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Abstract

We study the Bandits with Knapsacks problem
with the aim of designing a learning-augmented
online learning algorithm upholding better regret
guarantees than the state-of-the-art primal-dual al-
gorithms with worst-case guarantees, under both
stochastic and adversarial inputs. In the adversar-
ial case, we obtain better competitive ratios when
the input predictions are accurate, while also main-
taining worst-case guarantees for imprecise pre-
dictions. We introduce two algorithms tailored for
the full and bandit feedback settings, respectively.
Both algorithms integrate a static prediction with
a worst-case no-α-regret algorithm. This yields an
optimized competitive ratio of (π + (1− π)/α)−1

in scenarios where the prediction is perfect, and a
competitive ratio of α/(1−π) in the case of highly
imprecise predictions, where π ∈ (0, 1) is chosen
by the learner and α is Slater’s parameter. We com-
plement this analysis by studying the stochastic
setting under full feedback. We provide an algo-
rithm which guarantees a pseudo-regret of Õ(

√
T )

with poor predictions, and 0 pseudo-regret with
perfect predictions.

1 INTRODUCTION

In the Bandits with Knapsacks (BwK) framework a deci-
sion maker makes a sequence of T decisions with the goal
of maximizing their reward, while satisfying m resource-
consumption constraints [Badanidiyuru et al., 2018]. At
each round t up to T , the decision maker chooses an ac-
tion ξt and, subsequently, receive a reward ft(ξt) ∈ [0, 1]
and incur in costs ct(ξt) ∈ [0, 1]m. The process stops at
time horizon T , or when the cumulative costs

∑T
t=1 ct,i(ξt)

exceed a given budget B for at least one resource i.

The BwK model was extended in various directions such as
studying the adversarial inputs [Immorlica et al., 2022], han-
dling general types of objectives and constraints [Agrawal
and Devanur, 2019], providing best-of-both-worlds guaran-
tees [Castiglioni et al., 2022b], and studying contextual and
combinatorial settings [Badanidiyuru et al., 2014, Agrawal
et al., 2016, Sankararaman and Slivkins, 2018, Slivkins
et al., 2023].

BwK has numerous applications such as dynamic pricing
and online advertising [Besbes and Zeevi, 2009, Babaioff
et al., 2012, Badanidiyuru et al., 2012, Wang et al., 2023,
Feng et al., 2023]. In such scenarios, the online platforms
overseeing these systems typically possess large amount of
data that can be utilized for training machine learning mod-
els, enabling predictions of the future evolution of rewards
and costs. Our objective is to enhance the performance of
state-of-the-art primal-dual algorithms for BwK by incorpo-
rating such predictions. This brings us to the central research
question of this paper: can machine learning predictions
enhance the performance of traditional primal-dual algo-
rithms in the BwK framework? To address this question, we
present three novel algorithms: one designed for the stochas-
tic setting, and the other two for the adversarial full and
bandit case, respectively. When equipped with good pre-
dictions, our algorithms guarantee dramatic improvements
in performance. Moreover, they recover known worst-case
guarantees in case of imprecise predictions.

1.1 OUR RESULTS

We design two algorithms for adversarial case with full and
bandit feedback respectively. In adversarial setting, the algo-
rithms are evaluated based on their competitive ratio which
is, roughly speaking, the ratio between the reward achieved
by the best strategy in hindside and the reward achieved
by the algorithm, see Section 2 for precise definition. Our
algorithms use a prediction of the best fixed strategy in
hindsight. Both algorithms achieve an optimal trade-off be-
tween consistency (performance with perfect prediction)



and robustness (performance with very bad prediction).

Theorem 1.1. For adversarial setting with both bandit and
full feedback, there is an algorithm which accepts a trade-off
parameter π ∈ (0, 1) and, with high probability, achieves a
competitive ratio (π+(1−π)ρ)−1 with a perfect best fixed
strategy prediction, and 1/(1− π)ρ with an arbitrarily bad
prediction, where ρ denotes the per-iteration budget.

The trade-off parameter π can be understood as a hyper-
parameter chosen by the learner. Intuitively, our algorithm
samples a part of the input to be handled according to the
predicted strategy, and the rest of the input is handled us-
ing the worst-case 1/ρ-competitive algorithm by Castiglioni
et al. [2022b], which is based on the LagrangeBwK frame-
work by Immorlica et al. [2019, 2022]. The main difficulty
in the analysis lies in ensuring that our algorithms do not
exceed their budget too early, missing out on possibly prof-
itable items arriving towards the end of the input sequence.
In case of bandit feedback, we need to handle difficulties in
simulating the worst-case algorithm, since we cannot pro-
vide it with feedback in time steps handled according to the
predicted strategy.

We show that the consistency-robustness trade-off in Theo-
rem 1.1 is optimal up to a constant factor.

Theorem 1.2. In the adversarial setting, no algorithm
whose competitive ratio with perfect best fixed strategy pre-
diction is at most 1/π can be (1/2(1− π)ρ)-competitive in
the worst case.

In order to complete the picture, we also propose an algo-
rithm for stochastic setting with full feedback whose worst-
case performance matches the optimal (without predictions)
bound of Badanidiyuru et al. [2018]. To achieve this, we ex-
ploit the notion of expected Lagrangian game by Immorlica
et al. [2022], and denote by (ξ∗, λ∗) the Nash equilibrium
strategies of such game. Then, given a prediction (ξA, λA)
on such strategies, we define the primal and dual prediction
errors as ηP = TVD(ξA, ξ∗) and ηD = ∥λA − λ∗∥1.

Theorem 1.3. There is an algorithm for the stochastic set-
ting such that, if provided with equilibrium predictions with
error ηP ≤ ρ/

√
T and ηD ≤ 1/

√
T , it achieves expected

profit at least E[OPT]−ηPT . Otherwise, its profit is at least
REW ≥ OPT− Õ(

√
T ).

There is no need for a trade-off parameter in the preceding
theorem compared to the adversarial setting: expected profit
of our algorithm is optimal with a perfect predictions and
smoothly deteriorates as the prediction error increases, even-
tually matching the bound by Badanidiyuru et al. [2018].
The dependency of the performance bound on the prediction
error is called smoothness. Our algorithm tests the qual-
ity of the predictions while processing the input sequence,
switching to the worst-case algorithm if their error seems
high.

Organization. Sections 3 and 4 contain the description
and analysis of our algorithms for the adversarial and the
stochastic setting, respectively. Section 5 presents empirical
evaluation of our algorithms. iof Theorem 1.2 can be found
in Appendix 6.

1.2 RELATED WORK

We briefly survey works which are closely related to our
paper. For additional references, readers are encouraged to
consult Chapter 10 of [Slivkins et al., 2019], the survey by
Mitzenmacher and Vassilvitskii [2022], and the website by
Lindermayr and Megow [2023].

Bandit with Knapsacks The BwK problem, first pre-
sented by Badanidiyuru et al. [2013, 2018], serves as a
foundational framework that melds the traditional bandit
setting with resource-consumption constraints. Successive
work by Agrawal and Devanur [2019] have extended this
scope to handle more complex constraints and objectives.
When considering Adversarial BwK, it is impossible to at-
tain sublinear regret. Therefore, starting with the work by
Immorlica et al. [2019, 2022], the focus has been providing
no-α-regret guarantees, where α is the competitive ratio.
The initial guarantees of α = O(m log T ) by Immorlica
et al. [2019] where later improved to a tight O(logm log T )
by Kesselheim and Singla [2020]. In the case of B = Ω(T ),
Castiglioni et al. [2022b] showed how to achieve a constant
competitive ratio of 1/ρ. This algorithm also guarantees
Õ(
√
T ) regret in the stochastic setting. It employs a primal-

dual template based on the LagrangeBwK framework by
Immorlica et al. [2022] for optimizing the trade-off between
maximizing rewards and efficient resource allocation. This
will be the main building block for our framework. There
were also recent works on this problem by Sivakumar et al.
[2022] and Deb et al. [2024].

Learning Augmented online algorithms The framework
of learning-augmented online algorithms was formally es-
tablished by Lykouris and Vassilvtiskii [2018], a seminal
work that later served as a basis for research on online algo-
rithms with predictions by Mitzenmacher and Vassilvitskii
[2020]. Applications of this framework are wide-ranging
and include scheduling [Mitzenmacher, 2019, Lattanzi et al.,
2020] and caching or paging algorithms [Lykouris and Vas-
silvtiskii, 2018, Rohatgi, 2020, Wei, 2020, Emek et al., 2021,
Gupta et al., 2022, Antoniadis et al., 2023]. In addition,
a general framework for integrating predictions into on-
line primal-dual algorithms was introduced by Bamas et al.
[2020]. Recently, Lyu and Cheung [2023] studied BwK in a
setting with time-varying stochastic properties, with predic-
tions of the next reward and cost provided at each time step,
whereas our algorithms need only one prediction received
in the beginning of the instance.



2 PRELIMINARIES

The learner has a finite set of n actions A and m resources,
and takes a sequence of decisions over T rounds. We define
the set of randomized strategies of the learner as Ξ := ∆(A).
At each round t, an action xt is sampled according to ξt ∈ Ξ
and, subsequently, the environment yields a reward function
ft : A → [0, 1] and costs ct : A → [0, 1]m. We denote a
sequence of inputs (ft, ct)

T
t=1 as γT . At each round t, in

the full feedback model the learner observes ft, ct, while
in the bandit feedback model they only observe ft(xt) and
ct(xt). Each resource i ∈ [m] is endowed with a budget
B.1 The per-iteration budget is denotes as ρ = B/T . We
will work under the same assumption of Castiglioni et al.
[2022b] and Balseiro et al. [2022]: budgets are at least lin-
ear in time, i.e., B = Ω(T ). The learning process stops
at T or as soon as one of the resources is fully depleted
(i.e., the total consumption exceeds the budget). Following
previous work, we assume the existence of a void action ∅
which guarantees 0 costs for each resource Badanidiyuru
et al. [2018], Immorlica et al. [2022]. This guarantees the
existence of a strictly feasible solution. A simple illustration
of a void action can be found in the context of a repeated
auction, where it consists of placing a bid of 0.

Benchmarks In the adversarial setting, we employ as a
baseline the total expected reward of the best fixed strategy
in Ξ. Actions are drawn from the same fixed strategy until
the time step τ in which the budget is fully depleted. The
void action is played from τ + 1 time until the end of the
time horizon. Formally,

OPT := sup
ξ∈Ξ

Ex∼ξ

[
τ∑

t=1

ft(x)

]
,

where τ is also a random variable depending on the realized
costs. For any randomized strategy ξ, ft(ξ) := Ex∼ξ[ft(x)]
(ct(ξ) is defined analogously as the expected cost with re-
spect to ξ). The choice of this baseline is in line with previ-
ous work on the adversarial case by Immorlica et al. [2022],
Castiglioni et al. [2022b]. We use competitive ratio as a
performance measure. We say that an algorithm is 1/c-
competitive, if its reward is at least cOPT − o(T ). Then,
we also say that the algorithm achieves no-1/c-regret and
call 1/c its competitive ratio.

When rewards and costs are stochastic the baseline is the
best fixed randomized strategy that satisfies the constraints
in expectation. This is the standard choice in stochastic
BwK settings [Badanidiyuru et al., 2018, Castiglioni et al.,
2022b]:

OPT := sup
ξ∈Ξ

E[f(ξ)] s.t. E[c(ξ)] ≤ ρ,

1Considering B1 = . . . = Bm = B is w.lo.g. as argued by
Immorlica et al. [2022].

where expectations are with respect to randomness of the en-
vironment when generating rewards and costs. Performance
of an algorithm with reward REWALG is then measured using
pseudo-regret, which is defined as OPT− E[REWALG].

In order to simplify the notation, both benchmarks are de-
noted by OPT, its meaning will be clear from context.

Primal-dual template The standard solution to solve
BwK problems in the adversarial case is resorting to a
primal-dual algorithm based on the LagrangeBwK frame-
work by Immorlica et al. [2022]. We will employ the version
of Castiglioni et al. [2022b] described in Algorithm 1, since
it provides guarantees both under adversarial and stochastic
inputs. We denote such “worst-case” algorithm by ALGWC .
The core idea of the LagrangeBwK is to define the La-
grange function

L : X ×D ∋ (x, λ) 7→ ft(x) + ⟨λ, ρ− ct(x)⟩,

with D = [0, 1/ρ], and to instantiate a primal and a dual
regret minimizer, both having with no-regret guarantees
in the adversarial case. The primal regret minimizer RP

observes L(·) as its reward function at time t, while the
dual regret minimizer RD observes rewards −L(·). The
regret guarantees of the overall primal-dual framework
are a byproduct of the interaction between these two re-
gret minimizers. When needed, we will use the following
two procedures: ALGWC .next_element() yields the new
strategy ξ which follows the worst-case algorithm, and
ALGWC .observe_utility(ft, ct) updates the internal state of
ALGWC using the environment’s feedback.

Algorithm 1: ALGWC [Castiglioni et al., 2022a]

1 Input: ρ, T , RP , RD;
2 for t = 1, . . . , T do
3 Get xt ∼ ξt and λt from RP and RD, resp.;
4 if

∑t
τ=1 ct(ξt) ≥ ρT − 1 then

5 xt ← ∅;

6 Play xt and observe ft and ct;
7 update RP and RD with rewards

rPt (ξ) := L(ξ, λt, ft, ct);
8 and rDt (λ) := −L(ξt, λ, ft, ct), resp.;

Castiglioni et al. [2022b] proved the following two perfor-
mance bounds for their algorithm.

Proposition 2.1 (Thm. 6.1 of Castiglioni et al. [2022b]).
Let δ > 0 and ρ ∈ (0, 1) be constants. In the setting with
constant budget per iteration ρ, the reward of Algorithm 1
in adversarial setting is at least

ρOPT− o(T )
√
log(1/δ)

with probability at least (1− δ)



Proposition 2.2 (Thm. 7.1 of Castiglioni et al. [2022b]).
Denote ALG the profit of Algorithm 1 in stochastic setting
with primal and dual regret minimizers whose guaranteed
cumulative regret up to time T is at most EP (T ) and ED(T )
respectively. For δ > 0, with probability at least 1− δ, we
have OPTDP − ALG at most

O(ρ−1
√
2T log(mT/δ)) + EP (T ) + ED(T ),

where the budget per iteration ρ is a constant.

To simplify the presentation, we present the results for m =
1 henceforth. The case of m > 1 can be addressed with
minor modifications, as the guarantees of ALGWC remain
applicable.

3 ADVERSARIAL SETTING

We propose two algorithms for the adversarial case: one for
full feedback and one for bandit feedback. They are based
on a simple idea of splitting the input into two subsequences
by random sampling. One subsequence is then served by
the predicted strategy, and the by Algorithm 1. In Section 6,
we show that the our bounds are tight.

3.1 FULL-FEEDBACK ALGORITHM

Our algorithm splits the budget between the predicted policy
ξA and the worst-case (1/ρ)-competitive algorithm ALGWC

based on the trade-off parameter π. The idea is to follow the
predicted strategy ξA in time steps sampled with probability
π. In parallel, we simulate ALGWC as if it was serving the
whole instance with the full budget B. We would like to
follow the policy suggested by ALGWC with probability
(1− π). However, there is one catch: costs and rewards may
not be spread evenly over the time horizon in adversarial
setting. Therefore, the predicted strategy and/or ALGWC

may spend their part of the budget much earlier than if
used exclusively on the whole instance with the full budget.
This gap can be even linear in T . To prevent our algorithm
from missing the items arriving in the last part of the in-
put sequence, we sample the time steps served by ξA and
ALGWC with a slightly lower rate of roughly π−1/

√
T and

(1−π−1/
√
T ), respectively (see Algorithm 2). We describe

our algorithm for the case with a single budget constraint.
Generalization to m budget constraints is straightforward

and requires the choice of µ :=
2
√

2 log(m/δ)

ρT 1/2 . In Alg. 2, we
write xt ∼ ξI meaning that we can sample xt either from
the prediction ξA or from the strategy of ALGWC at time t,
depending on the result of the sampling step.

We denote by τA (resp., τWC ) the time step when BA (resp.,
BWC) is decreased below 1 (Line 8 of Alg. 2). Let τ∗A and
τ∗WC denote the stopping times of the predicted strategy and
of ALGWC respectively, when run on the whole input. The
following lemma is crucial for our analysis.

Algorithm 2: Adversarial setting, full feedback

1 Input: ξA, π, δ, ALGWC , B;

2 BA := πB, BWC = (1− π)B, µ :=
2
√

2 log(1/δ)

ρT 1/2 ;
3 for t = 1, 2, . . . , T do
4 ξWC

t ← ALGWC .next_element();
5 Sample

I ∼ p({A,WC,X}) = (π − µ, 1− π − µ, 2µ);
6 if I ∈ {A,WC} and BI

t ≥ 1 then
7 play xt ∼ ξI ;
8 BI

t ← BI
t−1 − ct(xt);

9 else
10 play the void action;

11 ALGWC .observe_utility(ft, ct);

Lemma 3.1. Each inequality τA ≥ τ∗A and τWC ≥ τ∗WC

holds with probability at least (1− δ).

Proof. The expected amount of budget used by policy ξA

until time τ∗A − 1 is∑τ∗
A−1

t=1 (π − µ)c⊤t ξ
A ≤ (π − µ)(B − 1),

where π − µ is the probability that ξA is being played
and c⊤t ξ

A = E[ct(xt)] is the expected cost in such case.
Since ct(xt) ∈ [0, 1] are independent random variables,
Azuma–Hoeffding inequality implies the following: with
probability at least (1− δ), the real amount of budget used
is larger than its expectation by at most

√
2 log(1/δ)

√
T ≤

(µ/2)ρT < µ(B− 1). Therefore, with the same probability,
we have BA

τ∗
A−1 ≥ 1 and τA ≥ τ∗A.

Similarly, the expected amount of budget used by ALGWC

until τ∗WC − 1 is∑τ∗
WC−1

t=1 (1− λ− µ)c⊤t ξ
WC
t ≤ (1− π − µ)(B − 1).

Since random variables ct(xt) form a martingale, by
Azuma–Hoeffding inequality the real amount of budget used
is larger than its expectation by at most

√
2 log(1/δ)

√
T ≤

(µ/2)ρT < µ(B − 1) with probability at least (1 − δ).
Therefore, with the same probability, we have BWC

τ∗
WC−1 ≥ 1

and τWC ≥ τ∗WC .

Now, we are ready to prove the consistency bound, i.e.,
the bound which holds if the algorithm receives a perfect
prediction.

Lemma 3.2 (Consistency). Given perfect prediction ξA =
ξ∗, where ξ∗ denotes the best fixed strategy computed offline,
Algorithm 2 achieves reward at least (π + (1− π)ρ)OPT−
o(T )

√
log(1/δ) with probability at least (1− 4δ).

Proof. By Lemma 3.1, we have τA < τ∗A or τWC < τ∗WC

with probability at most 2δ. Otherwise, we consider random



variables Xt for t = 1, . . . , τ∗A, such that Xt = ft(xt) ∈
[0, 1] if ξA or ξWC

t was played at time t and zero other-
wise. The reward of Algorithm 2 is then

∑T
t=1 Xt whose

expectation is at least

(π − µ)

τ∗
A∑

t=1

f⊤
t ξA + (1− π − µ)

τ∗
WC∑
t=1

f⊤
t ξWC

t

≥ (π − µ)OPT+ (1− π − µ)(ρOPT− o(T ))

≥ (π + (1− π)ρ)OPT− o(T ),

The first inequality holds with probability (1−δ) by Proposi-
tion 2.1. By Azuma–Hoeffding inequality

∑τ∗
A

t=1 Xt differs
from its expectation by more than

√
T log(1/δ) with prob-

ability less than δ. Then, the reward of the algorithm is at
least (π+(1−π)ρ)OPT−o(T )

√
log(1/δ) with probability

at least (1− 4δ). This concludes the proof.

The following lemma bounds the robustness of our algo-
rithm, i.e., its performance with incorrect predictions.

Lemma 3.3 (Robustness). Given an arbitrary prediction
ξA, Algorithm 2 achieves expected reward at least (1 −
π)ρOPT−o(T )

√
log(1/δ) with probability at least (1−2δ).

Proof. By Lemma 3.5, we have τWC < τ∗WC with proba-
bility at most δ. Otherwise, we consider random variables
Xt for t = 1, . . . , τ∗WC , such that Xt = ft(xt) ∈ [0, 1] if
ξWC
t was played at time t and zero otherwise. The reward

of Algorithm 2 is then at least
∑τ∗

WC
t=1 Xt whose expectation

is

(1− π − µ)

τ∗
WC∑
t=1

f⊤
t ξWC

t = (1− π − µ)REWWC

≥ (1− π)ρOPT− o(T ).

By Azuma–Hoeffding inequality,
∑τ∗

WC
t=1 Xt differs from

its expectation by more than
√
T log(1/δ) with probability

smaller than δ.

Therefore, the reward of the algorithm is at least (1 −
π)ρOPT − o(T )

√
log(1/δ) with probability at least (1 −

2δ).

The preceding bounds are both dependent on π. For π = 1,
the algorithm is consistent but not robust, and vice versa
for π = 0. Theorem 1.1 follows directly from the following
statement:

Theorem 3.4. Algorithm 2 run with parameters π ∈ [0, 1]
and δ ∈ (0, 1) satisfies the following statement with proba-
bility at least (1− 6δ). If provided with a perfect prediction,
its reward is at least (π+(1−π)ρ)OPT− o(T ). Otherwise,
its reward is at least (1− π)ρOPT− o(T ).

Proof. Lemmas 3.2 and 3.3 fail with probability at most 4δ
and 2δ, respectively. Therefore, the statement holds with
probability at least (1− 6δ).

3.2 BANDIT FEEDBACK

In order to adapt Algorithm 2 to the bandit setting, we need
to resolve the following issue: since we receive feedback
only for actions which we have taken, we cannot simulate
the worst-case algorithm ALGWC in parallel, as we did in
the previous section. Instead, Algorithm 3 provides feedback
to ALGWC only in time steps when its action was taken.
In other time steps, it receives 0 reward and 0 cost. Our
analysis then needs to deal with the fact that the performance
guarantees of ALGWC do not apply to the input sequence
as a whole but only to the sampled subsequence.

Algorithm 3: Adversarial setting, bandit feedback

1 Input: ξA, π, δ, ALGWC , B;

2 BA := πB, BWC = (1− π)B, µ :=
2
√

2 log(1/δ)

ρT 1/2 ;
3 for t = 1, 2, . . . , T do
4 ξWC := ALGWC .next_element();
5 Sample

I ∼ p({A,WC,X}) = (π − µ, 1− π − µ, 2µ);
6 if I ∈ {A,WC} and BI

t ≥ 1 then
7 play xt ∼ ξI ;
8 BI

t ← BI
t−1 − ct(xt);

9 else
10 play the void action;

11 if I = WC then
12 ALGWC .observe_utility(ft(xt), ct(xt));
13 else
14 ALGWC .observe_utility(0, 0);

Given input sequence γt = (ft, ct) for t = 1, . . . , T , we
define γ̃t as γt in rounds when ξA was played and (0, 0)
otherwise. Similarly, we define γ̂t as γt in rounds when
ALGWC was played and (0, 0) otherwise. ALGWC is run
on γ̂ with budget (1− π)B.

We denote τ(ξ, γ,B) the stopping time of strategy ξ on
input sequence γ with budget B. In particular, we will be
interested in τA = τ(ξA, γ̃, πB), τ∗A = τ(ξA, γ, B), τ̂∗ =
τ(ξ∗, γ̂, (1− π)B), and τ∗ = τ(ξ∗, γ, B), where ξ∗ is the
best fixed strategy computed offline.

The proof of the following lemma is similar to Lemma 3.1
and shows that the our algorithm does not run out of budget
too early.

Lemma 3.5. With probability at least (1−δ), we have have
τA ≥ τ∗A and τ̂∗ ≥ τ∗.



Proof. The expected amount of budget used by policy ξA

until time τ∗A − 1 is∑τ∗
A−1

t=1 (π − µ)c⊤t ξ
A ≤ (π − µ)(B − 1),

where π − µ is the probability that ξA is being played
and c⊤t ξ

A = E[ct(xt)] is the expected cost in such case.
Since ct(xt) ∈ [0, 1] are independent random variables, the
Azuma–Hoeffding inequality implies the following: with
probability at least (1− δ), the real amount of budget used
is larger than its expectation by at most

√
2 log(1/δ)

√
T ≤

(µ/2)ρT < µ(B− 1). Therefore, with the same probability,
we have BA

τ∗
A−1 ≥ 1 and τA ≥ τ∗A.

The expected amount of budget used by policy ξ∗ until time
τ∗ − 1 is∑τ∗−1

t=1 (1− π − µ)c⊤t ξ
∗ ≤ (1− π − µ)(B − 1),

where 1 − π − µ is the probability that γ̂t ̸= (0, 0)
and c⊤t ξ

∗ = E[ct(xt)] is the expected cost in such case.
Since ct(xt) ∈ [0, 1] are independent random variables,
Azuma–Hoeffding inequality implies the following: with
probability at least (1− δ), the real amount of budget used
is larger than its expectation by at most

√
2 log(1/δ)

√
T ≤

(µ/2)ρT < µ(B− 1). Therefore, with the same probability,
we have τ̂∗ ≥ τ∗.

In the following lemma, we compare the reward of ALGWC

played on γ̂ to the reward of the optimal solution OPTγ for
the original instance γ.

Lemma 3.6. With probability at least (1− δ), the reward
of ALGWC on input sequence γ̂ with budget (1− π)B is at
least∑T

t=1 f̂t(xt) ≥ ρ(1− π)OPTγ − o(T ) log(1/δ).

Proof. Consider a martingale Xt = f̂t(xt). We can express
the reward of ALGWC on γ̂ as

∑T
t=1 Xt. For each γ̂, Propo-

sition 2.1 implies that the following holds with probability
at least (1− δ):

T∑
t=1

Xt ≥ ρ

τ∑
t=1

f̂⊤
t ξ − o(T ) log(1/δ) ∀ ξ ∈ Ξ.

Consider the expectation of
∑T

t=1 Xt over the choice of f̂ .
The preceding inequality implies

E

[
T∑

t=1

Xt

]
≥ ρ

τ̂∗∑
t=1

E[f̂t]⊤ξ∗ − o(T )

= ρ(1− π − µ)

τ̂∗∑
t=1

f⊤
t ξ∗ − o(T )

≥ ρ(1− π − µ)

τ∗∑
t=1

f⊤
t ξ∗ − o(T )

= ρ(1− π)OPT− o(T ).

The first equality follows from E[f̂t] = (1− π − µ)ft. The
second inequality holds with probability at least (1 − δ)
because τ̂∗ ≥ τ∗ by Lemma 3.5.

Since Xt ∈ [0, 1] forms a martingale, Azuma–Hoeffding
inequality implies that it diverges from its expectation by at
most

√
T log(1/δ) with probability (1−δ). Therefore, with

probability at least (1 − 3δ), we have
∑T

t=1 Xt ≥ ρ(1 −
π)OPTγ − o(T ) log(1/δ). This concludes the proof.

The main consequence of the preceding lemma is our ro-
bustness bound.

Lemma 3.7 (robustness). Given an arbitrary prediction ξA,
Algorithm 3 achieves expected reward at least (1−π)OPT−
o(T )

√
log(1/δ) with probability at least (1− 3δ).

Proof. This is a consequence of Lemma 3.6. The reward of
Algorithm 3 is at least the reward of ALGWC on γ̂, which
is at least ρ(1− π)OPTγ − o(T ) log(1/δ) with probability
at least (1− 3δ).

The following lemma states the consistency bound of our
algorithm.

Lemma 3.8 (Consistency). Given perfect prediction ξA =
ξ∗, where ξ∗ denotes the best fixed strategy computed offline,
Algorithm 3 achieves reward at least (π + (1− π)ρ)OPT−
o(T )

√
log(1/δ) with probability at least (1− 4δ).

Proof. By Lemma 3.5, we have τA < τ∗A with probability
at most δ.

Otherwise, we consider random variables Xt for t =
1, . . . , τ∗A, such that Xt = ft(xt) ∈ [0, 1] if ξA was played
at time t and zero otherwise. The reward of Algorithm 2
then equal to the reward of the worst-case algorithm on γ̂

plus
∑τ∗

A
t=1 Xt, whose expectation is

(π − µ)

τ∗
A∑

t=1

f⊤
t ξA = (π − µ)OPT ≥ πOPT− o(T ).

By Azuma–Hoeffding inequality,
∑τ∗

A
t=1 Xt differs from its

expectation by more than
√
T log(1/δ) with probability

smaller than δ.

Combining with Lemma 3.7 which holds with probability
at least (1 − 3δ), the reward of the algorithm is at least
(1−π)ρOPT−o(T )

√
log(1/δ)+πOPT−o(T )

√
log(1/δ)

with probability at least (1− 4δ).

Theorem 1.1 for the bandit feedback is implied by the fol-
lowing.

Theorem 3.9. Algorithm 2 run with parameters π ∈ [0, 1]
and δ ∈ (0, 1) satisfies the following statement with



probability at least (1 − 7δ). If provided with a perfect
prediction, its reward is at least (π + (1 − π)ρ)OPT −
o(T log(1/δ)). Otherwise, its reward is at least (1 −
π)ρOPT− o(T log(1/δ)).

Proof. Lemmas 3.8 and 3.7 fail with probabilities at most
4δ and 3δ respectively. Therefore, the statement holds with
probability at least (1− 7δ).

4 STOCHASTIC SETTING

Our algorithm follows the framework of Castiglioni et al.
[2022b] (see Section 2), with a custom optimizer which ac-
cepts an equilibrium prediction and suffers a smaller regret if
this prediction is accurate enough. We call it "Check&switch
optimizer", see Algorithm 4. It is designed to serve an ar-
bitrary sequence ℓ1, . . . , ℓT received online. The optimizer
plays the predicted strategy during the first

√
T rounds.

Then, it evaluates its empirical regret G(t) at each time step
t >
√
T , to decide whether to switch to a classical worst-

case optimizer or to keep playing the predicted strategy.

Algorithm 4: Check&switch optimizer

1 Input: xA, RWC ;
2 Initialize: ∆ :=

√
T , h(t) := 3

ρ

√
2t log 8T 2;

3 for t = 1, . . . ,∆ do
4 play strategy xA;

5 for t = ∆+ 1, . . . , T do
6 G(t) := maxx

∑t−1
τ=1(ℓτ (x)− ℓτ (x

A));
7 if G(t) ≤ h(t) then
8 play predicted strategy xt+1 = xA;

9 else
10 serve the rest of the input using a worst-case

optimizer RWC ;

Algorithm 4 preserves the regret bounds of the optimizer
RWC in the worst case:

Observation 1. Let E(T ) denote the regret of the worst-
case algorithm RWC used by Algorithm 4. Then, the regret
of Algorithm 4 is at most O(h(T ) + E(T )).

Proof. Consider the last time step s when the algorithm
played ξA. The regret of the algorithm is at most h(s− 1)+
1 + E(T − s). The total regret is therefore

h(s) + 1 + E(T − s) ≤ 1 + h(T ) + E(T ).

We use the algorithm by Castiglioni et al. [2022b] (Algo-
rithm 1) deploying Algorithm 4 with prediction ξA as the
primal algorithm, and with prediction λA as the dual al-
gorithm. This way, it will satisfy the following robustness
bounds irrespective of the quality of the prediction (ξA, λA).

Algorithm 5: Stochastic setting

Serve the input sequence using Algorithm 1, where:
RP is Algorithm 4 with prediction ξA

RD is Algorithm 4 with prediciton λA

Lemma 4.1 (Robustness). If the regret of the worst-case
optimizers used by Algorithm 4 is Õ(

√
T ), then the pseudo-

regret of Algorithm 5 is at most Õ(
√
T ).

Proof. This follows directly from Observation 1. Indeed,
h(T ) = Õ(

√
T ) and Algorithm 4 using a worst case opti-

mizer with regret Õ(
√
T ) have regret at most Õ(

√
T ). The

lemma then follows from Proposition 2.2.

4.1 SMOOTHNESS AND CONSISTENCY

We recall that the Lagrangian at time t is defined as
L(ξ, λ, ft, ct) = f⊤

t ξ + λt(ρ − c⊤t ξ). Moreover, let f̄ :=
E[ft] and c̄ := E[ct]. The following technical lemma will
be useful to estimate the probability of Algorithm 5 using
the predicted strategy during the whole request sequence.

Lemma 4.2. Consider arbitrary ξ ∈ Ξ, λ ∈ D, τ ∈ N. We
have

|
τ∑

t=1

L(ξ, λ, ft, ct)−
τ∑

t=1

L(ξ, λ, f̄ , c̄)| ≤ h(τ) (4.1)

with probability at least 1− 1/4T 2.

Proof. We define Xτ = ρ
3

∑τ
t=1

(
L(ξ, λ, ft, ct) −

L(ξ, λ, f̄ , c̄)
)
. Note that ft and ct are i.i.d. samples for each

t. Therefore, we have

E[Xτ | X1, . . . , Xτ−1]

= Xτ−1 +
ρ

3
E[L(ξ, λ, fτ , cτ )− L(ξ, λ, f̄ , c̄)]

= Xτ−1,

i.e., Xτ is a martingale. The last equality holds because
E[fτ ] = f̄ and E[cτ ] = c̄ and L is linear in both f and c,
implying E[L(ξ, λ, fτ , cτ )− L(ξ, λ, f̄ , c̄)] = 0. Moreover,
|Xτ −Xτ−1| = ρ

3 |L(ξ, λ, fτ , cτ )− L(ξ, λ, f̄ , c̄)| ≤ 1, be-
cause λ ∈ [0, 1/ρ] and therefore L(ξ, λ, f, c) ∈ [0, 3/ρ] for
any f and c.

By Azuma–Hoeffding inequality, we have P(Xτ >
α
√
τ) < exp(−α2/2). Substituting Xτ and choosing

α := ρ
3h(τ)/

√
τ =

√
2 log(8T 2), we can express the prob-

ability of (4.1) being false as

P
(
ρ

3
|

τ∑
t=1

L(ξ, λ, ft, ct)−
τ∑

t=1

L(ξ, λ, f̄ , c̄)| ≤ ρ

3
h(τ)

)
< 2 exp(− log(8)) = 4δ.



When playing a predicted strategy, the difference of our
rewards and costs from the strategy (ξ∗, λ∗) is proportional
to prediction error:

Lemma 4.3. Let x1, . . . , xT be a sequence of vectors with
entries from interval [0, α]. For each τ = 1, . . . , T , we have
|
∑τ

t=1 x
⊤
t ξ

A−
∑τ

t=1 x
⊤
t ξ

∗| ≤ ταηP and |
∑τ

t=1 x
⊤
t λ

A−∑τ
t=1 x

⊤
t λ

∗| ≤ ταηD.

Proof. For each t, we have |x⊤
t (ξ

A − ξ∗)| ≤
αTV D(ξA, ξ∗) = αηP and x⊤

t (λ
A − λ∗) ≤ α∥λA −

λ∗∥1 = αηD.

The following key lemma states that if both ηP and ηD are
small, our algorithm will never switch to the worst-case
algorithm.

Lemma 4.4. If ηP ≤ ρ/
√
T and ηD ≤ 1/

√
T , then Algo-

rithm 5 plays strategy (ξA, λA) at each step with probability
at least 1− 1/T .

Proof. For any time τ = 1, . . . , T , we show that
with probability at least (1 − 1/T 2), both conditions
GP (τ) = maxξ

∑τ
t=1(ℓ

P
t (ξ) − ℓPt (ξ

A)) ≤ 3h(τ, δ/4T )
and GD(τ) = maxλ

∑τ
t=1(ℓ

D
t (λ) − ℓDt (λA)) ≤

3h(τ, δ/4T ) checked by Algorithm 4 hold. By union bound,
the predicted solutions are therefore used during the whole
runtime with probability at least 1− 1/T .

First, we check the primal condition. For any possible maxi-
mizer ξE of GP , we have

τ∑
t=1

L(ξE , λA, ft, ct) ≤
τ∑

t=1

L(ξE , λ∗, ft, ct) + τηD

≤
τ∑

t=1

L(ξE , λ∗, f̄ , c̄) + h(τ) + τηD

≤
τ∑

t=1

L(ξ∗, λ∗, f̄ , c̄) + h(τ) + τηD

≤
τ∑

t=1

L(ξ∗, λ∗, ft, ct) + 2h(τ) + τηD

≤
τ∑

t=1

L(ξA, λA, ft, ct) + 2h(τ) + 2τηD

+ τ(1 + 1/ρ)ηP ≤ 3h(τ).

Each inequality 2 and 4 holds with probability at least 1−
1/4T 2 by Lemma 4.2. Inequalities 1 and 5 follow from
Lemma 4.3 and Inequality 3 holds because (ξ∗, λ∗) is the
equilibrium strategy and ξ∗ is therefore the best response to
λ∗ in L(ξ, λ∗, f̄ , c̄). The last inequality then follows from
the assumption about the size of ηP and ηD. Since ℓPt (ξ) =
L(ξ, λA, ft, ct), we have the desired bound.

Similarly, we have

−
τ∑

t=1

L(ξA, λE , ft, ct) ≤ −
τ∑

t=1

L(ξ∗, λE , ft, ct) + τηP

≤ −
τ∑

t=1

L(ξ∗, λE , f̄ , c̄) + h(τ) + τηP

≤ −
τ∑

t=1

L(ξ∗, λ∗, f̄ , c̄) + h(τ) + τηP

≤ −
τ∑

t=1

L(ξ∗, λ∗, ft, ct) + 2h(τ) + τηP

≤ −
τ∑

t=1

L(ξA, λA, ft, ct) + 2h(τ) + τηD

+ τ(2 + 1/ρ)ηP ≤ 3h(τ),

where the second and the fourth inequality each hold with
probability 1− 4T 2. To get the statement of the lemma, it
is enough to use the union bound.

In order to prove the smoothness bound, we need to consider
the following. If the algorithm follows ξA which slightly
differs from the equilibrium strategy ξ∗, it may run out of
budget earlier than ξ∗: at that moment, an algorithm using
ξ∗ at each time step is left with a fraction of its budget and
can use it to acquire further reward. To bound this reward,
we use the following lemma.

Lemma 4.5. Consider τ ∈ {1, . . . , T} and an input sub-
sequence γ̄ = γτ , . . . , γT . For α ∈ [0, 1], the expected
reward, over the random choice of the original sequence
γ, of the strategy ξ∗ on γ̄ with budget αB is at most
O((α/c̄(ξ∗))T log T ).

Proof. If αB < 1, the reward of strategy ξ∗ is 0 and the
lemma follows. Therefore, it is enough to consider αB ≥ 1.

We choose k = c̄(ξ∗)−2(4 log T )αB and show that with
probability (1 − 1/T ), the strategy ξ∗ exceeds its budget
before k time steps. For any τ ∈ {1, . . . , T − k}, we have

E

[
τ+k∑
t=τ

ct(ξ
∗)

]
= kc̄(ξ∗) ≥ 4 log T

c̄(ξ∗)
αB.

With probability (1 − 1/T ),
∑τ+k

t=τ ct(ξ
∗) is smaller than

its expectation by at most
√
2k log T , i.e., we have

τ+k∑
t=τ

ct(ξ
∗) ≥ 4 log T

c̄(ξ∗)
αB −

√
8 log T

c̄(ξ∗)

√
αB > αB.

Otherwise, the reward of ξ∗ is clearly at most T .

Therefore, the expected reward of ξ∗ is at most(
1− 1

T

)
kf̄(ξ∗) +

1

T
T ≤ k + 1 ≤ O

(
α

c̄(ξ∗)
T log T

)
.



Lemma 4.6. Given a prediction with primal error ηP ≤
ρ/
√
T and ηD ≤ 1

√
T , the pseudo-regret of our algorithm

is at most Õ(ηPT/ρ2).

Proof. We analyze the case when our algorithm plays ξA at
each time step. Otherwise, (this happens with probability at
most 1/T ) it is enough to bound its pseudo-regret by T .

Let τA and τ∗ denote the stopping times of the strategies
ξA and ξ∗ respectively. We claim that

E[
τ∗∑
t=1

f⊤
t ξ∗ −

τA∑
t=1

f⊤
t ξA]

≤ E[
τA∑
t=1

f⊤
t (ξ∗ − ξA)] +O(

ηP

ρ2
T log T ),

where the expectation in the right-hand side can be bounded
by TηP (Lemma 4.3). To show that the inequality holds, we
proceed as follows.

Lemma 4.3 implies that
∑τA

t=1 c
⊤
t ξ

∗ ≥
∑τA

t=1 c
⊤
t ξ

A−τAηP ,
i.e., the leftover budget of the strategy ξ∗ at time τA is
at most ηPT = ηP

ρ B. Therefore, by Lemma 4.5, the
expected reward of strategy ξ∗ after τA is bounded by
Õ(ηPT/ρ2) whenever c̄(ξ∗) ≥ ρ/2. If this is not the
case, τA = τ∗ = T with probability at least (1 − 1/T )

and we have E[
∑τ∗

t=1 f
⊤
t ξ∗ −

∑τA
t=1 f

⊤
t ξA] ≤ ηPT by

Lemma 4.3.

Consistency If ξA = ξ∗ and λA = λ∗, Algorithm 5
plays ξA at every time step by Lemma 4.4 with probability
(1− 1/T ) and its pseudo-regret with respect to ξ∗ is 0.

5 EMPIRICAL RESULTS

We have implemented2 our algorithms for adversarial set-
ting (Algorithms 2 and 3) and the worst-case algorithm of
Castiglioni et al. [2022b] which we denote Primal-Dual. We
have compared their performance both in full feedback and
bandit setting in several experiments on stochastic instances
generated as follows: There are 5 actions, T = 50 000 time
steps, ρ = 0.1. Action 5 is the void action with reward
0 and cost 0 at each time step. The rewards and costs of
actions 1, . . . , 4 at each time t = 1, . . . , T are drawn inde-
pendently from a log-normal distribution with parameter
σ = 0.5.3 The µ parameter of the rewards of actions 1, . . . , 4
is 0.9, 1.2, 0.1, and 0.4 respectively. The µ parameter of the
costs of actions 1, . . . , 4 is 0.8, 0.6, 1.2, and 0.5 respectively.
Since the problem requires bounded rewards and costs, we

2https://github.com/davidedrago0007/
AdversarialBanditwithKnapsacksandPredictions

3The choice of log-normal distributions is motivated by appli-
cations in Internet advertising, where they are often used to model
bidder’s valuations (see, e.g., [Balseiro et al., 2020]).

Algorithm Reward Cost

Primal-Dual (full feedback) 6111.29 4256.78
Algorithm 2 (full feedback) 8060.92 4897.84
Primal-Dual (bandit feedback) 4537.85 3825.01
Algorithm 3 (bandit feedback) 8099.34 4983.35

Figure 1: Performance with perfect prediction

replace each reward and cost exceeding 5 by 5. Ultimately,
we normalize the data in order to keep the values between
0 and 1 to remain consistent with our setting. In each ex-
periment, the instance was generated in advance and then
provided to all algorithms in an online manner.

Results with perfect predictions With perfect predic-
tions, our algorithm outperforms Primal-Dual by Castiglioni
et al. [2022b] both in full feedback and bandit setting. Fig-
ure 1 contains comparison of rewards achieved by Primal-
Dual and our Algorithms 2 and 3. With every experiment,
our algorithms received prediction ξA = ξ∗, where ξ∗ is
the best fixed strategy for the generated input instance com-
puted offline. Our algorithms were both implemented with
π = 0.9 and µ = 0. This choice of µ seems to be suitable
for stochastic inputs, although our analysis requires a higher
µ in order to avoid overspending in highly adversarial cases.
Appendix A contains results with different choices of µ and
π. In particular, our algorithms can achieve improvement
over Primal-Dual already with π = 0.5.

Values in Figure 1 are averaged over 10 independent exper-
iments and the standard deviation was 41.56 and 21.70 in
the full feedback setting for Primal-Dual and Algorithm 2
respectively. In the bandit setting, Primal-Dual presented a
concerning standard deviation of 2843.01 signaling instabil-
ity of the algorithm, while Algorithm 3 showed a standard
deviation of 58.43.

One may notice that Algorithm 3 for the bandit setting
achieves a slightly better reward than Algorithm 2. This
seems to be caused by feedback (0, 0) provided to the worst-
case algorithm in Line 14 of Algorithm 3 steering down the
dual variables. This allows for higher spending, which gives
the algorithm an advantage in our experiments.

Results with noisy predictions We ran 10 independent
experiments. In each experiment, we first computed the
best fixed solution and added to it an independent noise
coming from a gaussian distribution with σ ∈ [0, 0.1]. The
prediction provided to the algorithm was a normalization of
the resulting vector. With σ = 0.1, the average prediction
error was 0.19.

Figures 2 and 3 show that of our algorithms improve over
Primal-Dual for small σ. The figures contain average re-
wards of 10 experiments, with the lowest standard deviation
of 21.7 in the case of σ = 0.0 increasing up to 330.02 for

https://github.com/davidedrago0007/AdversarialBanditwithKnapsacksandPredictions
https://github.com/davidedrago0007/AdversarialBanditwithKnapsacksandPredictions
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Figure 2: Full feedback for different noise levels with T =
50000, B = 5000, π = 0.9
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Figure 3: Bandit feedback for different noise levels with T =
50000, B = 5000, π = 0.9

σ = 0.03; the highest standard deviation is registered in the
case of σ = 0.7, with a value of 851.68. In the bandit set-
ting, Algorithm 3 outperforms Primal-Dual with any level of
noise shown in the graph. This is due to the bandit algorithm
not being able to spend the full budget, as already shown in
table 1. With σ much larger, the performance of our algo-
rithm was at most 30 percent lower than Primal-Dual in the
full feedback and almost comparable in the bandit setting,
see Appendix A.

Additional experiments Appendix A contains additional
experimental results which detail budget spending and cu-
mulative rewards by implemented algorithms and results
achieved by our algorithm with different parameters.

6 LOWER BOUND

Theorem 6.1. Consider arbitrary constants π, ϵ ∈ (0, 1/4).
In equilibrium-prediction setup, no 1/π-consistent algo-
rithm can be 1/(1 + ϵ)(1− π)-robust.

Proof. Consider two input instances with ρ = 1/2 and
two non-void actions. The algorithm receives prediction
ξA = (1, 0), which is perfect for the first instance and
incorrect for the second one.

For t = 1, . . . , T/2, we have ft(1) = ϵ, ct(1) = 1
and ft(2) = ct(2) = 0 in both instances. For t =
T/2 + 1, . . . , T , the two instances differ: we have ft(1) =

ct(1) = 0 and ft(2) = ct(2) = 0 in the first instance and
ft(1) = ct(1) = 0 and ft(2) = ct(2) = 1 in the second
instance.

Prediction ξA is prefect for the first instance and any 1/π-
consistent algorithm has to take the first action at least
πT/2-times until time T/2. Its remaining budget at T/2
is therefore at most (1 − π)T/2. Its total reward on the
second instance can be at most ϵπT/2 + (1 − π)T/2 <
(1 + ϵ)(1 − π)T/2, where T/2 is the reward of the best
fixed strategy (0, 1).

7 CONCLUSIONS

In this paper, we provide ML-augmented algorithms for the
adversarial setting of Bandits with Knapsack achieving the
optimal trade-off between consistency and robustness in
both full-feedback and bandit-feedback setting.

For stochastic setting, we propose a consistent, smooth,
and robust algorithm which works in full-feedback setting.
Optimal smoothness bounds for full-feedback setting and
extension to bandit-feedback setting remain interesting open
questions.
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Figure 4: Experiment with T = 50000, B = 5000, π = 0.9. Right: FF Reward. Left: FF Cost.

Figure 5: Experiments with T = 50000, B = 5000, π = 0.9. Right: Bandit setting, rewards. Left: Bandit setting, cost.

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 REWARD ACROSS HORIZON

In this section we present more in depth results linked to the experiments in Figure 1. For each algorithm in the table we
show both the rewards and costs over time. In Figure 4 we can visualize the comparison between the two algorithms in the
full feedback setting. The choice of π = 0.9, combined with the stochasticity of the data results in a line increasing linearly
in both rewards and costs. The primal-dual algorithm, in blue, has an interesting behavior. First, it explores by spending a
low amount of budget, then - around iteration 30000 - it starts heavily exploiting the acquired knowledge. However, the
amount of budget spent increases fast, making the dual term prevalent, and not allowing to fully spend the remaining part of
the budget. This last interaction causes the primal-dual algorithm to perform worse than Algorithm 2. In the bandit setting
(Figure 5), Algorithm 3 presents a very similar behavior to the previous results. On the other hand, the primal-dual algorithm
in bandit setting is not able to consistently provide good results, and presents a large variance throughout the entire time
horizon. In Figure 6, we experimented on the case where π = 0.5. In such case we clearly expect a decrease in performance
and an increase in uncertainty, especially in the case of the bandit setting. Both behaviors are shown in the graphs. In Figure
6, the full feedback setting is presented. Here, Algorithm 2 is still able to achieve a better performance than the primal-dual
one, however with a lower total reward with respect to the π = 0.9 case.

In Figure 7 we observe how the decrease in the use of the prediction decreases the overall performance of Algorithm
3. Moreover, there is a significant increase in variance due to the variability which can be attributed to the primal-dual
algorithm. Overall, the performance is still higher compared to the primal-dual benchmark.



Figure 6: Experiments with T = 50000, B = 5000, π = 0.5. Right: full feedback rewards. Left: full feedback costs.

Figure 7: Experiments with T = 50000, B = 5000, π = 0.5. Right: bandit feedback, rewards. Left: bandit feedback, costs.



A.2 REWARD ACROSS NOISE

In the following sections the noise is sampled from a distribution with µ = 0 and σ = x where x is indicated on the x
axis. The noise is subsequently added to the probability vector, then the absolute value is taken and a normalization is
performed. In Figures 8 and 9 we compare the performance of both Algorithm 2 and 3 in the same setting as the main
text (i.e., with T = 50000, B = 5000 and π = 0.9) with the difference that we introduce a probability of skipping some
iteration µ = 1/

√
T , which will become useful in the adversarial setting. Such probability is not impacting heavily the

performance of the algorithm, both in the full and bandit feedback settings.
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Figure 8: FF Across Noise with T = 50000, B = 5000, π = 0.9, µ = 1/
√
T
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Figure 9: BANDIT Across Noise with T = 50000, B = 5000, π = 0.9, µ = 1/
√
T

In Figures 10 and 11 we use a higher probability of skipping an iteration. The value used is µ =
2
√

2 log(1/δ)

ρT 1/2 , using δ = 0.1.
Such value is theoretically correct, but becomes very high for lower values of T . Moreover, since we are testing on stochastic
data, in practice such a high probability of skipping the iterations is not needed. Figure 10 shows how Algorithm 2 is still
performing in a comparable way with respect to the primal-dual algorithm, even in a situation which is not suitable to
showcase the importance of the theoretical value of µ. Figure 11 shows how Algorithm 3 maintains a better performance
than the primal-dual one. The underspending caused by not converging in the bandit setting, is worse than the underspending
caused by the skipped iterations in Algorithm 3.
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Figure 10: FF Across Noise with T = 50000, B = 5000, π = 0.9, µ =
2
√

2 log(1/δ)

ρT1/2 , δ = 0.1
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Figure 11: BANDIT Across Noise with T = 50000, B = 5000, π = 0.9, µ =
2
√

2 log(1/δ)

ρT1/2 , δ = 0.1

A.3 REWARD WITH HIGH NOISE

Figures 12 and 13 are important to show that increasing the amount of noise indefinitely, will not deteriorate the performance
any further. Indeed, high noise causes the prediction to be an almost uniform probability vector, higher noise will not change
the situation, on average. In particular, in Figure 13 it can be noticed how in such setting the bandit primal-dual algorithm
performs worse than spending the budget on a random prediction. This is due to the data, but it is still an interesting
observation.

0.5 0.8 1.1 1.4 1.7 2.0
gaussian noise std

0

2000

4000

6000

8000

To
ta

l R
ew

ar
d

Total Reward vs. noise level

Optimal Reward
Primal-Dual Reward

Figure 12: FF Across HIGH Noise with T = 50000, B = 5000, π = 0.9
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Figure 13: BANDIT Across HIGH Noise with T = 50000, B = 5000, π = 0.9

In the successive four graphs (Figures 14 to 17) instead, we see how the performance of the algorithms deteriorates when
the noise is high and we also use the two values of µ described previously. The main thing to notice is that, as in the case for
µ = 0, the performance of the algorithms does not deteriorate any further with increasing noise.
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Figure 14: FF Across HIGH Noise with T = 50000, B = 5000, π = 0.9, µ = 1/
√
T
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Figure 15: BANDIT Across HIGH Noise with T = 50000, B = 5000, π = 0.9, µ = 1/
√
T

The last table shows the performance, in terms of rewards and costs, and the standard deviation of Algorithms 2 and 3, when
the value of µ is set to the two fixed values. It is interesting to see how the high value of µ does not allow the budget to be
fully spent, which in such case may result in a loss of reward, but in edge cases may result in the opposite outcome, therefore
justifying its importance in the theoretical analysis.
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Figure 16: FF Across HIGH Noise with T = 50000, B = 5000, π = 0.9, µ =
2
√

2 log(1/δ)

ρT1/2 , δ = 0.1
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Figure 17: BANDIT Across HIGH Noise with T = 50000, B = 5000, π = 0.9, µ =
2
√

2 log(1/δ)

ρT1/2 , δ = 0.1

Algorithm Reward Cost Std

Algorithm 2 (full feedback, µlow) 8001.34 4862.58 18.87
Algorithm 3 (bandit feedback, µlow) 8060.11 4969.10 52.29
Algorithm 2 (full feedback, µhigh) 5855.51 3526.10 19.81
Algorithm 3 (bandit feedback, µhigh) 5855.51 3526.10 19.81

Figure 18: Performance with perfect prediction, with "µlow" meaning µ = 1/
√
T and "µhigh" meaning µ =

2
√

2 log(1/δ)

ρT1/2 , δ = 0.1
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