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Abstract

Inference acceleration of large language models (LLMs) has been put forward
in many application scenarios and speculative decoding has shown its advantage
in addressing inference acceleration. Speculative decoding usually introduces a
draft model to assist the base LLM where the draft model produces drafts and the
base LLM verifies the draft for acceptance or rejection. In this framework, the
final inference speed is decided by the decoding speed of the draft model and the
acceptance rate of the draft provided by the draft model. Currently the widely
used draft models usually generate draft tokens for the next several positions in a
non-autoregressive way without considering the correlations between draft tokens.
Therefore, it has a high decoding speed but an unsatisfactory acceptance rate. In
this paper, we focus on how to improve the performance of the draft model and
aim to accelerate inference via a high acceptance rate. To this end, we propose a
CTC-based draft model which strengthens the correlations between draft tokens
during the draft phase, thereby generating higher-quality draft candidate sequences.
Experiment results show that compared to strong baselines, the proposed method
can achieve a higher acceptance rate and hence a faster inference speed.

1 Introduction

Large Language Models (LLMs) have been applied to a wide range of text generation tasks such as
machine translation and question answering due to their remarkable performance[1, 21, 6, 11]. In
many applications, LLMs is required to produce a long generation to give explanations to its answer
or perform chain of thought (CoT). Moreover, in some practical scenarios, LLMs have to resort to
other applications to fulfill a task under the frame of AI agents where LLMs usually generate long
outputs to communicate with other applications. All of these have a high demand for the inference
speed of LLMs. However, most LLMs employ a token-by-token autoregressive generation paradigm,
bringing on the severe inference delay problem, which obstacles the real applications of LLMs.

To mitigate the inference latency of LLMs, speculative decoding is proposed and proves to be a
more efficient decoding strategy compared with autoregressive generation[12, 4]. Besides the base
LLM, speculative decoding usually introduces a drafter model in the working flow that the draft
model generates candidates for the next several tokens and the base LLM verifies the candidate and
decides to accept or reject at some criterion. Once accept, then the winner candidate will be used as
the output, otherwise, the base LLM will decode and generate the output. In this process, the draft
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model usually has few parameters and hence produces generations at a faster speed. Meanwhile, the
LLM can verify draft tokens parallelly and takes less time than generating the next several tokens by
itself. As only the candidate is accepted at a high rate, the decoding speed can be improved. It can
be derived that the final inference speed is related to the decoding speed of the draft model and the
acceptance rate of the candidate selected out by the draft model. Nevertheless, there is a trade-off for
the draft model between its decoding speed and its performance related to acceptance rate.

Following the principle of speculative decoding, many works focus on optimizing the draft model
to accelerate inference [15, 19, 5, 17] in which the methods based on non-autoregressive (NAR)
generation have shown promising results. The NAR speculative decoding methods draft the next
several tokens parallelly by predicting them independently based on the representation of the original
LLM. Although these methods drafts at a high speed, they ignore the dependence between the next
several tokens and sacrifice the performance as the cost. As a consequence, the speed of speculative
decoding can be affected via the acceptance rate.

Based on these observations, we make efforts from the perspective of model performance by intro-
ducing dependency relationships during draft generation, aiming at achieving a higher acceptance
rate. At this end, we propose a draft model based on Connectionist Temporal Classification(CTC)
algorithm [9] which generates drafts in a non-autoregressive way with additional blank and repetitive
tokens participating in. As during training the CTC-based draft model will count all the possible
candidates sequentially that can generate the given ground truth when calculating the probability of
the ground truth, the candidates with better dependency relationships will achieve higher probabilities.
As a result, at inference the best candidate selected out by the CTC-based draft model will be more
sequentially reasonable and hence can be accepted at a higher rate, ultimately leading to faster
inference. For the rest of this paper, we refer to CTC-drafter as CTC-based draft model for short.
Experiments on MT-bench show that the proposed method is able to draft sequences at a higher
acceptance rate compared to strong baselines, thus achieving remarkable inference speedup.

Our contributions are as follows:

1. We introduce the CTC-based draft model to speculative decoding framework, to the best of our
knowledge, which is the first to apply the CTC algorithm within the speculative decoding domain.
This approach can not only generate drafts in a non-autoregressive way but also introduce correlations
between draft tokens through probability allocation.

2. Through experiments conducted on MT-bench and GSM8K using various LLMs as base models,
we have demonstrated superior speedup ability of the CTC-based draft model compared to other
speculative decoding improvement methods. These results prove the rationality and effectiveness of
our method.

2 Background

Recent advancements have emerged from the innovative approach of Blockwise Decoding[17], which
introduced the draft-then-verify paradigm, leading to the development of Speculative Decoding[12]
and Speculative Sampling[4]. These methodologies offer promising avenues for enhancing the speed
of Large Language Models (LLMs).

Speculative Decoding predicts multiple future tokens and verifies their accuracy within a single
decoding step. Using greedy sampling as an illustration: at step t, given an initial prompt X and
previously produced tokens y<t = y1, ..., yt−1, a speculative sequence of length n, y′t, ..., y

′
t+n, is

generated by the draft model with respective probabilities p′t, ..., p
′
t+n. The target LLM then computes

the accurate probabilities pt, ..., pt+n in one pass during verification. Each token y′i is evaluated
in sequence, with its acceptance probability given by min(1, p′t/pt). Upon rejection of a token y′i,
subsequent tokens are disregarded, and the rejected token is re-sampled using the adjusted distribution
P (yi) = norm(max(0, P (yi|y<i, X)− P ′(yi|y<i, X))).

The effectiveness of Speculative Decoding significantly depends on designing an intelligent
draft model for precise token prediction and devising an optimal strategy for token sequence
verification[24]. Consequently, current research efforts concentrate on these aspects to further
exploit the potential of Speculative Decoding for speed acceleration.
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2.1 Design of Draft Model

Many researchers have pursued the strategy of designing a draft model that operates independently of
the base model[15, 19, 5, 13], such as employing a non-autoregressive transformer for simultaneous
token drafting[23]. To ensure compatibility with the base model, works like [12] opt for draft models
with fewer parameters from the same model series.

However, independent draft models necessitate training or fine-tuning, posing flexibility issues when
transitioning between base models. Alternatively, some approaches rely on modifying the base model
itself for token drafting through moderate adjustments[3, 25, 26, 10]. For instance, [3] introduces an
additional module comprised of linear layers atop the target LLM for drafting tokens independently
for different positions. In contrast, [25] incorporates a bypass within the LLM, allowing for earlier
exits during the model’s layer-by-layer computation.

2.2 Optimization of Verification

The strategy for compiling drafted tokens into candidate sequences and the criteria for sequence
selection are vital during the verification stage. Initially, forming a single candidate sequence from the
most probable tokens across positions was the prevalent approach[16, 18]. To incorporate a broader
range of draft sequences, SpecInfer[14] organizes draft tokens into a tree structure, with paths from
the root to leaf nodes representing different candidate sequences. Regarding selection criteria, early
methods only accepted sequences matching the target model’s greedy decoding output[23]. Later, [4]
introduced Nucleus Sampling as a more effective yet complex acceptance criterion.

2.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) is tailored for sequence prediction tasks, especially ap-
plicable in speech and handwriting recognition[9]. CTC expands the output space, Y , by introducing
a blank token ϵ denoting ’output nothing’, creating an augmented space Y∗. It defines a function
β(y) that maps any sample y ∈ Y to a subset of Y∗, containing all valid alignments. Conversely, β−1

processes alignments from Y∗ back to Y by merging adjacent, repeated tokens and removing blanks,
resulting in the target sentence.

The sequence-level CTC loss function offers superior context modeling capabilities compared
to token-level alternatives and effectively manages variable-length outputs without necessitating
alignment during training. The training objective leverages dynamic programming to aggregate over
all potential alignments a ∈ Y∗.

log p(y) = log
∑
a∈βy

p(a) (1)

For inference, the model generates alignment a, from which repeated tokens and blanks are removed
to yield the final output y = β−1(a).

3 CTC-drafter Model

In this section, we describe our implementation of the proposed model. CTC-drafter improves the
acceptance rate of draft tokens while keeps extra investment of draft time in a reasonable duration,
consequently achieving superior inference speedup. We first give an illustration of CTC-drafter’s
model structure, analyzing the functions of involved modules. Subsequently, we clarify CTC-drafter’s
training strategies and inference procedure.

3.1 Model Structure

Our CTC-drafter model structure are displayed in Figure 1. The training strategy is on the upper
part and the inference process is on the bottom part. The base model on the left side are the LLM
we desired to accelerate, which generally is composed of an embedding layer, multiple attention
transformer layers and a output LM head that maps the hidden states to probability in vocabulary
dimension.

For the draft procedure, we insert an attention draft module which take the hidden states outputted
from base model as input and predict the probability distributions of draft tokens. Here hidden states
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Figure 1: Illustration of CTC-drafter model training and inference strategy.

represents the compressed feature sequence after multiple transformer layers. Inspired by [13], the
inner construction of Attention Draft Module is similar to the base model, with one single transformer
layer conducting prediction in parallel.

For the verify procedure, raw candidate sequences are acquired by combining draft tokens in different
places. Different from Medusa[3] which cuts off a part of combinations as prearranged, all the raw
sequences keep the same length, containing possible draft tokens in each place. A CTC Transform
Module is designed to process all raw sequences. The module first removes consecutive duplicate
tokens and blank character, namely ε in Figure 1. Then the attention map that is used in base model
verification calculation is modified. Positions in the attention map that corresponds to tokens been
removed in CTC transform will be masked.

3.2 Training

The basic training strategy of CTC-drafter is displayed in Figure 1. We fixed the parameters of base
model and trained the transformer layer in Attention Draft Module on ShareGPT dataset, which

4



is a subset of Vicuna’s[6] training data. All input sequences are padded to the same max length,
which is a predefined hyper parameter. Instead of conventional token-level cross entropy function
that separately calculate the loss of each position, we use sequence-level CTC loss as the training
objective. Note the input sequence as X and its corresponding label as Y , The dataset D contains a
set of (X,Y ) pair. The parameters of the trained draft model is noted as θ. Our training objective is
optimizing θ to maximize the probability of labels across the dataset:

θ = argmax
θ

(
∑

(X,Y )∈D

P (Y |X, θ)) (2)

Conventionally, the training labels can be acquired by simply shifting the input. To train CTC-drafter,
we follow the knowledge distillation method to calculate Ydistill as labels Y in equation 2 by inputting
base model the origin data [28], for the consideration that draft model can better match base model if
trained on distilled dataset. First, base model outputs the probability distribution Pdistill(Y |X) in
equation 3 and equation 4 trough multiple transformer layers and LM head, then we get distilled label
sentence Ydistill by greedy decoding in equation 5:

Fdistill = BaseModel(X) (3)

Pdistill(Y |X) = Softmax(LmHead(Fdistill)) (4)
Ydistill = argmax

Y
(Pdistill(Y |X)) (5)

Given labels, we use sequence-level CTC loss to model equation 2. Assume the set AX,Y contains
all possible raw sequences A that can be converted to Y after removing reduplicate tokens and blank
characters. Sum up all probabilities of sequence in the set to get P (Y |X, θ). Considering the time
complexity, it is impractical to enumerate all sequence. In Figure 1, we briefly show the dynamic
programming of traversing all routes to calculate training labels probability P (Y |X, θ) in equation 6.
The detailed algorithm is discussed in [9].

P (Y |X, θ) =
∑

A∈A(X,Y )

P (A|X, θ) (6)

Further, the probability of each sequence P (A|X, θ) equals to the product of probability of each
token ai in the sequence with the independent assumption:

P (A|X, θ) =

T∏
t=1

p(at|X, θ) (7)

A = (a1, a2, a3, . . . , at, at+1, . . . , an) (8)
The probability distribution of each token in the sentence is predicted by the transformer layer we
added in draft module based on the hidden states outputted from base model as in equation 3:

F̂ = DraftModule(Fdistill) (9)

P̂ (Y |X, θ) = Softmax(LmHead(F̂ )) (10)

P̂ (Y |X, θ) actually contains a group of probability distribution of different places in the sentence.
Locate the corresponding position P̂t(Y |X, θ) to calculate p(at|X, θ) in equation 7:

p(at|X, θ) = P̂t(Y = at|X, θ) (11)

3.3 Inference

To clarify the inference speedup mechanism of CTC-drafter, we further explain this procedure in
one specific decoding step with the decoding history “Usr: what is your name? Assistant: hello,”
as base model input. The input will first be passed through base model producing the hidden states
and greedy sampling base token “my”. Attention Draft Module takes the hidden states from last
transformer layer as input, outputting probability distributions of different positions after base token
after LM Head projection.

For every position, the top k tokens are selected in descending order of probability, where k is
predefined. In this instance, Attention Draft Module suggests that “name” is the best candidate token
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Table 1: performance of average speedup ratio on MT-bench.γ represents the average speedup ratio
for all evaluation questions relative to Vanilla method, calculated by equation 13. β represents the
average number of accepted tokens per decoding step for all evaluation questions, calculated by
equation 12.

Speculation Method Vicuna-7B Vicuna-13B Vicuna-33B

γ β γ β γ β

MT-bench

Vanilla[6] 1.00× 1.00 1.00× 1.00 1.00× 1.00
Medusa[3] 2.13× 2.58 1.97× 2.60 1.93× 2.55
Hydra[2] 2.36× 3.04 2.17× 3.06 2.15× 2.95

CTC-drafter 2.78× 3.56 2.52× 3.51 2.20× 3.53
GSM8K

Vanilla[6] 1.00× 1.00 1.00× 1.00 1.00× 1.00
Medusa[3] 2.33× 2.78 2.21× 2.68 2.10× 2.46

CTC-drafter 2.43× 3.53 2.66× 3.53 2.16× 3.40

right next to “My” while it is possible that a blank character appears after “my” and the first draft
token. Attempting to cover more reasonable candidate sequences, tokens in each place with different
probability are combined in token tree structure and a group of the most valuable combinations are
reserved as the raw candidate sequences. The raw candidate sequences is refined in CTC Transform
Module, removing repetitive tokens and blank character and modifying the attention map.

All candidates are verified parallelly in base model, the longest sequence that satisfies the criterion
will be selected as current decoding step’s output, which in this case is “my name is”. The decoding
history is updated according to the output. In one single decoding step, compared with autoregressive
decoding which will only produces token “My”, CTC-drafter enables multiple tokens to be outputted,
thus reducing overall base model calculation steps and achieving speedup.

4 Experiments

4.1 Implementation Settings

We choose open-source Vicuna large language model[6] with different parameter sizes as base model
to conduct experiments. Vicuna models is fine-tuned on ShareGPT dataset based on LLaMA model,
which are noted below as Vicuna-7b, Vicuna-13b and Vicuna-33b according to different parameter
sizes. We also conduct training on LLaMA-2-Chat base models, detailed in the Appendix.

We fix Vicuna model’s parameters and train the transformer layer inside draft module on ShareGPT
dataset. The learning rate is set to 3× 10−5. To avoid gradient explosion, we adopt gradient clipping,
setting the clipping threshold to 0.5. We set the max length of training data to 2048. All training tasks
were executed on four 24GB NVIDIA GeForce RTX 3090 devices, taking around two days. To fully
utilize graphics memory and accelerate training, we load models with FP16 precision for quantization.
For comparison, we also implemented Medusa[3] on Vicuna models, following suggested experiment
settings and retrain on the same ShareGPT dataset.

Trained models are evaluated on MT-bench and GSM8K datasets to assess the acceleration per-
formance in various scenarios. MT-Bench is a carefully curated benchmark that includes 80 high-
quality, multi-turn questions covering 8 primary categories of user prompts such as writing, roleplay
and extraction[27]. GSM8K contains 8.5K high quality linguistically diverse grade school math
problems[7]. Unlike some other datasets that offer base model questions with definitive answers
such as multiple-choice questions, the two selected evaluation datasets contain open-ended questions,
requiring base model to output long sequence answers in multiple decoding steps.

For every question, we record the total number of tokens in its corresponding answer as N , the
total inference time T and the base model decoding steps M . We calculate the average number of
tokens accepted per decoding step and the inference speedup compared to vanilla base model without
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Table 2: Performance of average speedup ratio on MT-bench for different model structures.γ repre-
sents the average speedup ratio for all evaluation questions relative to Vanilla method, calculated by
equation 13. β represents the average number of accepted tokens per decoding step for all evaluation
questions, calculated by equation 12.

CTC Verify Medusa verify

Speculation method γ β γ β

Linear layer + Cross Entropy Loss 1.71× 2.38 2.13× 2.58
Transformer layer + CTC Loss 2.78× 3.56 2.25× 3.02

speculative decoding:

Accepted tokens =
N

M
(12)

speedup =
T̄vanilla

T̄spec
=

Tvanilla/Nvanilla

Tspec/Nspec
(13)

The average number of accepted tokens reflects models’ ability to speculate candidate tokens.
However, it takes extra inference time to draft tokens. Thus, the speedup metrics can be viewed as a
trade-off between speculation quality and extra time consumed.

4.2 Results and analysis

The performance of different speculation methods on MT-bench and GSM8K are showed in Table
1. The speedup ratio of Medusa is evaluated following recommended setting in its corresponding
technical report. The results of Hydra[2] on Vicuna models are acquired from its corresponding paper.
We also measures the performance of fully auto-regressive decoding with no speculation method as
baseline to calculate speedup ratio of other three methods, noted as Vanilla in Table 1.

MT-bench. The results show that our proposed CTC-drafter achieves better draft quality on MT-
bench compared other works, with more than three tokens been accepted per decoding steps. Higher
predicting accuracy enables CTC-drafter to achieve speedup ratio of more than 2×, outperforming
Medusa and Hydra on all types of base model. Besides, the speedup performance of all speculation
method is influenced as base model size increases. Possible explanation is that we can not significantly
expand the size of draft module considering extra time consumed, when base model size increase,
larger ability gap between base model and draft module makes it more difficult for draft module
to imitate base model’s prediction behavior. Therefore, the average number of accept tokens β of
CTC-drafter decreases from 3.56 to 3.53, influencing the speedup performance.

GSM8K. Compared with MT-bench, questions in GSM8K mainly focus on math category. As is
shown on the bottom of Table 1, our proposed CTC-drafter keep a superior speedup performance
over Medusa for all base models. Besides, the speedup performance suffers to some extent for
CTC-drafter in Vicuna-7B base model, compared with the performance in MT-bench. The main
reason is that we completely rely on the comprehensive ability of origin base model to offer answers
without fine-tuning on GSM8K training dataset. Fortunately, when the base model size increases to
13B, CTC-drafter maintains prediction accuracy, achieving 2.66× speedup. However, bridging the
capability gap for Vicuna-33B is challenging, leading to a decline in performance.

4.3 Ablation experiments

In this part, we list the results of ablation experiments and further analyze the working paradigm
of CTC-drafter. First, we explore how each part of the model structure influences the acceleration
performance in Table 2. Then we illustrate how the prediction ability varies across different categories
of test questions in Figure 2. Besides, to better visualize the trade-off between extra time consumption
and prediction accuracy, the time consumption of each calculation procedure during inference is
measured in Figure 3.

Model structure. To better utilize the context information, CTC loss is used as the training objective
as discussed in Section 3.2, which optimizes the draft module under sequence-level supervision.
Besides, we replace the linear layers of Medusa head with more complex transformer layer to suit
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Figure 2: Average number of tokens accepted per decoding step in different question categories on
MT-bench, with Vicuna-7B as base model. The performance on Vicuna-13B and Vicuna-33B is
consistent with this result. The blue color represents CTC-drafter method, orange color represents
Medusa method and green color represents baseline. All evaluation experiments are conducted on the
same device.

CTC loss and better imitate the base model. For inference, the original token tree verification strategy
is modified to include extra operations such as CTC transform and attention map modification.

To explore the speedup contribution of each part of modification as discussed above, we replace the
draft module and verify module with the corresponding ones in Medusa and conduct experiments
on the modified speculation methods. The results are showed in Table 2, with Vicuna-7B as base
model. In this table, linear layer represents drafting tokens based on linear layers with cross-entropy
Loss function as training objective, which is adopted by Medusa. Transformer layer represents
drafting tokens based on transformer layers with CTC loss as training objective, which is adopted
by CTC-drafter. Medusa verify refers to vanilla token tree verification described in [14]. CTC
verify includes extra operations compared with Medusa verify including CTC transform of candidate
sequences and attention map modification as mentioned before.

Replacing linear layer with transformer layer and using CTC loss to design training loss function
increase the average number of accepted tokens β from 2.58 to 3.02. It is clear that with these two
efforts combined, draft module is guided to conduct attention across the whole input sentence instead
of simply learning offsets of the last hidden states. However, blank characters and repeated tokens
exist in the candidate sequences spoil draft quality and speedup for models without CTC transform,
β decreases from 3.56 to 3.02 and γ from 2.78× to 2.25×.

Question categories. We further explore how speedup performance varies on different question
categories, showing in Figure 2. Both CTC-drafter and Medusa achieved the best prediction accuracy
on coding category, which can be attributed to the highly logical nature of the problems within
this category. Among all categories, the acceptance rate of roleplay questions is slightly low for
CTC-drafter, which may be due to the deficiency of questions of this category in our training datasets.

Time consumption. Compared with Medusa, it is unavoidable that our methods’ draft strategy
requires more complex calculations. We display each stage’s time consumption throughout the whole
inference decoding process in Figure 3. First, we replace the original medusa head with transformer
layer to better fit the base model, which cause the time of draft model increases from 3.71% to
14.93%. Besides, for the need to dynamically process candidate sequences in each decoding round,
the CTC transform accounts for extra 5.36% of the overall decoding time consumption. Considering
that the base model’s calculation still account for the main part, it is acceptable that we increase
the draft ability and thus reducing base model’s decoding rounds, which balances the extra time
consumption and achieve better speedup on the whole.
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Figure 3: The percentage of time consumed for different processes based on CTC-drafter(left) and
Medusa(right) speculation strategies. The “others” part mainly contains matrix operations involved
in token tree verification.

5 Related Work

Medusa. After Speculative decoding[23] and Speculative sampling[12], many improvement works
has been proposed to optimize the draft model and verification strategy. Among these, Medusa
explores a novel and efficient acceleration framework[3]. Instead of using an independent model with
fewer parameters as the draft model, several Medusa Heads are added on top of the last transformer
layer of base model. The i-th Medusa Head is responsible for predicting the i-th token after the base
model decoding token in each step. For each Medusa Head, top k tokens with highest probability
are selected and combined in tree structure to form candidate sequences. Using tree mask method in
[14], the multiple sequences are validated in parallel during the next decoding step. Two strategies
are used for the training of Medusa Head: Medusa-1 fix the parameters of base model, optimize only
the Medusa Head on a small dataset, Medusa-2 adopt end-to-end training, fine-tuning base model
and Medusa Head together on larger datasets. Although Medusa-2 can achieve remarkable inference
speedup, the need of large training data and time consumption limits its generality across different
base model. In this paper, we only implement and demonstrate Medusa-1 considering fairness.

Hydra. Modified from Medusa Head, Hydra designs Hydra Head, a sequentially dependent, drop-in
replacement for standard draft heads[2]. A Hydra Head conduct prediction not only based on base
model hidden states but also the decoding output of other Hydra Heads, which significantly improves
speculation accuracy. Besides, some other tricks are adopted for further inference speedup including
adding noise and knowledge distillation.

6 Conclusion and Future work

Speculation decoding and corresponding improvement works mostly draft candidate tokens without
considering context information and generate fixed-length candidate sequences for verification,
which not only influences the draft quality, bur also lacks generality across different large language
models. In this paper, we propose a novel framework named CTC-drafter based on CTC algorithm.
Specifically, we use CTC loss as the training objective to model the context connection instead of
cross entropy. We reconstruct the structure of draft model, using transformer layer to better fit base
models. Besides, with CTC transform, we achieve adaptive candidate sequence generation which
makes it convenient to transfer the framework across different base models. Nevertheless, our current
work is subject to certain limitations that requires careful consideration. More training tricks can
be explored to further enhance the prediction ability of draft module. Besides, it is still doubtful
that whether the current draft model structure is optimal. What’s more, different types of large
pretrained language model need to be adopted in our proposed framework to evaluate the acceleration
performance of CTC-based draft model.

For the future work, we attempt to identify techniques to reduce the extra time consumed caused
by more complex draft operations introduced. Other verification criteria such as Nuclear Sampling
[4] can be integrated into our framework. What’s more, some other methods such as Conditional
Random Field(CRF, [20]) and Directed Acyclic Graph(DAG, [8]) can be explored to model the
context information when drafting tokens, we remain these ideas for future work.
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Figure 4: The bar charts of speedup ratio relative to vanilla method γ(top) and average number of
tokens accepted per decoding step β(bottom) across different model types and sizes with CTC-drafter.
The blue bar represents performance on MT-bench and the orange bar represents GSM8K. All
evaluation experiments are conducted on the same devices.

A Appendix

To evaluate the generality of our method across different base models, we add supplementary
experiments on LLaMA-2-Chat base models[22]. We select LLaMA-2-Chat 7b and 13b as base
models and evaluate CTC-drafter’s performance on MT-bench and GSM8K. For a clear comparison,
the evaluation results of various base models, including Vicuna, are documented in Figure 4.

CTC-drafter maintains ideal performance when transferring from Vicuna models to LLaMA-2-Chat
models, only slight decline when compared the evaluation results on Vicuna-7b and LLaMA-2-chat-
7b. Besides, it should be noted that increasing the size of the LLaMA-2-Chat model to 13b does not
compromise draft quality, while enhancing speedup performance. This trend diverges from Vicuna
base models, potentially due to distinct inference paradigms inherent in both models.
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code in Supplementary Material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4.1(Implementation Settings) we provide the main settings and
steps to train the models and conduct evaluation.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
Justification: In section 4(Experiments), we discuss the statistical significance of the experi-
ments.
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• The answer NA means that the paper does not include experiments.
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Section 4.1(Implementation Settings), we discuss the devices we use and
time consumption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1(Introduction) we discuss potential societal impacts of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All pretrained language models and datasets we use is open-source without a
high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All models and datasets we use are cited and credited properly.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: the paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
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well as details about compensation (if any)?

Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
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Answer: [NA]

Justification: the paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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