment matrix Π with uniform marginals.

4 Experiments

We benchmarked JADE against six representative baseline models, selected for their relevance to either spatial alignment or embedding tasks in spatial transcriptomics. For alignment accuracy, we compared with PASTE [79], Seurat [57], and STAligner [81], three widely used methods that align SRT slices based on transcriptomic similarity and spatial proximity. For evaluating the learned embeddings through spatial domain detection, we included GraphST [76], STAGATE [15], and STAligner, which incorporate spatial or graph-based information to enhance domain identification.

To provide a unified assessment, we used a comprehensive alignment metric that accounts for both correctly aligned and unaligned locations (Appendix B). Embedding quality was quantified using the Adjusted Rand Index (ARI) for biological domain recovery, the integrated local inverse Simpson’s index (iLISI) [54] for cross-slice integration, and UMAP visualizations for qualitative evaluation of coherence and batch correction. For biological interpretability, we conducted differential expression analysis to identify domain-specific marker genes and validated them against known anatomical annotations and literature, confirming that the learned embeddings capture biologically meaningful spatial structures and gene associations.

We also tested JADE on two additional datasets in Appendix H: the MERFISH dataset [10] and the Breast-Cancer Visium/Xenium dataset [26], previously used in SLAT [71]. As summarized in Table 11, JADE consistently outperforms or matches state-of-the-art baselines, including SLAT, STAligner and SpotScape[50], in both domain-detection accuracy (ARI) and alignment accuracy (ACC). These results demonstrate JADE’s robustness and adaptability across distinct spatial transcriptomics platforms (MERFISH, Visium, Xenium) and tissue types (brain and breast).

4.1 Joint Spatial Alignment and Representation Learning Across Human DLPFC Slices

Dataset description. We evaluated our proposed method on the Human Dorsolateral Prefrontal Cortex (DLPFC) dataset generated with the 10x Visium platform [56], a standard benchmark in spatial transcriptomics. The dataset comprises 12 serial tissue sections, including four sequential slices (A–D) from each of three donors (I–III), with expression profiles of 33,538 genes measured at 47,681 spatial spots. Within each individual, slices A–B and C–D are adjacent pairs separated by 10 μm , while slices B and C have a larger separation of 300 μm . Differences across individuals are primarily attributed to batch effects arising from technical variations in sample processing, sequencing, or tissue handling. Each slice was annotated with seven spatial domains, corresponding to six cortical layers and the white matter [45]. These expert-provided annotations served as the ground truth for spatial domain detection analysis. Following preprocessing in Appendix B, the two selected slices retained about 1500 shared highly variable genes for each pair.

Improved clustering accuracy. Figure 2(A) provides a visual comparison of the predicted spatial domains from each method against the ground truth for both Slice A and Slice B of Sample III. Visually, JADE demonstrates the highest accuracy in recovering the annotated cortical structure, across slices A and B with clear, smooth boundaries. In contrast, other methods yield noisier and less coherent spatial domains. Quantitatively, JADE achieves median ARI values of approximately 0.61 and 0.65 for Slices A and B, for Sample III as shown in Figure 2(B). This represents a statistically significant improvement over GraphST (0.59 and 0.58), STAligner (0.56 and 0.59), and STAGATE (0.52 and 0.53). The top row of Figure 2(C) further visualizes the learned low-dimensional embeddings produced by each method using UMAP, colored by their true biological cluster annotation. JADE consistently demonstrates superior performance, yielding highly distinct and well-separated biological layers that form cohesive clusters with minimal overlap. Appendix C shows additional results for other samples and other adjacent slices.

JADE effectively mitigates batch effects in multi-slice integration. The bottom row of Figure 2(C) illustrates the effectiveness of batch effect removal across different methods by visualizing UMAP embeddings colored by slice identity (slice A: blue, slice B: red). Effective integration is reflected by

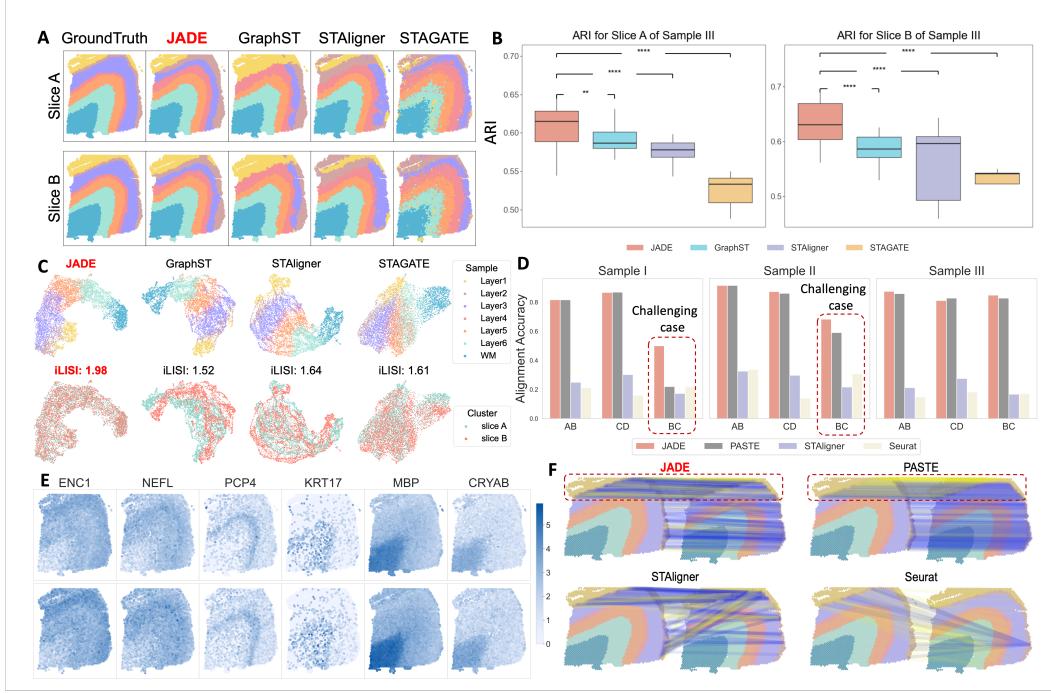


Figure 2: (A) Predicted spatial domains for slices A and B (Sample III) using five methods. (B) ARI for slices A and B of Sample III in DLPFC. p -values are calculated by Wilcoxon-rank sum test, where $^{**} p < 1\%$, $^{***} p < 0.1\%$ and $^{****} p < 0.01\%$ (C) UMAP of embeddings colored by predicted clusters (top) and slice (bottom). (D) Alignment accuracy across adjacent slice pairs (AB, CD, BC). (E) Spatial expression of marker genes confirms biologically relevant domain structures. (F) Visual comparison of alignment accuracy for Layer 1 in Sample III (Slice A vs. Slice B). True alignments are represented in blue; wrong ones are shown in yellow.

the intermixing of spatial locations from different slices, indicating successful alignment in a shared latent space. JADE achieves the highest inter-slice mixing, suggesting excellent batch correction performance. In contrast, GraphST, STAligner and STAGATE display limited alignment: the two slices remain largely separated within the UMAP space, suggesting poor batch removal efficacy. JADE also attained the highest iLISI score of 1.98, outperforming GraphST (1.52), STAligner (1.64), and STAGATE (1.61), confirming its superior performance in integrating SRT data across slices while correcting for batch effects.

Superior alignment performance. Figure 2(D) presents a comprehensive quantitative assessment of alignment accuracy across adjacent slice pairs (AB, BC, CD) for three distinct samples, comparing JADE against existing methods including PASTE, STAligner, and Seurat. Among these, the B–C pairs represent the most challenging alignment scenario due to their larger inter-slice distance ($300\mu\text{m}$), compared to the $10\mu\text{m}$ separation in A–B and C–D pairs. Across all samples and slice combinations, JADE consistently demonstrates superior alignment accuracy, particularly in challenging scenarios. While PASTE achieves comparable performance to JADE in easier settings (AB and CD pairs), it exhibits substantial performance degradation when confronted with the more challenging BC alignments. Notably, for BC pairs in samples I and II, JADE surpasses PASTE by margins exceeding 50%. STAligner shows moderate accuracy but is consistently lower than JADE and PASTE across all slice pairs. Seurat performs the poorest in all cases, with particularly low alignment accuracy in the BC pairs. These results highlight JADE’s superior alignment performance, particularly in challenging integration settings. In Figure 2(F), we visualize Layer 1 alignment between Slice A and Slice B in Sample III across four methods. Blue lines indicate correct matches within the same annotated layer, while yellow lines indicate errors. JADE achieves the best outcome, with mostly correct (blue) alignments and very few incorrect (yellow) ones.

Domain-specific differential expression gene analysis. We performed domain-specific differential expression (DE) analysis based on the spatial domains detected by JADE and identified six representative marker genes (ENC1, NEFL, PCP4, KRT17, MBP, and CRYAB). These genes were selected for their strong domain-level enrichment and subsequently validated through literature for their well-established region-specific expression patterns in the human cortex. Figure 2(E) displays

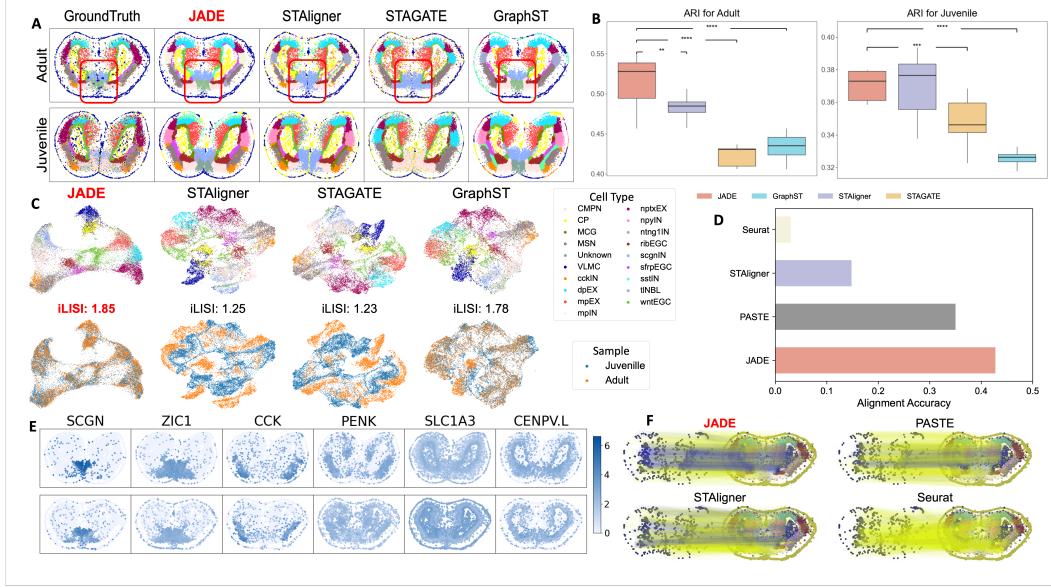


Figure 3: (A) Domain segmentation results for Juvenile and Adult slices comparing ground truth against four methods. (B) ARI scores for four methods. p -values are calculated the same as in Figure 2. (C) UMAP of embeddings colored by predicted clusters (top) and slice (bottom). (D) Alignment accuracy for Juvenile and Adult slices. (E) Spatial expression of marker genes confirms biologically relevant domain structures. (F) Visual comparison of alignment accuracy for CP cell type between the juvenile and the adult. True alignments are represented by blue lines, while wrong alignments are shown in yellow.

the spatial expression patterns of these genes across two adjacent DLPFC tissue slices (top and bottom rows). ENC1, NEFL, and PCP4 exhibit clear laminar structures consistent with neuronal populations localized to middle and deep cortical layers [45, 70, 17]. Their spatial localization is preserved across slices, demonstrating coherent biological structure. KRT17, typically associated with epithelial-like or glial cells, shows more punctate and scattered expression, particularly in the upper portions of the slices [11, 45]. MBP, a myelination-related gene, is strongly expressed in the lower regions of both slices, likely corresponding to white matter (WM), and the spatial coherence across slices further supports successful alignment [49, 45, 25]. CRYAB, a stress-response and astrocyte-associated marker, exhibits a broader expression domain with intermediate intensity [4].

Beyond expression-based baselines, we further evaluated JADE against GPSA [28], an image-informed alignment model that integrates histological features in Appendix H. As summarized in Table 10, JADE achieves higher alignment accuracy across all DLPFC slice pairs while maintaining comparable clustering quality, indicating that reliable alignment can be achieved without reliance on histology images.

4.2 Joint Learning of Axolotl Brain Dataset Across Different Developmental Stages

We applied our method to the task of jointly learning alignments and embeddings of SRT data across distinct developmental stages. This integration is crucial for gaining insights into the dynamic processes of cell proliferation and differentiation. However, achieving such comprehensive integration is inherently challenging due to technical batch effects and fundamental biological shifts, both of which significantly complicate the establishment of accurate underlying alignment.

Dataset description. We evaluated JADE on a SRT dataset of the axolotl telencephalon (a region of the brain) generated using the Stereo-seq platform [9]. This dataset captures gene expression across five developmental stages: three embryonic stages, the juvenile stage, and the adult stage. In this study, we focused our analysis on the last two, which together span a broader range of mature brain architecture. The juvenile stage and adult stage have 17 and 16 distinct cell types respectively. Among them, fourteen are shared between both stages, while the rests from the juvenile stage differentiate or transition into new cell types in the adult stage. Following preprocessing, the two selected slices retained 1,000 shared highly variable genes, with 11,698 and 8,243 spatial locations, respectively. To reduce computational time, we applied the accelerated JADE method introduced in Section 3, using 1,000 hyperspots per slice, corresponding to about 10% of the spatial locations.

Improved clustering accuracy. Figure 3(A) provides a visual comparison of the domains detection results of JADE and baseline methods in Adult (top row) and Juvenile (bottom row) slices. Compared to the ground truth, JADE consistently recovers structurally coherent and anatomically accurate domains in both stages. Notably, in the adult brain, JADE is the only method that successfully reconstructs the blue peripheral ring cluster, representing vascular leptomeningeal cells (VLMC) [63]. This region is either partially fragmented (in GraphST), blurred and mixed with neighboring domains (in STAGATE, STAligner). In addition, JADE accurately produces a coherent, bilaterally symmetric red region in the telencephalon core, while STAGATE yields considerable color mixing within this region, STAligner only partially recovers it, and GraphST produces an overexpanded red region, suggestive of excessive smoothing. These qualitative patterns are supported by the quantitative results in Figure 3(B). For the Adult stage, JADE achieves the highest median ARI score (approximately 0.53), significantly outperforming STAligner (0.48), STAGATE (0.42), and GraphST (0.43). For the Juvenile stage, JADE also obtains a high median ARI (approximately 0.37), demonstrating statistically significant improvement over STAGATE (0.35) and GraphST (0.32). While JADE’s performance for the Juvenile stage is quantitatively comparable to STAligner’s by ARI, its qualitative domain recovery remains notably more coherent and anatomically accurate as shown in Figure 3(A). The top row of Figure 3(C) further visualizes the UMAP for the embedding features, colored by the true cluster annotation. JADE produces well-separated and compact clusters, indicating a clear differentiation of spatial domains in the latent space, while other methods exhibit considerable mixing of domain colors, reflecting ambiguity in domain boundaries.

JADE effectively mitigates batch effects in multi-slice integration. The bottom row of Figure 3(C) compares methods via UMAP embeddings colored by slice (Adult: red, Juvenile: blue). JADE shows near-perfect mixing within structured clusters, indicating superior batch-effect removal. In contrast, STAligner, STAGATE, and GraphST display notable batch-induced separation. Quantitatively, JADE achieves the highest LISI score (1.85), surpassing GraphST (1.78), STAligner (1.25), and STAGATE (1.23), highlighting its effectiveness in integrating data across developmental stages.

Superior alignment performance. As shown in the bar plot in Figure 3(D), JADE achieves the highest alignment accuracy among all methods, substantially outperforming PASTE, STAligner, and Seurat. This result underscores JADE’s ability to establish precise correspondences between spatial locations across slices, even under the challenging setting of cross-developmental stage alignment, where substantial morphological and transcriptional variation exists. Figure 3(F) further visualizes the alignment accuracy for cortical plate cell type between the Juvenile slice and the Adult slice, to support this finding. JADE yields the highest proportion of correct (blue) alignments, demonstrating its superior ability to preserve anatomical consistency during cross-slice registration.

Domain-specific gene. Figure 3(E) displays the spatial expression patterns of six canonical marker genes, SCGN, ZIC1, CCK, PENK, SLC1A3, CENPV.L, across Juvenile and Adult slices (top and bottom rows). These genes are known to exhibit region-specific expression within the axolotl brain and thus serve as internal benchmarks for spatial alignment and biological interpretability. Specifically, SCGN and ZIC1, for example, are associated with distinct neuronal populations and developmental patterning, and their laminar or domain-restricted expression patterns are preserved across developmental stages, reflecting coherent spatial organization [2, 51, 59]. CCK and PENK, which are neuropeptide-related genes, show distinct regional enrichment, highlighting the emergence of functional specialization in the maturing brain [30, 8]. SLC1A3, a glutamate transporter gene involved in astrocytic function, exhibits broad but domain-enriched expression, consistent with known glial distribution [3]. CENPV.L, associated with nuclear and centrosomal processes, displays a sharply localized expression pattern, providing a clear contrast across domains [58]. Together, these genes illustrate the biological relevance of the spatial domains identified by JADE, demonstrating its ability to uncover consistent, developmentally regulated gene expression patterns across stages of brain maturation.

5 Conclusions

In this paper, we address the critical yet understudied challenge of joint spatial alignment and representation learning across multi-slice SRT data. We propose JADE, a unified framework that simultaneously infers spatial correspondences and learns biologically meaningful low-dimensional embeddings. Through comprehensive evaluations on human DLPFC and axolotl brain datasets, JADE demonstrates superior performance in spatial domain detection, alignment accuracy, and batch effect correction compared to state-of-the-art methods. This study provides a robust computational tool

for integrating multi-slice SRT data, with the potential to advance 3D tissue reconstruction, cross-condition comparison, and spatially informed transcriptomic discovery. However, several limitations remain. First, while JADE performs well across a range of spatial transcriptomics platforms and tissue types, its performance may be affected by extreme sparsity, highly unbalanced slice resolutions, or limited overlap in tissue regions across slices. Second, JADE currently models pairwise slice alignment, which may limit its ability to fully reconstruct larger tissue volumes or resolve global correspondences across long serial sections. Third, the current framework assumes a static snapshot of spatial organization and does not account for temporal variation, which is increasingly relevant in developmental or regenerative contexts. Future work will extend JADE to handle fully joint alignment across multiple slices, incorporate spatiotemporal transcriptomics data, and integrate additional data modalities such as histological imaging or spatial epigenomics. We also aim to improve scalability for ultra-high-resolution datasets and explore methods to increase robustness under technical noise or sample heterogeneity. To the best of our knowledge, no potential negative impacts resulting from our work have been identified.

6 Acknowledgment

This work was supported by the National Science Foundation (NSF) and the National Institute of General Medical Sciences (NIGMS) under award number R01GM152814, by the National Institutes of Health (NIH) under award number R35GM160372, and by the NSF under award numbers DBI-2526948 and IIS-2500960.

References

- [1] Rohit Arora, Christian Cao, Mehul Kumar, Sarthak Sinha, Ayan Chanda, Reid McNeil, Divya Samuel, Rahul K Arora, T Wayne Matthews, Shamir Chandarana, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response. *Nature communications*, 14(1):5029, 2023.
- [2] Jun Aruga, Takashi Inoue, Jun Hoshino, and Katsuhiko Mikoshiba. Zic2 controls cerebellar development in cooperation with zic1. *Journal of Neuroscience*, 22(1):218–225, 2002.
- [3] Mykhailo Y Batiuk, Araks Martirosyan, Jérôme Wahis, Filip de Vin, Catherine Marneffe, Carola Kusserow, Jordan Koeppen, João Filipe Viana, João Filipe Oliveira, Thierry Voet, et al. Identification of region-specific astrocyte subtypes at single cell resolution. *Nature communications*, 11(1):1220, 2020.
- [4] Lina Vanessa Becerra-Hernández, Martha Isabel Escobar-Betancourt, Hernán José Pimienta-Jiménez, and Efraín Buriticá. Crystallin alpha-b overexpression as a possible marker of reactive astrogliosis in human cerebral contusions. *Frontiers in Cellular Neuroscience*, 16:838551, 2022.
- [5] Emelie Berglund, Jonas Maaskola, Niklas Schultz, Stefanie Friedrich, Maja Marklund, Joseph Bergensträhle, Firas Tarish, Anna Tanoglidi, Sanja Vickovic, Ludvig Larsson, et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. *Nature communications*, 9(1):2419, 2018.
- [6] Darren J Burgess. Spatial transcriptomics coming of age. *Nature Reviews Genetics*, 20(6): 317–317, 2019.
- [7] Jiazhang Cai, Huimin Cheng, Shushan Wu, Wenzuan Zhong, Guo-Cheng Yuan, and Ping Ma. West is an ensemble method for spatial transcriptomics analysis. *Cell Reports Methods*, 4(11), 2024.
- [8] Daniela Calvignoni, Zoltán Máté, János Fuzik, Fatima Girach, Ming-Dong Zhang, Andrea Varro, Johannes Beiersdorf, Christian Schwindling, Yuchio Yanagawa, Graham J Dockray, et al. Functional differentiation of cholecystokinin-containing interneurons destined for the cerebral cortex. *Cerebral cortex*, 27(4):2453–2468, 2017.
- [9] Ao Chen, Sha Liao, Mengnan Cheng, Kailong Ma, Liang Wu, Yiwei Lai, Xiaojie Qiu, Jin Yang, Jiangshan Xu, Shijie Hao, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using dna nanoball-patterned arrays. *Cell*, 185(10):1777–1792, 2022.

[10] Kok Hao Chen, Alistair N Boettiger, Jeffrey R Moffitt, Siyuan Wang, and Xiaowei Zhuang. Spatially resolved, highly multiplexed rna profiling in single cells. *Science*, 348(6233):aaa6090, 2015.

[11] Shuo Chen, Yuzhou Chang, Liangping Li, Diana Acosta, Yang Li, Qi Guo, Cankun Wang, Emir Turkes, Cody Morrison, Dominic Julian, et al. Spatially resolved transcriptomics reveals genes associated with the vulnerability of middle temporal gyrus in alzheimer’s disease. *Acta neuropathologica communications*, 10(1):188, 2022.

[12] K Clifton, M Anant, G Aihara, L Atta, OK Aimiwu, JM Kebischull, MI Miller, D Tward, and J Fan. Stalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping. *nat. commun.* 14, 8123, 2023.

[13] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.

[14] Pinar Demetci, Rebecca Santorella, Björn Sandstede, William Stafford Noble, and Ritambhara Singh. Gromov-wasserstein optimal transport to align single-cell multi-omics data. *BioRxiv*, pages 2020–04, 2020.

[15] Kangning Dong and Shihua Zhang. Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder. *Nature communications*, 13(1):1739, 2022.

[16] Yanhua Du, Jintong Shi, Jiaxin Wang, Zhenzhen Xun, Zhuo Yu, Hongxiang Sun, Rujuan Bao, Junke Zheng, Zhigang Li, and Youqiong Ye. Integration of pan-cancer single-cell and spatial transcriptomics reveals stromal cell features and therapeutic targets in tumor microenvironment. *Cancer Research*, 84(2):192–210, 2024.

[17] Yun Gong, Mohammad Haeri, Xiao Zhang, Yisu Li, Anqi Liu, Di Wu, Qilei Zhang, S Michal Jazwinski, Xiang Zhou, Xiaoying Wang, et al. Stereo-seq of the prefrontal cortex in aging and alzheimer’s disease. *Nature Communications*, 16(1):482, 2025.

[18] Tiantian Guo, Zhiyuan Yuan, Yan Pan, Jiakang Wang, Fengling Chen, Michael Q Zhang, and Xiangyu Li. Spiral: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies. *Genome Biology*, 24(1):241, 2023.

[19] Laleh Haghverdi, Aaron TL Lun, Michael D Morgan, and John C Marioni. Batch effects in single-cell rna-sequencing data are corrected by matching mutual nearest neighbors. *Nature biotechnology*, 36(5):421–427, 2018.

[20] Peter Halmos, Xinhao Liu, Julian Gold, Feng Chen, Li Ding, and Benjamin J Raphael. Dest-ot: Alignment of spatiotemporal transcriptomics data. *Cell Systems*, 16(2), 2025.

[21] Brian Hie, Bryan Bryson, and Bonnie Berger. Efficient integration of heterogeneous single-cell transcriptomes using scanorama. *Nature biotechnology*, 37(6):685–691, 2019.

[22] Jian Hu, Xiangjie Li, Kyle Coleman, Amelia Schroeder, Nan Ma, David J Irwin, Edward B Lee, Russell T Shinohara, and Mingyao Li. Spagcn: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. *Nature methods*, 18(11):1342–1351, 2021.

[23] Yunfei Hu, Yuying Zhao, Curtis T Schunk, Yingxiang Ma, Tyler Derr, and Xin Maizie Zhou. Adept: Autoencoder with differentially expressed genes and imputation for robust spatial transcriptomics clustering. *Iscience*, 26(6), 2023.

[24] Yunfei Hu, Manfei Xie, Yikang Li, Mingxing Rao, Wenjun Shen, Can Luo, Haoran Qin, Jihoon Baek, and Xin Maizie Zhou. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics. *Genome Biology*, 25(1):212, 2024.

[25] Louise Huuki-Myers, Abby Spangler, Nick Eagles, Kelsey D Montgomery, Sang Ho Kwon, Boyi Guo, Melissa Grant-Peters, Heena R Divecha, Madhavi Tippani, Chaichontat Sriworarat, et al. Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex. *BioRxiv*, 2023.

[26] Amanda Janesick, Robert Shelansky, Andrew D Gottscho, Florian Wagner, Stephen R Williams, Morgane Rouault, Ghezal Beliakoff, Carolyn A Morrison, Michelli F Oliveira, Jordan T Sicherman, et al. High resolution mapping of the tumor microenvironment using integrated single-cell, spatial and *in situ* analysis. *Nature communications*, 14(1):8353, 2023.

[27] Andrew L Ji, Adam J Rubin, Kim Thrane, Sizun Jiang, David L Reynolds, Robin M Meyers, Margaret G Guo, Benson M George, Annelie Mollbrink, Joseph Bergenstråhle, et al. Multimodal analysis of composition and spatial architecture in human squamous cell carcinoma. *cell*, 182(2):497–514, 2020.

[28] Andrew Jones, F William Townes, Didong Li, and Barbara E Engelhardt. Alignment of spatial genomics data using deep gaussian processes. *Nature methods*, 20(9):1379–1387, 2023.

[29] Namyoung Jung and Tae-Kyung Kim. Spatial transcriptomics in neuroscience. *Experimental & molecular medicine*, 55(10):2105–2115, 2023.

[30] L Just, C Olenik, B Heimrich, and DK Meyer. Glutamatergic control of the expression of the proenkephalin gene in rat frontoparietal cortical slice cultures. *Cerebral cortex (New York, NY: 1991)*, 8(8):702–709, 1998.

[31] Joyce B Kang, Aparna Nathan, Kathryn Weinand, Fan Zhang, Nghia Millard, Laurie Rumker, D Branch Moody, Ilya Korsunsky, and Soumya Raychaudhuri. Efficient and precise single-cell reference atlas mapping with symphony. *Nature communications*, 12(1):5890, 2021.

[32] TN Kipf. Semi-supervised classification with graph convolutional networks. *arXiv preprint arXiv:1609.02907*, 2016.

[33] Ilya Korsunsky, Nghia Millard, Jean Fan, Kamil Slowikowski, Fan Zhang, Kevin Wei, Yuriy Baglaenko, Michael Brenner, Po-ru Loh, and Soumya Raychaudhuri. Fast, sensitive and accurate integration of single-cell data with harmony. *Nature methods*, 16(12):1289–1296, 2019.

[34] Jiachen Li, Siheng Chen, Xiaoyong Pan, Ye Yuan, and Hong-Bin Shen. Cell clustering for spatial transcriptomics data with graph neural networks. *Nature Computational Science*, 2(6):399–408, 2022.

[35] Senlin Lin, Zhikang Wang, Yan Cui, Qi Zou, Chuangyi Han, Rui Yan, Zhidong Yang, Wei Zhang, Rui Gao, Jiangning Song, et al. Bridging the dimensional gap from planar spatial transcriptomics to 3d cell atlases. *Nature Methods*, pages 1–13, 2025.

[36] Wei Liu, Xu Liao, Ziye Luo, Yi Yang, Mai Chan Lau, Yuling Jiao, Xingjie Shi, Weiwei Zhai, Hongkai Ji, Joe Yeong, et al. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with precast. *Nature communications*, 14(1):296, 2023.

[37] Xinhao Liu, Ron Zeira, and Benjamin J Raphael. Partial alignment of multislice spatially resolved transcriptomics data. *Genome Research*, 33(7):1124–1132, 2023.

[38] Yahui Long, Kok Siong Ang, Mengwei Li, Kian Long Kelvin Chong, Raman Sethi, Chengwei Zhong, Hang Xu, Zhiwei Ong, Karishma Sachaphibulkij, Ao Chen, et al. Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with graphst. *Nature Communications*, 14(1):1155, 2023.

[39] Sophia K Longo, Margaret G Guo, Andrew L Ji, and Paul A Khavari. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. *Nature Reviews Genetics*, 22(10):627–644, 2021.

[40] Romain Lopez, Jeffrey Regier, Michael B Cole, Michael I Jordan, and Nir Yosef. Deep generative modeling for single-cell transcriptomics. *Nature methods*, 15(12):1053–1058, 2018.

[41] Mohammad Lotfollahi, Mohsen Naghipourfar, Malte D Luecken, Matin Khajavi, Maren Büttner, Marco Wagenstetter, Žiga Avsec, Adam Gayoso, Nir Yosef, Marta Interlandi, et al. Mapping single-cell data to reference atlases by transfer learning. *Nature biotechnology*, 40(1):121–130, 2022.

[42] Igor Mandric, Brian L Hill, Malika K Freund, Michael Thompson, and Eran Halperin. Batman: fast and accurate integration of single-cell rna-seq datasets via minimum-weight matching. *IScience*, 23(6), 2020.

[43] Silas Maniatis, Tarmo Äijö, Sanja Vickovic, Catherine Braine, Kristy Kang, Annelie Mollbrink, Delphine Fagegaltier, Žaneta Andrusiová, Sami Saarenpää, Gonzalo Saiz-Castro, et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. *Science*, 364 (6435):89–93, 2019.

[44] Vivien Marx. Method of the year: spatially resolved transcriptomics. *Nature methods*, 18(1): 9–14, 2021.

[45] Kristen R Maynard, Leonardo Collado-Torres, Lukas M Weber, Cedric Uytingco, Brianna K Barry, Stephen R Williams, Joseph L Catallini, Matthew N Tran, Zachary Besich, Madhavi Tippani, et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. *Nature neuroscience*, 24(3):425–436, 2021.

[46] Facundo Mémoli. Gromov–wasserstein distances and the metric approach to object matching. *Foundations of computational mathematics*, 11(4):417–487, 2011.

[47] Reuben Moncada, Dalia Barkley, Florian Wagner, Marta Chiodin, Joseph C Devlin, Maayan Baron, Cristina H Hajdu, Diane M Simeone, and Itai Yanai. Integrating microarray-based spatial transcriptomics and single-cell rna-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. *Nature biotechnology*, 38(3):333–342, 2020.

[48] Lambda Moses and Lior Pachter. Museum of spatial transcriptomics. *Nature methods*, 19(5): 534–546, 2022.

[49] William T Norton. Isolation and characterization of myelin. In *Myelin*, pages 161–199. Springer, 1984.

[50] Yunhak Oh, Junseok Lee, Yeongmin Kim, Sangwoo Seo, Namkyeong Lee, and Chanyoung Park. Global context-aware representation learning for spatially resolved transcriptomics. *arXiv preprint arXiv:2506.15698*, 2025.

[51] Chandrasekhar S Raju, Julien Spatazza, Amelia Stanco, Phillip Larimer, Shawn F Sorrells, Kevin W Kelley, Cory R Nicholas, Mercedes F Paredes, Jan H Lui, Andrea R Hasenstaub, et al. Secretagogin is expressed by developing neocortical gabaergic neurons in humans but not mice and increases neurite arbor size and complexity. *Cerebral Cortex*, 28(6):1946–1958, 2018.

[52] Honglei Ren, Benjamin L Walker, Zixuan Cang, and Qing Nie. Identifying multicellular spatiotemporal organization of cells with spaceflow. *Nature communications*, 13(1):4076, 2022.

[53] Hailing Shi, Yichun He, Yiming Zhou, Jiahao Huang, Kamal Maher, Brandon Wang, Zefang Tang, Shuchen Luo, Peng Tan, Morgan Wu, et al. Spatial atlas of the mouse central nervous system at molecular resolution. *Nature*, 622(7983):552–561, 2023.

[54] Edward H Simpson. Measurement of diversity. *nature*, 163(4148):688–688, 1949.

[55] Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matrices. *Pacific Journal of Mathematics*, 21(2):343–348, 1967.

[56] Patrik L Ståhl, Fredrik Salmén, Sanja Vickovic, Anna Lundmark, José Fernández Navarro, Jens Magnusson, Stefania Giacomello, Michaela Asp, Jakub O Westholm, Mikael Huss, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. *Science*, 353(6294):78–82, 2016.

[57] Tim Stuart, Andrew Butler, Paul Hoffman, Christoph Hafemeister, Efthymia Papalex, William M Mauck, Yuhan Hao, Marlon Stoeckius, Peter Smibert, and Rahul Satija. Comprehensive integration of single-cell data. *cell*, 177(7):1888–1902, 2019.

[58] Ana Mafalda Baptista Tadeu, Susana Ribeiro, Josiah Johnston, Ilya Goldberg, Dietlind Gerloff, and William C Earnshaw. Cenp-v is required for centromere organization, chromosome alignment and cytokinesis. *The EMBO journal*, 27(19):2510–2522, 2008.

[59] Silvia Tapia-González and Javier DeFelipe. Secretagogin as a marker to distinguish between different neuron types in human frontal and temporal cortex. *Frontiers in Neuroanatomy*, 17:1210502, 2023.

[60] Kim Thrane, Hanna Eriksson, Jonas Maaskola, Johan Hansson, and Joakim Lundeberg. Spatially resolved transcriptomics enables dissection of genetic heterogeneity in stage iii cutaneous malignant melanoma. *Cancer research*, 78(20):5970–5979, 2018.

[61] Luyi Tian, Fei Chen, and Evan Z Macosko. The expanding vistas of spatial transcriptomics. *Nature Biotechnology*, 41(6):773–782, 2023.

[62] Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for structured data with application on graphs. In *International Conference on Machine Learning*, pages 6275–6284. PMLR, 2019.

[63] Michael Vanlandewijck, Liqun He, Maarja AndaluSSI Mäe, Johanna Andrae, Koji Ando, Francesca Del Gaudio, Khayrun Nahar, Thibaud Lebouvier, Bárbara Laviña, Leonor Gouveia, et al. A molecular atlas of cell types and zonation in the brain vasculature. *Nature*, 554(7693):475–480, 2018.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.

[65] Titouan Vayer, Laetitia Chapel, Rémi Flamary, Romain Tavenard, and Nicolas Courty. Fused gromov-wasserstein distance for structured objects. *Algorithms*, 13(9):212, 2020.

[66] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon Hjelm. Deep graph infomax. *arXiv preprint arXiv:1809.10341*, 2018.

[67] Britta Veltén, Jana M Brauner, Ricard Argelaguet, Damien Arnol, Jakob Wirbel, Danila Bredikhin, Georg Zeller, and Oliver Stegle. Identifying temporal and spatial patterns of variation from multimodal data using mefisto. *Nature methods*, 19(2):179–186, 2022.

[68] Xiaoyu Wei, Sulei Fu, Hanbo Li, Yang Liu, Shuai Wang, Weimin Feng, Yunzhi Yang, Xiawei Liu, Yan-Yun Zeng, Mengnan Cheng, et al. Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. *Science*, 377(6610):eabp9444, 2022.

[69] Fabian Alexander Wolf, Philipp Angerer, and Fabian J Theis. Scanpy: large-scale single-cell gene expression data analysis. *Genome biology*, 19(1):15, 2018.

[70] Maggie MK Wong, Zhiqiang Sha, Lukas Lütje, Xiang-Zhen Kong, Sabrina Van Heukelum, Wilma DJ Van de Berg, Laura E Jonkman, Simon E Fisher, and Clyde Francks. The neocortical infrastructure for language involves region-specific patterns of laminar gene expression. *Proceedings of the National Academy of Sciences*, 121(34):e2401687121, 2024.

[71] Chen-Rui Xia, Zhi-Jie Cao, Xin-Ming Tu, and Ge Gao. Spatial-linked alignment tool (slat) for aligning heterogenous slices. *Nature Communications*, 14(1):7236, 2023.

[72] Keke Xia, Hai-Xi Sun, Jie Li, Jiming Li, Yu Zhao, Lichuan Chen, Chao Qin, Ruiying Chen, Zhiyong Chen, Guangyu Liu, et al. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in arabidopsis leaves. *Developmental cell*, 57(10):1299–1310, 2022.

[73] Chang Xu, Xiyun Jin, Songren Wei, Pingping Wang, Meng Luo, Zhaochun Xu, Wenyi Yang, Yideng Cai, Lixing Xiao, Xiaoyu Lin, et al. Deepst: identifying spatial domains in spatial transcriptomics by deep learning. *Nucleic Acids Research*, 50(22):e131–e131, 2022.

[74] Hang Xu, Huazhu Fu, Yahui Long, Kok Siong Ang, Raman Sethi, Kelvin Chong, Mengwei Li, Rom Uddamvathanak, Hong Kai Lee, Jingjing Ling, et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. *Genome Medicine*, 16(1):12, 2024.

[75] Hao Xu, Shuyan Wang, Minghao Fang, Songwen Luo, Chunpeng Chen, Siyuan Wan, Rirui Wang, Meifang Tang, Tian Xue, Bin Li, et al. Spacel: deep learning-based characterization of spatial transcriptome architectures. *Nature Communications*, 14(1):7603, 2023.

- [76] Junlin Xu, Jielin Xu, Yajie Meng, Changcheng Lu, Lijun Cai, Xiangxiang Zeng, Ruth Nussinov, and Feixiong Cheng. Graph embedding and gaussian mixture variational autoencoder network for end-to-end analysis of single-cell rna sequencing data. *Cell Reports Methods*, 3(1), 2023.
- [77] Zizhen Yao, Cindy TJ Van Velthoven, Michael Kunst, Meng Zhang, Delissa McMillen, Changkyu Lee, Won Jung, Jeff Goldy, Aliya Abdelhak, Matthew Aitken, et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. *Nature*, 624(7991):317–332, 2023.
- [78] Zhiyuan Yuan, Fangyuan Zhao, Senlin Lin, Yu Zhao, Jianhua Yao, Yan Cui, Xiao-Yong Zhang, and Yi Zhao. Benchmarking spatial clustering methods with spatially resolved transcriptomics data. *Nature Methods*, 21(4):712–722, 2024.
- [79] Ron Zeira, Max Land, Alexander Strzalkowski, and Benjamin J Raphael. Alignment and integration of spatial transcriptomics data. *Nature Methods*, 19(5):567–575, 2022.
- [80] Yuansong Zeng, Rui Yin, Mai Luo, Jianing Chen, Zixiang Pan, Yutong Lu, Weijiang Yu, and Yuedong Yang. Deciphering spatial domains by integrating histopathological image and transcriptomics via contrastive learning. *biorxiv*, pages 2022–09, 2022.
- [81] Xiang Zhou, Kangning Dong, and Shihua Zhang. Integrating spatial transcriptomics data across different conditions, technologies and developmental stages. *Nature Computational Science*, 3(10):894–906, 2023.
- [82] Yongshuo Zong, Tingyang Yu, Xuesong Wang, Yixuan Wang, Zhihang Hu, and Yu Li. const: an interpretable multi-modal contrastive learning framework for spatial transcriptomics. *BioRxiv*, pages 2022–01, 2022.
- [83] Chunman Zuo, Junjie Xia, and Luonan Chen. Dissecting tumor microenvironment from spatially resolved transcriptomics data by heterogeneous graph learning. *Nature Communications*, 15(1):5057, 2024.

Input: Slices (A_i, X_i) and distance matrices D_i for $i \in \{1, 2\}$; degree matrices \mathcal{D}_i ; hyperparameters $\lambda_2, \dots, \lambda_5$; epochs T ; latent dim d ; #Sinkhorn iterations s .

Output: Alignment $\Pi \in \mathbb{R}^{n_1 \times n_2}$; embeddings $H_i \in \mathbb{R}^{n_i \times d}$.

Initialize parameters $\{W_{ie}, b_{ie}, W_{id}, b_{id}, M, \Phi\}$

for $epoch = 1$ **to** T **do**

- // 1) Encode-Decode (GCN encoder/decoder)
- $\tilde{A}_i \leftarrow \mathcal{D}_i^{-1/2} A_i \mathcal{D}_i^{-1/2}$; $H_i \leftarrow \text{ReLU}(\tilde{A}_i X_i W_{ie} + b_{ie})$;
- $\hat{X}_i \leftarrow \text{ReLU}(\tilde{A}_i H_i W_{id} + b_{id})$.
- $\mathcal{L}_{\text{recon}} \leftarrow \frac{1}{n_1} \|X_1 - \hat{X}_1\|_F^2 + \frac{1}{n_2} \|X_2 - \hat{X}_2\|_F^2$.
- // 2) Cross-attention & Sinkhorn for alignment
- $S_i \leftarrow H_i M \in \mathbb{R}^{n_i \times d}$; // linear projection (attention)
- $C \leftarrow \text{Softmax}_{\text{rows}}(S_1 S_2^\top / \sqrt{d}) \in \mathbb{R}^{n_1 \times n_2}$
- $\Pi \leftarrow \text{Sinkhorn}_s(C)$; // doubly-stochastic with marginals $(\frac{1}{n_1}, \frac{1}{n_2})$
- $\mathcal{L}_{\text{marginal}} \leftarrow \text{KL}\left(\frac{\Pi \mathbf{1}_{n_2}}{n_2} \middle\| \frac{\mathbf{1}_{n_1}}{n_1}\right) + \text{KL}\left(\frac{\Pi^\top \mathbf{1}_{n_1}}{n_1} \middle\| \frac{\mathbf{1}_{n_2}}{n_2}\right)$.
- // 3) Spatial-structure maintenance & embedding alignment
- $\mathcal{L}_{\text{maintain}} \leftarrow \frac{1}{n_1} \|D_1 - n_2^2 \Pi D_2 \Pi^\top\|_F + \frac{1}{n_2} \|D_2 - n_1^2 \Pi^\top D_1 \Pi\|_F$.
- $\mathcal{L}_{\text{align}} \leftarrow \frac{1}{n_1} \|H_1 - n_2 \Pi H_2\|_F + \frac{1}{n_2} \|H_2 - n_1 \Pi^\top H_1\|_F$.
- // 4) Self-supervised graph contrastive loss (per slice)
- for** $i \in \{1, 2\}$ **do**

 - $r_{ij} \leftarrow \frac{1}{|N(i, j)|} \sum_{k \in N(i, j)} h_{ik}$; // neighbor average in the spatial graph
 - Form positives (h_{ij}, r_{ij}) and negatives (h'_{ij}, r'_{ij}) by a row permutation of H_i
 - $\mathcal{L}_{\text{SCL}}^{(i)} \leftarrow -\frac{1}{n_i} \sum_{j=1}^{n_i} [\log \Phi(h_{ij}, r_{ij}) + \log(1 - \Phi(h'_{ij}, r'_{ij}))]$.

- end**
- $\mathcal{L}_{\text{SCL}} \leftarrow \mathcal{L}_{\text{SCL}}^{(1)} + \mathcal{L}_{\text{SCL}}^{(2)}$.
- // 5) Update
- $\mathcal{L}_{\text{tot}} \leftarrow \mathcal{L}_{\text{recon}} + \lambda_2 \mathcal{L}_{\text{SCL}} + \lambda_3 \mathcal{L}_{\text{maintain}} + \lambda_4 \mathcal{L}_{\text{align}} + \lambda_5 \mathcal{L}_{\text{marginal}}$.
- $\text{optimizer.step}(\nabla \mathcal{L}_{\text{tot}})$.

end

return Π, H_1, H_2

Algorithm 1: JADE (pairwise training loop)

A Pseudocode of JADE

We summarize the training loop for JADE and its accelerated variant Fast-JADE. The notation matches Sections 2 and 3: A_i is the spatial graph, X_i the gene-expression matrix, \mathcal{D}_i the degree matrix of A_i , and D_i the within-slice pairwise distance matrix. JADE alternates between (i) encoding/decoding to refine embeddings and (ii) alignment in the latent space via attention and Sinkhorn normalization. Fast-JADE performs alignment at a coarser ‘hyperspot’ level for efficiency, and then recovers full-resolution correspondences using the learned projection head.

B Implementation details for JADE and benchmarks

Data Preprocessing. We followed the standardized preprocessing workflow implemented in the SCANPY package [69] to prepare the input data for our model. For each tissue slice i , raw gene expression counts were normalized by library size and log-transformed. Gene expression values were then scaled to unit variance across spatial locations. The top 3,000 highly variable genes (HVGs) were identified independently in each slice, and only the intersection was retained, resulting in a shared gene set of size $p < 3000$ for both datasets (around 1500 for DLPFC and around 1000 for axolotl brain dataset). This produced two input feature matrices: $X_1 \in \mathbb{R}^{n_1 \times p}$ and $X_2 \in \mathbb{R}^{n_2 \times p}$, where n_1 and n_2 denote the number of spatial locations in slices 1 and 2, respectively.

Spatial Graph Construction. For each tissue slice i , we construct an unweighted spatial graph $G_i = (V_i, E_i)$ that captures the spatial relationships among spatial locations using spatial information S_i . Here, V_i represents the set of spatial locations, and E_i consists of edges connecting neighboring locations based on their spatial proximity. To determine connectivity between spatial locations, we

Input: Slices (A_i, X_i) and distance matrices D_i for $i \in \{1, 2\}$; degree matrices \mathcal{D}_i ; hyperspot counts m_i ; spot-to-hyperspot assignments $N^i(l)$; hyperparameters $\lambda_2, \dots, \lambda_5$; epochs T ; latent dim d ; #Sinkhorn iterations s .

Output: Alignment $\Pi \in \mathbb{R}^{n_1 \times n_2}$; embeddings $H_i \in \mathbb{R}^{n_i \times d}$.

Initialize parameters $\{W_{ie}, b_{ie}, W_{id}, b_{id}, M, \Phi\}$

for $epoch = 1$ **to** T **do**

// 1) Encode-Decode (same as Alg. 1)

$\tilde{A}_i \leftarrow \mathcal{D}_i^{-1/2} A_i \mathcal{D}_i^{-1/2}; H_i \leftarrow \text{ReLU}(\tilde{A}_i X_i W_{ie} + b_{ie});$

$\hat{X}_i \leftarrow \text{ReLU}(\tilde{A}_i H_i W_{id} + b_{id}).$

$\mathcal{L}_{\text{recon}} \leftarrow \frac{1}{n_1} \|X_1 - \hat{X}_1\|_F^2 + \frac{1}{n_2} \|X_2 - \hat{X}_2\|_F^2.$

// 2) Hyperspot embeddings (cluster-level averaging)

$H_i^{\text{hyper}}[l] \leftarrow \frac{1}{|N^i(l)|} \sum_{j \in N^i(l)} h_j^i \quad \forall l = 1, \dots, m_i.$

// 3) Hyperspot-level cross-attention & Sinkhorn

$S_i^{\text{hyper}} \leftarrow H_i^{\text{hyper}} M \in \mathbb{R}^{m_i \times d}$

$C^{(0)} \leftarrow \text{Softmax}_{\text{rows}}(S_1^{\text{hyper}} (S_2^{\text{hyper}})^{\top} / \sqrt{d})$

$\Pi^{(0)} \leftarrow \text{Sinkhorn}_s(C^{(0)})$

$\mathcal{L}_{\text{marginal}} \leftarrow \text{KL}\left(\frac{\Pi^{(0)} \mathbf{1}_{m_2}}{m_2} \parallel \frac{\mathbf{1}_{m_1}}{m_1}\right) + \text{KL}\left(\frac{\Pi^{(0)\top} \mathbf{1}_{m_1}}{m_1} \parallel \frac{\mathbf{1}_{m_2}}{m_2}\right).$

// 4) Hyperspot-level maintenance & alignment losses

$\mathcal{L}_{\text{maintain}} \leftarrow \frac{1}{m_1} \|D_1^{\text{hyper}} - m_2^2 \Pi^{(0)} D_2^{\text{hyper}} \Pi^{(0)\top}\|_F + \frac{1}{m_2} \|D_2^{\text{hyper}} - m_1^2 \Pi^{(0)\top} D_1^{\text{hyper}} \Pi^{(0)}\|_F.$

$\mathcal{L}_{\text{align}} \leftarrow \frac{1}{m_1} \|H_1^{\text{hyper}} - m_2 \Pi^{(0)} H_2^{\text{hyper}}\|_F + \frac{1}{m_2} \|H_2^{\text{hyper}} - m_1 \Pi^{(0)\top} H_1^{\text{hyper}}\|_F.$

// 5) Graph contrastive (spot-level, identical to Alg. 1)

Compute \mathcal{L}_{SCL} as in Algorithm 1.

// 6) Update

$\mathcal{L}_{\text{tot}} \leftarrow \mathcal{L}_{\text{recon}} + \lambda_2 \mathcal{L}_{\text{SCL}} + \lambda_3 \mathcal{L}_{\text{maintain}} + \lambda_4 \mathcal{L}_{\text{align}} + \lambda_5 \mathcal{L}_{\text{marginal}};$

$\text{optimizer.step}(\nabla \mathcal{L}_{\text{tot}}).$

end

Recover Π : Reuse the trained M to compute $C = \text{Softmax}_{\text{rows}}((H_1 M)(H_2 M)^{\top} / \sqrt{d})$ and then apply Sinkhorn_s to obtain the full-resolution Π (as in Algorithm 1).

return Π, H_1, H_2

Algorithm 2: Fast-JADE (coarse-to-fine alignment with hyperspots)

compute the Euclidean distances between all pairs of locations using their spatial coordinates, then establish edges based on a defined neighborhood size k , where an edge is created between spatial location i and spatial location j if j is among the k nearest neighbors of i , thereby constructing a graph that captures the spatial relationships among spatial locations in the tissue slice. For all real data analyses, we set k to be 3. The resulting graph is mathematically represented by an adjacency matrix $A_i = (a_{ij})$, where $a_{ij} = 1$ indicating a connection between spatial locations i and j , and $a_{ij} = 0$ indicating no connection. After this step, we obtain two adjacency matrices of the spatial graph in two slices, $A_1 \in \mathbb{R}^{n_1 \times n_1}$ and $A_2 \in \mathbb{R}^{n_2 \times n_2}$.

Evaluation metrics. In this paper, we evaluate both alignment accuracy and representation learning quality across methods. To evaluate spatial alignment, we extend beyond conventional metrics that only consider the proportion of correctly aligned spatial location pairs sharing the same annotation (e.g., layer label) [79, 78]. While commonly used, these traditional metrics can be misleading: they often favor methods that selectively align “easy” spatial location pairs while ignoring harder regions, thereby inflating accuracy at the cost of coverage and interpretability. To address this limitation, we adopt an alignment accuracy metric that incorporates both aligned and unaligned spatial locations, offering a more robust and informative assessment. Specifically, let $\pi \in [0, 1]^{n_1 \times n_2}$ be the alignment matrix where $\pi_{ij} = 1$ if spatial location i in slice 1 is mapped to spatial location j in slice 2 (or for soft alignment methods like JADE). We normalize each column of π to sum up to $1/n_2$, yielding a matrix $\tilde{\pi}$ that retains soft alignments while assigning zero mass to unaligned spots. Our alignment accuracy is then defined as $\text{Acc} = \sum_{i,j} \tilde{\pi}_{ij} \mathbf{1}(l_i = l_j)$, where l_i and l_j denote the biological annotations (e.g., cell type, tissue layer) for spatial location i and j , respectively. This formulation rewards biologically meaningful alignments—i.e., mappings between spots with consistent labels—while penalizing both

misalignments and omissions. When all spatial locations are perfectly aligned within the correct biological regions, $\text{Acc} = 1$. Finally, to ensure symmetry, we repeat the entire procedure swapping the roles of slice 1 and slice 2 and report the average of the two scores.

Beyond alignment, we evaluate the quality of the learned representations produced by each method. We use the adjusted Rand Index (ARI) to assess clustering accuracy by comparing predicted domain labels with ground-truth annotations, providing a quantitative measure of how well the representations capture underlying biological structure. To assess batch effect removal, we compute the local inverse Simpson’s index (iLISI), which quantifies the degree of slice mixing in the embedding space—higher values indicate better integration across slices. We further perform qualitative assessment using Uniform Manifold Approximation and Projection (UMAP): coloring spatial locations by their true domain labels reveals biological coherence, while coloring by slice identity visually demonstrates integration quality and batch correction performance.

Baseline methods We benchmarked our method, JADE, against a set of six representative baseline models, selected for their relevance to either alignment or embedding tasks in spatial transcriptomics. For alignment accuracy, we evaluated against PASTE [79], Seurat [57], and STAligner [81], three widely-used methods designed to align SRT slices based on transcriptomic similarity and spatial proximity. For evaluating the learned embeddings through spatial domain detection, we benchmarked against GraphST [38], STAGATE [15], and STAligner, all of which incorporates spatial or graph-based information to enhance the detection of spatial domains. Below we outline, for each benchmark method, the key preprocessing steps, parameter settings, and clustering or alignment workflows used in our comparisons. All pipelines begin from the same raw count matrices and spatial coordinate annotations.

- **JADE.** For each pairwise alignment task, we first selected the top 3,000 highly variable genes from each slice, then took the intersection of these two sets, yielding approximately 1,500 genes for every pair in DLPFC and 1000 genes for axolotl brain dataset. We then applied log-normalization to the expression matrix, and constructed a spot-by-gene feature matrix. For the DLPFC dataset, we normalized each inter-slice distance matrix by the minimum distance between any two distinct spots within the same slice. For the axolotl brain dataset, because the juvenile slice is slightly larger physically than the adult slice, we rescaled the coordinates of the adult slice to match that of the juvenile slice. We ended up multiplying the x coordinates of the adult slice by approximately 1.3 to eliminate any alignment bias induced by scaling. The data-driven approach of selecting λ_2 - λ_5 can be found in Section E. We employed a GCN with a single hidden layer to project the original expression matrix into a 64-dimensional latent space. Following Xu et al. [76], we set the neighborhood size to $k = 3$, which has been shown to yield strong performance. Before joint training, we pretrained the model to obtain an initial estimate of the alignment matrix Π , since the embeddings H are essentially uninformative at the start of optimization.

$$\mathcal{L}_{\text{pretrain}} = \mathcal{L}_{\text{SCL}} + \lambda_2 \mathcal{L}_{\text{recon}} + \lambda_3 \mathcal{L}_{\text{maintain}} + \lambda_4 \mathcal{L}_{\text{align}}^0 + \lambda_5 \mathcal{L}_{\text{marginal}}.$$

Similar to the Mis-Alignment loss $\mathcal{L}_{\text{align}}$, we define

$$\mathcal{L}_{\text{align}}^0 = \frac{1}{n_1} \|X_1 - n_2 \Pi X_2\|_F + \frac{1}{n_2} \|X_2 - n_1 \Pi^T X_1\|_F.$$

Throughout, we fixed $\lambda_4^0 = 5.0$. We used Adam optimizer with learning rate set as 0.002, number of pretraining epochs as be 200 and number of training epochs set as 800.

- **GraphST.** Following the GraphST protocol, we used the same preprocessing steps as JADE and then assembled each spot’s neighborhood by integrating within-slice 2D spatial locations. Specifically, we fixed the neighborhood size to $k = 3$ spots for each query location, which is also recommended by GraphST. All other GraphST hyperparameters were left at their package defaults. After computing the spatially informed graph, we applied the mclust Gaussian mixture model for final cluster assignment, using a smoothing radius of 20 spots in the refinement stage, which again mirroring GraphST’s recommended default.
- **STAligner.** We subjected the data to our standard HVG filtering and normalization pipeline before invoking STAligner’s built-in neighbor selection routine. For the human DLPFC slices, we set the cutoff radius to 8 spatial units, which yielded on average approximately 5 neighbors per spot; for the axolotl brain slices, we increased the cutoff to 50 units to

account for differences in spot density, also achieving roughly 5 neighbors per spot. All other STAligner hyperparameters remained at their defaults. Clustering on the aligned feature space was again performed with mclust, allowing direct comparability to GraphST and JADE.

- **STAGATE.** After the shared preprocessing steps, we turned to STAGATE’s graph attention framework. We utilized its default neighbor selection within each slice, specifying a radius of 8 units for DLPFC (approximately 5 neighbor spots) and 50 units for the axolotl data (approximately 5 neighbor spots). This radius-based neighborhood ensures that each spot aggregates information from a consistent local context before passing through the graph attention layers. We retained STAGATE’s default training hyperparameters and extracted the learned embeddings for clustering via mclust.
- **Seurat.** We applied the canonical Seurat integration workflow across all four consecutive slices of each sample in DLPFC dataset. We selected the top 3,000 variable genes for integration and computed 15 principal components on the combined expression matrix.
- **PASTE.** Finally, we ran the original PASTE algorithm with its default settings. Throughout, we set $\alpha = 0.1$ as recommended. No parameter tuning was performed beyond the defaults supplied by the PASTE package.

Biological applications. To assess the biological interpretability of the learned representations, we performed downstream analysis of domain-specific gene expression. For each spatial domain identified from the embeddings, we conducted differential expression analysis using the Wilcoxon rank-sum test to identify domain-enriched marker genes. These markers were then validated against known anatomical annotations and literature-curated gene lists. This analysis demonstrates the ability of our method to recover spatially organized, functionally coherent tissue structures and to reveal biologically meaningful gene–domain associations.

C Additional results for DLPFC

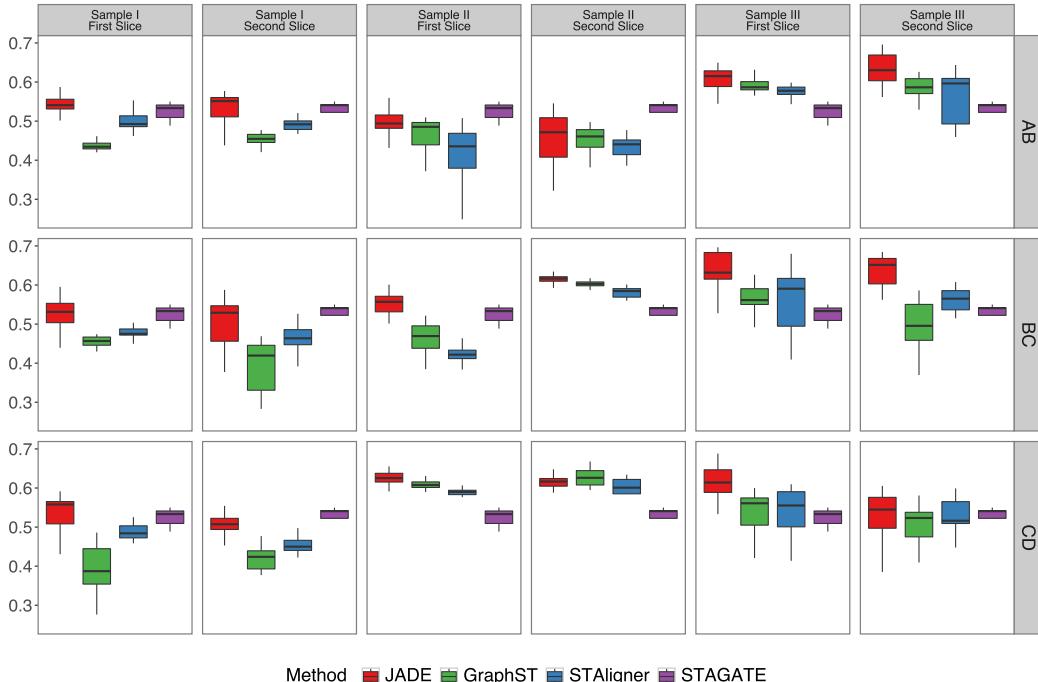


Figure 4: Adjusted Rand Index (ARI) results for three DLPFC samples (I–III, left to right), illustrating pairwise clustering of adjacent sections. Rows correspond to slice pairs AB, BC, and CD (top to bottom), and each boxplot summarizes ARI scores for both slices over 20 independent replicates.

Complementing Figure 2(F), Figure 4 presents the ARI results for all samples and their adjacent slice pairs in the DLPFC dataset. In nearly every comparison, JADE outperforms the other methods by

a substantial margin. Across all three DLPFC samples (I–III) and for each adjacent-slice pairing (AB, BC, and CD), JADE not only achieves the highest median ARI but also exhibits consistently tighter score distributions than the competing methods. For example, in Sample I’s AB pair, JADE’s median ARI is roughly 0.55, compared with about 0.45 for GraphST, 0.50 for STAligner, and 0.40 for STAGATE—an improvement of 0.05–0.15. Similarly, in Sample II’s BC pairing, JADE scores near 0.62, while GraphST and STAligner both cluster around 0.60 and STAGATE lags at approximately 0.42. Moreover, JADE exhibits uniformly narrower interquartile ranges, particularly when compared to STAligner in Samples II and III and to STAGATE in Sample I. This indicates less variability and greater robustness to random initialization of JADE algorithm. Together, Figure 4 and Figure 2(E) highlight the satisfactory improvement achieved by JADE and underscore that joint alignment and embedding delivers more accurate and stable clustering across consecutive tissue sections.

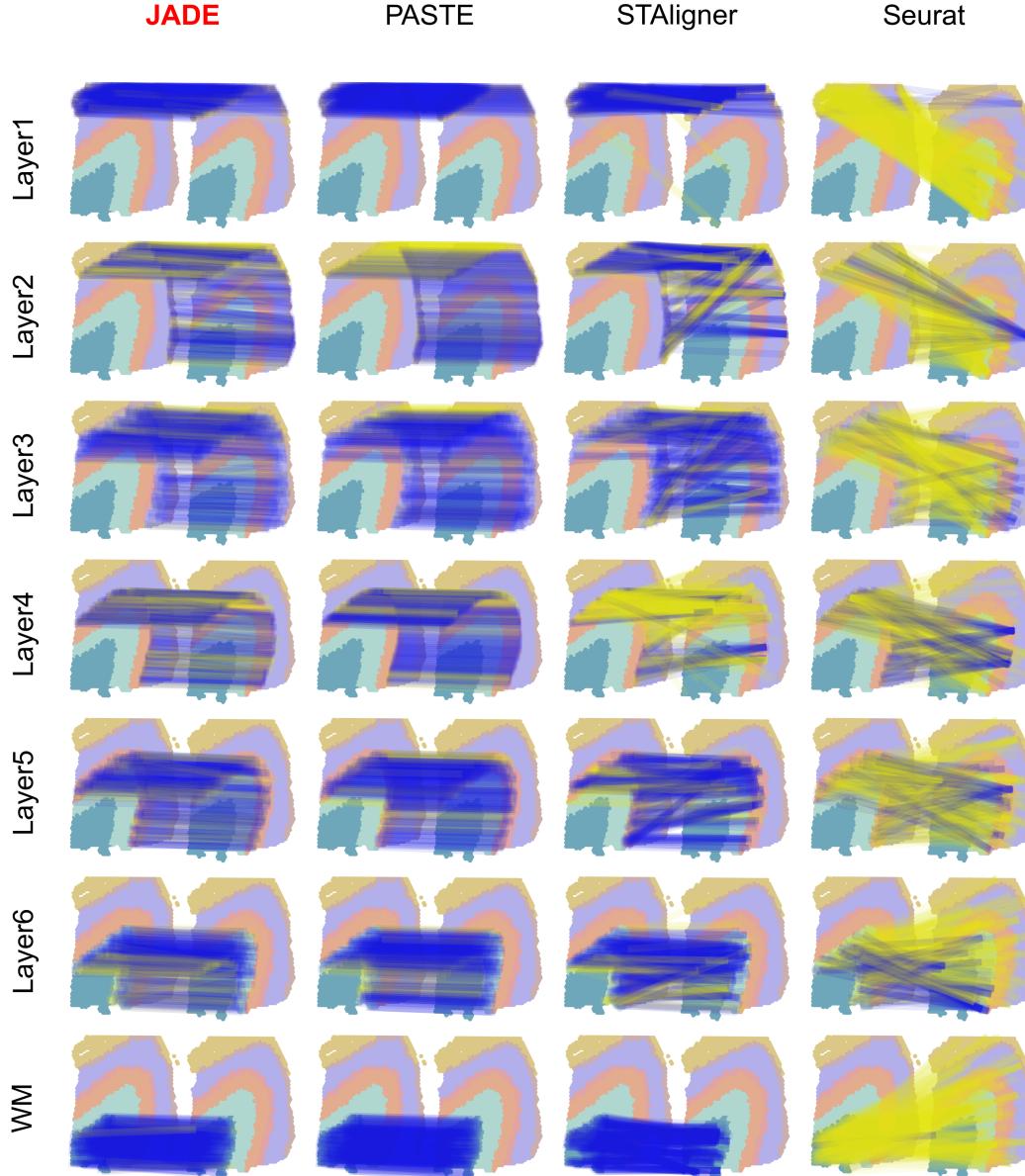


Figure 5: Illustration of alignment results from a fixed layer of Slice A to Slice B for Sample III, comparing four methods; blue lines denote correct correspondences, and yellow lines denote incorrect links.

Complementing Figure 2(D), Figure 5 displays the top 250 spot correspondences between a fixed layer of Slice A and Slice B for Sample III. Blue lines indicate correct matches, while yellow lines denote incorrect ones. Overall, JADE delivers superior alignment quality compared to all three other

benchmarks: it produces markedly smoother, less noisy mappings than STAligner or Seurat across all seven layers, and it achieves higher correspondence accuracy than PASTE with only a minimal trade-off in smoothness.

Table 1: Accuracy of top 250 alignment correspondences by domain.

Method	Layer1	Layer2	Layer3	Layer4	Layer5	Layer6	WM
JADE	0.996	0.636	0.908	0.776	0.912	0.752	1.000
PASTE[79]	1.000	0.584	0.840	0.724	0.848	0.836	1.000
STAligner[81]	0.936	0.648	0.832	0.252	0.752	0.740	0.992
Seurat[57]	0.016	0.084	0.136	0.296	0.276	0.344	0.020

Table 2: Fraction of unaligned cells per domain for each alignment method.

Method	Layer1	Layer2	Layer3	Layer4	Layer5	Layer6	WM
JADE	0.000	0.000	0.000	0.000	0.000	0.000	0.000
PASTE[79]	0.000	0.000	0.000	0.000	0.000	0.000	0.000
STAligner[81]	0.739	0.683	0.709	0.818	0.738	0.705	0.790
Seurat[57]	0.953	0.960	0.932	0.862	0.889	0.818	0.984

In Table 1, we report, for each spatial domain within DLPFC, the alignment accuracy achieved by the top 250 correspondence links when matching Slice A to Slice B in Sample III. Each entry shows the proportion of correctly paired spots among the first 250 alignments for that domain, providing a domain-specific assessment of alignment performance. JADE emerges as the most reliable method, achieving nearly perfect accuracy (1.00) in Layer 1 and WM and maintaining at least 0.63 accuracy in every layer. PASTE also attains perfect matches in Layer 1 and WM but shows greater fluctuation in intermediate layers (ranging from 0.584 to 0.848). STAligner also delivers competitive results in early layers, 0.936 in Layer 1 and 0.648 in Layer 2, but its performance drops markedly in deeper regions (as low as 0.252 in Layer 4), although it still nearly reaches perfection in WM (0.992). In contrast, Seurat fails to produce meaningful alignments across all domains, with accuracy scores below 0.35 in every layer (0.016–0.344). Table 2 reports, for each cortical layer (Layers 1–6) and white matter (WM), the fraction of spots left unaligned by each method. Both JADE and PASTE achieve a fully dense correspondence matrix, no spot remains unaligned in any domain. In contrast, STAligner fails to align a substantial fraction of spots (68–82% across layers, and 79% in WM), while Seurat leaves even more spots unmatched (93–96% in Layers 1–3, tapering to 81–82% in Layers 6 and 4–5, and 98% in WM). These results highlight that only JADE and PASTE guarantee fine-grained spot-spot alignment, whereas STAligner and Seurat produce large numbers of unaligned spots.

D Additional results for axolotl brain dataset

Complementing Figure 3(D), Figure 6 displays the top spot correspondences between a fixed layer of juvenile slice to adult slice. The number of correspondences is determined by half of the corresponding spots. Blue lines indicate correct matches, while gray lines denote incorrect ones. Similar to DLPFC, JADE delivers superior alignment quality compared to all three other benchmarks overall.

Table 3 compares, for each common cell type between juvenile and adult slices, the accuracy of the top correspondences and the average fraction of spots left unaligned. Across all cell types, JADE attains the highest or near-highest top-link accuracy, with values ranging from 0.105 (sstIN) up to 0.766 (nptxEX). PASTE closely follows JADE, in several cases enjoying the highest accuracy for dpEX, but generally trails by 5–10 percentage points. While STAligner exceeds JADE on individual domains (e.g. scgnIN: 0.778 vs. 0.722; sfrpEGC: 0.171 vs. 0.145), JADE remains close to STAligner in some cases (e.g. scgnIN, sfrpEGC). However, STAligner’s average fraction of unaligned spots is 0.724, meaning over 70 % of cells remain unaligned. Seurat performs poorly throughout, with top-link accuracies below 0.10 in every domain and an average of 0.925 unaligned spots. Taken together, these results underscore that although STAligner can rival JADE in top-ranked matches for certain cell types, its high rate of unaligned spots prevents a truly fine-grained, cell-to-cell alignment. In contrast, JADE (and PASTE) deliver both high accuracy and cell-cell alignment, ensuring no cell is left unmatched. JADE (and PASTE) combine high top-link accuracy with exhaustive alignment, leaving none of spots unaligned, making them the only methods to guarantee both precision and completeness of correspondences.

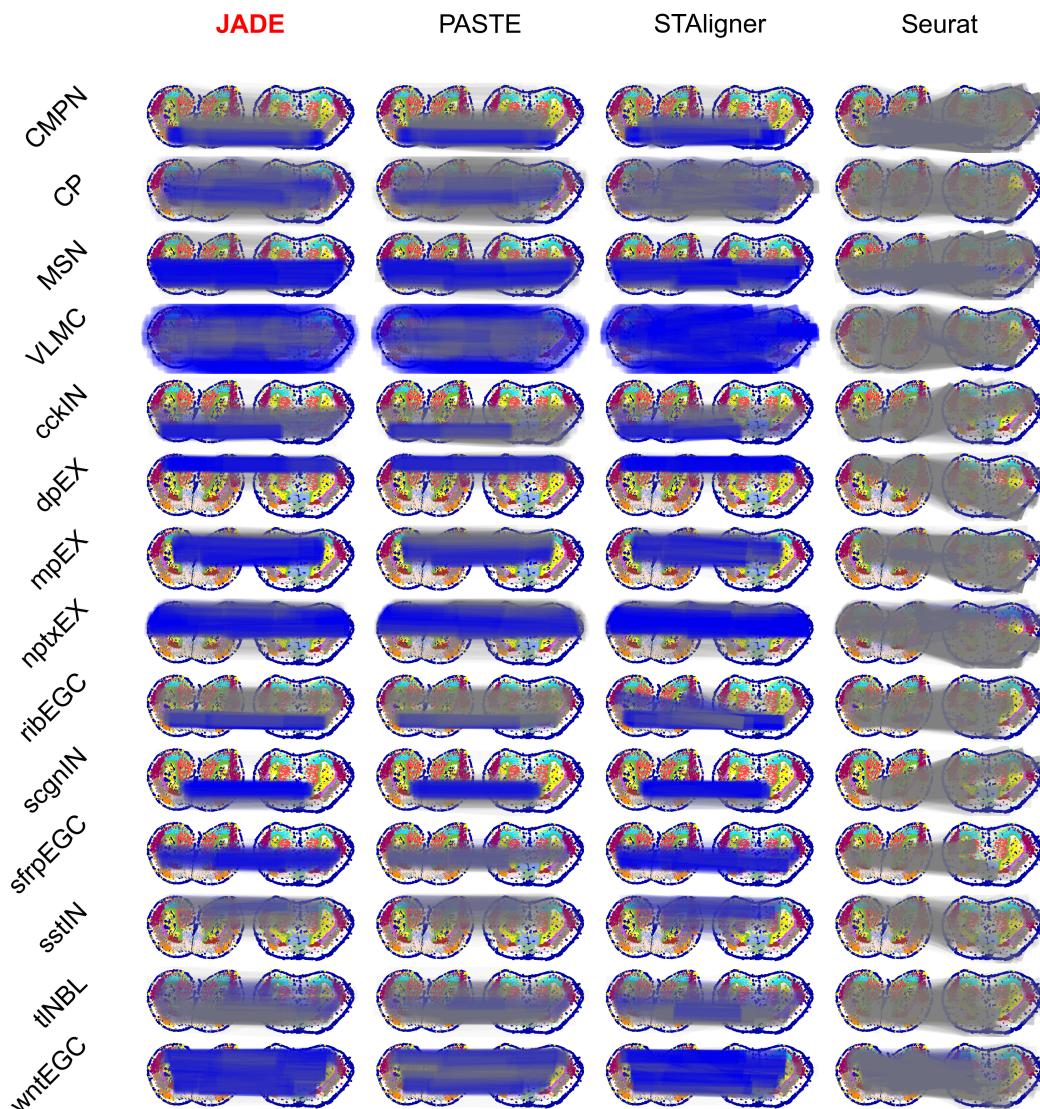


Figure 6: Alignment from a given cell type in juvenile slice to the adult slice, comparing four methods (JADE, PASTE, STAligner, and Seurat). Blue lines denote correct correspondences, while grey lines denote incorrect links.

Table 3: Alignment accuracy of the top correspondences and average fraction of unaligned spots for each common cell type between juvenile and adult slices. For each cell type, the number of correspondences equals half of its total cells.

Domain	# cells	JADE	PASTE[79]	STAligner[81]	Seurat[57]
CMPN	782	0.357	0.288	0.448	0.012
CP	1500	0.224	0.157	0.121	0.069
MSN	54	0.685	0.704	0.741	0.037
VLMC	523	0.585	0.539	0.772	0.011
cckIN	99	0.211	0.169	0.237	0.019
dpEX	456	0.809	0.568	0.721	0.011
mpEX	464	0.623	0.394	0.591	0.012
nptxEX	840	0.751	0.637	0.744	0.031
ribEGC	187	0.337	0.096	0.690	0.011
scgnIN	713	0.421	0.445	0.372	0.059
strpEGC	349	0.630	0.166	0.745	0.011
sstIN	294	0.109	0.075	0.306	0.003
tlNBL	257	0.183	0.105	0.237	0.000
wntEGC	509	0.658	0.326	0.633	0.069
<i>Avg. frac. unaligned</i>	—	0.000	0.000	0.724	0.925

E Hyperparameter tuning and sensitivity analysis

The training objective of JADE is

$$\underbrace{\mathcal{L}_{\text{SCL}} + \lambda_2 \mathcal{L}_{\text{recon}}}_{\text{single slice loss}} + \underbrace{\lambda_3 \mathcal{L}_{\text{maintain}} + \lambda_4 \mathcal{L}_{\text{align}}}_{\text{alignment loss}} + \lambda_5 \mathcal{L}_{\text{marginal}}.$$

The overall loss can be decomposed into three terms: the single-slice reconstruction loss, the alignment loss, and a regularization term. Throughout, we fix $\lambda_2 = 10$ and $\lambda_5 = 1$ and choose a neighborhood size of $k = 3$. The hyperparameters λ_3, λ_4 govern the trade-off between enforcing accurate slice-to-slice alignment and preserving meaningful, slice-specific embeddings. Within the alignment loss, $\mathcal{L}_{\text{maintain}}$ acts as a regularization term or prior belief that encodes our prior belief in the spatial coordinate similarity between the two slices. For the DLPFC dataset, we normalize each inter-slice distance matrix by the minimum distance between any two distinct spots within the same slice. We recommend using $\lambda_4 = 0.1$ and $\lambda_3 = 2.0$ by default, except in two cases—where the slices are a priori less similar—in which we set $\lambda_3 = 0.2$. To quantify slice-to-slice similarity—and thereby guide hyperparameter selection—we define the mini-max distance, which measures the average feature mismatch between corresponding spots after neighborhood smoothing. Specifically, suppose we have two slices with n_1 and n_2 spots. We first perform joint PCA and reduce the normalized gene expression matrices into low-dimensional features $Z_1 \in \mathbb{R}^{n_1 \times d}$ and $Z_2 \in \mathbb{R}^{n_2 \times d}$. Denote the adjacency matrices of these two slices by A_1 and A_2 , respectively. We define the mini-max measure as follows:

$$\text{Mini-max}(Z_1, Z_2) = \frac{\text{quantile} \{ \min_{1 \leq j \leq n_2} \|(A_1 Z_1)_i - (A_2 Z_2)_j\| : 1 \leq i \leq n_1, 0.99 \}}{\sqrt{\text{mean}_i \|(A_1 Z_1)_i\| \times \text{mean}_j \|(A_2 Z_2)_j\|}},$$

where the inner minimum is taken row-wise over the first slice’s smoothed features, quantifying the distance between each spot of the first slice and its closest counterpart on the second slice. The mini-max distance is then defined as the 99%th-largest quantile among these minimal distances. Table 4 reports the mini-max distances for three samples across their adjacent slice pairs (AB, BC,

Table 4: Mini-max distances quantifying slice-to-slice similarity for three samples.

Sample	AB	BC	CD
Sample I	0.2726	0.5670	0.2609
Sample II	0.2958	0.4713	0.2764
Sample III	0.2439	0.2127	0.2368

CD). We note that the BC pairs in Sample I and Sample II have substantially larger distances than the rest. For these two cases, we set $\lambda_3 = 0.2$. Consequently, for all other cases, we set $\lambda_3 = 2.0$

to promote joint learning between slices. Figure 7 and Figure 8 present sensitivity analyses for the hyperparameters λ_3 and λ_4 , respectively. Both the adjusted Rand index and the alignment score remain stable over a wide range of values: λ_3 from 0.5 to 2.0 times the default value; λ_4 from 0.05 to 0.25, deteriorating only when either hyperparameter is set to very low levels.

Although we fixed λ_2, λ_5 throughout the experiment, we extend the sensitivity analysis to λ_2 and λ_5 in Table 5 to further demonstrate the flexibility of our algorithm.

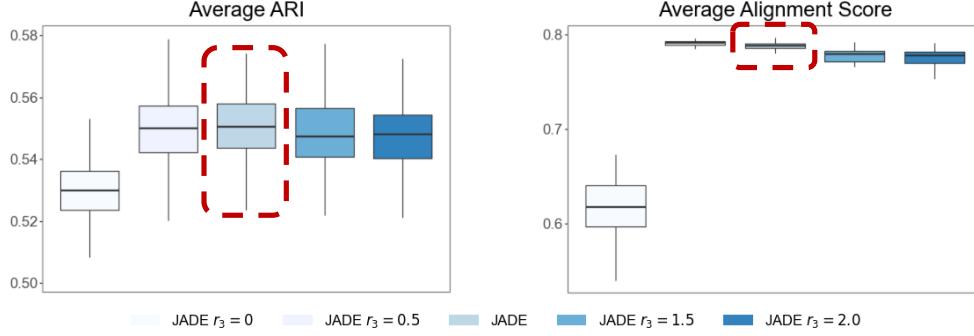


Figure 7: Sensitivity analysis: Varying λ_3 , where r_3 is the magnifier of λ_3 against JADE. Each boxplot summarizes the outcomes of 100 independent replications.

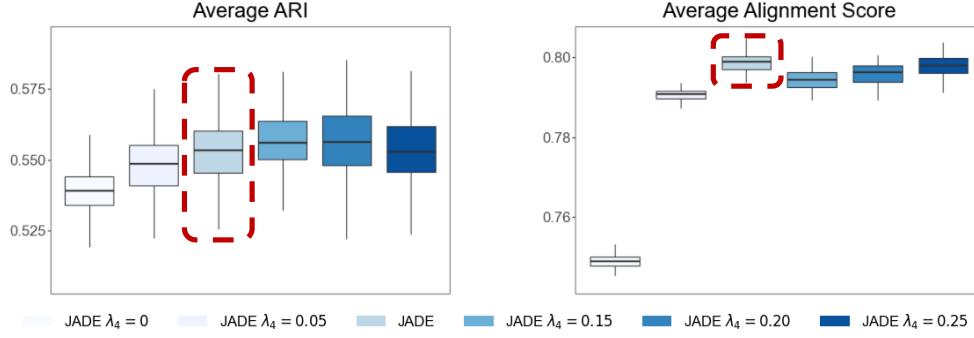


Figure 8: Sensitivity analysis: Varying λ_4 . Each boxplot summarizes the outcomes of 100 independent replications.

F Ablation study

Table 5: Sensitivity analysis of λ_2 and λ_5 for JADE.

Metric	Default	$0.5 \times \lambda_2$	$2.0 \times \lambda_2$	$2.5 \times \lambda_2$	$0.5 \times \lambda_5$	$2.0 \times \lambda_5$	$2.5 \times \lambda_5$
ARI	0.550	0.550	0.564	0.564	0.547	0.545	0.552
Alignment ACC	0.788	0.797	0.790	0.788	0.801	0.773	0.787

Figure 9 compares JADE to versions with no misalignment loss ($\lambda_3 = 0$) and no misalignment loss ($\lambda_4 = 0$). Results show that performance deteriorates markedly when either loss term is omitted, demonstrating that both the misalignment and misalignment losses are crucial for optimal embedding and alignment quality. Setting $\lambda_4 = 0$ causes the ARI to drop from 0.55 to 0.53 (a 4% decrease) and the alignment score to fall from 0.8 to 0.7 (over a 10% decrease), underscoring the critical role of the misalignment loss. Setting $\lambda_3 = 0$ causes the ARI to drop from 0.55 to 0.525 (a 5% decrease) and the alignment score to fall from 0.8 to 0.62 (about 20% decrease), underscoring the critical role of the misalignment loss.

G Scalability of Fast-JADE

Table 6 and 7 present the runtime and average ARI for JADE and Fast-JADE, the accelerated version of JADE using hyperspots as introduced in Section 3. We see that as the runtime reduce

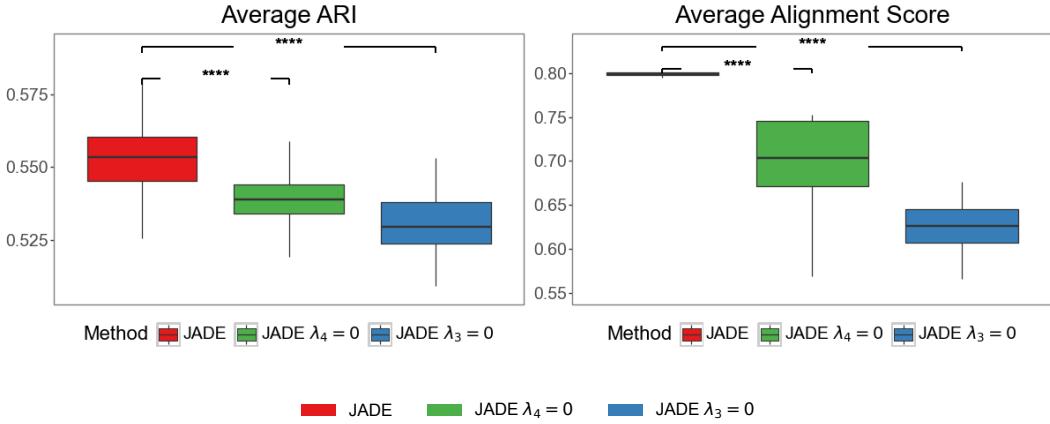


Figure 9: Ablation study: each boxplot summarizes the outcomes of 100 independent replications. We calculate the p -value using the Wilcoxon-rank sum test. **** stands for p -value lower than 0.01%

Table 6: Runtime comparison of JADE and Fast-JADE (relative run time).

Method	DLPFC	Axolotl Brain
JADE	1.000	1.000
Fast-JADE (with 2000 hyperspots)	0.504	0.640
Fast-JADE (with 1000 hyperspots)	0.200	0.333

significantly when using Fast-JADE instead of the standard version of JADE while the ARI remains almost the same. Table 8 presents the GPU runtime per epoch for Fast-JADE. As shown in the table, Fast-JADE demonstrates approximately linear scaling with respect to the data size, maintaining efficient performance even on large-scale data.

H Discussion

Direct alignment against transitive alignment. We conducted additional experiments on the DLPFC dataset (Sample III) using slices A, B, and C. Specifically, we first computed pairwise alignments Π_{AB} (between A and B) and Π_{BC} (between B and C) using JADE, and then derived a transitive alignment $\Pi_{AC} = \Pi_{AB} \times \Pi_{BC}$, followed by Sinkhorn normalization to enforce the doubly stochastic property. We compared this transitive Π_{AC} with the direct alignment obtained by running JADE on slices A and C. The alignment accuracy for the direct A–C alignment was 0.767, whereas the transitive alignment via A–B–C achieved an accuracy of 0.749. These results suggest that although transitive alignment using JADE is feasible, it accumulates intermediate alignment noise, resulting in slightly lower accuracy than direct pairwise alignment. This finding highlights an important point: JADE’s pairwise design supports flexible alignment across arbitrary slice pairs and enables indirect mapping when necessary, but direct alignment remains the preferred strategy due to its superior accuracy.

Performance under unbalanced number of spots in two slices. We conducted an experiment on the DLPFC dataset (Sample III, slices A and B), where we randomly masked a subset of spots from slice A to simulate scenarios with unequal spot counts. Table 9 reports the results obtained by varying the proportion of removed spots (10%, 25%, and 50%) in the DLPFC data.

Table 7: Average ARI comparison of JADE and Fast-JADE in DLPFC.

Method	DLPFC
JADE	0.551 (0.002)
Fast-JADE (with 1000 hyperspots)	0.536 (0.001)

Table 8: GPU runtime for Fast-JADE (milliseconds per epoch).

Number of spots per slice	10,000	20,000	50,000	100,000
Runtime (ms/epoch)	14.6	32.3	84.8	177

Across all tested levels of spot removal (up to 50%), the Adjusted Rand Index (ARI) for slices A and B, overall alignment accuracy (ACC), and batch-correction metric (iLISI) remain highly stable, showing only minimal fluctuations. This robustness demonstrates that JADE effectively handles situations with substantially different spot counts between slices, making it practical for real-world applications where tissue sections vary in size.

Table 9: Performance under unequal number of spots on the DLPFC dataset.

% Spots Removed	ARI (Slice A)	ARI (Slice B)	ACC	iLISI
0%	0.62	0.65	0.83	1.98
10%	0.60	0.66	0.81	1.97
25%	0.61	0.65	0.82	1.98
50%	0.62	0.67	0.82	1.98

Comparison with image-based alignment methods. To evaluate JADE against image-based alignment methods, we conducted an experiment with GPSA [28], the only method in the benchmarking study by Hu et al. [24] that integrates both gene expression and histology features. As shown in Table 10, JADE consistently outperforms GPSA in alignment accuracy across all slice combinations in the DLPFC dataset.

While incorporating histological images can, in principle, improve alignment, their effectiveness depends heavily on image quality, resolution, and cross-sectional consistency. In practice, H&E images may be noisy, misaligned, or inconsistently stained. Moreover, these images are often obtained from adjacent rather than identical sections, limiting their spatial correspondence with transcriptomic profiles. Such discrepancies can introduce spurious or noisy signals, particularly when histological structures do not clearly delineate molecular domains.

By contrast, JADE relies on gene expression and spatial location information, which are more consistently measured across spatial transcriptomics platforms. This design enables JADE to be broadly applicable to technologies such as the Stereo-seq platform (as shown in Figure 3), where histological imaging is unavailable, and to remain robust when image quality is variable or inconsistent.

Importantly, JADE’s framework is modular and can be extended to incorporate image-derived information in future work. For example, histological features could be integrated by modulating the spatial graph (e.g., assigning image informed weights to graph edges) or by combining image embeddings with expression-based representations. These extensions could further enhance JADE’s utility in contexts where high-quality image data are available, while preserving its core advantage of joint alignment and representation learning. Unlike alignment-only methods such as GPSA or PASTE, JADE uniquely supports both spatial alignment and shared low-dimensional embedding, enabling a broader range of downstream analyses, including clustering, visualization, and trajectory inference.

Table 10: Alignment accuracy (ACC) comparison between JADE and GPSA on the DLPFC dataset (Samples I–III; slices A–D).

Method	Sample I			Sample II			Sample III			Average
	AB	BC	CD	AB	BC	CD	AB	BC	CD	
JADE	0.76	0.54	0.81	0.88	0.76	0.84	0.83	0.82	0.79	0.78
GPSA[28]	0.19	0.20	0.25	0.42	0.34	0.28	0.18	0.17	0.17	0.24

Comparison with new benchmarks. To further evaluate the generalizability and robustness of JADE, we conducted additional experiments on two diverse and challenging datasets: the MERFISH dataset [10] and the breast cancer Visium/Xenium dataset [26], previously used in SLAT [71]. In the latter, one slice was generated using Visium (approximately 3,500 spots and over 15,000 genes) and the other using Xenium (over 140,000 spots but only about 300 genes). As shown in Table 11, JADE consistently outperforms or matches existing methods, SLAT and STAligner, in both domain detection

accuracy (Adjusted Rand Index, ARI) and alignment accuracy (ACC). These results demonstrate JADE’s robustness across distinct spatial transcriptomics platforms (MERFISH, Visium, Xenium) and tissue types (brain and breast).

We note an important caveat regarding the breast cancer dataset. This dataset does not provide manually curated one-to-one ground-truth correspondences between the Visium and Xenium slices. The Visium slice includes coarse region-level labels (e.g., *immune*, *invasive*), whereas the Xenium slice contains more fine-grained cell-type annotations (e.g., *CD8⁺ T Cells*, *Invasive Tumor*). To enable quantitative evaluation, we manually harmonized these label sets based on biological correspondence and naming conventions. Although this approximation enables consistent comparison across methods, it introduces some ambiguity into the label-based evaluation. The reported alignment accuracy (ACC) should therefore be interpreted with caution, as it may partially reflect label mismatches rather than true misalignment. A more definitive assessment would require expert-annotated alignments, which are currently unavailable for this dataset.

Table 11: Comparison between JADE (Fast-JADE with $m_1 = m_2 = 1000$), SLAT, STAaligner, and SpotScape on the MERFISH and Breast Cancer datasets. Results are averaged over 20 runs.

Method	MERFISH[10]			Breast Cancer[26]		
	ARI-1	ARI-2	ACC	ARI-1	ARI-2	ACC
JADE	0.504	0.538	0.706	0.433	0.230	0.336
SLAT[71]	0.224	0.331	0.386	0.420	0.197	0.294
STAaligner[81]	0.371	0.487	0.535	0.359	0.186	0.089
SpotScape[50]	0.346	0.265	0.690	0.277	0.179	0.312

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: **[Yes]**

Justification: The scope and contributions of this work were included in the abstract and introduction, particularly highlighted at the end of the Introduction section.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: Limitations and future directions of the work were included in the Conclusions section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This is a methodological paper. We do not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed algorithms were described in Section 2 and 3. The implementation details of experiments are included in Sections 4 and Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The real data used in this work are publicly accessible and properly cited. We also include the code and descriptions in the supplementary materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: The details were discussed in Sections 4 and Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: In Sections 4 and Appendix, we reported p -values when comparing our method to others.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer “Yes” if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Computational cost was discussed in Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: The work of this paper is conducted with NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: Societal impacts of the work were included in the Introduction section.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Existing assets were cited and credited throughout this paper.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Documentation was provided with the supplementary code.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not conduct research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not conduct research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We do not use LLM for the core methods in this research.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.