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Abstract

Augmentation-based self-supervised learning methods have shown remarkable
success in self-supervised visual representation learning, excelling in learning
invariant features but often neglecting equivariant ones. This limitation reduces the
generalizability of foundation models, particularly for downstream tasks requiring
equivariance. We propose integrating an image reconstruction task as an auxiliary
component in augmentation-based self-supervised learning algorithms to facilitate
equivariant feature learning without additional parameters. Our method imple-
ments a cross-attention mechanism to blend features learned from two augmented
views, subsequently reconstructing one of them. This approach is adaptable to
various datasets and augmented-pair based learning methods. We evaluate its
effectiveness on learning equivariant features through multiple linear regression
tasks and downstream applications on both artificial (3DIEBench) and natural (Im-
ageNet) datasets. Results consistently demonstrate significant improvements over
standard augmentation-based self-supervised learning methods and state-of-the-art
approaches, particularly excelling in scenarios involving combined augmentations.
Our method enhances the learning of both invariant and equivariant features, lead-
ing to more robust and generalizable visual representations for computer vision
tasks.

1 Introduction

Popular augmentation-based self-supervised learning methods [1]–[5] have shown remarkable success
in their domain, primarily focusing on learning invariant features across different views of the same
image. While these approaches have proven to be effective for many tasks, their performance is
limited for downstream applications that require equivariant behavior [6].

Equivariance in feature learning ensures that a model’s learned representations remain consistent
under various transformations, including 2D or 3D translations, rotations, scaling, and changes in
color or illumination [7]. Mathematically, this property implies that the model’s transformation
commutes with the transformation acting on both the input and feature spaces. In practical terms,
an equivariant model’s response to an object in an image remains stable regardless of its position,
orientation, or other imaging conditions, potentially leading to better generalization on unseen data.

Recent work, such as SIE (Split Invariant and Equivariant) [8], has attempted to address the limitations
of invariance-focused learning by introducing a split between invariant and equivariant features.
During the pretraining process, SIE [8] uses known transformations (e.g. rotation and colour jittering)
including their parameters to learn a linear mapping between equivariant features from two views.
However, this approach faces several challenges:
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Figure 1: Illustration of proposed equivariant reconstruction mechanism. Cross-attention
reconstruction decoder is composed with one cross attention layer, where Key and Value from first
view and Query from the second view are mixed for computing the attention matrix. Subsequently,
L× self-attention layer is added for reconstructing the image.

• It has been tested only on small, artificial datasets (3DIEBench [8]), limiting its proven applicability
to real-world scenarios.

• It requires prior knowledge of transformations to learn equivariant features, which may not always
be available or easily determinable.

• It struggles when dealing with images that have undergone unknown transformations.

To overcome these limitations, based on recent success in self-supervised learning using reconstruction
to learn image features [9], [10], we propose a novel equivariance learning method based on image
reconstruction, which leverages a cross-attention mechanism to facilitate the neural network in
learning equivariant features. By utilizing image reconstruction, our approach enables the network
to better capture the relationships between transformed images, leading to improved learning of
equivariant representations. This method can be applied to all natural images without requiring prior
knowledge of transformations, such as object motion tracking tasks, addressing a key limitation of
previous work.

Our contributions are as follows:

• We introduce reconstruction as an auxilary task to learn equivariance, addressing the limitations of
augmentation-based self-supervised learning.

• We demonstrate the effectiveness of our method on both artificial (3DIEBench [8]) and natural (Im-
ageNet [11]) datasets, showing comparable (3DIEBench) and improved performance (ImageNet)
compared to existing baselines.

• We provide extensive evaluations on various image transformations, including rotation, color
jittering, translation, and scaling, demonstrating the robustness of our learned representations.

2 Method

Our proposed method integrates learning equivariant features with invariant augmentation-based
self-supervised learning, as illustrated in Figure 1. The method builds upon the SIE framework (Split
Invariant and Equivariant) [8]. The SIE framework divides the representations extracted from the
encoder into two parts: one invariant and the other equivariant. The invariant part uses augmentation-
based SSL loss as VICReg [4] to encourage the network to learn invariant features. Meanwhile, the
equivariant part first encodes the transformations, enabling the construction of a linear predictor that
maps equivariant representations from the first view to the second view.

In our approach, for the equivariant part, instead of building a linear predictor, the equivariant features
are used to compute the reconstruction loss Lrecon as the equivariance loss (see details in 2). This
auxiliary reconstruction task encourages the network to learn robust equivariant features without
requiring additional transformation encoding, as is needed in SIE. The final loss is a linear combination
of the augmentation-based SSL loss and reconstruction losses, given by L = λSSLLSSL + λreconLrecon.
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Split Invariant and Equivariant Representations The original RGB images, each of size X × Y ,
in a minibatch of size N , denoted as I ∈ RN×3×X×Y , are augmented to generate two different views,
v1 and v2. These views are fed into an encoder, f , which shares weights between both inputs. The
encoder outputs are then split into two parts: Yinv, which contains invariant information, and Yequi,
which contains equivariant information. In our experiments, the output dimension for each view is 512.
We split this 512-dimensional vector into two 256-dimensional vectors. These two representations
are processed by separate heads, ginv and gequi, which produce embeddings Zinv ∈ RN×192 and
Zequi ∈ RN×192, representing the invariant and equivariant features, respectively.

Cross-Attention Reconstruction To facilitate the learning of equivariant features from the images,
we introduce an auxiliary reconstruction task. The reconstruction is performed using a decoder, d,
which consists of a cross-attention layer followed by L self-attention layers. In the cross-attention
layer, the Key (K) and Value (V ) are derived from Z1

equi of the first view, v1, while the Query (Q) is
derived from Z2

equi of the second view, v2. The cross-attention mechanism is defined as:

Ycross-atten = softmax((WQZ
2
equi)(WKZ1

equi)
T)(WV Z

1
equi) (1)

The output of the cross-attention layer, Ycross-atten, maintains the same dimensionality as the input
feature Zequi. This output is then passed through L self-attention layers, yielding the reconstructed
images Yrecon. These reconstructed images are then used to compute the pixel-wise mean squared
error (MSE) as the reconstruction loss Lrecon, with v2 serving as the target.

3 Experimental results

Experiment settings. We employ the ViT-Small architecture as the base encoder, which is trained
with a batch size of N = 2048 for 800 epochs. The optimizer used is Adam, with a linearly scaled
learning rate of 1× 10−4 and a weight decay of 1× 10−6. The decoder consists of 6 blocks, each
with an embedding dimension of 192. Notably, only the first block of the decoder incorporates a
cross-attention layer. All experiments adhere to these settings. Under these conditions, pretraining on
natural images (ImageNet) takes approximately 23 hours using 16 A100 GPUs.

Representation evaluation metrics. We follow the same evaluation metrics as SIE [8], applying
a linear classifier on top of the pretrained frozen encoder to predict the transformations. The
representations from the two augmented views are fed into a 3-layer MLP, which is trained to regress
the transformations between the two views.

For all transformation predictions, performance is evaluated using the coefficient of determination,
R2, which quantifies how well predicted values approximate true values. Specifically, R2 indicates
the proportion of variance in the true values that is explained by the predictions, where R2 = 1
represents perfect prediction, and R2 = 0 indicates that the model explains none of the variance.

3DIEBench Classification Rotation Prediction Color Prediction
SIE(rot) 0.820 0.724 0.054

SIE(rot+color) 0.809 0.502 0.980
Ours 0.782 0.554 0.954

Table 1: Comparison of different methods on the 3DIEBench [8] dataset. Bold values indicate overall
best results, underlined values indicate the better results within direct comparison of Ours and SIE
[8] with combined augmentations (rotation and color jittering).

Evaluation on 3DIEBench [8] dataset. We evaluate our method using the 3DIEBench dataset, which
provides transformation parameters. In contrast to the SIE method, which relies on the knowledge of
the augmentation transformation parameters, our approach does not require any information about
the transformations involved.

From Table 1, the SIE model with rotation knowledge excels in Classification and Rotation Prediction
but performs poorly in Color Prediction without color prior knowledge. Incorporating color aug-
mentation in SIE(rot+color) greatly improves Color Prediction but reduces performance in Rotation
Prediction. The Ours model strikes a balance, performing well across all tasks, making it a versatile
choice without any knowledge of transformation involved.
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Evaluation on natural images. We augment the image to create two views. SIE needs the augmen-
tation parameters as prior knowledge in the pretraining process. We create augmentation from the
first view to the second view, and provide augmentation parameters.

ImageNet Rotation Color Blur radius Translation Crop prediction Flip
SIE(rot) 0.990 0.867 0.042 0.540 0.266 0.532

SIE(color) 0.078 0.890 0.097 0.355 0.178 0.333
SIE(blur) 0.153 0.883 0.941 0.189 0.412 0.415
SIE(trans) 0.213 0.885 0.023 0.978 0.368 0.511
SIE(crop) 0.273 0.819 0.018 0.450 0.922 0.485
SIE(flip) 0.155 0.798 0.056 0.312 0.266 0.993

VICReg[4] 0.318 ± 0.005 0.804 ± 0.016 0.101 ± 0.023 0.333 ± 0.008 0.423 ± 0.140 0.872 ± 0.070
SIE(all) 0.331 ± 0.007 0.899 ± 0.003 0.211 ± 0.005 0.925 ± 0.002 0.835 ± 0.008 0.945 ± 0.004

SIE(all, single each time) 0.435 ± 0.011 0.907 ± 0.009 0.377 ± 0.004 0.922 ± 0.010 0.829 ± 0.005 0.939 ± 0.007
Ours 0.862 ± 0.004 0.921 ± 0.006 0.823 ± 0.003 0.853 ± 0.005 0.912 ± 0.002 0.952 ± 0.008

Table 2: Performance comparison on ImageNet for different prediction tasks. Bold values indicate
overall best results, underlined values indicate the better results within direct comparison of Ours and
SIE [8]. The results of VICReg are obtained by using a pretrained model with a 3-layer MLP for
finetuning, specifically for evaluating equivariance.
In Table 2 we see, that SIE models excel when pretrained with specific single transformations, such
as rotation, achieving the best results for rotation prediction. However, their performance drops
significantly for other transformations. Even with all transformation information (as in SIE(all)),
their performance remains lower than ours. Pretraining with randomly selected transformations (as in
SIE(all, single each time)) improves results compared to SIE(all) but still falls short of our method.

We further evaluate transfer learning on smaller classification datasets and segmentation tasks, i.e.
ADE20K[12]. The results are attached in A.2.

Cifar10 Rotation Color Blur Radius Translation
Supervised 0.214 0.229 0.437 0.386

SIE(all) 0.402 0.395 0.511 0.479
Ours 0.815 0.879 0.944 0.878

Table 3: Comparison on partial CIFAR10 data. The bold values indicate the overall best.

Utilisation of unknown transformations for learning equivariant representations We evaluate
the effectiveness of our method for learning equivariant representations only with knowledge of
parts of the augmentation transformations and compare its performance with that of SIE. With the
CIFAR10 dataset [13] we denote 80% of the training data as data subject to unknown transformations
and for 20% the transformations including their parameters are known. Since SIE need to know the
transformations, it can only use the 20% of the data. Therefore, SIE as well as supervised are trained
exclusively on the remaining 20% data with known transformations, whereas our method leverages
the entire dataset. Both models are evaluated on the validation set. As shown in Table 3, our method
significantly outperforms SIE, and thus emphasises its ability to efficiently use data that has been
subjected to unknown transformation to generate robust equivariant representations.

4 Conclusions
Our proposed method integrates equivariant representation learning into augmentation-based self-
supervised learning through a reconstruction task, demonstrating potential for enhancing the gen-
eralization capabilities of invariant augmentation-based self-supervised learning. In this paper, we
evaluate our approach on multiple datasets and downstream tasks to measure its impact on the
equivariant properties of pretrained networks. Our method matches the performance of SIE [8] on
the 3DIEBech dataset and surpasses it on natural image datasets.

Our experiments are currently limited to using smaller backbones and datasets for testing. In the
future, we plan to explore larger network architectures and datasets to further evaluate the effectiveness
of our method across a broader range of augmentation-based self-supervised learning techniques.
Additionally, we will investigate alternative image reconstruction methods for learning equivariant
representations.

Acknowledgements The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V.
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A Appendix / supplemental material

A.1 Experiments on CIFAR10

Similar to the ImageNet dataset discussed in Section 3, we also perform transformation prediction on
smaller datasets, such as CIFAR10. The conclusions drawn from these smaller datasets are consistent
with those observed for ImageNet.

Cifar10 Rot Prediction Color Prediction Blur Radius Trans Prediction
SIE(rot) 0.989 0.887 0.836 0.911

SIE(color) 0.813 0.921 0.825 0.822
SIE(blur) 0.814 0.833 0.990 0.807
SIE(trans) 0.876 0.812 0.810 0.987
SIE(all) 0.845 0.864 0.889 0.886

Ours 0.826 0.906 0.972 0.890

Table 4: Comparison of different prediction methods on the CIFAR10 dataset. Bold values indicate
overall best results, underlined values indicate the better results within direct comparison of Ours and
SIE

A.2 Transfer learning on downstream tasks

Transfer learning on classification tasks. We follow the standard self-supervised learning evaluation
pipeline, where the pretrained network is frozen and only the linear head is fine-tuned on downstream
tasks. From Table 5, we observe that our method performs well on most classification datasets, with
the exception of the Pets dataset, when compared to SIE. In the case of the Aircraft dataset, SIE
outperforms other methods due to its rotation prior, which better accommodates the rotation-invariant
nature of the images.

Methods Cifar10 [13] Cifar100 [13] Food101 [14] SUN397 [15] DTD [16] Pets [17] Aircraft [18]
SIE(rot) 71.56 46.88 55.48 43.11 64.22 81.51 50.21

SIE(color) 67.99 48.78 57.19 42.32 60.87 80.27 41.15
SIE(crop) 80.84 49.35 59.24 52.38 61.82 84.63 47.35

Supervised 80.99 50.66 59.32 52.98 62.03 83.59 47.83
SIE(all) 79.91±0.18 53.12±0.05 58.42±0.20 56.11±0.08 63.56±0.11 85.34±0.19 46.88±0.23

Ours 81.12±0.11 54.22±0.10 59.21±0.14 59.53±0.13 67.66±0.12 84.32±0.09 49.75±0.22

Table 5: Transfer learning on classification tasks. Bold values indicate best results within direct
comparison of Ours vs. SSL methods, underlined values overall best.

Transfer learning on segmentation task. We use an encoder with HyperNet [19] on top of
the encoder for the segmentation task. The table below presents the results of transfer learning
experiments on the ADE20K dataset, evaluating three different methods: Supervised, SIE(all), and
Ours. The metrics used are mean Intersection over Union (mIOU), mean Accuracy (mAcc), and
overall Accuracy (aAcc). In this comparison, our method outperforms both the Supervised and
SIE(all) approaches across all metrics, achieving the highest mean Intersection over Union (mIOU),
mean Accuracy (mAcc), and overall Accuracy (aAcc).

ADE20K mIOU mAcc aAcc
Supervised 0.268 0.328 0.751

SIE(all) 0.292 0.356 0.774
Ours 0.312 0.379 0.802

Table 6: Transfer learning on segmentation tasks. Bold values indicate best results.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in abstract accurately reflect the paper’s contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In conclusion section, we discuss our current limitation and future work for it.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our research is experimental research, on theoretical results are provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included all information needed to reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will publish the code in the paper once the paper got accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: For the training details, we include all the necessary settings in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Some important results we report the error bars, but some experiments, limited
by time and computing resources, the statistical information is neglected.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide our information of computer resources along with our settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: We will review the NeurIPS Code of Ethics and refine our code to fully comply
with its requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed in our paper.

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not relate to the safe risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have used the existed library and code, we also cite them in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We will documnet our model and code in the paper later when the decision is
made.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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