CCPrefix: Counterfactual Contrastive Prefix-Tuning for Many-Class Classification

Anonymous ACL submission

Abstract

 Recently, prefix-tuning was proposed to effi- ciently adapt pre-trained language models to a broad spectrum of natural language classifi- cation tasks. It leverages soft prefix as task- specific indicators and language verbalizers as categorical-label mentions to narrow the for- mulation gap from pre-training language mod- els. However, when the label space increases considerably (i.e., many-class classification), such a tuning technique suffers from a verbal- izer ambiguity problem since the many-class labels are represented by semantic-similar ver- balizers in short language phrases. To over- come this, inspired by the human-decision pro- cess that the most ambiguous classes would be mulled over for an instance, we propose a brand-new prefix-tuning method, Counter- factual Contrastive Prefix-tuning (CCPrefix), for many-class classification. Basically, an instance-dependent soft prefix, derived from fact-counterfactual pairs in the label space, is leveraged to complement the language verbal- izers in many-class classification. We conduct experiments on many-class benchmark datasets in both the fully supervised setting and the few- shot setting, which indicates that our model outperforms former baselines.

028 1 Introduction

 Although fine-tuning paradigm has achieved great success in natural language processing, effectively transferring knowledge to specific tasks, there re- mains a considerable gap between pre-training and fine-tuning, which can inhibit the transfer and adap- tation of knowledge in PLMs to downstream tasks. This gap primarily arises from the diverse objective forms that downstream tasks take on. To narrow [t](#page-9-0)his gap, Prompt-tuning [\(Brown et al.,](#page-8-0) [2020;](#page-8-0) [Schick](#page-9-0) [et al.,](#page-9-0) [2020\)](#page-9-0) has been proposed to unify the objec- tive of different tasks into a cloze-style task to pre- dict target words. Compared to the prevalent fine-tuning, the prompt-tuning paradigm is consistent

Figure 1: An illustrative example of entity typing task from FewNERD [\(Ding et al.,](#page-8-1) [2021\)](#page-8-1) dataset. Option A is its ground-truth label, and Option B is the counterfactual. Red words are the related attributes for the question.

with language model pre-training and thus gener- 042 [a](#page-8-0)lizable by with few learnable parameters [\(Brown](#page-8-0) **043** [et al.,](#page-8-0) [2020;](#page-8-0) [Trinh and Le,](#page-9-1) [2018;](#page-9-1) [Petroni et al.,](#page-9-2) **044** [2019;](#page-9-2) [Davison et al.,](#page-8-2) [2019\)](#page-8-2). **045**

To bridge the gap to masked language models **046** (MLMs), a task-specific template and verbalizers, **047** are necessary to form a cloze-style task and achieve **048** prompt tuning. Normally, the template can be a **049** natural language prompt or a series of continuous **050** tokens to query the language model, while the ver- **051** balizers are usually natural language phrases to rep- **052** resent task-specific labels. For example, in natural **053** language inference (NLI), a training instance can **054** be concatenated with a natural language prompt **055** "[Premise] [MASK] [Hypothesis]". As such, a set **056** of label words is designed as the candidate set for **057** filling into that placeholder (e.g., [MASK]) in the **058** designed template. Again, in NLI, the verbaliz- **059** ers are defined as {*Then*, *Maybe* and *But*}, cor- **060** responding the three-class categories {*entailment*, **061** *neural* and *contradiction*}. Obviously, it is rel- **062** atively tractable for experts to select valid label **063** words as there are clearly semantic bounds among **064** these mutual-exclusive labels. **065**

However, with the increase of label space, the **066**

 semantic boundary among many-class labels be- comes obscure, which may overlap leading to the verbalizer ambiguity problem. This explains why 070 some works [\(Webson and Pavlick,](#page-10-0) [2022;](#page-10-0) [Cao et al.,](#page-8-3) [2021\)](#page-8-3) point out that the performance is quite sen- sitive to the choice of label words. For instance, as shown in Fig [1,](#page-0-0) "Person-Actor" and "Person- Employee" are the common classes in the entity typing task and share the same hypernym word 076 "Person". To overcome the verbalizer ambiguity 077 problem, [Han et al.](#page-8-4) [\(2021\)](#page-8-4) manually designs logic rules to merge several sub-prompts together as the final prompt for each class, however, limited by costly expert-required logic rules.

 Taking inspiration from the social science re- search [\(Miller,](#page-9-3) [2019\)](#page-9-3), we adopt the contrastive pro- cedure of human explanation to generate diverse information prefixes for training instances. Con-085 cretely, rather than explaining "why A", it is more effective to explain "why A not B", where B serves as an implicit counterfactual of A within the cur- rent context. In Figure [1,](#page-0-0) we present an instance from the FewNERD [\(Ding et al.,](#page-8-1) [2021\)](#page-8-1) dataset, where the task is to classify the type associated with Greg. From a machine learning perspective, a well- trained model will recognize that Greg is associ- ated with multiple attributes, including "Houston", "company" and "actor", all of which are deemed valuable for prediction. As illustrated in Figure [1,](#page-0-0) these contributed attributes can be redundant for prediction as highlighting. Hence, the contrastive explanation approach tends to overlook most simi- larity attributes between "Employee" and "Actor", focusing instead on the more salient semantics that are critical for the model's differentiation task.

 In this paper, we propose Counter-factual Con-03 trastive Prefix-tuning, dubbed CCPrefix¹, which aims to minimize semantic obscurity among ver- balizers and mitigate the problem of verbalizer ambiguity. Our process begins by constructing all possible fact-counterfactual label pairs, with each class alternately assumed as the fact while the other classes are treated as counterfactuals. Each in- stance is then projected onto the subspaces spanned by these fact-counterfactual pairs, generating a range of potential contrastive attributes. These po- tential attributes are subsequently filtered through a global prototype alignment learning method, result- ing in an instance-dependent soft prefix. Lastly, we employ a straightforward Siamese representation

Algorithm 1 Contrastive Attributes Construction

Input: the class set Y , instance x, a PLM model M **Output:** Contrastive attributes $C \in \mathbb{R}^{|R| \times (|R|-1) \times d_e}$

- 1: Initialize the verbalizer $\mathbf{V} = \phi(\mathcal{Y}) \in \mathbb{R}^{|R| \times d_e}$
- 2: Initialize the matrix $C \in \mathbb{R}^{|R| \times (|R|-1) \times d_e}$
- 3: Obtain instance representation $h_x = \text{Pool}(\mathcal{M}(x))$
- 4: for all $v_i \in V$ do
- 5: for all $v_i \in V, i \neq j$ do
- 6: Construct the contrastive subspace $u_{i,j} = v_i$ $\boldsymbol{v}_j \in \mathbb{R}^{d_e}$
- 7: Project the instance onto the subspace $c_{i,j}$ = $\frac{\bm{u}_{i,j} \otimes \bm{u}_{i,j}^\top}{\left\langle \bm{x}^\top, \bm{u}_{i,j} \right\rangle} \, \bm{h}_x$ $\langle \boldsymbol{u}_{i,j}^{\top} \boldsymbol{u}_{i,j} \rangle$
- $8.$ end for
-
- 9: Form $C_{i,*}$ representing the attributes between *i*-th fact and the other label

10: end for

11: **return** $C \in \mathbb{R}^{|R| \times (|R|-1) \times d_e}$

learning approach for each instance to ensure stabil- **117** ity throughout the training process. This methodi- **118** cal multi-step approach strives to reduce ambiguity **119** and enhance the effectiveness of prefix-tuning in **120** the realm of natural language processing. **121**

To comprehensively validate the efficacy of **122** CCPrefix, we conduct extensive experiments on **123** three many-class classification tasks in both fully **124** supervised and few-shot settings, including rela- **125** tion classification, topic classification and entity **126** typing. The experimental results suggest that Our **127** work presents a promising step forward in the field, **128** demonstrating the substantial potential of CCPrefix **129** in handling complex classification tasks in natural **130** language processing. **131**

2 Methodology **¹³²**

In this section, we will detail our approach, whose **133** overall architecture is shown in Figure [2.](#page-2-0) **134**

Task Definition. First of all, we provide the task **135** definition about the classification problem in fine- **136** tuning paradigm. The classification tasks can be **137** denoted as $\mathcal{T} = \{ \mathcal{X}, \mathcal{Y} \}$, where \mathcal{X} is the instance 138 set, $\mathcal{Y} = \{y_1, y_2, ..., y_{|R|}\}\$ is the class set, and $|R|$ 139 is the number of classes. The first token of the input **140** is [CLS] which contains the special classification **141** embedding. PLMs models take the hidden state **142** h of the first token [CLS] as the representation of **143** the whole sequence. A simple softmax classifier **144** is then added to the top of PLMs to predict the **145** probability of class y_c : **146**

$$
p(y_c|\mathbf{h}) = \text{Softmax}(\mathbf{W}\mathbf{h}) \tag{1}
$$

where W is the task-specific parameter matrix. 148 Both the parameters from PLMs and W will 149

¹We will open our codes (uploaded), data, and models.

Figure 2: Our proposed model, CCPrefix. For easy comprehension, we zoom out contrastive prefix construction and contrastive attributes generation in Section [2.2.](#page-2-1) The losses \mathcal{L}_{cls} , \mathcal{L}_{s} and \mathcal{L}_{con} are defined in Equation [\(9\)](#page-4-0), Equation [\(8\)](#page-3-0) and Equation [\(5\)](#page-3-1). The black line is the forward path for both training and inference, while the green line is the training path with supervised signal.

150 be jointly fine-tuned by maximizing the log-**151** probability of the correct label.

152 2.1 Prefix Tuning for Classification

153 Formally, prefix tuning consists of a series prefix 154 tokens $\{c_1, \ldots, c_m\}$ and a verbalizer $\phi : \mathcal{V} \to \mathcal{Y}$ 155 that bridges the class set Y and the set of answer **156** words V. To construct the cloze-style tasks, at least **157** one placeholder [MASK] should be placed into the 158 template for the PLMs, M, as the following shows:

$$
T(\boldsymbol{X},\boldsymbol{C})=\{\boldsymbol{e}_1,\ldots,\boldsymbol{e}_l,\boldsymbol{c}_1,\ldots,\boldsymbol{c}_m,\boldsymbol{e}_{\texttt{[MASK]}}\},\tag{2}
$$

160 where $\{e_1, \ldots, e_l\}$ is the embedding of instance 161 X. With the soft prefix template $T(\cdot)$ and the 162 verbalizer ϕ , the learning objective is to maximize 1 163 $\frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} \log p(\texttt{[MASK]} = \phi(y_x)|T(x)).$

164 2.2 Contrastive Prefix Construction

165 We would elaborate on the process of exploring all **166** potential contrastive attributes from each instance **167** and the way we construct the prefix templates.

Contrastive Generation. Thus, for classifica- tion tasks, following [\(Jacovi et al.,](#page-8-5) [2021\)](#page-8-5), we con- struct all causal factors by projecting the sentence representation into the contrastive space. First of all, each instance x would be encoded by a 173 deep neural encoder $f(\cdot)$ that transforms x into $X = \{e_1, e_2, ..., e_l\} \in \mathbb{R}^{l \times d_e}$, where l is the 175 sentence length and d_e the embedding dimension. Then, we use a multi-layer perception (MLP) with ReLU activation, and mean pooling over the se- quence to get the whole sentence representation, $h_x = \text{Pool}(\text{MLP}(X)).$

Commonly, the prediction of the model Wh_x is 180 linear in the latent input representation. The proces- **181** sor of prediction aims to map h_x to a specific direc- 182 tion w_i via dot product to obtain the logits of class i. 183 As proposed by [Jacovi et al.](#page-8-5) [\(2021\)](#page-8-5) in terms of con- **184** trastive explanation, given two classes, y_p and y_q , **185** if we are particularly interested in the contrastive **186** attributes that the model predicts y_p rather than y_q , 187 we can construct a new basis, $u_{p,q} = w_p - w_q$, **188** which represents a *contrastive space* for y_p and y_q . **189** Thus, y_p is the fact while y_q is one of its counterfac- 190 tuals. However, for each instance, the golden label **191** is unavailable before prediction. Hence, we hypoth- **192** esize that the *i*-th class y_i is the fact in turn while 193 the rest in the finite-label space are counterfactu- **194** als to build fact-counterfactual pairs. Specifically, **195** we employ the derivable vectors as the verbalizer 196 $V \in \mathbb{R}^{|R| \times d_e}$ to map to the class set \mathcal{Y} . Thus, sup-
197 posing that *i*-th class y_i is the fact while one of the **198** rest class y_j is the counterfactual, the contrastive **199** subspace is: 200

$$
\boldsymbol{u}_{i,j} = \boldsymbol{v}_i - \boldsymbol{v}_j \in \mathbb{R}^{d_e}, i \in [R], j \neq i \qquad (3) \qquad \qquad \text{201}
$$

Then, by projecting the instance representation h_x 202 onto the subspace $u_{i,j}$, the contrastive attribute **203** between the specific fact-counterfactual pair is ex- **204** plored: **205**

$$
\boldsymbol{c}_{i,j} = \frac{\boldsymbol{u}_{i,j} \otimes \boldsymbol{u}_{i,j}^\top}{\langle \boldsymbol{u}_{i,j}^\top \boldsymbol{u}_{i,j} \rangle} \, \boldsymbol{h}_x \tag{4}
$$

, **210**

where \otimes is the outer product and $\langle \cdot \rangle$ is the inner 207 product. For the contrastive attributes generated **208** between the same fact and the rest counterfactuals, **209** we denote these attributes as $C_{i,*} \in \mathbb{R}^{(|R|-1) \times d_e}$

Figure 3: An illustration of the selection process of top-2 contrastive attributes $c_{i,j}$ using the similarities between all possible $c_{i,j}$ and their corresponding prototypes $p_{i,j}$, where *i*-th class is fact and *j*-th class is its counterfactual.

 where i, ∗ represents the fact-counterfactual pairs consisting of the i-th fact and the rest labels as- sumed as counterfactuals. Sequentially operating eq[.3](#page-2-2) and eq[.4,](#page-2-3) we extract all contrastive attributes $C \in \mathbb{R}^{|R| \times (|R|-1) \times d_e}$ from each instance. We sum- marize the former procedure of constructing con-trastive attributes in Algorithm [1.](#page-1-1)

 Prototype Constraint. Obviously, since we suppose each label as the fact to form fact- counterfactual pairs in turn, it is inevitable to face the noisy attributes projected by invalid fact- counterfactual pairs for each instance. Therefore, the contrastive attributes should be selected only if it is generated by the valid fact-counterfactual pairs formed by the accurate label. To distin- guish valid contrastive attributes, we introduce a 227 set of global prototypes $\{P_{0,*}, P_{1,*}, \ldots, P_{|R|,*}\}\in$ $\mathbb{R}^{|R| \times (|R|-1) \times d_e}$ corresponding to contrastive at- tributes. Concretely, for the contrastive attributes $c_{i,j}$ generated by projecting instance onto the **Subspace between** *i***-th fact and** *j***-th counterfac-** tual, there is only one corresponding prototype **p**_{i,j}. The fine-grained global prototypes can learn the common features of its corresponding fact- counterfactual attribute among the whole training instances. During training, according to the in- stance's ground-truth label, these prototypes can be split into two groups. One is the set of positive prototypes while the other is the rest negative pro-**totypes** $P_{-,*} \in \mathbb{R}^{(|R|-1) \times (|R|-1) \times d_e}$ **. The positive** prototypes represent the common knowledge of the corresponding attributes C+,[∗] generated by the valid fact-counterfactual pairs. These prototypes are trained with the following self-contrastive learning loss: **245**

$$
\mathcal{L}_{\text{con}} = -\log \frac{\exp(\langle \boldsymbol{W} \boldsymbol{C}_{+,*}, \boldsymbol{P}_{+,*} \rangle)}{\sum_{-\exp(\langle \boldsymbol{W} \boldsymbol{C}_{+,*}, \boldsymbol{P}_{-,*} \rangle))}
$$
 (5)

where $W \in \mathbb{R}^{d_e \times d_e}$ is the learning weight matrix 247 and $\langle \cdot \rangle$ is the inner product to calculate the similar- 248 ity. This objective forces the positive prototypes **249** draw up the positive contrastive attributes. Simul- **250** taneously, the negative contrastive attribtues would **251** be pushed away from the positive prototypes. **252**

Prefix Construction. Thus, by calculating the **253** similarities between instance's contrastive at- **254** tributes and the corresponding prototypes, we se- **255** lect the top-m's most similar attributes $C_{sel} \in$ 256 $\mathbb{R}^{m \times d_e}$ as additional prefix tokens, as shown in 257 Figure [3.](#page-3-2) The selected contrastive attributes will be **258** considered as a series tokens in the prefix template **259** $T(\cdot)$, as Equation [\(2\)](#page-2-4). 260

2.3 Siamese Prefix Tuning Objective **261**

We note that some selected top-m contrastive attributes may inevitably take false classes as facts, **263** thereby introducing unwanted noise. Therefore, it **264** is crucial to force the PLMs to focus on the valid **265** contrastive attributes and consequently stabilize the **266** model performance. Hence, we leverage a simple 267 [S](#page-8-6)iamese representation learning method [\(Chen and](#page-8-6) **268** [He,](#page-8-6) [2021\)](#page-8-6) to simultaneously train the PLMs, M, **269** via maximizing the similarity between the prefix **270** templates with selected contrastive attributes C_{sel} 271 and the same instance with all positive attributes **272** $C_{+,*}$. These two inputs with different contrastive 273 attributes are fed into M to obtain the [MASK] rep- 274 resentation z and z_+ : **275**

$$
z = \mathcal{M}(\hat{X}) = T(X, C_{sel}),
$$

\n
$$
z_{+} = \mathcal{M}(\hat{X}_{+}) = T(X, C_{+, *}).
$$
\n(6)

Then, we minimize the negative cosine similarity **277** between two outputs with an MLP $f(\cdot)$: 278

$$
\mathcal{D}(\boldsymbol{z}, \boldsymbol{z}_{+}) = -\frac{f(\boldsymbol{z})}{||f(\boldsymbol{z})||_{2}} \cdot \frac{\boldsymbol{z}_{+}}{||\boldsymbol{z}_{+}||_{2}} \qquad (7)
$$

Following [Chen and He](#page-8-6) [\(2021\)](#page-8-6), we use a symmetrized loss with the stop-gradient operation: **281**

$$
\mathcal{L}_{\mathbf{s}} = \frac{1}{2}\mathcal{D}(f(\boldsymbol{z}), \mathbf{sg}(\boldsymbol{z}_+)) + \frac{1}{2}\mathcal{D}(f(\boldsymbol{z}_+), \mathbf{sg}(\boldsymbol{z})).
$$
\n(8)

Here, X with attributes $C_{+,*}$ receives no gradient 283 from z_+ in the first term, but it receives gradients 284 from $f(z_+)$ in the second term, and vice versa. **285**

4

(6) **276**

-
-
- (7) **279**
-

282

286 Finally, the learning objective is to minimize the

287 following loss:

-
- 288 $\mathcal{L}_{\text{cls}} = -\frac{1}{|\mathcal{V}|} \sum \log p(\text{[MASK]} = v_k | x_k)$ (9)
-
-
- 289 where $p(\texttt{[MASK]} = v_k | x_k)$ is the predicted distri-290 bution for the k-th sample in dataset \mathcal{X} and v_k is
- **291** the answer word corresponding to its ground truth
- 292 label y_k . Overall, our final training loss is
- 293 $\mathcal{L} = \mathcal{L}_{\text{cls}} + \mathcal{L}_{\text{s}} + \mathcal{L}_{\text{con}}$ (10)

²⁹⁴ 3 Experiments

 $\mathcal{L}_{\text{cls}} = -\frac{1}{\sqrt{2}}$

 $|\mathcal{X}|$: \sum $|\mathcal{X}|$

 $_{k=1}$

295 We conduct experiments on several classification **296** tasks, including relation classification (RC), topic **297** classification (TC) and entity typing (ET).

298 3.1 Datasets

 We adopt 4 popular datasets for relation classifica- tion, i.e., TACRED [\(Zhang et al.,](#page-10-1) [2017\)](#page-10-1), TACREV [\(Alt et al.,](#page-8-7) [2020\)](#page-8-7), ReTACRED [\(Stoica et al.,](#page-9-4) [2021\)](#page-9-4) and SemEval 2010 Task 8 [\(Hendrickx et al.,](#page-8-8) [2009\)](#page-8-8) (SemEval), one for topic classification, i.e., DB- Pedia [\(Lehmann et al.,](#page-9-5) [2015\)](#page-9-5), and one for entity typing, i.e., FewNERD [\(Ding et al.,](#page-8-1) [2021\)](#page-8-1).

 • TACRED, TACREV and ReTACRED are used widely for relation classification. While TACRED is the origin, TACREV and ReTA- CRED are its revised versions with modifica-tions in test sets and some relation tpyes.

- **311** SemEval is a traditional dataset for RC.
- **312** DBPedia is an ontology dataset with struc-**313** tured information extracted from WikiPedia. **314** We privately set a 10% of the training dataset **315** as the validation set.

 • FewNERD is a manually large-scale dataset of entity typing containing 66 fine-grained entity types. We focus on the inter-task, where train/dev/test splits may share coarse-grained types while keeping the fine-grained entity types mutually disjoint.

322 More details of these datasets are shown in Ta- 323 ble [1.](#page-4-1) For evaluation, we use F_1 scores as the **324** metric for RC, and mean accuracy for TC and ET.

Table 1: Basic statistics of the datasets, where RC stands for relation classification, TC stands for topic classification, and ET stands for entity typing.

3.2 Settings **325**

To fairly compare with SoTA baselines, we evalu- **326** ate CCPrefix under fully supervised and few-shot **327** settings for RC tasks, and exclusively in few-shot **328** settings for TC and ET, where for each class, K 329 instances are sampled for training and validation. **330** [F](#page-8-9)ollowing previous works [\(Han et al.,](#page-8-4) [2021;](#page-8-4) [Cui](#page-8-9) **331** [et al.,](#page-8-9) [2022\)](#page-8-9), we set K as 8, 16, 32 for relation clas- **332** sification and 1, 2, 4, 8, 16 for topic classification 333 and entity typing. We use a fixed set of 5 random **334** seeds to sample instances and take the average of **335** all results as the final result. **336**

3.3 Implementation Details **337**

Our model is implemented based on PyTorch **338** [\(Paszke et al.,](#page-9-6) [2019\)](#page-9-6) with V100 and the Trans- **339** former repository of Huggingface [\(Wolf et al.,](#page-10-2) **340** [2020\)](#page-10-2). For RC and TC tasks, our model is based **341** on ROBERTALARGE [\(Liu et al.,](#page-9-7) [2019\)](#page-9-7), while for **³⁴²** ET, it is based on $BERT_{BASE}$ [\(Devlin et al.,](#page-8-10) [2019\)](#page-8-10). 343 Adam optimizer [\(Kingma and Ba,](#page-9-8) [2015\)](#page-9-8) is used 344 for all datasets, where the learning rate is manually **345** tuned ∈ {1*e*-5, 3*e*-5, 5*e*-5}, and the decay rate 346 is set to $1e-2$, and the batch size is set to 16. For 347 the fully-supervised setting, the epoch is 5 while **348** for few-shot setting, it is 30. The best model is **349** selected based on the performance on the devel- **350** opment set. We select top-m attributes as prefix, **351** where $m = |R| - 1$. 352

3.4 Comparison Methods **353**

We mainly compare CCPrefix with several rep- 354 resentative methods in many-class classification **355** tasks, including learning-from-scratch methods, **356** fine-tuning methods and Prefix-tuning methods. 1) **357** C-GCN [\(Zhang et al.,](#page-10-3) [2018\)](#page-10-3) is a learning-from- **358** scratch based on graph neural networks for relation **359** classification. 2) For fine-tuning vanilla PLMs, we **360** directly select ROBERTALARGE as our baselines **³⁶¹** for relation classification. 3) Since entity informa- **362**

	Extra Data	TACRED	TACREV	ReTACRED	SemEval
C-GCN (Zhang et al., 2018)		66.3	74.6	80.3	
ROBERTA _{LARGE} (Liu et al., 2019)		68.7	76.0	84.9	87.6
KNOWBERT (Peters et al., 2019)		71.5	79.3		89.1
SPANBERT (Joshi et al., 2020)	✓	70.8	78.0	85.3	
LUKE (Yamada et al., 2020)	✓	72.7	80.6	90.3	
PTR (Han et al., 2021)		72.4	81.4	90.9	89.9
CCPrefix (Ours)		72.6	82.9	91.2	90.6
w /o Con Att in §2.2		70.0	80.9	90.6	90.1
w/o Prototypes in $\S 2.2$		71.9	81.2	90.5	90.4
w/o \mathcal{L}_{con} in Eq.5		71.3	81.8	90.6	90.2
w /o Siamese in §2.3		72.0	81.8	90.8	90.1

Table 2: F_1 scores (%) for RC tasks on the 4 datasets in the fully supervised setting. "w/o ConAtt" denotes using manually Prefix template and soft verbalizer. "w/o Prototypes" denotes that the cluster is rely on the verbalizer. "w/o Siamese" denotes that the input of Prefixs template only maintain instance and selected contrastive attribute.

	TACRED			TACREV			ReTACRED		
	8	16	32	8	16	32	8	16	32
Fine-Tuning (Ours) PTR (Han et al., 2021)	12.2 28.1	21.5 30.7	28.0 32.1	13.5 28.7	22.3 31.4	28.2 32.4	28.5 51.5	49.5 56.2	56.0 62.1
CCPrefix (Ours)	30.1	33.4	37.6	29.8	33.0	34.0	54.5	61.4	65.2
w /o Con Att in §2.2 w /o Prototypes in §2.2 w/o \mathcal{L}_{con} in Eq.5 w /o Siamese in §2.3	18.1 28.5 28.2 23.8	29.6 33.1 33.2 33.1	32.6 36.3 37.3 32.9	18.1 30.4 28.9 27.9	29.0 31.7 32.1 30.4	32.7 33.2 33.8 33.2	41.1 54.2 53.5 50.6	55.5 56.3 59.7 57.7	64.1 62.1 64.4 63.4

Table 3: F_1 scores (%) for RC tasks in the few-shot setting. We use $K = 8, 16, 32$ for few-shot settings.

 tion is crucial in relation classification, we select SPANBERT [\(Joshi et al.,](#page-8-11) [2020\)](#page-8-11), KNOWBERT [\(Peters et al.,](#page-9-9) [2019\)](#page-9-9) and LUKE [\(Yamada et al.,](#page-10-4) [2020\)](#page-10-4) as our baselines. 4) We select PTR [\(Han](#page-8-4) [et al.,](#page-8-4) [2021\)](#page-8-4), a prompt augmentation model, for relation classification. 5) For topic classification [a](#page-8-9)nd entity typing, our baselines are ProtoVerb [\(Cui](#page-8-9) [et al.,](#page-8-9) [2022\)](#page-8-9) that uses manual prompts, and PETAL [\(Schick et al.,](#page-9-0) [2020\)](#page-9-0) that extracts words as prompts.

372 3.5 Main Quantitative Evaluation

373 We compare CCPrefix with several recent methods **374** to conduct an in-depth analysis.

 Fully Supervised Setting As indicated in Ta- ble [2,](#page-5-0) CCPrefix significantly outperforms for- mer baselines, even surpassing KNOWBERT and LUKE that leverage external task-specific knowl- [e](#page-8-4)dge to enhance models. Compared to PTR [\(Han](#page-8-4) [et al.,](#page-8-4) [2021\)](#page-8-4), which manually constructs logic rules as the prompt, CCPrefix even outperforms. Such comparison indicates that the unique task-related information to form a unique prefix can better stim-ulate task-specific knowledge in PLMs.

Few-Shot Setting To further assess our model, **385** we evaluate CCPrefix in few-shot settings. For re- **386** lation classification, as shown in Table [3,](#page-5-1) CCPrefix **387** outperforms PTR, with an average improvement **388** of 6.6% on ReTACRED. For topic classification, **389** as shown in the left panel of Table [4,](#page-6-0) CCPrefix **390** exceeds PETAL and ProtoVerb by a large margin. **391** Specifically, in the extreme data scarce scenario **392** $(K = 1, 2)$, our model surpasses ProtoVerb by 393 15.3% and 9.1%. This demonstrates that, if the **394** class labels are semantically diverse, our model **395** is capable of acquiring sufficient knowledge from **396** the PLM even in this limit. For entity typing, our **397** model exceeds former baseline in several scenar- **398** ios $(K = 4, 8, 16)$ but not good when training in- 399 stances are extremely scarce $(K = 1, 2)$. We infer that for fine-grained entity typing, although our **401** model can cancel out most of the attributes between 402 two classes sharing the same coarse class with sub- **403** tle differences in semantic (e.g., 'building-theater" **404** and "building-library" are under type "building"), **405** it is hard to discriminate such contrastive attributes **406** in extreme data scarce scenario. **407**

		DBPedia						FewNERD		
		\mathcal{L}	\sim 4	$8 -$		$16 \t 1$	2	$\overline{4}$		16
PETAL (Schick et al., 2020)	60.06	78.21	86.40	88.41	92.90	20.88	31.28	43.10	50.78	55.49
ProtoVerb (Cui et al., 2022)		72.85 85.49 90.91 95.75 96.30				25.00	35.72	48.28	56.06	61.29
CCPrefix (Ours)	84.02	93.26	95.17		97.66 98.45	22.78	32.47	51.49	58.54	63.38

Table 4: Few-Shot TC & ET performance of F_1 scores (%) on the DBPedia and FewNERD datasets. We use $K = 1, 2, 4, 8, 16$ for few-shot settings.

Relation	Top selected counterfact
per:siblings	per:title
per:parents	per: countries_of_residence
org:dissolved	org:member_of
per:origin	org:dissolved
per:children	per:country_of_birth
per:city_of_birth	<i>per:city_of_death</i>
per:employee_of	per:countries_of_residence
<i>per:religion</i>	<i>per:city_of_death</i>
org: alternate_names	org:founded_by
per:cause_of_death	per:country_of_death
org:website	org:members

Table 5: The top selected counterfactual relation learned by the model for some relation types.

408 3.6 Ablation Study

 We carry out an ablation study on relation classifica- tion datasets to further invetigate the effectiveness of each component in CCPrefix, as detailed in the bottom panel of Table [2](#page-5-0) and Table [3.](#page-5-1) "w/o ConAtt" causes more performance degradation in the few- shot setting than in the fully supervised one, which indicates that contrastive attributes can further stim- ulate the knowledge in PLMs. For "w/o Proto- types", attribute-verbalizer similarities are used as the slection criteria, causing a significant per- formance drop due to noise attributes, although it slightly outperforms CCPrefix in TACREV under **K=8.** "w/o \mathcal{L}_{con} " has less performance reduction in few-shot setting than that in fully supervised set- ting. We infer that the unbalanced training data distribution may hurt the performance significantly. The performance of "w/o Siamese" drops severely 426 in the extreme data scarce scenario $(K = 8)$, in- dicating that simple representation learning can force the PLMs to focus on the valid contrastive attributes in prefix.

430 3.7 Selected Counterfact

 Since the prefix are instance aware, we limit our analysis to a subset of 7K instances in the test set that could be correctly classified. For each relation type, we count the most frequently selected coun-terfactual relation. Part of the results are shown

in Table [5.](#page-6-1) It is notable that most of the time the **436** model can match a pair *per* relations, or a pair **437** of *org* relations. Also, the model prefers to se- **438** lect two relation types semantically correlated but **439** with subtle differences. For example, for relation 440 *per:city_of_birth* or *org:dissolved*, the correspond- **441** ing contrastive attribute factor is *per:city_of_death* **442** or *org:member_of*, respectively. **443**

3.8 Case Study **444**

To analyze the influence of individual tokens on **445** model prediction, we conduct a case study on the re- **446** lation *per:city_of_birth* between entities "he" and **447** "Potomac". "Potomac", as depicted in Figure [4.](#page-7-0) We **448** compute the similarity between each word and the **449** fact *y* [∗]*=per:city_of_birth*, as well as the contrastive **⁴⁵⁰** attribution factor between *y* [∗]*=per:city_of_birth* and **⁴⁵¹** *y'=per:city_of_death*. For clarity, words with simi- **452** larity scores exceeding the average are highlighted. **453** Our results reveal that the contrastive attribute fac- **454** tor yields concentrated, key determinant highlights **455** such as "native of". In contrast, using y^* alone re- 456 sults in scattered highlights, diverging from human **457** expectations of the significant predictors. **458**

3.9 Error Analysis **459**

Our model operates under the strong assumption **460** that all labels, save for the golden one, act as **461** counterfactuals of the golden label. This hypoth- **462** esis neglects the semantic correlations and over- **463** laps among different classes, potentially impacting **464** model performance. This issue is especially ap- 465 parent in the entity typing task, where fine-grained **466** entity types mayu semantically overlap, thereby **467** challenging our assumption. When class labels pos- **468** sess subtly distinct semantics, more data is needed **469** to construct valid contrastive attributes. This can **470** cause model performance to drop in scenarios of ex- **471** treme data scarcity, like with the FewNED dataset **472** at $K = 1, 2$. 473

y^* =per:city_of_birth	$(y^*, y') = per: city_of_birth, per:city_of_death$				
	Gross , a 60-year-old native of Potomac Gross , a 60-year-old native of Potomac				
	, Maryland , was working for a firm , Maryland , was working for a firm				
	contracted by USAID when he was arrested contracted by USAID when he was arrested				
2009, and sent to Cuba 's $Dec \quad 3 \quad ,$	$Dec 3$, 2009, and sent to Cuba 's				
high-security Villa Marista prison.	high-security Villa Marista prison.				

Figure 4: The **highlighted** tokens of the same sentence where the two entities are underscored. On the left, the tokens are projected onto the ground truth *y* [∗]*=per:city_of_birth*, and on the right onto the contrastive space between *y*[∗] and the counterfactual *y'=per:city_of_death*.

⁴⁷⁴ 4 Related Work

 Prefix Tuning in Classification. The templates can be categorized into two groups, i.e., discrete prompt [\(Brown et al.,](#page-8-0) [2020;](#page-8-0) [Schick et al.,](#page-9-0) [2020;](#page-9-0) [Schick and Schütze,](#page-9-10) [2021\)](#page-9-10) and continuous prefix [\(Lester et al.,](#page-9-11) [2021;](#page-9-11) [Li and Liang,](#page-9-12) [2021\)](#page-9-12). Dis- crete prompts often manually designed for all train- ing instances with task descriptions. [Han et al.](#page-8-4) [\(2021\)](#page-8-4) leverage manual logic rules to combine label-related sub-prompts together. Although it is a concrete manifestation of human's interpre- tation of the task, discrete prompts may not be [t](#page-9-11)he optimal solution. Continuous prefixes [\(Lester](#page-9-11) [et al.,](#page-9-11) [2021;](#page-9-11) [Li and Liang,](#page-9-12) [2021\)](#page-9-12), attached to in- stances, have proven useful but fail to fully capture the diversity of training instances. Our work in- spired by the human decision process, introduces an instance-dependent prefix, better addressing the discrimination of label space.

 Verbalier in Classification. Reformulating prob- lems as language modeling tasks has been explored [i](#page-9-1)n few-shot scenarios [\(Brown et al.,](#page-8-0) [2020;](#page-8-0) [Trinh and](#page-9-1) [Le,](#page-9-1) [2018;](#page-9-1) [Petroni et al.,](#page-9-2) [2019;](#page-9-2) [Davison et al.,](#page-8-2) [2019\)](#page-8-2). Traditional manual verbalizer mappings demand expert knowledge, thus making automatic verbal- izer search [\(Schick et al.,](#page-9-0) [2020;](#page-9-0) [Schick and Schütze,](#page-9-10) [2021\)](#page-9-10) an appealing alternative. This approach it- eratively enhances the label-to-word mapping in a greedy fashion.

 Counterfactual Contrastive. Explanation of ar- tificial intelligence is widely concerned in recent years. [Miller](#page-9-3) [\(2019\)](#page-9-3) presents the philosophical foundations of explanation that human relies on the contrastive explanations. [Jacovi et al.](#page-8-5) [\(2021\)](#page-8-5) highlights the attributes in the latent space to pro- vide fine-grained explanation of model decision. Furthermore, [Ross et al.](#page-9-13) [\(2021\)](#page-9-13) produces con-trastive explanations by editing the inputs for the

contrast case while [Gardner et al.](#page-8-12) [\(2020\)](#page-8-12) uses **512** it for evaluation. [Paranjape et al.](#page-9-14) [\(2021\)](#page-9-14) builds **513** contrastive prompts with instance-specific infor- **514** mation for explanation. [Zhang et al.](#page-10-5) [\(2020\)](#page-10-5) em- **515** ploys contrastive counterfactuals with the multi- **516** instance framework for vision-language ground- **517** ing. [Kaushik et al.](#page-8-13) [\(2020\)](#page-8-13) tasks humans with re- **518** vising dataset to revise the dataset with counter- **519** factuals. Meanwhile, [Yang et al.](#page-10-6) [\(2021\)](#page-10-6) produces **520** high-quality augmented data with counterfactuals **521** to overcome out-of-distribution data in the field. **522** Due to the strong explanation of counterfactual, we **523** leverage counterfactual to disambiguate the seman- **524** tic overlap between labels. **525**

5 Conclusion **⁵²⁶**

In this paper, we propose a novel task-agnostic ap- **527** proach named CCPrefix. We sequentially construct **528** fact-counterfacutal pairs to extract the attributes **529** from the sample. With a set of global prototypes, **530** the valid contrastive attributes will be selected as **531** the prefix. A simple Siamese represeatation learn- **532** ing is employed to stable the training process. The **533** experiment results verify the superiority of our **534** model without extra data and human experts for **535** manually designing Prefix templates. While we **536** have shown that our method is flexible enough for 537 a wide range of tasks in NLP, leveraging contrastive **538** explanations in logic reasoning tasks remains an **539** unveiled challenge for future work. **540**

Limitations **⁵⁴¹**

A principal limitation of our CCPrefix model is **542** the strong assumption it makes in the classifica- **543** tion task: it regards all labels other than the gold **544** standard as counterfactuals. This premise may not **545** consistently hold true, particularly in scenarios in- **546** volving hierarchical labels with overlapping seman- **547** tics. This assumption may impact the performance. **548**

⁵⁴⁹ References

- **550** Christoph Alt, Aleksandra Gabryszak, and Leonhard **551** Hennig. 2020. [TACRED revisited: A thorough eval-](https://doi.org/10.18653/v1/2020.acl-main.142)**552** [uation of the TACRED relation extraction task.](https://doi.org/10.18653/v1/2020.acl-main.142) In **553** *Proceedings of the 58th Annual Meeting of the As-***554** *sociation for Computational Linguistics, ACL 2020,* **555** *Online, July 5-10, 2020*, pages 1558–1569. Associa-**556** tion for Computational Linguistics.
- **557** Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie **558** Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind **559** Neelakantan, Pranav Shyam, Girish Sastry, Amanda **560** Askell, Sandhini Agarwal, Ariel Herbert-Voss, **561** Gretchen Krueger, Tom Henighan, Rewon Child, **562** Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, **563** Clemens Winter, Christopher Hesse, Mark Chen, Eric **564** Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, **565** Jack Clark, Christopher Berner, Sam McCandlish, **566** Alec Radford, Ilya Sutskever, and Dario Amodei. **567** 2020. [Language models are few-shot learners.](https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html) In *Ad-***568** *vances in Neural Information Processing Systems 33:* **569** *Annual Conference on Neural Information Process-***570** *ing Systems 2020, NeurIPS 2020, December 6-12,* **571** *2020, virtual*.
- **572** Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-**573** ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021. **574** Knowledgeable or educated guess? revisiting lan-**575** guage models as knowledge bases. In *Proceedings* **576** *of the 59th Annual Meeting of the Association for* **577** *Computational Linguistics and the 11th International* **578** *Joint Conference on Natural Language Processing,* **579** *ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual* **580** *Event, August 1-6, 2021*, pages 1860–1874. Associa-**581** tion for Computational Linguistics.
- **582** Xinlei Chen and Kaiming He. 2021. Exploring simple **583** siamese representation learning. In *IEEE Conference* **584** *on Computer Vision and Pattern Recognition, CVPR* **585** *2021, virtual, June 19-25, 2021*, pages 15750–15758. **586** Computer Vision Foundation / IEEE.
- **587** Ganqu Cui, Shengding Hu, Ning Ding, Longtao Huang, **588** and Zhiyuan Liu. 2022. Prototypical verbalizer for **589** prompt-based few-shot tuning. In *Proceedings of the* **590** *60th Annual Meeting of the Association for Compu-***591** *tational Linguistics (Volume 1: Long Papers), ACL* **592** *2022, Dublin, Ireland, May 22-27, 2022*, pages 7014– **593** 7024. Association for Computational Linguistics.
- **594** Joe Davison, Joshua Feldman, and Alexander M. Rush. **595** 2019. Commonsense knowledge mining from pre-**596** trained models. In *Proceedings of the 2019 Confer-***597** *ence on Empirical Methods in Natural Language Pro-***598** *cessing and the 9th International Joint Conference* **599** *on Natural Language Processing, EMNLP-IJCNLP* **600** *2019, Hong Kong, China, November 3-7, 2019*, pages **601** 1173–1178. Association for Computational Linguis-**602** tics.
- **603** Jacob Devlin, Ming-Wei Chang, Kenton Lee, and **604** Kristina Toutanova. 2019. [BERT: pre-training of](https://doi.org/10.18653/v1/n19-1423) **605** [deep bidirectional transformers for language under-](https://doi.org/10.18653/v1/n19-1423)**606** [standing.](https://doi.org/10.18653/v1/n19-1423) In *Proceedings of the 2019 Conference of*

the North American Chapter of the Association for **607** *Computational Linguistics: Human Language Tech-* **608** *nologies, NAACL-HLT 2019, Minneapolis, MN, USA,* **609** *June 2-7, 2019, Volume 1 (Long and Short Papers)*, **610** pages 4171–4186. Association for Computational **611** Linguistics. 612

- Ning Ding, Guangwei Xu, Yulin Chen, Xiaobin Wang, **613** Xu Han, Pengjun Xie, Haitao Zheng, and Zhiyuan **614** Liu. 2021. [Few-nerd: A few-shot named entity recog-](https://doi.org/10.18653/v1/2021.acl-long.248) **615** [nition dataset.](https://doi.org/10.18653/v1/2021.acl-long.248) In *Proceedings of the 59th Annual* **616** *Meeting of the Association for Computational Lin-* **617** *guistics and the 11th International Joint Conference* **618** *on Natural Language Processing, ACL/IJCNLP 2021,* **619** *(Volume 1: Long Papers), Virtual Event, August 1-6,* **620** *2021*, pages 3198–3213. Association for Computa- **621** tional Linguistics. **622**
- Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan **623** Berant, Ben Bogin, Sihao Chen, Pradeep Dasigi, **624** Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, **625** Nitish Gupta, Hannaneh Hajishirzi, Gabriel Ilharco, **626** Daniel Khashabi, Kevin Lin, Jiangming Liu, Nel- **627** son F. Liu, Phoebe Mulcaire, Qiang Ning, Sameer **628** Singh, Noah A. Smith, Sanjay Subramanian, Reut **629** Tsarfaty, Eric Wallace, Ally Zhang, and Ben Zhou. **630** 2020. Evaluating models' local decision boundaries **631** via contrast sets. In *Findings of the Association for* **632** *Computational Linguistics: EMNLP 2020, Online* **633** *Event, 16-20 November 2020*, volume EMNLP 2020 **634** of *Findings of ACL*, pages 1307–1323. Association **635** for Computational Linguistics. **636**
- Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and **637** Maosong Sun. 2021. PTR: prompt tuning with rules **638** for text classification. *CoRR*, abs/2105.11259. **639**
- Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva, **640** Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian **641** Padó, Marco Pennacchiotti, Lorenza Romano, and **642** Stan Szpakowicz. 2009. [Semeval-2010 task 8: Multi-](https://aclanthology.org/W09-2415/) **643** [way classification of semantic relations between pairs](https://aclanthology.org/W09-2415/) **644** [of nominals.](https://aclanthology.org/W09-2415/) In *Proceedings of the Workshop on Se-* **645** *mantic Evaluations: Recent Achievements and Fu-* **646** *ture Directions, SEW@NAACL-HLT 2009, Boulder,* **647** *CO, USA, June 4, 2009*, pages 94–99. Association **648** for Computational Linguistics. **649**
- Alon Jacovi, Swabha Swayamdipta, Shauli Ravfogel, **650** Yanai Elazar, Yejin Choi, and Yoav Goldberg. 2021. **651** Contrastive explanations for model interpretability. **652** In *Proceedings of the 2021 Conference on Empirical* **653** *Methods in Natural Language Processing, EMNLP* **654** *2021, Virtual Event / Punta Cana, Dominican Repub-* **655** *lic, 7-11 November, 2021*, pages 1597–1611. Associ- **656** ation for Computational Linguistics. **657**
- Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, **658** Luke Zettlemoyer, and Omer Levy. 2020. Spanbert: **659** Improving pre-training by representing and predict- **660** ing spans. *Trans. Assoc. Comput. Linguistics*, 8:64– **661** 77. **662**
- Divyansh Kaushik, Eduard H. Hovy, and Zachary Chase **663** Lipton. 2020. Learning the difference that makes A **664**

 difference with counterfactually-augmented data. In *8th International Conference on Learning Represen- tations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net.

- **669** [D](http://arxiv.org/abs/1412.6980)iederik P. Kingma and Jimmy Ba. 2015. [Adam: A](http://arxiv.org/abs/1412.6980) **670** [method for stochastic optimization.](http://arxiv.org/abs/1412.6980) In *3rd Inter-***671** *national Conference on Learning Representations,* **672** *ICLR 2015, San Diego, CA, USA, May 7-9, 2015,* **673** *Conference Track Proceedings*.
- **674** Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, **675** Dimitris Kontokostas, Pablo N. Mendes, Sebastian **676** Hellmann, Mohamed Morsey, Patrick van Kleef, **677** Sören Auer, and Christian Bizer. 2015. [Dbpedia -](https://doi.org/10.3233/SW-140134) **678** [A large-scale, multilingual knowledge base extracted](https://doi.org/10.3233/SW-140134) **679** [from wikipedia.](https://doi.org/10.3233/SW-140134) *Semantic Web*, 6(2):167–195.
- **680** Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. **681** The power of scale for parameter-efficient prompt **682** tuning. In *Proceedings of the 2021 Conference on* **683** *Empirical Methods in Natural Language Processing,* **684** *EMNLP 2021, Virtual Event / Punta Cana, Domini-***685** *can Republic, 7-11 November, 2021*, pages 3045– **686** 3059. Association for Computational Linguistics.
- **687** Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: **688** Optimizing continuous prompts for generation. In **689** *Proceedings of the 59th Annual Meeting of the Asso-***690** *ciation for Computational Linguistics and the 11th* **691** *International Joint Conference on Natural Language* **692** *Processing, ACL/IJCNLP 2021, (Volume 1: Long* **693** *Papers), Virtual Event, August 1-6, 2021*, pages 4582– **694** 4597. Association for Computational Linguistics.
- **695** Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-**696** dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, **697** Luke Zettlemoyer, and Veselin Stoyanov. 2019. **698** Roberta: A robustly optimized bert pretraining ap-**699** proach. *arXiv preprint arXiv:1907.11692*.
- **700** [T](https://doi.org/10.1016/j.artint.2018.07.007)im Miller. 2019. [Explanation in artificial intelligence:](https://doi.org/10.1016/j.artint.2018.07.007) **701** [Insights from the social sciences.](https://doi.org/10.1016/j.artint.2018.07.007) *Artif. Intell.*, 267:1– **702** 38.
- **703** Bhargavi Paranjape, Julian Michael, Marjan **704** Ghazvininejad, Hannaneh Hajishirzi, and Luke **705** Zettlemoyer. 2021. Prompting contrastive explana-**706** tions for commonsense reasoning tasks. In *Findings* **707** *of the Association for Computational Linguistics:* **708** *ACL/IJCNLP 2021, Online Event, August 1-6, 2021*, **709** volume ACL/IJCNLP 2021 of *Findings of ACL*, **710** pages 4179–4192. Association for Computational **711** Linguistics.
- **712** Adam Paszke, Sam Gross, Francisco Massa, Adam **713** Lerer, James Bradbury, Gregory Chanan, Trevor **714** Killeen, Zeming Lin, Natalia Gimelshein, Luca **715** Antiga, Alban Desmaison, Andreas Köpf, Edward Z. **716** Yang, Zachary DeVito, Martin Raison, Alykhan Te-**717** jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, **718** Junjie Bai, and Soumith Chintala. 2019. [Pytorch: An](https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html) **719** [imperative style, high-performance deep learning li-](https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html)**720** [brary.](https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html) In *Advances in Neural Information Processing*

Systems 32: Annual Conference on Neural Informa- **721** *tion Processing Systems 2019, NeurIPS 2019, De-* **722** *cember 8-14, 2019, Vancouver, BC, Canada*, pages **723** 8024–8035. **724**

- Matthew E. Peters, Mark Neumann, Robert L. Logan **725** IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and **726** Noah A. Smith. 2019. Knowledge enhanced contex- **727** tual word representations. In *Proceedings of the* **728** *2019 Conference on Empirical Methods in Natu-* **729** *ral Language Processing and the 9th International* **730** *Joint Conference on Natural Language Processing,* **731** *EMNLP-IJCNLP 2019, Hong Kong, China, Novem-* **732** *ber 3-7, 2019*, pages 43–54. Association for Compu- **733** tational Linguistics. **734**
- Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, **735** Patrick S. H. Lewis, Anton Bakhtin, Yuxiang Wu, **736** and Alexander H. Miller. 2019. Language mod- **737** els as knowledge bases? In *Proceedings of the* **738** *2019 Conference on Empirical Methods in Natu-* **739** *ral Language Processing and the 9th International* **740** *Joint Conference on Natural Language Processing,* **741** *EMNLP-IJCNLP 2019, Hong Kong, China, Novem-* **742** *ber 3-7, 2019*, pages 2463–2473. Association for **743** Computational Linguistics. **744**
- Alexis Ross, Ana Marasovic, and Matthew E. Peters. **745** 2021. Explaining NLP models via minimal con- **746** trastive editing (mice). In *Findings of the Association* **747** *for Computational Linguistics: ACL/IJCNLP 2021,* **748** *Online Event, August 1-6, 2021*, volume ACL/IJC- **749** NLP 2021 of *Findings of ACL*, pages 3840–3852. **750** Association for Computational Linguistics. **751**
- Timo Schick, Helmut Schmid, and Hinrich Schütze. **752** 2020. Automatically identifying words that can serve **753** as labels for few-shot text classification. In *Proceed-* **754** *ings of the 28th International Conference on Com-* **755** *putational Linguistics, COLING 2020, Barcelona,* **756** *Spain (Online), December 8-13, 2020*, pages 5569– **757** 5578. International Committee on Computational **758** Linguistics. 759
- Timo Schick and Hinrich Schütze. 2021. It's not just **760** size that matters: Small language models are also few- **761** shot learners. In *Proceedings of the 2021 Conference* **762** *of the North American Chapter of the Association* **763** *for Computational Linguistics: Human Language* **764** *Technologies, NAACL-HLT 2021, Online, June 6-11,* **765** *2021*, pages 2339–2352. Association for Computa- **766** tional Linguistics. **767**
- George Stoica, Emmanouil Antonios Platanios, and **768** Barnabás Póczos. 2021. [Re-tacred: Addressing short-](https://ojs.aaai.org/index.php/AAAI/article/view/17631) **769** [comings of the TACRED dataset.](https://ojs.aaai.org/index.php/AAAI/article/view/17631) In *Thirty-Fifth* **770** *AAAI Conference on Artificial Intelligence, AAAI* **771** *2021, Thirty-Third Conference on Innovative Ap-* **772** *plications of Artificial Intelligence, IAAI 2021, The* **773** *Eleventh Symposium on Educational Advances in Ar-* **774** *tificial Intelligence, EAAI 2021, Virtual Event, Febru-* **775** *ary 2-9, 2021*, pages 13843–13850. AAAI Press. **776**
- Trieu H. Trinh and Quoc V. Le. 2018. A simple method **777** for commonsense reasoning. *CoRR*, abs/1806.02847. **778**
- Albert Webson and Ellie Pavlick. 2022. Do prompt- based models really understand the meaning of their prompts? In *Proceedings of the 2022 Conference of*
- *the North American Chapter of the Association for Computational Linguistics: Human Language Tech-nologies, NAACL 2022, Seattle, WA, United States,*
- *July 10-15, 2022*, pages 2300–2344. Association for Computational Linguistics.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier-ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
- Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
- Lhoest, and Alexander M. Rush. 2020. [Transformers:](https://doi.org/10.18653/v1/2020.emnlp-demos.6) [State-of-the-art natural language processing.](https://doi.org/10.18653/v1/2020.emnlp-demos.6) In *Pro-*
- *ceedings of the 2020 Conference on Empirical Meth-ods in Natural Language Processing: System Demon-*
- *strations, EMNLP 2020 Demos, Online, November 16-20, 2020*, pages 38–45. Association for Computa-
- tional Linguistics.
- Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto. 2020. LUKE: deep con-textualized entity representations with entity-aware
- *ence on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20,*
- *2020*, pages 6442–6454. Association for Computa-tional Linguistics.
- Linyi Yang, Jiazheng Li, Padraig Cunningham, Yue
- Zhang, Barry Smyth, and Ruihai Dong. 2021. Ex-ploring the efficacy of automatically generated coun-
- terfactuals for sentiment analysis. In *Proceedings of the 59th Annual Meeting of the Association for*
- *Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual*
- *Event, August 1-6, 2021*, pages 306–316. Association for Computational Linguistics.
- Yuhao Zhang, Peng Qi, and Christopher D. Manning. 2018. [Graph convolution over pruned dependency](https://doi.org/10.18653/v1/d18-1244)
- [trees improves relation extraction.](https://doi.org/10.18653/v1/d18-1244) In *Proceedings Natural Language Processing, Brussels, Belgium,*
-
- Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli,
- and Christopher D. Manning. 2017. [Position-aware](https://doi.org/10.18653/v1/d17-1004) [attention and supervised data improve slot filling.](https://doi.org/10.18653/v1/d17-1004) In
- *Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, September 9-11, 2017*,

pages 35–45. Association for Computational Linguis-

 tics. Zhu Zhang, Zhou Zhao, Zhijie Lin, Jieming Zhu, and Xi-

 uqiang He. 2020. Counterfactual contrastive learning for weakly-supervised vision-language grounding. In *Advances in Neural Information Processing Sys-*

tems 33: Annual Conference on Neural Information

self-attention. In *Proceedings of the 2020 Confer-*

of the 2018 Conference on Empirical Methods in

October 31 - November 4, 2018, pages 2205–2215.

Association for Computational Linguistics.

Processing Systems 2020, NeurIPS 2020, December **838** *6-12, 2020, virtual*. **839**