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Abstract

Recently, prefix-tuning was proposed to effi-001
ciently adapt pre-trained language models to002
a broad spectrum of natural language classifi-003
cation tasks. It leverages soft prefix as task-004
specific indicators and language verbalizers as005
categorical-label mentions to narrow the for-006
mulation gap from pre-training language mod-007
els. However, when the label space increases008
considerably (i.e., many-class classification),009
such a tuning technique suffers from a verbal-010
izer ambiguity problem since the many-class011
labels are represented by semantic-similar ver-012
balizers in short language phrases. To over-013
come this, inspired by the human-decision pro-014
cess that the most ambiguous classes would015
be mulled over for an instance, we propose016
a brand-new prefix-tuning method, Counter-017
factual Contrastive Prefix-tuning (CCPrefix),018
for many-class classification. Basically, an019
instance-dependent soft prefix, derived from020
fact-counterfactual pairs in the label space, is021
leveraged to complement the language verbal-022
izers in many-class classification. We conduct023
experiments on many-class benchmark datasets024
in both the fully supervised setting and the few-025
shot setting, which indicates that our model026
outperforms former baselines.027

1 Introduction028

Although fine-tuning paradigm has achieved great029

success in natural language processing, effectively030

transferring knowledge to specific tasks, there re-031

mains a considerable gap between pre-training and032

fine-tuning, which can inhibit the transfer and adap-033

tation of knowledge in PLMs to downstream tasks.034

This gap primarily arises from the diverse objective035

forms that downstream tasks take on. To narrow036

this gap, Prompt-tuning (Brown et al., 2020; Schick037

et al., 2020) has been proposed to unify the objec-038

tive of different tasks into a cloze-style task to pre-039

dict target words. Compared to the prevalent fine-040

tuning, the prompt-tuning paradigm is consistent041

As a stage actor, Greg has been a resident company member of the 
Alley Theatre in Houston, Texas.
Q: The type of Greg is _________.

Instance: 

A. Person-Actor B. Person-Employee

Why Person-Actor?

As a stage actor, Greg has been a resident company member of the 

Alley Theatre in Houston, Texas.

Why Person-Actor not Person-Employee?

As a stage actor, Greg has been a resident company member of the 
Alley Theatre in Houston, Texas.

Figure 1: An illustrative example of entity typing task
from FewNERD (Ding et al., 2021) dataset. Option A is
its ground-truth label, and Option B is the counterfactual.
Red words are the related attributes for the question.

with language model pre-training and thus gener- 042

alizable by with few learnable parameters (Brown 043

et al., 2020; Trinh and Le, 2018; Petroni et al., 044

2019; Davison et al., 2019). 045

To bridge the gap to masked language models 046

(MLMs), a task-specific template and verbalizers, 047

are necessary to form a cloze-style task and achieve 048

prompt tuning. Normally, the template can be a 049

natural language prompt or a series of continuous 050

tokens to query the language model, while the ver- 051

balizers are usually natural language phrases to rep- 052

resent task-specific labels. For example, in natural 053

language inference (NLI), a training instance can 054

be concatenated with a natural language prompt 055

“[Premise] [MASK] [Hypothesis]”. As such, a set 056

of label words is designed as the candidate set for 057

filling into that placeholder (e.g., [MASK]) in the 058

designed template. Again, in NLI, the verbaliz- 059

ers are defined as {Then, Maybe and But}, cor- 060

responding the three-class categories {entailment, 061

neural and contradiction}. Obviously, it is rel- 062

atively tractable for experts to select valid label 063

words as there are clearly semantic bounds among 064

these mutual-exclusive labels. 065

However, with the increase of label space, the 066
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semantic boundary among many-class labels be-067

comes obscure, which may overlap leading to the068

verbalizer ambiguity problem. This explains why069

some works (Webson and Pavlick, 2022; Cao et al.,070

2021) point out that the performance is quite sen-071

sitive to the choice of label words. For instance,072

as shown in Fig 1, “Person-Actor” and “Person-073

Employee” are the common classes in the entity074

typing task and share the same hypernym word075

“Person”. To overcome the verbalizer ambiguity076

problem, Han et al. (2021) manually designs logic077

rules to merge several sub-prompts together as the078

final prompt for each class, however, limited by079

costly expert-required logic rules.080

Taking inspiration from the social science re-081

search (Miller, 2019), we adopt the contrastive pro-082

cedure of human explanation to generate diverse083

information prefixes for training instances. Con-084

cretely, rather than explaining “why A”, it is more085

effective to explain “why A not B”, where B serves086

as an implicit counterfactual of A within the cur-087

rent context. In Figure 1, we present an instance088

from the FewNERD (Ding et al., 2021) dataset,089

where the task is to classify the type associated with090

Greg. From a machine learning perspective, a well-091

trained model will recognize that Greg is associ-092

ated with multiple attributes, including “Houston”,093

“company” and “actor”, all of which are deemed094

valuable for prediction. As illustrated in Figure 1,095

these contributed attributes can be redundant for096

prediction as highlighting. Hence, the contrastive097

explanation approach tends to overlook most simi-098

larity attributes between “Employee” and “Actor”,099

focusing instead on the more salient semantics that100

are critical for the model’s differentiation task.101

In this paper, we propose Counter-factual Con-102

trastive Prefix-tuning, dubbed CCPrefix 1, which103

aims to minimize semantic obscurity among ver-104

balizers and mitigate the problem of verbalizer105

ambiguity. Our process begins by constructing106

all possible fact-counterfactual label pairs, with107

each class alternately assumed as the fact while the108

other classes are treated as counterfactuals. Each in-109

stance is then projected onto the subspaces spanned110

by these fact-counterfactual pairs, generating a111

range of potential contrastive attributes. These po-112

tential attributes are subsequently filtered through a113

global prototype alignment learning method, result-114

ing in an instance-dependent soft prefix. Lastly, we115

employ a straightforward Siamese representation116

1We will open our codes (uploaded), data, and models.

Algorithm 1 Contrastive Attributes Construction
Input: the class set Y , instance x, a PLM model M
Output: Contrastive attributes C ∈ R|R|×(|R|−1)×de

1: Initialize the verbalizer V = ϕ(Y) ∈ R|R|×de

2: Initialize the matrix C ∈ R|R|×(|R|−1)×de

3: Obtain instance representation hx = Pool(M(x))
4: for all vi ∈ V do
5: for all vj ∈ V , i ̸= j do
6: Construct the contrastive subspace ui,j = vi −

vj ∈ Rde

7: Project the instance onto the subspace ci,j =
ui,j⊗u⊤

i,j

⟨u⊤
i,jui,j⟩

hx

8: end for
9: Form Ci,∗ representing the attributes between i-th fact

and the other label
10: end for
11: return C ∈ R|R|×(|R|−1)×de

learning approach for each instance to ensure stabil- 117

ity throughout the training process. This methodi- 118

cal multi-step approach strives to reduce ambiguity 119

and enhance the effectiveness of prefix-tuning in 120

the realm of natural language processing. 121

To comprehensively validate the efficacy of 122

CCPrefix, we conduct extensive experiments on 123

three many-class classification tasks in both fully 124

supervised and few-shot settings, including rela- 125

tion classification, topic classification and entity 126

typing. The experimental results suggest that Our 127

work presents a promising step forward in the field, 128

demonstrating the substantial potential of CCPrefix 129

in handling complex classification tasks in natural 130

language processing. 131

2 Methodology 132

In this section, we will detail our approach, whose 133

overall architecture is shown in Figure 2. 134

Task Definition. First of all, we provide the task 135

definition about the classification problem in fine- 136

tuning paradigm. The classification tasks can be 137

denoted as T = {X ,Y}, where X is the instance 138

set, Y = {y1, y2, . . . , y|R|} is the class set, and |R| 139

is the number of classes. The first token of the input 140

is [CLS] which contains the special classification 141

embedding. PLMs models take the hidden state 142

h of the first token [CLS] as the representation of 143

the whole sequence. A simple softmax classifier 144

is then added to the top of PLMs to predict the 145

probability of class yc: 146

p(yc|h) = Softmax(Wh) (1) 147

where W is the task-specific parameter matrix. 148

Both the parameters from PLMs and W will 149
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Figure 2: Our proposed model, CCPrefix. For easy comprehension, we zoom out contrastive prefix construction
and contrastive attributes generation in Section 2.2. The losses Lcls, Ls and Lcon are defined in Equation (9),
Equation (8) and Equation (5). The black line is the forward path for both training and inference, while the green
line is the training path with supervised signal.

be jointly fine-tuned by maximizing the log-150

probability of the correct label.151

2.1 Prefix Tuning for Classification152

Formally, prefix tuning consists of a series prefix153

tokens {c1, . . . , cm} and a verbalizer ϕ : V → Y154

that bridges the class set Y and the set of answer155

words V . To construct the cloze-style tasks, at least156

one placeholder [MASK] should be placed into the157

template for the PLMs, M, as the following shows:158

T (X,C) = {e1, . . . , el, c1, . . . , cm, e[MASK]},
(2)159

where {e1, . . . , el} is the embedding of instance160

X . With the soft prefix template T (·) and the161

verbalizer ϕ, the learning objective is to maximize162
1
|X |

∑
x∈X log p([MASK] = ϕ(yx)|T (x)).163

2.2 Contrastive Prefix Construction164

We would elaborate on the process of exploring all165

potential contrastive attributes from each instance166

and the way we construct the prefix templates.167

Contrastive Generation. Thus, for classifica-168

tion tasks, following (Jacovi et al., 2021), we con-169

struct all causal factors by projecting the sentence170

representation into the contrastive space. First171

of all, each instance x would be encoded by a172

deep neural encoder f(·) that transforms x into173

X = {e1, e2, . . . , el} ∈ Rl×de , where l is the174

sentence length and de the embedding dimension.175

Then, we use a multi-layer perception (MLP) with176

ReLU activation, and mean pooling over the se-177

quence to get the whole sentence representation,178

hx = Pool(MLP(X)).179

Commonly, the prediction of the model Whx is 180

linear in the latent input representation. The proces- 181

sor of prediction aims to map hx to a specific direc- 182

tion wi via dot product to obtain the logits of class i. 183

As proposed by Jacovi et al. (2021) in terms of con- 184

trastive explanation, given two classes, yp and yq, 185

if we are particularly interested in the contrastive 186

attributes that the model predicts yp rather than yq, 187

we can construct a new basis, up,q = wp − wq, 188

which represents a contrastive space for yp and yq. 189

Thus, yp is the fact while yq is one of its counterfac- 190

tuals. However, for each instance, the golden label 191

is unavailable before prediction. Hence, we hypoth- 192

esize that the i-th class yi is the fact in turn while 193

the rest in the finite-label space are counterfactu- 194

als to build fact-counterfactual pairs. Specifically, 195

we employ the derivable vectors as the verbalizer 196

V ∈ R|R|×de to map to the class set Y . Thus, sup- 197

posing that i-th class yi is the fact while one of the 198

rest class yj is the counterfactual, the contrastive 199

subspace is: 200

ui,j = vi − vj ∈ Rde , i ∈ |R|, j ̸= i (3) 201

Then, by projecting the instance representation hx 202

onto the subspace ui,j , the contrastive attribute 203

between the specific fact-counterfactual pair is ex- 204

plored: 205

ci,j =
ui,j ⊗ u⊤

i,j

⟨u⊤
i,jui,j⟩

hx (4) 206

where ⊗ is the outer product and ⟨·⟩ is the inner 207

product. For the contrastive attributes generated 208

between the same fact and the rest counterfactuals, 209

we denote these attributes as Ci,∗ ∈ R(|R|−1)×de , 210
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Selected 

Contrastive Attribute 
Prototype 

Figure 3: An illustration of the selection process of
top-2 contrastive attributes ci,j using the similarities
between all possible ci,j and their corresponding proto-
types pi,j , where i-th class is fact and j-th class is its
counterfactual.

where i, ∗ represents the fact-counterfactual pairs211

consisting of the i-th fact and the rest labels as-212

sumed as counterfactuals. Sequentially operating213

eq.3 and eq.4, we extract all contrastive attributes214

C ∈ R|R|×(|R|−1)×de from each instance. We sum-215

marize the former procedure of constructing con-216

trastive attributes in Algorithm 1.217

Prototype Constraint. Obviously, since we218

suppose each label as the fact to form fact-219

counterfactual pairs in turn, it is inevitable to220

face the noisy attributes projected by invalid fact-221

counterfactual pairs for each instance. Therefore,222

the contrastive attributes should be selected only223

if it is generated by the valid fact-counterfactual224

pairs formed by the accurate label. To distin-225

guish valid contrastive attributes, we introduce a226

set of global prototypes {P0,∗,P1,∗, . . . ,P|R|,∗} ∈227

R|R|×(|R|−1)×de corresponding to contrastive at-228

tributes. Concretely, for the contrastive attributes229

ci,j generated by projecting instance onto the230

subspace between i-th fact and j-th counterfac-231

tual, there is only one corresponding prototype232

pi,j . The fine-grained global prototypes can learn233

the common features of its corresponding fact-234

counterfactual attribute among the whole training235

instances. During training, according to the in-236

stance’s ground-truth label, these prototypes can237

be split into two groups. One is the set of positive238

prototypes while the other is the rest negative pro-239

totypes P−,∗ ∈ R(|R|−1)×(|R|−1)×de . The positive240

prototypes represent the common knowledge of241

the corresponding attributes C+,∗ generated by the242

valid fact-counterfactual pairs. These prototypes243

are trained with the following self-contrastive learn-244

ing loss: 245

Lcon = − log
exp(⟨WC+,∗,P+,∗⟩)∑
− exp(⟨WC+,∗,P−,∗⟩))

(5) 246

where W ∈ Rde×de is the learning weight matrix 247

and ⟨·⟩ is the inner product to calculate the similar- 248

ity. This objective forces the positive prototypes 249

draw up the positive contrastive attributes. Simul- 250

taneously, the negative contrastive attribtues would 251

be pushed away from the positive prototypes. 252

Prefix Construction. Thus, by calculating the 253

similarities between instance’s contrastive at- 254

tributes and the corresponding prototypes, we se- 255

lect the top-m’s most similar attributes Csel ∈ 256

Rm×de as additional prefix tokens, as shown in 257

Figure 3. The selected contrastive attributes will be 258

considered as a series tokens in the prefix template 259

T (·), as Equation (2). 260

2.3 Siamese Prefix Tuning Objective 261

We note that some selected top-m contrastive at- 262

tributes may inevitably take false classes as facts, 263

thereby introducing unwanted noise. Therefore, it 264

is crucial to force the PLMs to focus on the valid 265

contrastive attributes and consequently stabilize the 266

model performance. Hence, we leverage a simple 267

Siamese representation learning method (Chen and 268

He, 2021) to simultaneously train the PLMs, M, 269

via maximizing the similarity between the prefix 270

templates with selected contrastive attributes Csel 271

and the same instance with all positive attributes 272

C+,∗. These two inputs with different contrastive 273

attributes are fed into M to obtain the [MASK] rep- 274

resentation z and z+: 275

z = M(X̂) = T (X,Csel),

z+ = M(X̂+) = T (X,C+,∗).
(6) 276

Then, we minimize the negative cosine similarity 277

between two outputs with an MLP f(·): 278

D(z, z+) = − f(z)

||f(z)||2
· z+
||z+||2

(7) 279

Following Chen and He (2021), we use a sym- 280

metrized loss with the stop-gradient operation: 281

Ls=
1

2
D(f(z), sg(z+))+

1

2
D(f(z+), sg(z)).

(8)

282

Here, X with attributes C+,∗ receives no gradient 283

from z+ in the first term, but it receives gradients 284

from f(z+) in the second term, and vice versa. 285
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Finally, the learning objective is to minimize the286

following loss:287

Lcls = − 1

|X |

|X |∑
k=1

logp([MASK] = vk|xk) (9)288

where p([MASK] = vk|xk) is the predicted distri-289

bution for the k-th sample in dataset X and vk is290

the answer word corresponding to its ground truth291

label yk. Overall, our final training loss is292

L = Lcls + Ls + Lcon (10)293

3 Experiments294

We conduct experiments on several classification295

tasks, including relation classification (RC), topic296

classification (TC) and entity typing (ET).297

3.1 Datasets298

We adopt 4 popular datasets for relation classifica-299

tion, i.e., TACRED (Zhang et al., 2017), TACREV300

(Alt et al., 2020), ReTACRED (Stoica et al., 2021)301

and SemEval 2010 Task 8 (Hendrickx et al., 2009)302

(SemEval), one for topic classification, i.e., DB-303

Pedia (Lehmann et al., 2015), and one for entity304

typing, i.e., FewNERD (Ding et al., 2021).305

• TACRED, TACREV and ReTACRED are306

used widely for relation classification. While307

TACRED is the origin, TACREV and ReTA-308

CRED are its revised versions with modifica-309

tions in test sets and some relation tpyes.310

• SemEval is a traditional dataset for RC.311

• DBPedia is an ontology dataset with struc-312

tured information extracted from WikiPedia.313

We privately set a 10% of the training dataset314

as the validation set.315

• FewNERD is a manually large-scale dataset316

of entity typing containing 66 fine-grained317

entity types. We focus on the inter-task, where318

train/dev/test splits may share coarse-grained319

types while keeping the fine-grained entity320

types mutually disjoint.321

More details of these datasets are shown in Ta-322

ble 1. For evaluation, we use F1 scores as the323

metric for RC, and mean accuracy for TC and ET.324

Dataset #Class Task |Dtrain| |Ddev| |Dtest|

TACRED 42 RC 68,124 22,631 15,509
TACREV 42 RC 68,124 22,631 15,509
ReTACRED 40 RC 58,465 19,584 13,418
SemEval 19 RC 6,507 1,493 2,717
DBPedia 14 TC 56,000 5,600 70,000
FewNERD 66 ET 338,753 48,667 96,901

Table 1: Basic statistics of the datasets, where RC stands
for relation classification, TC stands for topic classifica-
tion, and ET stands for entity typing.

3.2 Settings 325

To fairly compare with SoTA baselines, we evalu- 326

ate CCPrefix under fully supervised and few-shot 327

settings for RC tasks, and exclusively in few-shot 328

settings for TC and ET, where for each class, K 329

instances are sampled for training and validation. 330

Following previous works (Han et al., 2021; Cui 331

et al., 2022), we set K as 8, 16, 32 for relation clas- 332

sification and 1, 2, 4, 8, 16 for topic classification 333

and entity typing. We use a fixed set of 5 random 334

seeds to sample instances and take the average of 335

all results as the final result. 336

3.3 Implementation Details 337

Our model is implemented based on PyTorch 338

(Paszke et al., 2019) with V100 and the Trans- 339

former repository of Huggingface (Wolf et al., 340

2020). For RC and TC tasks, our model is based 341

on ROBERTALARGE (Liu et al., 2019), while for 342

ET, it is based on BERTBASE (Devlin et al., 2019). 343

Adam optimizer (Kingma and Ba, 2015) is used 344

for all datasets, where the learning rate is manually 345

tuned ∈ {1e-5, 3e-5, 5e-5 }, and the decay rate 346

is set to 1e-2, and the batch size is set to 16. For 347

the fully-supervised setting, the epoch is 5 while 348

for few-shot setting, it is 30. The best model is 349

selected based on the performance on the devel- 350

opment set. We select top-m attributes as prefix, 351

where m = |R| − 1. 352

3.4 Comparison Methods 353

We mainly compare CCPrefix with several rep- 354

resentative methods in many-class classification 355

tasks, including learning-from-scratch methods, 356

fine-tuning methods and Prefix-tuning methods. 1) 357

C-GCN (Zhang et al., 2018) is a learning-from- 358

scratch based on graph neural networks for relation 359

classification. 2) For fine-tuning vanilla PLMs, we 360

directly select ROBERTALARGE as our baselines 361

for relation classification. 3) Since entity informa- 362

5



Extra Data TACRED TACREV ReTACRED SemEval

C-GCN (Zhang et al., 2018) - 66.3 74.6 80.3 -
ROBERTALARGE (Liu et al., 2019) - 68.7 76.0 84.9 87.6
KNOWBERT (Peters et al., 2019) ✓ 71.5 79.3 - 89.1
SPANBERT (Joshi et al., 2020) ✓ 70.8 78.0 85.3 -
LUKE (Yamada et al., 2020) ✓ 72.7 80.6 90.3 -
PTR (Han et al., 2021) - 72.4 81.4 90.9 89.9

CCPrefix (Ours) - 72.6 82.9 91.2 90.6

w/o ConAtt in §2.2 - 70.0 80.9 90.6 90.1
w/o Prototypes in §2.2 - 71.9 81.2 90.5 90.4
w/o Lcon in Eq.5 - 71.3 81.8 90.6 90.2
w/o Siamese in §2.3 - 72.0 81.8 90.8 90.1

Table 2: F1 scores (%) for RC tasks on the 4 datasets in the fully supervised setting. “w/o ConAtt” denotes using
manually Prefix template and soft verbalizer. “w/o Prototypes” denotes that the cluster is rely on the verbalizer.
“w/o Siamese” denotes that the input of Prefixs template only maintain instance and selected contrastive attribute.

TACRED TACREV ReTACRED

8 16 32 8 16 32 8 16 32

Fine-Tuning (Ours) 12.2 21.5 28.0 13.5 22.3 28.2 28.5 49.5 56.0
PTR (Han et al., 2021) 28.1 30.7 32.1 28.7 31.4 32.4 51.5 56.2 62.1

CCPrefix (Ours) 30.1 33.4 37.6 29.8 33.0 34.0 54.5 61.4 65.2

w/o ConAtt in §2.2 18.1 29.6 32.6 18.1 29.0 32.7 41.1 55.5 64.1
w/o Prototypes in §2.2 28.5 33.1 36.3 30.4 31.7 33.2 54.2 56.3 62.1
w/o Lcon in Eq.5 28.2 33.2 37.3 28.9 32.1 33.8 53.5 59.7 64.4
w/o Siamese in §2.3 23.8 33.1 32.9 27.9 30.4 33.2 50.6 57.7 63.4

Table 3: F1 scores (%) for RC tasks in the few-shot setting. We use K = 8, 16, 32 for few-shot settings.

tion is crucial in relation classification, we select363

SPANBERT (Joshi et al., 2020), KNOWBERT364

(Peters et al., 2019) and LUKE (Yamada et al.,365

2020) as our baselines. 4) We select PTR (Han366

et al., 2021), a prompt augmentation model, for367

relation classification. 5) For topic classification368

and entity typing, our baselines are ProtoVerb (Cui369

et al., 2022) that uses manual prompts, and PETAL370

(Schick et al., 2020) that extracts words as prompts.371

3.5 Main Quantitative Evaluation372

We compare CCPrefix with several recent methods373

to conduct an in-depth analysis.374

Fully Supervised Setting As indicated in Ta-375

ble 2, CCPrefix significantly outperforms for-376

mer baselines, even surpassing KNOWBERT and377

LUKE that leverage external task-specific knowl-378

edge to enhance models. Compared to PTR (Han379

et al., 2021), which manually constructs logic rules380

as the prompt, CCPrefix even outperforms. Such381

comparison indicates that the unique task-related382

information to form a unique prefix can better stim-383

ulate task-specific knowledge in PLMs.384

Few-Shot Setting To further assess our model, 385

we evaluate CCPrefix in few-shot settings. For re- 386

lation classification, as shown in Table 3, CCPrefix 387

outperforms PTR, with an average improvement 388

of 6.6% on ReTACRED. For topic classification, 389

as shown in the left panel of Table 4, CCPrefix 390

exceeds PETAL and ProtoVerb by a large margin. 391

Specifically, in the extreme data scarce scenario 392

(K = 1, 2), our model surpasses ProtoVerb by 393

15.3% and 9.1%. This demonstrates that, if the 394

class labels are semantically diverse, our model 395

is capable of acquiring sufficient knowledge from 396

the PLM even in this limit. For entity typing, our 397

model exceeds former baseline in several scenar- 398

ios (K = 4, 8, 16) but not good when training in- 399

stances are extremely scarce (K = 1, 2). We in- 400

fer that for fine-grained entity typing, although our 401

model can cancel out most of the attributes between 402

two classes sharing the same coarse class with sub- 403

tle differences in semantic (e.g., ‘building-theater” 404

and “building-library” are under type “building”), 405

it is hard to discriminate such contrastive attributes 406

in extreme data scarce scenario. 407
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DBPedia FewNERD

1 2 4 8 16 1 2 4 8 16

PETAL (Schick et al., 2020) 60.06 78.21 86.40 88.41 92.90 20.88 31.28 43.10 50.78 55.49
ProtoVerb (Cui et al., 2022) 72.85 85.49 90.91 95.75 96.30 25.00 35.72 48.28 56.06 61.29

CCPrefix (Ours) 84.02 93.26 95.17 97.66 98.45 22.78 32.47 51.49 58.54 63.38

Table 4: Few-Shot TC & ET performance of F1 scores (%) on the DBPedia and FewNERD datasets. We use
K = 1, 2, 4, 8, 16 for few-shot settings.

Relation Top selected counterfact
per:siblings per:title
per:parents per:countries_of_residence
org:dissolved org:member_of
per:origin org:dissolved
per:children per:country_of_birth
per:city_of_birth per:city_of_death
per:employee_of per:countries_of_residence
per:religion per:city_of_death
org:alternate_names org:founded_by
per:cause_of_death per:country_of_death
org:website org:members

Table 5: The top selected counterfactual relation learned
by the model for some relation types.

3.6 Ablation Study408

We carry out an ablation study on relation classifica-409

tion datasets to further invetigate the effectiveness410

of each component in CCPrefix, as detailed in the411

bottom panel of Table 2 and Table 3. “w/o ConAtt”412

causes more performance degradation in the few-413

shot setting than in the fully supervised one, which414

indicates that contrastive attributes can further stim-415

ulate the knowledge in PLMs. For “w/o Proto-416

types”, attribute-verbalizer similarities are used417

as the slection criteria, causing a significant per-418

formance drop due to noise attributes, although it419

slightly outperforms CCPrefix in TACREV under420

K=8. “w/o Lcon” has less performance reduction421

in few-shot setting than that in fully supervised set-422

ting. We infer that the unbalanced training data423

distribution may hurt the performance significantly.424

The performance of “w/o Siamese” drops severely425

in the extreme data scarce scenario (K = 8), in-426

dicating that simple representation learning can427

force the PLMs to focus on the valid contrastive428

attributes in prefix.429

3.7 Selected Counterfact430

Since the prefix are instance aware, we limit our431

analysis to a subset of 7K instances in the test set432

that could be correctly classified. For each relation433

type, we count the most frequently selected coun-434

terfactual relation. Part of the results are shown435

in Table 5. It is notable that most of the time the 436

model can match a pair per relations, or a pair 437

of org relations. Also, the model prefers to se- 438

lect two relation types semantically correlated but 439

with subtle differences. For example, for relation 440

per:city_of_birth or org:dissolved, the correspond- 441

ing contrastive attribute factor is per:city_of_death 442

or org:member_of, respectively. 443

3.8 Case Study 444

To analyze the influence of individual tokens on 445

model prediction, we conduct a case study on the re- 446

lation per:city_of_birth between entities “he” and 447

“Potomac”. “Potomac”, as depicted in Figure 4. We 448

compute the similarity between each word and the 449

fact y∗=per:city_of_birth, as well as the contrastive 450

attribution factor between y∗=per:city_of_birth and 451

y’=per:city_of_death. For clarity, words with simi- 452

larity scores exceeding the average are highlighted. 453

Our results reveal that the contrastive attribute fac- 454

tor yields concentrated, key determinant highlights 455

such as “native of”. In contrast, using y∗ alone re- 456

sults in scattered highlights, diverging from human 457

expectations of the significant predictors. 458

3.9 Error Analysis 459

Our model operates under the strong assumption 460

that all labels, save for the golden one, act as 461

counterfactuals of the golden label. This hypoth- 462

esis neglects the semantic correlations and over- 463

laps among different classes, potentially impacting 464

model performance. This issue is especially ap- 465

parent in the entity typing task, where fine-grained 466

entity types mayu semantically overlap, thereby 467

challenging our assumption. When class labels pos- 468

sess subtly distinct semantics, more data is needed 469

to construct valid contrastive attributes. This can 470

cause model performance to drop in scenarios of ex- 471

treme data scarcity, like with the FewNED dataset 472

at K = 1, 2. 473
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y∗=per:city_of_birth (y∗, y’)=per:city_of_birth, per:city_of_death

Gross , a 60-year-old native of Potomac

, Maryland , was working for a firm

contracted by USAID when he was arrested

Dec 3 , 2009 , and sent to Cuba ’s

high-security Villa Marista prison .

Gross , a 60-year-old native of Potomac

, Maryland , was working for a firm

contracted by USAID when he was arrested

Dec 3 , 2009 , and sent to Cuba ’s

high-security Villa Marista prison .

Figure 4: The highlighted tokens of the same sentence where the two entities are underscored. On the left, the
tokens are projected onto the ground truth y∗=per:city_of_birth, and on the right onto the contrastive space between
y∗ and the counterfactual y’=per:city_of_death.

4 Related Work474

Prefix Tuning in Classification. The templates475

can be categorized into two groups, i.e., discrete476

prompt (Brown et al., 2020; Schick et al., 2020;477

Schick and Schütze, 2021) and continuous prefix478

(Lester et al., 2021; Li and Liang, 2021). Dis-479

crete prompts often manually designed for all train-480

ing instances with task descriptions. Han et al.481

(2021) leverage manual logic rules to combine482

label-related sub-prompts together. Although it483

is a concrete manifestation of human’s interpre-484

tation of the task, discrete prompts may not be485

the optimal solution. Continuous prefixes (Lester486

et al., 2021; Li and Liang, 2021), attached to in-487

stances, have proven useful but fail to fully capture488

the diversity of training instances. Our work in-489

spired by the human decision process, introduces490

an instance-dependent prefix, better addressing the491

discrimination of label space.492

Verbalier in Classification. Reformulating prob-493

lems as language modeling tasks has been explored494

in few-shot scenarios (Brown et al., 2020; Trinh and495

Le, 2018; Petroni et al., 2019; Davison et al., 2019).496

Traditional manual verbalizer mappings demand497

expert knowledge, thus making automatic verbal-498

izer search (Schick et al., 2020; Schick and Schütze,499

2021) an appealing alternative. This approach it-500

eratively enhances the label-to-word mapping in a501

greedy fashion.502

Counterfactual Contrastive. Explanation of ar-503

tificial intelligence is widely concerned in recent504

years. Miller (2019) presents the philosophical505

foundations of explanation that human relies on506

the contrastive explanations. Jacovi et al. (2021)507

highlights the attributes in the latent space to pro-508

vide fine-grained explanation of model decision.509

Furthermore, Ross et al. (2021) produces con-510

trastive explanations by editing the inputs for the511

contrast case while Gardner et al. (2020) uses 512

it for evaluation. Paranjape et al. (2021) builds 513

contrastive prompts with instance-specific infor- 514

mation for explanation. Zhang et al. (2020) em- 515

ploys contrastive counterfactuals with the multi- 516

instance framework for vision-language ground- 517

ing. Kaushik et al. (2020) tasks humans with re- 518

vising dataset to revise the dataset with counter- 519

factuals. Meanwhile, Yang et al. (2021) produces 520

high-quality augmented data with counterfactuals 521

to overcome out-of-distribution data in the field. 522

Due to the strong explanation of counterfactual, we 523

leverage counterfactual to disambiguate the seman- 524

tic overlap between labels. 525

5 Conclusion 526

In this paper, we propose a novel task-agnostic ap- 527

proach named CCPrefix. We sequentially construct 528

fact-counterfacutal pairs to extract the attributes 529

from the sample. With a set of global prototypes, 530

the valid contrastive attributes will be selected as 531

the prefix. A simple Siamese represeatation learn- 532

ing is employed to stable the training process. The 533

experiment results verify the superiority of our 534

model without extra data and human experts for 535

manually designing Prefix templates. While we 536

have shown that our method is flexible enough for 537

a wide range of tasks in NLP, leveraging contrastive 538

explanations in logic reasoning tasks remains an 539

unveiled challenge for future work. 540

Limitations 541

A principal limitation of our CCPrefix model is 542

the strong assumption it makes in the classifica- 543

tion task: it regards all labels other than the gold 544

standard as counterfactuals. This premise may not 545

consistently hold true, particularly in scenarios in- 546

volving hierarchical labels with overlapping seman- 547

tics. This assumption may impact the performance. 548
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