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Figure 1: Overview of the M3arsSynth data engine and MarsGen video generator. The
M3arsSynth engine processes NASA stereo navigation imagery into a versatile multimodal Mars
dataset comprising video, depth/normal maps (from 3D reconstructions), and text descriptions. These
outputs advance Mars scene generation and simulation for mission rehearsal and robotic navigation.

Abstract

Synthesizing realistic Martian landscape videos is crucial for mission rehearsal and
robotic simulation. However, this task poses unique challenges due to the scarcity
of high-quality Martian data and the significant domain gap between Martian and
terrestrial imagery. To address these challenges, we propose a holistic solution
composed of two key components: 1) A data curation pipeline Multimodal Mars
Synthesis (M3arsSynth), which reconstructs 3D Martian environments from real
stereo navigation images, sourced from NASA’s Planetary Data System (PDS),
and renders high-fidelity multiview 3D video sequences. 2) A Martian terrain
video generator, MarsGen, which synthesizes novel videos visually realistic and
geometrically consistent with the 3D structure encoded in the data. Our M3arsSynth
engine spans a wide range of Martian terrains and acquisition dates, enabling the
generation of physically accurate 3D surface models at metric-scale resolution.
MarsGen, fine-tuned on M3arsSynth data, synthesizes videos conditioned on
an initial image frame and, optionally, camera trajectories or textual prompts,
allowing for video generation in novel environments. Experimental results show
that our approach outperforms video synthesis models trained on terrestrial datasets,
achieving superior visual fidelity and 3D structural consistency.
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1 Introduction
The advancement of space exploration is critically dependent on the development of robust robotic
systems and operational procedures Gao and Chien (2017) tailored to diverse extraterrestrial envi-
ronments. A major challenge across such domains is the lack of platforms capable of synthesizing
realistic and dynamic data. This limitation hinders autonomous mission planning Maurette (2003),
operational rehearsal Wright et al. (2005), rover navigation, and the execution of complex robotic
tasks Huntsberger et al. (2000); Mathers et al. (2012). Current publicly available extraterrestrial
imagery, for example from NASA’s Martian rovers such as Curiosity and Perseverance—is typically
provided as static stereo pairs captured from discrete and sparsely distributed viewpoints. The quality
of these images is also affected by the interplanetary bandwidth limitations Goldstein (1968) and
operational constraints. As a result, reconstruction of photorealistic 3D environments from such
sparse and constrained imagery, a common challenge in planetary datasets, remains a obstacle.

Recent advances in video synthesis Brooks et al. (2024); Kong et al. (2024); Jin et al. (2024) offer
promising avenues to mitigate these challenges. However, training an effective video generation
model conditioned on sparse Martian imagery or reconstructed 3D models remains difficult. Most
existing models Yang et al. (2024); Wang et al. (2025a), which are typically trained on large-scale
terrestrial datasets, struggle to generalize to the Martian domain due to the substantial domain gap.
In addition, the challenges inherent to 3D reconstruction on Martian data often result in geometric
models with insufficient accuracy, making it difficult to support high-fidelity, 3D-consistent video
synthesis from such limited inputs.

To bridge this gap, we introduce a holistic solution for the synthesis of realistic Martian landscape 3D
videos. We first propose Multimodal Mars Synthesis (M3arsSynth), a data curation framework.
M3arsSynth processes sparse and photometrically inconsistent stereo navigation images, sourced
from NASA’s Planetary Data System (PDS) 3. Leveraging the strong generalization capabilities of
geometric foundation models, it achieves robust 3D scene reconstruction as a critical intermediate
step. This process allows for the creation of physics-accurate 3D surface models at metric-scale
resolution, which form the basis for rendering high-fidelity 3D video sequences. The principal
output of M3arsSynth is a large-scale, versatile multimodal dataset. This dataset includes synthesized
videos, corresponding camera motion trajectories, detailed geometric information such as depth
maps, and associated textual descriptions, all designed for diverse Martian applications. The second
component of our solution is MarsGen, a video-based Martian terrain generator. MarsGen utilizes
the rich dataset produced by M3arsSynth along with other multimodal conditioning inputs (such as
an initial image frame, specified camera trajectories, or textual prompts) to accurately synthesize
novel, 3D-consistent video frames and dynamic environments, enabling the controllable generation
of new Martian scenarios not present in the original rover data.

Experimental results demonstrate that our unified solution significantly surpasses existing Earth-
trained video synthesis approaches, encompassing both open-source and closed-source alternatives.
Our method achieves superior visual quality in the generated Martian videos, robust 3D consistency
across frames, and enhanced camera controllability, offering a substantial improvement for realistic
simulation. Our primary contributions are:

• We introduce M3arsSynth, a multimodal data engine that transforms challenging rover-
captured stereo navigation imagery into high-quality assets for synthesizing controllable
video for Mars missions. By leveraging geometric foundation models, M3arsSynth creates
metric-scale 3D environments, effectively addressing critical issues such as sparse-view
coverage and photometric inconsistencies to produce over 10K physically accurate 3D
Martian surface models.

• Our work enables controllable video generation of Martian terrain, MarsGen, starting from
a single-view image input and conditioned on camera poses or text prompts, yielding
photorealistic and 3D-consistent video sequences.

• We evaluate our generated controllable video across key metrics, including visual fidelity,
our proposed 3D video consistency, and camera controllability. Our approach significantly
outperforms models trained primarily on terrestrial data, demonstrating its strong potential
for future data-driven robotic simulation.

3https://pds-imaging.jpl.nasa.gov/beta/archive-explorer
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2 Related works

Planetary Environment Simulation. Prior efforts in simulating planetary environments Jain et al.
(2003); Tian et al. (2024) have focused on enhancing the interpretation and interaction with Martian
data. Approaches include Mixed Reality (MR) technologies Mahmood et al. (2019); Memarsadeghi
and Varshney (2020), such as those developed by NASA JPL’s Operations Lab and Microsoft Aber-
crombie et al. (2017); Beaton et al. (2020), enabling immersive exploration of 3D terrain models from
rover data. Additionally, 3D reconstruction techniques like the MaRF Giusti et al. (2022) framework,
which employs Neural Radiance Fields (NeRF) Mildenhall et al. (2021) for continuous volumetric
representations from sparse images, have improved visualization from novel viewpoints. However,
the MaRF framework is notably limited, having been demonstrated in different 3D environments.
More broadly, these existing technologies often require high-quality, consistent visual data and exhibit
limitations in scalability and adaptability. Our approach addresses these challenges by employing
video generation models trained on a dedicated video dataset produced by our specialized data
processing pipeline.

3D Modeling from Sparse Views. Reconstructing 3D scenes from sparse views Chen and Wang
(2024) is a significant challenge. NeRF and 3DGS Kerbl et al. (2023) typically demand hundreds
of images and rely on the Structure-from-Motion (SfM) Schönberger and Frahm (2016) approach
(e.g., COLMAP Schonberger and Frahm (2016)). To address this, some works leverage priors by
pre-training on large datasets Chen et al. (2021); Johari et al. (2022); Yu et al. (2021); Chibane et al.
(2021); Jang and Agapito (2021) or by applying regularization during NeRF optimization Wang et al.
(2023); Roessle et al. (2023); Seo et al. (2023); Somraj et al. (2023); Somraj and Soundararajan
(2023); Wynn and Turmukhambetov (2023); Liu et al. (2024). To mitigate the overfitting to input
views in 3DGS, FSGS Zhu et al. (2024) and SparseGS Xiong (2024) incorporate external priors from
depth estimator with the optimization process. Others, like InstantSplat Fan et al. (2024), utilize
powerful 3D reconstruction models Leroy et al. (2024) to acquire accurate camera poses and initial
geometries. However, robust sparse-view reconstruction remains an open problem, particularly in
challenging environments such as the Martian surface, which exhibit textureless areas, repetitive
patterns, and photometric variations. Our method addresses this gap by integrating a 3D geometric
foundation model for initial geometric estimation with a specialized pipeline for refinement and
neural scene representation from sparse stereo imagery, facilitating high-quality multimodal data
synthesis.

Conditional Generative Models. Recent text-to-video models Yang et al. (2024); Kong et al.
(2024); Wang et al. (2025a); Blattmann et al. (2023) based on Diffusion Transformers (DiTs) Peebles
and Xie (2023) leverage the scalability of transformers, typically employing text encoders Rad-
ford et al. (2021); Raffel et al. (2020), a 3D-VAE Yu et al. (2023); Yang et al. (2024) for video
compression and tokenization, and a transformer generator that processes flattened video and text
tokens. These architectures model spatiotemporal and textual information through global attention
mechanisms or separate self- and cross-attention, leading to significant improvements in generation
duration and temporal consistency. View-controllable video generation Wang et al. (2024c); He et al.
(2024); Liang et al. (2024); Bahmani et al. (2024); Yu et al. (2024), which is crucial for immersive
simulations, has seen efforts to integrate camera control into pretrained models. However, these
methods, predominantly trained on standard terrestrial datasets, often exhibit difficulties with 3D
consistency when applied to out-of-domain environments like Mars. In contrast, our work utilizes
the M3arsSynth dataset, specifically curated with rich 3D geometric information, to train MarsGen,
enabling physically plausible and precisely controllable Martian simulations with enhanced 3D
consistency.

3 Multimodal Mars Synthesis

We establish the M3arsSynth dataset from curated rover stereo image from NASA PDS. To render
a large-scale multimodal dataset suitable for training generative simulators, we leverage robust,
pre-trained vision foundation models to capture Martian visual cues and compensate for the lack
of Mars-specific priors. In this section, Sec. 3.1 first describes the source data acquisition and
preprocessing steps. Sec. 3.2 then outlines the metric-aware 3D reconstruction process. Sec. 3.3
details the synthesis of multimodal data, and summarizes the overall structure of the dataset. Finally,
Sec. 3.4 explains the proposed 3D consistency metrics for evaluating generated video sequences.

3



(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 2: Data Filtering Examples for Martian 3D Reconstruction. Image (a) represents a
clear, usable Martian terrain view, serving as a quality benchmark. In contrast, images (b)-(h)
illustrate common defects that lead to data exclusion for high-quality reconstruction, including: (b)
extensive missing data blocks or pixelation/mosaic artifacts (indicative of data corruption or severe
compression); (c) significant image blur or out-of-focus areas; (d) scenes with extreme overexposure
or harsh lighting conditions; and (e)-(h) views obstructed by spacecraft components.

3.1 Martian Stereo Image Acquisition and Preprocessing
Raw stereo image pairs captured by Martian rovers are sourced from PDS. This initial dataset,
however, exhibits several deficiencies, including small thumbnail images, grayscale images, and
duplicate captures made with different color filters, rendering it unsuitable for direct application. To
address these issues, an automated filtering pipeline is implemented. This pipeline is designed to
systematically remove these types of deficient data:

Systematic Data Filtering Strategy. A multi-stage filtering pipeline ensures visual dataset integrity
by systematically addressing imperfections. Firstly, low-resolution and grayscale images are elimi-
nated. Thumbnails are discarded based on size heuristics. Grayscale images are removed based on
low RGB channel variance. Secondly, redundant content is excluded using perceptual hashing Za-
uner (2010). This technique employs hash codes and Hamming distances to identify and remove
near-duplicates captured under varied imaging conditions, preserving semantic diversity. Thirdly,
blurry and low-sharpness images are rejected. A sharpness filter using Laplacian variance Bansal
et al. (2016) discards images with low edge contrast to maintain geometric and photometric quality,
which is vital for tasks like stereo reconstruction. Finally, frames exhibiting anomalous color dis-
tributions are filtered out. Irrelevant frames (e.g., obscured, malfunctions), identified by skewed or
flat color intensity histograms, are removed to ensure clear, terrain-focused scenes for robust surface
representation learning.(See Appendix A.1 for details.)

Semi-Automated Refinement. To address complex visual artifacts like hardware occlusions and
unfavorable lighting that degrade reconstruction quality (see Fig. 2), we employ a semi-automated
refinement process. This step supplements manual image verification with Grounded-SAM Ren et al.
(2024), which we use to generate segmentation masks identifying non-terrain objects based on textual
prompts. These masks guide human annotators to efficiently identify and discard compromised image
data. The result is a curated collection of images with high visual integrity, providing a reliable
foundation for robust stereo reconstruction. Further details on this preprocessing are provided in
Appendix A.2.

3.2 Neural 3D Reconstruction from Navigation Stereo Cameras
Dense Martian 3D reconstrution poses unique challenges compared to terrestrial scenes, stemming
from the planet’s often texture-poor terrain and the inherent scarcity of observational data.

Camera Calibration. Our 3D reconstruction pipeline operates on the standard pinhole camera
model Hartley (2003) and therefore requires the corresponding camera parameters. However, the
PDS metadata accompanying our dataset lacks these crucial calibration parameters. To address
this limitation, we infer the necessary parameters directly from the images. We employ the Visual
Geometry Grounded Transformer (VGGT) Wang et al. (2025b), a feed-forward neural network
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Figure 3: Overview of the M3arsSynth dataset construction and conditional video generation
through MarsGen. The red box outlines the data curation pipeline, the green box shows the obtained
M3arsSynth dataset, and the blue box details our MarsGen model. We process stereo image pairs
using a metric-aware foundation model and solve the Perspective-n-Point (PnP) Lepetit et al. (2009)
problem to reconstruct metric-scale 3D Martian scenes. Subsequently, video frames rendered from
these scenes, together with text prompts and encoded camera trajectories, are then used to condition
a Video Diffusion Transformer, enabling the synthesis of novel and controllable Martian video
sequences.

designed to infer key 3D scene attributes from input views. Our empirical evaluations confirm that
VGGT reliably predicts the camera intrinsics from the input stereo images, providing the essential
parameters for subsequent reconstruction tasks.

Dense 3D Geometry Initialization. After obtaining camera intrinsics, we estimate metric deoth
maps using a pretrained monocular depth estimation network Hu et al. (2024) to construct dense
3D geometry. Each depth map is then back-projected using the inverse intrinsic matrix K−1 to
transform each pixel (u, v) with depth d into a 3D point in the corresponding camera coordinate
system: Pc = d ·K−1[u, v, 1]T . This process yields initial per-view point clouds where each pixel
has a direct 3D correspondence within its respective camera frame, providing a dense geometry
initialization.

Relative Pose Estimation and Geometric Refinement. To establish a coherent 3D model, we
recover the relative camera extrinsics between the stereo images. We formulate this task as a
Perspective-n-Point (PnP) Li et al. (2012) optimization, as PnP computes the camera pose from
a set of 3D points and their corresponding 2D image projections. This approach utilizes robust
2D feature correspondences p1 ↔ p2 between the stereo image pair, which are detected using the
Generalizable Image Matcher (GIM) Shen et al. (2024). GIM’s notable generalization capability
stems from its training on extensive and varied internet video data (approximately 180,000 image
pairs from 50 hours of video) and its sophisticated self-training framework. This enables robust
matching across diverse conditions and often surpasses traditional methods that rely on less diverse
datasets or failure-prone 3D reconstruction processes Shen et al. (2024). Here, p1 and p2 represent
matched pixel coordinate vectors in the left and right views, respectively. Initial depth estimates from
the monocular network are used to back-project points p1 into 3D space, yielding a set of 3D points
P1. Given the known camera intrinsics K, these 2D-3D correspondences (formed by P1,i and their
corresponding p2,i) facilitate the estimation of the relative camera pose.

The PnP solver estimates the rotation Rrel and translation trel that best align the 3D points P1,i with
their corresponding 2D projections p2,i in the second view by minimizing the reprojection error:

min
Rrel,trel

∑
i

∥p2,i − π (K[Rrel | trel]P1,i)∥2 , (1)

where π denotes the perspective projection from the 3D camera coordinates to the 2D pixel space.
The initial geometry derived from the monocular depth estimation may exhibit inconsistencies,
particularly in scale across views. To ensure a coherent 3D reconstruction, we apply a depth rescaling
step after pose estimation. Specifically, we first back-project the depth map D0 from view 0 to
reconstruct its corresponding 3D point cloud P0. Then we project it onto view 1’s image plane. This
warping process yields a new sparse depth map D′0→1 and a Boolean mask Msparse, indicating valid
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Figure 4: Distribution of primary terrain types within the M3arsSynth dataset, showcasing the diversity
of Martian environments covered. The left chart indicates the percentage of scenes predominantly
featuring each terrain type, with visual examples illustrating the various terrain categories.

projection areas in view 1. The depth value d′1 is stored in D′0→1 at the projected pixel coordinates
(u′1/d

′
1, v
′
1/d
′
1).

P0 = D0(p0) ·K−10

[
u0

v0
1

]
[
u′1
v′1
d′1

]
= K1(RP0 + t)

Then, we align the original monocular depth map of view 1 D1, with the warped sparse depth map
D′0→1. We solve a least-squares regression problem only within the valid region defined by the mask
Msparse.

min
s,b

∑
(u,v)∈Msparse

(s ·D1(u, v) + b−D′0→1(u, v))
2

This estimated (s, b) are then used to adjust the depth map of the first view (i.e., dadjusted
1,j = s ·d1,j +b)

to better match the scale and offset of the second view’s depth map, or vice-versa, thereby enhancing
geometric consistency.

3D Gaussian Splatting for Photorealistic Scene Modeling. Using the camera parameters and
dense point cloud from prior stages, we optimize a 3DGS Kerbl et al. (2023); Huang et al. (2024)
representation, initializing Gaussian primitives directly from the per-pixel points Fan et al. (2024).
The optimization combines a photometric loss with a depth regularization loss Xu et al. (2025); Xiong
(2024); Li et al. (2024); Kerbl et al. (2024) that leverages our derived per-pixel correspondences to
enforce geometric consistency. To mitigate significant appearance variations between Martian stereo
pairs, often caused by differing camera settings or lighting, we integrate a bilateral grid Wang et al.
(2024b) into the process. Specifically, our implementation is based on gsplat Ye et al. (2025). We
apply a per-view 3D bilateral grid as a differentiable post-processing layer to the rendered image,
which models view-dependent effects. This grid is jointly optimized with the Gaussian parameters by
minimizing the difference between the post-processed render and the corresponding training view,
while a total variation loss is used to regularize the grid for smoothness. Furthermore, since standard
k-nearest neighbor initialization can produce overly large Gaussian scales and degrade depth accuracy,
we adopt a modified strategy Cong et al. (2025) where scale is determined by the nearest point along
the depth axis.

scale(Pw) = d′min(Pw)/favg

3.3 Multimodal Martian Dataset Creation

Upon obtaining an optimized neural scene representation for a Martian scene, we sample a diverse
set of virtual camera trajectories, denoted Mtraj, along which video sequences are rendered:

Mtraj =

{
Tt =

(
Rt Tt

01×3 1

)
∈ SE(3) | t = 1, . . . , N

}
(2)

where each transformation Tt defines the 6-DOF camera pose at timestamp t, comprising a rotation
Rt and a translation Tt. Canonical trajectory types are defined, encompassing diverse motion profiles.
Their spatial extent is adapted to the scene geometry through depth-adaptive scaling: trajectories are
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contracted for near-field regions to capture fine details and expanded for far-field regions to facilitate
wider movements. Further details regarding the specific parameters and generation process for these
trajectories are provided in the Supplementary Material.

Video, Normal, Trajectory, Depth, Text. From a set of adaptively scaled camera trajectories,
we generate a comprehensive multimodal dataset. Novel view videos, accompanied by their cor-
responding depth and normal maps, are produced by rendering the scene along these trajectories.
The Trajectory modality encompasses the precise 6-DOF pose parameters for each frame (Tt), from
which textual descriptions of camera motion are subsequently derived. To capture scene content, we
further generate textual captions by applying a Vision Language Model (VLM) OpenAI (2024) to the
rendered videos. This procedure results in a rich dataset comprising visual, geometric, and textual
modalities, all structured around the foundational camera trajectories.

Dataset Structure. The resulting M3arsSynth dataset consists of a diverse set of distinct Martian
scenes, each reconstructed and rendered from an optimized neural scene representation. For each
scene, we generate multiple video sequences, each simulating a unique virtual camera trajectory.
These sequences are temporally structured and provide rich, time-aligned multimodal information.
Specifically, each sequence contains: (i) synthesized RGB frames rendered from novel viewpoints,
(ii) precise 6-DOF camera poses corresponding to each frame, (iii) natural language descriptions
detailing both the visual content and camera motion characteristics, and (iv) corresponding per-frame
geometric outputs, including depth maps and optionally surface normal maps.

3.4 Metrics Evaluating 3D Consistency

To assess the 3D consistency of video sequences generated by our MarsGen model (trained on the
M3arsSynth dataset), we employ the 2D Warp Error metric Wang et al. (2024a).

The 2D Warp Error measures the internal geometric consistency of the 3D structure implicitly
represented in the generated video frames. Specifically, this metric evaluates how accurately 3D
points, inferred from each generated frame, are reprojected onto other frames or consistently within
the same frame. The closer these reprojected points align with their corresponding expected 2D
locations (e.g., on a canonical grid), the more consistent the underlying geometry is considered. This
evaluation comprises two main components:

Self-Reprojection Consistency. For each generated frame i within a sequence, an associated 3D
point cloud P(c)

i (composed of points p(c)
j ) in its local camera coordinate system, along with the

camera intrinsic matrix Ki, is typically inferred using a geometric perception model applied to that
frame. Each 3D point p(c)

j ∈ P(c)
i is then projected onto the 2D image plane of frame i using Ki,

resulting in reprojected pixel coordinates xreproj,j . The self-reprojection consistency for frame i is
computed as the mean squared Euclidean distance between these reprojected coordinates and their
expected positions on a canonical 2D sampling grid:

Lself-reproj,i =
1

M

∑
j

∥xreproj,j − xgtgrid,j∥22 , (3)

where M denotes the number of points in P(c)
i , and xgtgrid,j is the source grid location of point j.

Cross-View Reprojection Consistency. To evaluate geometric consistency across different view-
points, we measure the cross-frame reprojection between frame i and another frame k from the same
sequence. First, we estimate the 3D point cloud P(c)

k (composed of points p(c)
j′ ) for frame k in its

camera coordinate system, along with the relative transformation Mi←k ∈ SE(3) mapping points
from frame k’s coordinate system to that of frame i. Each point p(c)

j′ ∈ P(c)
k is transformed into the

coordinate space of frame i:
p
(c,i←k)
j′ = Mi←kp

(c)
j′ .

These transformed 3D points are then projected onto the image plane of frame i using its intrinsic
matrix Ki, yielding reprojected pixel coordinates xreproj,j′ . The cross-view reprojection loss between
frames i and k is computed as:

Lcross-reproj,i,k =
1

M ′

∑
j′

∥xreproj,j′ − xgtgrid,j′∥22 , (4)
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Table 1: Quantitative comparison of video generation models. We evaluate visual fidelity (FID,
FVD), 3D consistency (Warp Error), and novel view synthesis quality (PSNR, SSIM, LPIPS). For
these metrics, lower values indicate better performance for FID, FVD, Warp Error, and LPIPS, while
higher values are preferable for PSNR and SSIM. Our MarsGen demonstrates state-of-the-art results
across all evaluated metrics.

Model Visual Fidelity 3D Consistency Novel View Synthesis

FID ↓ FVD ↓ Warp Err↓ PSNR ↑ SSIM ↑ LPIPS ↓
Image-to-Video

Pyramidal-Flow Jin et al. (2024) 78.495 637.952 17.930 − − −
CogVideoX Yang et al. (2024) 48.912 411.808 6.866 − − −
Kling 74.632 727.130 24.793 − − −
Sora Brooks et al. (2024) 142.954 823.418 10707.713 − − −

Camera Control Image-to-Video

CameraCtrl He et al. 123.386 772.476 17.410 20.014 0.288 0.408
ViewCrafter Yu et al. (2024) 169.942 2297.899 501.734 13.143 0.262 0.586

Ours 38.779 364.822 6.071 21.239 0.336 0.351

where M ′ is the number of points in P(c)
k , and xgtgrid,j′ denotes the expected projection location in

frame i (e.g., corresponding to a canonical grid position from frame k). This metric captures how
well the geometry inferred from one frame generalizes across viewpoints, revealing discrepancies in
spatial alignment and structure.

The overall 2D Warp Error reported is typically an average of these component losses (e.g., Lself-avg
and Lcross-avg being the mean self-reprojection and cross-view reprojection errors, respectively) over
the sequence or relevant frame pairs:

L2D-Reproj =
1

2
(Lself-avg + Lcross-avg) .

A lower reprojection error indicates better geometric consistency.

4 Martian Terrain Video Generator Training
With multimodal M3arsSynth dataset curated by our data engine, we develop and train MarsGen, a
conditional generative model for Martian video synthesis. The primary goal of MarsGen is to produce
novel, photorealistic video sequences of Martian environments that are not only visually compelling
but also exhibit high levels of 3D geometric consistency and physical plausibility. Conditioned on
textual prompts or predefined camera trajectories, MarsGen generates temporally coherent RGB
sequences that align with the underlying scene structure inferred from the conditioning inputs.

Model Architecture. MarsGen is built upon the Video Diffusion Transformer (VDiT) framework Pee-
bles and Xie (2023). The video and text prompts are first encoded into a latent space Yu et al. (2023);
Raffel et al. (2020) and concatenated. A 3D self-attention mechanism, operating across both temporal
and spatial dimensions, facilitates a comprehensive interaction between the multimodal information.
Finally, a decoder reconstructs the latent representations back into the video space. We train this
model on the M3arsSynth dataset to adapt it to the unique visual cues and structural characteristics
of Martian environments, thus supporting high-fidelity and controllable video generation under
domain-specific constraints.

Controllable Content Generation. To achieve fine-grained control over the generative process,
MarsGen incorporates multiple modalities, including a reference initial frame, textual prompts
(natural language descriptions), and camera trajectories. These inputs jointly guide the model across
spatial, temporal and semantic dimensions. To circumvent the computational demands of full model
fine-tuning, we employ a lightweight conditioning strategy inspired by ControlNet architecture Zhang
et al. (2023). Specifically, we inject control signals into intermediate layers of the pretrained VDiT
backbone, enabling the modulation of generation dynamics without disrupting its learned visual
priors.

Video Model Training. We initialize the VDiT backbone with pretrained weights from COGVIDEOX-
5B-I2V Yu et al. (2023); Yang et al. (2024). We then fine-tune the model, incorporating its control-
lable branch, on 8 A100 GPUs for 8,000 iterations using the M3arsSynth dataset.

5 Experiments
We evaluate the MarsGen generator, trained on our MarsSynthSim dataset, through comprehensive
quantitative and qualitative experiments. This section further compares different reconstruction
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Table 2: Quantitative comparison of reconstruction pipelines for Martian stereo imagery. We
compare COLMAP, the Transformer-based MASt3R Leroy et al. (2024), and our metric-aware
initialization method across four key metrics: runtime efficiency (Time), frame-level robustness (Data
Utilization), geometric accuracy (2D Reprojection Error Wang et al. (2024a)), and reconstruction
density (Point Number). Our pipeline fully utilizes all available data and achieves competitive
accuracy, whereas COLMAP fails on nearly 30% of the preprocessed image pairs.

Algorithm Data Util. (%) Time (s) Reproj Err (px) ↓ Point Num

COLMAP Schönberger and Frahm (2016); Schönberger et al. (2016) 71.8 3.6 0.134 ∼ 2, 000
MASt3R Leroy et al. (2024) 100.0 8.7 46.98 ∼ 250, 000
Ours 100.0 8.0 0.77 ∼ 250, 000

methods used in the creation of the MarsSynthSim dataset and presents an ablation study of our
M3arsSynth pipeline’s key components, detailing their impacts.

Martian Terrain Video Generation. We quantitatively evaluate the performance of MarsGen, our
model fine-tuned on the MarsSynthSim dataset, with a focus on both visual fidelity and 3D geometric
consistency. We assess visual quality using FID (Fréchet Inception Distance) Heusel et al. (2017)
and FVD (Fréchet Video Distance) Unterthiner et al. (2018), and evaluate geometric consistency
through the 2D Warp Error and PSNR. A key capability of MarsGen is its precise camera pose
control, which enables us to directly evaluate its novel view synthesis (NVS) performance. Table 1
compares MarsGen against state-of-the-art image-to-video and camera-controlled video generation
models. MarsGen consistently outperforms all baselines in terms of visual fidelity, achieving the
lowest FID and FVD. In terms of geometric consistency, MarsGen achieves the lowest 2D Warp Error
and competitive PSNR, indicating superior preservation of 3D structure during generation. For novel
view synthesis, MarsGen also shows superior performance across all metrics, demonstrating the
benefit of 3D-aware training on MarsSynthSim. For a qualitative comparison, please see Appendix B.
In contrast, general-purpose video models often struggle to maintain consistent spatial geometry
under camera motion due to the absence of explicit 3D supervision.

VGGT Point Cloud

Ours

Figure 5: Qualitative comparison of point cloud recon-
struction from a Martian input view. Our M3arsSynth
engine (top right) produces a coherent point cloud accu-
rately capturing terrain. In contrast, the VGGT Wang
et al. (2025b) model (bottom right) exhibits significant
misalignment and artifacts.

Geometry Initialization Methods. We evaluate
alternative approaches for initializing scene geom-
etry within our M3arsSynth pipeline (used to gen-
erate the MarsSynthSim dataset), comparing tra-
ditional Structure-from-Motion (SfM) pipelines
(e.g., COLMAP) and recent transformer-based
methods (e.g., MASt3R) against our metric-aware
initialization. We use the 2D reprojection error
which measures the pixel distance between an
observed point in the original image and its corre-
sponding 3D point when re-projected back onto
the image using the estimated camera parame-
ters. It thereby jointly assesses the geometric
accuracy of the 3D model and the estimated cam-
era pose. Our method combines pre-trained vi-
sion foundation models to robustly extract camera
and depth priors from challenging Martian stereo
imagery. As indicated in Table 2, our pipeline
achieves 100% data utilization and reconstructs
dense point clouds while maintaining competitive
reprojection accuracy and a reasonable runtime. In contrast, COLMAP experiences partial frame
failures, and MASt3R, despite generating dense reconstructions, exhibits significant reprojection
errors, potentially due to overfitting to unreliable depth priors. Furthermore, we observed that point
clouds derived directly from the VGGT model often contain significant artifacts (see Figure 5). We
attribute these artifacts to out-of-distribution challenges encountered by the model. Consequently,
our reconstruction pipeline utilizes VGGT for intrinsic estimation rather than for direct point cloud
export for 3D-GS initialization.

Ablation Studies. To assess the contribution of individual components within our M3arsSynth
reconstruction pipeline, we conduct ablation studies, with results presented in Table 3. Specifically,
we evaluate two aspects: (1) the impact of Depth Rescaling, a normalization step designed to align
predicted monocular depths with stereo geometry; and (2) the effectiveness of our metric-scale
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Table 3: Ablation study on the core components of the MarsSynthSim reconstruction pipeline.
This study assesses the impact of omitting depth rescaling and replacing our metric-aware initialization
with a MASt3R and 3DGS baseline. The findings confirm that both depth normalization and geometric
supervision are crucial for high-fidelity, structurally consistent video synthesis.

Depth Rescaling 3D Reconstruction PSNR ↑ SSIM ↑ LPIPS ↓
✗ Metric-aware Initial 32.20 0.93 0.10
✓ MASt3R Leroy et al. (2024) 28.77 0.59 0.24

✓ Metric-aware Initial 32.73 0.93 0.09

reconstruction pipeline, compared against a variant that initializes geometry using MASt3R with
3DGS for rendering.

The results demonstrate that omitting depth rescaling leads to degraded rendering quality across
all metrics, particularly for LPIPS, thereby highlighting the importance of geometric normalization.
Furthermore, replacing our metric-scale reconstruction pipeline with the MASt3R + 3DGS baseline
results in substantial reductions in both structural similarity (SSIM) and perceptual quality. This
outcome underscores the value of our integrated reconstruction strategy, which is crucial for generating
datasets that enable consistent and high-fidelity 3D-aware video synthesis.

6 Conclusion, Limitation, and Broader Impact
We introduced M3arsSynth for creating multimodal datasets from sparse rover imagery and MarsGen
for generating controllable, photorealistic Martian videos. MarsGen achieves superior visual fidelity
and 3D consistency over existing methods, significantly advancing Mars mission simulations for nav-
igation and planning. While our approach significantly supports Mars mission simulation, navigation,
and planning through realistic video synthesis, its current limitations include integrating predictive
temporal environmental modeling and achieving fine-grained 3D semantic understanding.

Broader Impact. This research significantly enhances Mars mission preparedness by enabling
realistic training and system testing through dynamic environmental simulations. However, the
underlying generative technology also presents risks such as potential misuse for creating deceptive
content, fostering over-reliance on simulations, and concerns regarding resource intensiveness and
autonomous system safety.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state the contributions made in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in appendix.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully describe our proposed pipeline, dataset and core building components.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We just promise release our dataset.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include implementation details for our experiments, to a level of detail that
is necessary to appreciate the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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Guidelines:

• The answer NA means that the paper does not include experiments.
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type and number of GPUs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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Answer: [Yes]

Justification: We conform with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [Yes]

Justification: We discuss both potential possible societal impacts of the work performed in
appendix.
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• The answer NA means that there is no societal impact of the work performed.
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impact or why the paper does not address societal impact.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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Answer: [NA]
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The answer NA means that the paper does not use existing assets.
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URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not pose such risks.
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for what should or should not be described.
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A Additional Implementation Details

A.1 Automated Data Filtering Strategies

This subsection details the automated filtering pipeline applied to the raw Martian stereo image
pairs obtained from the NASA Planetary Data System (PDS). The following paragraphs describe the
specific filtering techniques employed:

Filtering Low-Quality Thumbnails and Grayscale Images. To eliminate uninformative or non-
representative visual data, we begin by removing low-resolution thumbnails and grayscale images.
This step relies on file-level heuristics including image resolution, file size, and RGB channel
statistics. Images with dimensions significantly smaller than our expected minimum resolution or
with anomalously small file sizes are classified as thumbnails and excluded. Additionally, we assess
the variance across the RGB channels to detect grayscale images; those with minimal inter-channel
variance are removed, as they lack the color information necessary for downstream multimodal
analysis.

Removing Redundant Content via Perceptual Hashing. To prevent content-level redundancy
caused by multiple captures of the same scene under different imaging conditions—such as varied
white balance, contrast, or filters—we apply perceptual hashing. This technique generates compact
hash codes that encode high-level structural similarity. By computing Hamming distances between
these hashes, we identify visually near-duplicate images and discard those exceeding a similarity
threshold. This step ensures the dataset maintains semantic diversity and avoids overrepresentation of
particular scenes or textures.

Excluding Blurry and Low-Sharpness Images. Maintaining geometric fidelity is critical for tasks
such as stereo reconstruction and surface normal estimation. To this end, we apply a sharpness filter
using Laplacian variance, a well-established metric that quantifies edge contrast within an image.
Frames with a variance below a pre-defined threshold are classified as blurry and automatically
excluded. These typically result from motion blur or poor focus, and retaining them would degrade
the quality of both photometric and geometric outputs in the synthesized dataset.

Filtering Out Visually Unusable Frames. We analyze the average color intensity histograms of
each image to identify those dominated by irrelevant content such as large spacecraft segments,
occlusions, or camera malfunctions. These images often display skewed or flat histogram profiles,
indicating uniform color patches or unnatural saturation patterns. We flag and remove such frames to
ensure that the final dataset primarily comprises clear, terrain-focused scenes with minimal visual
obstruction. This enhances the quality and consistency of the data available for learning meaningful
Martian representations.

A.2 Implementation of Grounded-SAM-assisted Semi-Automated Data Preprocessing

While the initial automated filtering pipeline, as described in Sec. A.1, addresses common image
deficiencies, a subsequent semi-automated refinement stage is crucial for tackling more nuanced
and complex visual challenges. These challenges include, but are not limited to, partial occlusions
by rover hardware elements (e.g., wheels, antennas, or calibration targets), subtle lens-induced
distortions not captured by generic filters.

This refinement phase incorporates a rigorous manual verification protocol for the image set that has
passed the initial automated screening. The efficiency and accuracy of this manual review are sub-
stantially enhanced by leveraging the capabilities of Grounded-SAM, a sophisticated vision-language
segmentation model. Grounded-SAM’s strength lies in its ability to perform open-vocabulary seg-
mentation, identifying and delineating image regions based on arbitrary textual prompts. This is
particularly advantageous for our application, as it allows for the flexible identification of diverse and
potentially unforeseen rover components or artifacts without requiring model retraining or predefined
class lists.

The operational workflow is as follows:

1. Prompt Formulation: Human domain experts, familiar with the rover’s morphology
and common imaging configurations, formulate targeted textual prompts. These prompts
typically reference known spacecraft components that have a high likelihood of intruding
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into the image frame (e.g., "rover wheel", "robotic arm telemetry cable", "mast shadow on
terrain").

2. Mask Generation: Grounded-SAM processes each image in conjunction with these prompts
to generate segmentation masks. These masks highlight regions within the image that
correspond to the textual descriptions, effectively flagging areas suspected of containing
non-terrain elements or problematic features.

3. Guided Manual Annotation: The generated masks serve as precise visual guides for
human annotators. Instead of scrutinizing the entirety of each image for potential issues,
annotators can focus their attention on the regions highlighted by Grounded-SAM. This
significantly accelerates the review process and improves the consistency of identifying
obscured or compromised data.

Human annotators then perform the critical verification step. Based on the Grounded-SAM-proposed
masks and their own expert assessment, they make the final decision to:

• Confirm and accept the mask, leading to the flagging of the highlighted region for exclusion
from 3D reconstruction inputs.

• If the segmentation of Grounded-SAM is inaccurate or the image contains unrecognized
errors, manual annotation is carried out to obtain a clean image.

• Flag the entire image for exclusion if the problematic regions are too extensive or critical to
be simply masked out.

This process ensures that data compromised by non-Martian content or severe artifacts are meticu-
lously identified and appropriately handled.

The direct outcome of this Grounded-SAM assisted semi-automated refinement is a rigorously curated
collection of Martian stereo images. These images exhibit high visual integrity, characterized by
predominantly unobstructed Martian surfaces, more balanced illumination across the scene, and a
minimization of instrumental or environmental artifacts. Such a high-quality, clean dataset forms a
reliable and robust foundation essential for the subsequent stages of metric-aware 3D reconstruction
and, ultimately, for the training of generative simulation models like MarsGen.

A.3 Details of M3arsSynth construction

The challenge of conversion from CAHVOR to pinhole model This sections outlines the conver-
sion from a CAHVOR (CCAHVOR, ACAHVOR, HCAHVOR, VCAHVOR, OCAHVOR, RCAHVOR

vectors) camera model to a pinhole model, highlighting the critical parameters and potential imped-
iments. The conversion aims to derive pinhole model parameters (camera center Cpinhole, rotation
matrix R, intrinsic matrix K, and radial distortion coefficients k0, k1, k2) from the CAHVOR param-
eters.

• Camera Center: Cpinhole = CCAHVOR.

• Rotation Matrix R: Derived from normalized horizontal (Hn) and vertical (Vn) vectors,
and the optical axis (ACAHVOR).

Hn = (HCAHVOR − hcACAHVOR)/hs

Vn = (VCAHVOR − vcACAHVOR)/vs

R =

 HT
n

−VT
n

AT
CAHVOR


• Intrinsic Matrix K: Determined by focal lengths (fu = hs, fv = vs) and principal point

(cu = hc, cv = vc).

K =

(
hs 0 hc

0 vs vc
0 0 1

)
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• Radial Distortion k0, k1, k2: Calculated from RCAHVOR, with k1, k2 also depending on
hs.

k0 = RCAHVOR[0]

k1 = RCAHVOR[1]/(pixel_size × hs)
2

k2 = RCAHVOR[2]/(pixel_size × hs)
4

The conversion critically depends on four scalar parameters:

• hs: Horizontal focal length scaling factor.

• vs: Vertical focal length scaling factor.

• hc: Horizontal principal point coordinate.

• vc: Vertical principal point coordinate.

If these four parameters (hs, vs, hc, vc) are not available, the conversion to a pinhole model is not
feasible. Therefore, these four scalar parameters are indispensable for a complete and accurate
conversion from the CAHVOR to the pinhole model.

3D Gaussian Splatting for Photorealistic Scene Modeling We details key components and
implementation specifics related to our 3D Gaussian Splatting (3DGS) model. The optimization of
this model to accurately represent a 3D scene is driven by a combination of two primary loss functions:
Photometric Loss: This loss ensures that the rendered images from the 3DGS representation closely
match the input training images in terms of appearance. It penalizes differences in color and
brightness, guiding the optimization towards visual fidelity.

L = (1− λ)L1 + λLD-SSIM (5)

With the goal of guiding the model into plausible geometry, we introduced a geometric prior loss in
the process of model optimization , which is Depth Regularization Loss. This component utilizes
the depth information output by the pre-trained large model and the depth obtained through the
rasterization pipeline to supervise the geometric accuracy of the scene.

Ldepth = ||Drender −D∗Metric Depth||1 (6)

The bilateral grid is a key component in addressing photometric variations and appearance inconsis-
tencies in Martian stereo imagery, which arise from factors like differing camera hardware, lighting
conditions, or ISP pipeline transformations. This per-view learnable function transforms the rendered
output of a 3DGS model to better match the target image’s appearance. Its implementation involves
associating a 3D bilateral grid (a four-dimensional tensor A ∈ RW×H×D×12) with each training view,
where W,H represent spatial locations, D represents pixel intensity values, and the final dimension
stores parameters for a 3× 4 affine color transformation matrix. For each rendered pixel, an affine
transformation is retrieved via a differentiable slicing operation using trilinear interpolation based on
its spatial location and a guidance intensity, allowing the grid’s parameters to be learned end-to-end.
Integrated into the 3DGS optimization, the grid processes rendered images before the photometric
loss calculation, encouraging it to bridge appearance gaps, and a Total Variation loss is applied
as smoothness regularization to prevent overfitting and encourage the modeling of low-frequency
changes. The grid’s resolution is typically much smaller than the input images ( we have selected
here is 16× 16× 8× 12 ) to ensure computational efficiency and focus on low-frequency variations,
with adaptive sizing possible based on scene characteristics. This joint training approach mitigates
appearance inconsistencies, leading to more photorealistic and geometrically consistent 3D scene
representations.

Camera Trajectory Synthesis and Motion Description A cornerstone of generating diverse and
informative video sequences for the M3arsSynth dataset is the meticulous design and execution of
virtual camera trajectories. We begin by defining a repertoire of canonical camera trajectory types.
These foundational trajectories, mathematically represented as a sequence of 6-Degrees-of-Freedom
(6-DOF) poses Mtraj = {(Rt, Tt) ∈ SE(3) | t = 1, . . . , N}, where Rt signifies the camera’s rotation
matrix and Tt denotes its translation vector at each discrete timestamp t, are engineered to encompass
a wide spectrum of motion profiles. Our trajectory generation process begins by using the two camera
poses, solved from the original stereo pair, as start and end keyframes. We then synthesize a variety
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of smooth camera paths between these keyframes by applying predefined interpolation methods that
follow canonical motion profiles. The spatial extent, or the overall scale and reach, of the predefined
canonical trajectories is not fixed; instead, it is dynamically adjusted in response to the specific
geometric characteristics of each individual 3D reconstructed Martian scene. This adaptation is
primarily driven by the depth information derived from the reconstructed 3D model. Specifically,
for regions within a scene that are identified as being in the near-field (characterized by relatively
smaller depth values from the camera’s perspective), the corresponding segments of the canonical
trajectories are programmatically contracted or scaled down. Conversely, for regions designated as
far-field (characterized by significantly larger depth values, indicating distant terrain elements or
horizons), the trajectory segments are expanded or scaled up. This depth-adaptive scaling strategy is
paramount for ensuring that the synthesized video data effectively and consistently covers the scene’s
content at appropriate levels of detail. Following the generation of these adaptively scaled trajectories,
the precise 6-DOF pose parameters for each frame serve as the quantitative foundation from which
natural language descriptions detailing the camera’s motion characteristics are subsequently derived,
forming a key component of the textual modality within the M3arsSynth dataset.

Scene Content Captioning The M3arsSynth dataset incorporates rich textual descriptions to enable
and enhance multimodal learning. While depth and normal maps are directly derived from the 3D
reconstructed scenes, and camera motion characteristics are derived from the 6-DOF pose parameters
of the trajectories, the acquisition of descriptive scene content captions involves a sophisticated
process leveraging a Vision Language Model (VLM). We generate scene content captions by applying
a VLM, referenced as ChatGPT-4o, to selected views from the synthesized video sequences. Guided
by expertise in Martian exploration from our authors, we developed structured prompts for the VLM
to ensure high-quality annotations. These prompts include the input image, the classification of the
Martian terrain depicted (e.g., "Regolith/Rocky Terrain", "Dunes/Ripples (Sand/Dust)", as shown
in Figure 4 of the paper), and a basic descriptive outline of the scene. By conditioning the VLM
with this structured input, we obtain detailed and contextually relevant textual descriptions of the
visual content. We manually validated a random sample of 20% of the annotations and found no
significant errors, which attests to the robustness of our pipeline.This methodology ensures that the
textual modality is not only accurate but also aligned with the visual and geometric data, thereby
creating a cohesive multimodal dataset suitable for training models like MarsGen for controllable
video synthesis.

A.4 MarsGen Architecture and Training Specifics

Conditioning Mechanisms. The MarsGen model integrates multimodal information through distinct
conditioning pathways. Textual prompts are initially concatenated with video tokens; this combined
representation is then processed through a global attention mechanism to achieve feature fusion.
Camera trajectory information is incorporated by first representing camera poses using Plücker
embeddings, which are subsequently injected into the model via a ControlNet architecture. Finally,
initial video frames are conditioned by concatenating them with the input noise distribution, which
then undergoes a denoising process to guide the generation.

Fine-tuning Details. The fine-tuning of MarsGen was conducted with the following hyperparameters.
The learning rate was set to 1 × 10−4. We utilized the AdamW optimizer. A cosine learning rate
scheduler was employed, incorporating a warm-up phase. The batch size was configured to 1 per
GPU. Training was performed for 8, 000 steps, with gradient accumulation implemented over 2 steps.

B Additional Experimental Results and Analysis

B.1 Qualitative Comparisons of Video Generation

The main paper presented quantitative comparisons of our generator against image-to-video and
camera-controlled image-to-video models. This appendix provides additional quantitative results
against other video generation models. Sora and ViewCrafter, for instance, evidently lack specialized
modeling for dynamic Martian scenes, leading to uncontrollable video sequences inconsistent with
the theme. This further validates the significance of our proposed dataset.
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Figure A: Qualitative comparison of video generation models on dynamic Martian scenes. Each
group of image sequences compares our model against Sora and ViewCrafter under a specific camera
control condition. Our model demonstrates improved coherence with the intended camera control
and greater thematic consistency for Martian landscapes, whereas Sora and ViewCrafter occasionally
produce less controlled or thematically divergent outputs. The relevant comparison video files (in
.mp4 format) are located in the corresponding subdirectories under the comparison/ folder. For
example, Sora’s examples are in the comparison/sora/ directory,

For more comparisons of videos generated by our MarsGen model against the ground truth (GT),
please refer to the ours/ folder. Examples of other models’ failures in generating dynamic Martian
scenes can be found in the others/ folder.

B.2 Qualitative Comparisons of 3D Reconstruction Pipelines

Fig. B illustrates a qualitative comparison of 3D reconstruction outputs from different methodologies
when applied to demanding Martian stereo image pairs. The top row of the figure presents results
achieved by our M3arsSynth pipeline, which consistently demonstrates the ability to generate coherent
and detailed 3D reconstructions of the Martian terrain. These outputs effectively capture the complex
geometry and features of the landscape.

In contrast, the second row of Fig. B displays reconstructions produced by the MASt3R pipeline.
As indicated by the highlighted regions within the red boxes, MASt3R can encounter difficulties,
leading to potential inaccuracies, loss of fine details, or artifacts. While MASt3R achieves 100% data
utilization in quantitative assessments, it exhibits a significantly high reprojection error (46.98 px
according to Table 2), which may stem from overfitting to unreliable depth priors.
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Further highlighting the difficulties faced by existing techniques, traditional Structure-from-Motion
(SfM) pipelines like COLMAP demonstrate extremely low utilization and robustness when pro-
cessing Martian data. For the specific visual examples shown in Fig. B, the COLMAP pipeline
failed to generate a usable reconstruction in every instance, indicating its poor suitability for these
challenging datasets. This qualitative observation is strongly supported by quantitative data presented
in Table 2 of the main paper, which shows that COLMAP experiences failures on nearly 30% of
preprocessed Martian image pairs. Such a high failure rate severely restricts its practical application
for comprehensive 3D modeling of Martian environments.

In stark contrast, our proposed M3arsSynth pipeline achieves 100% data utilization and successfully
reconstructs dense point clouds (averaging 250,000 points) while maintaining a competitive repro-
jection accuracy (0.77 px, as detailed in Table 2). This robust performance, delivering both high
data utilization and superior reconstruction quality, underscores the efficacy of our M3arsSynth data
engine in producing the reliable and accurate 3D models that are essential for creating high-fidelity
simulations and facilitating advanced video synthesis of Martian terrains.

O
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Figure B: Qualitative comparison of 3D reconstruction pipelines on challenging Martian stereo
imagery. The top row displays reconstructions from our M3arsSynth pipeline, while the bottom
row shows results from MASt3R, with red boxes highlighting areas of potential inaccuracy or detail
loss. Notably, the COLMAP pipeline failed to produce reconstructions for all depicted examples,
underscoring its limitations in robustness and data utilization on Martian datasets.

B.3 Discussion on Geometric Initialization Component Choices

Our experiments, summarized in Table A, validate our component choices for geometric initialization.
Our primary goal is accurate, metric-scale reconstruction, which is critical for Martian terrain analysis
but not a direct output of methods like VGGT which predicts normalized depth.

The ablation study highlights the limitations of alternatives. The full MASt3R(full) pipeline and its
intrinsic estimation (Ours(MASt3R intrin.)) are unstable (46.980 px and 2.016 px, respectively)
due to inaccurate 2D correspondences. In contrast, we found VGGT provides more stable intrinsic
estimations, likely due to its DINOv2-initialized encoder and normalized training targets.

Furthermore, using VGGT’s outputs directly is suboptimal. Scaling its normalized depth to met-
ric scale (VGGT(metric depth)) is also suboptimal (1.748 px). Using its predicted extrinsics
(Ours(VGGT extrin.)) also yields poor results (2.113 px). This is because these non-metric scale
poses are fundamentally incompatible with the metric depth priors from Metric3D v2, which are
essential to our pipeline. Our approach successfully integrates the strengths of these models while
ensuring metric-scale consistency.
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Table A: Ablation study on geometric initialization components. Our full method achieves the lowest
2D reprojection error, indicating the most accurate geometric setup.

MASt3R(full) VGGT(metric depth) Ours(MASt3R intrin.) Ours(VGGT extrin.) Ours
2D Reproj. ↓ 46.980 1.748 2.016 2.113 0.770

B.4 Discussion on Generalization to Lunar and Terrestrial Environments

While our primary motivation stems from Martian exploration, our method is designed for planetary
scenes with sparse views and low-texture surfaces. We evaluated our pipeline on similar environments,
including public lunar data, performing novel view synthesis from two views.

Furthermore, to test robustness in a general sparse-view context, we performed novel view synthesis
on the terrestrial RealEstate10K dataset using only two-view inputs. We benchmarked our approach
against Splatt3R and InstantSplat.

The preliminary results, shown in Table B, demonstrate our method’s effectiveness in these challeng-
ing sparse-view conditions on both lunar and terrestrial data.

Table B: Sparse-view novel view synthesis benchmarks on Lunar and RealEstate10K data.
Dataset Method PSNR ↑ SSIM ↑ LPIPS ↓
Lunar Ours 29.60 0.920 0.213

RealEstate10K
Splatt3R 15.11 0.492 0.442
InstantSplat 19.64 0.560 0.291
Ours 20.81 0.717 0.264
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