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Abstract
Adapting pretrained language models to novel001
domains, such as clinical applications, tradi-002
tionally involves retraining their entire set of003
parameters. Parameter-Efficient Fine-Tuning004
(PEFT) techniques for fine-tuning language005
models significantly reduce computational006
requirements by selectively fine-tuning small007
subsets of parameters. In this study, we propose008
a two-step PEFT framework and evaluate it in009
the clinical domain. Our approach combines010
a specialised PEFT adapter layer designed011
for clinical domain adaptation with another012
adapter specialised for downstream tasks. We013
evaluate the framework on multiple clinical014
outcome prediction datasets, comparing it015
to clinically trained language models. Our016
framework achieves a better AUROC score017
averaged across all clinical downstream tasks018
compared to clinical language models. In019
particular, we observe large improvements020
of 4-5% AUROC in large-scale multilabel021
classification tasks, such as diagnoses and022
procedures classification. To our knowledge,023
this study is the first to provide an extensive024
empirical analysis of the interplay between025
PEFT techniques and domain adaptation026
in an important real-world domain of clini-027
cal applications. The code is accessible via028
https://anonymous.4open.science/r/clinical_peft-029
03B4.030

1 Introduction031

Large Language Models (LLMs) have consistently032

achieved state-of-the-art performance across vari-033

ous NLP tasks. However, while these models ex-034

hibit impressive generalisation abilities, they often035

struggle to perform in specialised domains such as036

clinical applications, primarily due to the absence037

of domain-specific knowledge. The complexity of038

medical terminology and the presence of incom-039

plete sentences in clinical notes contribute to this040

challenge (Lehman and Johnson, 2023). Unfor-041

tunately, studies have indicated that even LLMs042
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Figure 1: An illustration of the proposed two-step PEFT
framework. Clinical LLaMA-LoRA fine-tunes the pre-
trained LLaMA to the clinical domain. Downstream
LLaMA-LoRA further fine-tunes the domain-adapted
model to downstream clinical tasks.

pretrained with datasets comprising biomedical 043

publications still exhibit suboptimal performance 044

when applied to downstream clinical applications, 045

particularly when compared to LLMs pretrained 046

with clinical notes (Alsentzer et al., 2019; Li et al., 047

2022; Yang et al., 2022). This observation suggests 048

that there are intrinsic nuances specific to the clini- 049

cal context that can only be effectively captured if 050

LLMs undergo pretraining using clinical datasets. 051

The current approach of adapting pretrained 052

LLMs to the clinical domain typically involves 053

fine-tuning the entire model parameters (Alsentzer 054

et al., 2019; Peng et al., 2019; van Aken et al., 2021; 055

Michalopoulos et al., 2021; Lehman and Johnson, 056

2023). However, due to the rapid increase in the 057

size of LLMs, such a practice demands extensive 058

computational resources, which may not be readily 059

accessible to all researchers. Consequently, this 060

challenge will further exacerbate the disparity be- 061

tween the resource-rich and resource-constrained 062

research institutions (Ruder et al., 2022). 063

To address the substantial computational de- 064

mands, studies have proposed various Parameter- 065
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Efficient Fine-Tuning (PEFT) techniques. These066

techniques present a practical solution by fine-067

tuning a small subset of additional parameters068

while keeping the remaining pretrained parameters069

fixed. As a result, this strategy significantly alle-070

viates the computational burden while achieving071

comparable performance to that of full fine-tuning.072

In this study, we propose a two-step PEFT frame-073

work (see Figure 1). Firstly, we introduce Clinical074

LLaMA-LoRA, a Low-Rank Adaptation (LoRA,075

Hu et al., 2022) PEFT adapter built upon the open-076

source Large Language Model Meta AI (LLaMA)077

(Touvron et al., 2023). Then, we introduce Down-078

stream LLaMA-LoRA, which is trained on top079

of the pretrained Clinical LLaMA-LoRA. Down-080

stream LLaMA-LoRA is specifically designed for081

clinical downstream tasks. The fusion of the082

two adapters achieves better performance in clini-083

cal NLP downstream tasks compared to clinically084

trained LLMs while considerably reducing the com-085

putational requirements. This study presents the086

following contributions:087

• We introduce Clinical LLaMA-LoRA, a PEFT-088

adapted version of the LLaMA model tailored089

specifically for the clinical domain.090

• We provide comparisons of multiple PEFT tech-091

niques in terms of language modelling perfor-092

mance based on perplexity score, shedding light093

on the optimal PEFT techniques for the clinical094

domain-adaptive pretraining.095

• We introduce Downstream LLaMA-LoRA, built096

on top of Clinical LLaMA-LoRA and tailored097

specifically for the clinical downstream tasks.098

• We evaluate the proposed mixture of Clinical099

LLaMA-LoRA and Downstream LLaMA-LoRA100

on downstream clinical datasets and tasks. Our101

proposed framework showcases improvements in102

AUROC scores over the existing clinical LLMs.103

2 Background104

2.1 Biomedical Large Language Models105

General-domain LLMs continue to face challenges106

when confronted with domain-specific tasks. The107

complexity associated with the requisite domain108

knowledge is recognised as a significant fac-109

tor (Ling et al., 2023), particularly within the110

biomedical domain. Consequently, numerous stud-111

ies have attempted to adapt LLMs specifically for112

the biomedical domain.113

An early example of such adaptation is 114

BioBERT (Lee et al., 2019), which was pretrained 115

using biomedical research articles from PubMed 116

and PubMed Central. This adaptation has shown 117

improved performance across various biomedi- 118

cal NLP tasks. Recognising the significance of 119

biomedical-specific vocabularies, Gu et al. (2022) 120

proposed PubMedBERT, which is pretrained on 121

biomedical data from scratch and initialised the 122

model vocabulary with the biomedical corpus. The 123

growing interest in biomedical NLP research has 124

led to the adaptation of even larger models to the 125

biomedical domain (Luo et al., 2022; Singhal et al., 126

2022; Wu et al., 2023; Singhal et al., 2023) 127

While these biomedical LLMs have demon- 128

strated advancements in various biomedical NLP 129

benchmarking tasks, studies have revealed that 130

clinical LLMs still outperform their biomedical 131

counterparts in numerous clinical downstream 132

tasks (Alsentzer et al., 2019; Yang et al., 2022; 133

Li et al., 2022; Lehman and Johnson, 2023). This 134

suggests that domain-adaptive pretraining using 135

clinical data is still the de facto protocol in adapt- 136

ing LLMs to the clinical domain. 137

2.2 Clinical Large Language Models 138

Clinical LLMs are often fine-tuned with clinical 139

data from an LLM that is already pretrained with 140

datasets that encompass broader topics. For in- 141

stance, Bio+ClinicalBERT (Alsentzer et al., 2019) 142

is domain-adaptively pretrained using clinical notes 143

from the Medical Information Mart for Intensive 144

Care (MIMIC)-III database (Johnson et al., 2016), 145

starting from a pretrained BioBERT (Lee et al., 146

2019), which itself is pretrained on biomedical ar- 147

ticles. BlueBERT (Peng et al., 2019) is domain- 148

adaptively pretrained using PubMed abstracts and 149

MIMIC-III clinical notes from a BERT model (De- 150

vlin et al., 2019), that is pretrained with general- 151

domain texts. Similarly, Clinical-T5 (Lehman and 152

Johnson, 2023) is domain-adaptively pretrained us- 153

ing the union of MIMIC-III and MIMIC-IV (John- 154

son et al., 2023) clinical notes from T5-base (Raffel 155

et al., 2020), another general-domain LLM. 156

All these studies share a common approach, 157

which is to fine-tune the entire model parameters. 158

With massive LLMs, this method has become cost- 159

prohibitive and inaccessible for many researchers. 160
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Figure 2: Frameworks of domain-adaptive and downstream fine-tuning to adapt a pretrained LLM from the general
domain to the clinical domain. As opposed to a full fine-tuning process which can be prohibitively expensive
(left), our approach leverages PEFT techniques to introduce a clinically-specialised adapter that is attached to a
pretrained general LLM (right). Our proposed framework also introduces another clinical PEFT adapter trained on
the downstream clinical tasks, such as clinical note classification.

2.3 Parameter-Efficient Fine-Tuning for161

Large Language Models162

Suppose that we have a pretrained LLM PΦ(y|x);163

fine-tuning it can be effectively defined as find-164

ing the most appropriate parameter changes ∆Φ165

by optimising the fine-tuning objective. A con-166

ventional, full fine-tuning process means that the167

model needs to learn a ∆Φ whose dimension is168

equal to the entire parameters of the pretrained169

LLM |∆Φ| = |Φ0|, which is computationally ex-170

pensive. PEFT techniques address this by tuning171

the delta ∆Φ, which corresponds to a very small172

fraction of additional trainable parameters during173

the fine-tuning process.174

Adapter tuning (Houlsby et al., 2019) is an early175

PEFT method that involves adding small additional176

parameters called adapters to each layer of the pre-177

trained model and strictly fine-tuning this small178

set of new parameters. LoRA (Hu et al., 2022) is179

another PEFT approach that trains low-rank ma-180

trices to represent the attention weights update of181

transformer-based models.182

Another group of PEFT approaches leverages183

the concept of prompting. Prefix Tuning (Li and184

Liang, 2021) optimises a sequence of continuous185

task-specific vectors, called a prefix, which are186

trainable parameters that do not correspond to real187

tokens. P-Tuning (Liu et al., 2021b) uses a similar188

strategy as Prefix tuning with a focus on text un-189

derstanding tasks, as opposed to generative tasks.190

Prompt tuning (Lester et al., 2021) simplifies Pre-191

fix tuning by introducing trainable tokens, called192

soft prompts, for each downstream task. Liu et al.193

(2021a) introduced P-tuning v2 which uses deep 194

prompt tuning to address the lack of performance 195

gain in the previous prompt tuning techniques. 196

By fine-tuning a small fraction of additional pa- 197

rameters, all PEFT approaches alleviate the issue 198

of extensive computational resource requirements. 199

2.4 Multi-step Adaptation 200

Prior studies have explored the two-step adaptation 201

framework, although they have fundamental dif- 202

ferences from our proposed setup. For instance, 203

Zhang et al. (2021) introduced a multi-domain 204

unsupervised domain adaptation (UDA) with a 205

two-step strategy, involving domain-fusion train- 206

ing with Masked Language Model loss on a mixed 207

corpus, followed by task fine-tuning with a task- 208

specific loss on the domain corpus. More recently, 209

Malik et al. (2023) introduced UDApter which 210

utilises PEFT adapters to do efficient UDA. How- 211

ever, unsupervised domain matching techniques 212

such as UDApter rely on restrictive assumptions 213

about the underlying data distributions that are of- 214

ten unsatisfied in real-world scenarios (Li et al., 215

2020). In our study, we experiment with the clin- 216

ical domain as the target domain that is not avail- 217

able in the LLM’s initial pretraining. Consequently, 218

significant discrepancies exist between the distribu- 219

tions of the source and target domains. Leveraging 220

the amount of available clinical notes, we adopt 221

a self-supervised learning paradigm by continu- 222

ally pretraining the LLMs within the target domain 223

rather than relying on the UDA paradigm. 224

Our approach shares theoretical similarities with 225

the multi-step continual pretraining approach, pro- 226
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posed by Gururangan et al. (2020), which proposes227

domain- and task-adaptive pretraining. However,228

the main difference between our proposed approach229

and Gururangan et al. (2020) is in the discrepancy230

between the source and the target domains. Gu-231

rurangan et al. (2020) experimented with adapt-232

ing general-domain LLMs to domains encountered233

during their initial pretraining, such as news and234

biomedical domains. On the other hand, we experi-235

ment with the clinical domain which is entirely ab-236

sent from the LLMs’ initial pretraining due to legal237

constraints which restrict access to sensitive clin-238

ical notes. On top of that, adapting to the clinical239

domain poses a bigger challenge due to the com-240

plexity of medical terminology and the presence of241

incomplete sentences (Lehman et al., 2023).242

3 Methodology243

3.1 Problem Statement244

Figure 2 shows the comparison between the current245

and proposed problem definitions. The general246

problem can be decomposed into two stages:247

Domain-adaptive Pretraining. Given a pre-248

trained general LLM PΦ(y|x) with its parameters249

Φ and a training dataset Z = {(xi, yi)}i=1,...,N . To250

adapt to the new domain, the model needs to update251

its weight iteratively from its pretrained state Φ0252

to Φ = Φ0 +∆Φ. This process of maximising the253

objective function can be defined as:254

argmax
Φ

∑
(x,y)∈Z

|y|∑
t=1

log (PΦ (yt | x, y<t))255

In the current paradigm, a full fine-tuning process256

means that the model needs to learn a ∆Φ whose di-257

mension is equal to the entire pretrained parameters258

|∆Φ| = |Φ0|, which is computationally expensive.259

In the proposed paradigm, we tune only small260

additional parameters θ such that Φ = Φ0+∆Φ(θ)261

whose dimension is very small compared to the262

original parameters |θ| ≪ |Φ0|. Thus, the training263

objective can be redefined as:264

argmax
θ

∑
(x,y)∈Z

|y|∑
t=1

log
(
PΦ0+∆Φ(θ) (yt | x, y<t)

)
265

In the current paradigm, the outcome of domain-266

adaptive pretraining would be a clinically-adapted267

LLM. While in the proposed paradigm, the out-268

come would be the clinical PEFT component,269

which can be combined with the untouched pre-270

trained general LLM for downstream applications.271

Downstream Fine-tuning. In the current 272

paradigm, the pretrained clinical LLM is fine- 273

tuned to the downstream tasks, such as document 274

classification tasks. Suppose that we have a 275

pretrained clinical LLM PΦ,Θ with its domain- 276

adapted parameters Φ and a newly initialised 277

classifier layer Θ, as well as a training dataset 278

Z = {(xi, yi)}i=1,...,N . We want to maximise a 279

specific loss function, such as a cross-entropy loss: 280

argmax
Φ,Θ

1

N

N∑
i=1

yi log (PΦ,Θ (xi)) 281

In contrast, in the proposed paradigm, the fine- 282

tuning process only updates the small additional 283

parameters ∆Φ(θ) and the classifier head Θ: 284

argmax
θ,Θ

1

N

N∑
i=1

yi log
(
PΦ+∆Φ(θ),Θ (xi)

)
285

In fact, we can also decompose the fine-tuning into 286

an additional "delta-updating" process: 287

argmax
θ,ϕ,Θ

1

N

N∑
i=1

yi log
(
PΦ+∆Φ(θ)+∆Φ(ϕ),Θ (xi)

)
288

Similar to the Domain-adaptive Pretraining stage, 289

the dimensions of the additional parameters θ and ϕ 290

are very small compared to the original parameters. 291

By updating only the additional parameters and 292

the classifier head, the proposed paradigm reduces 293

the computational requirements, making it more 294

efficient and feasible, especially for clinical settings 295

that are often resource-constrained. 296

3.2 Two-step LLaMA-LoRA 297

In this study, we propose a two-step PEFT frame- 298

work (as shown on the right-hand side of Figure 2). 299

Firstly, we introduce Clinical LLaMA-LoRA, a 300

LoRA adapter built upon LLaMA (Touvron et al., 301

2023) that is adapted to the clinical domain. Sec- 302

ondly, we introduce Downstream LLaMA-LoRA, 303

which is trained on top of the pretrained Clinical 304

LLaMA-LoRA and is specifically adapted to the 305

downstream tasks. 306

LLaMA models In this study, we evaluate two 307

LLaMA models; the 7 billion parameters version 308

of LLaMA (Touvron et al., 2023) and the 7 bil- 309

lion parameters version of PMC-LLaMA(Wu et al., 310

2023). LLaMA was pretrained with an array of 311

texts from multiple sources, such as English Com- 312

monCrawl, Wikipedia, ArXiv, and C4 (Raffel et al., 313
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Dataset # Class Multilabel # Train # Valid # Test

LOS 4 ✗ 30,421 4,391 8,797
MOR 2 ✗ 33,954 4,908 9,822
PMV 2 ✗ 5,666 707 706
DIAG 1,266 ✓ 33,994 4,918 9,829
PROC 711 ✓ 30,030 4,357 8,681

Table 1: Statistics and types of downstream clinical doc-
ument classification tasks: length of stay (LOS), mor-
tality (MOR), prolonged mechanical ventilation (PMV),
diagnoses (DIAG), and procedures (PROC).

2020). While, PMC-LLaMA is a domain-adapted314

LLaMA model that was pretrained on 4.8 million315

biomedical academic papers from PubMed Central.316

Domain-adaptive Pretraining: Clinical LLaMA-317

LoRA Clinical LLaMA-LoRA is trained using318

a combination of MIMIC-IV de-identified dis-319

charge summaries (331,794) and radiology reports320

(2,321,355), resulting in a collection of 2,653,149321

individual clinical notes. We evaluate five PEFT322

techniques, which include LoRA (Hu et al., 2022),323

Adaptation Prompt (Zhang et al., 2023), Prefix Tun-324

ing (Li and Liang, 2021), Prompt Tuning (Lester325

et al., 2021), and P-tuning (Liu et al., 2021b).326

Our approach follows the autoregressive lan-327

guage modelling pretraining objective employed in328

the original LLaMA training. To ensure compatibil-329

ity with available computational resources, we use330

fixed model hyperparameters that allow us to fit the331

LLM into a single NVIDIA A100-80GB GPU (see332

Appendix A.1). We optimise the hyperparameters333

specific to each PEFT method using Gaussian Pro-334

cess regression for Bayesian Optimisation (Frazier,335

2018) 1 with a maximum of 20 trials. The detailed336

hyperparameters search space can be found in Ap-337

pendix A.2. During this stage, we evaluate the338

perplexity scores of the LLM variants.339

Downstream Fine-tuning: Downstream340

LLaMA-LoRA We fine-tune the Clinical341

LLaMA-LoRA and Downstream LLaMA-LoRA342

to clinical document classification tasks:343

• Prolonged mechanical ventilation (PMV): a344

binary classification task to predict whether a345

patient will require mechanical ventilation for346

more than seven days (Huang et al., 2020; Naik347

et al., 2022).348

• In-hospital mortality (MOR): a binary classifi-349

cation task to predict whether a patient will sur-350

1Specifically, we use the W&B Sweep APIs: https://
docs.wandb.ai/guides/sweeps

vive during their hospital stay (van Aken et al., 351

2021; Naik et al., 2022). 352

• Length of stay (LOS): a multiclass classification 353

task to predict the length of a patient’s hospital 354

stay, categorised into four time-bins: less than 355

three days, three to seven days, one to two weeks, 356

and more than two weeks (van Aken et al., 2021; 357

Naik et al., 2022). 358

• Diagnoses (DIAG): a large-scale multilabel clas- 359

sification task to predict the differential diagnoses 360

of a patient, represented by simplified ICD-9 di- 361

agnosis codes (van Aken et al., 2021). 362

• Procedures (PROC): a large-scale multilabel 363

classification task to predict the treatments ad- 364

ministered to a patient, represented by simplified 365

ICD-9 procedure codes (van Aken et al., 2021). 366

The label and split statistics of each dataset can be 367

found in Table 1. 368

During this downstream fine-tuning process, 369

we use fixed model hyperparameters to ensure 370

compatibility with the available computational re- 371

sources, a single NVIDIA A100-80GB GPU (see 372

Appendix B.1). We optimise the hyperparameters 373

specific to each PEFT method using Gaussian Pro- 374

cess regression for Bayesian Optimisation with a 375

maximum of 20 trials. The detailed hyperparame- 376

ters search space of the PEFT method can be found 377

in Appendix B.2. 378

For evaluating the performance of the model on 379

these downstream tasks, we report the Area Under 380

the Receiver Operating Characteristic Curve (AU- 381

ROC) scores. Additionally, we report the macro- 382

averaged AUROC score across all clinical tasks as 383

commonly done in NLP benchmarking tasks (Wang 384

et al., 2019; Peng et al., 2019; Gu et al., 2022). 385

3.3 Baseline Models 386

We selected baseline models that have undergone 387

a domain-adaptive pretraining process on clinical 388

notes (MIMIC-III). Thus, these baseline models 389

have been designed to perform specifically on clin- 390

ical data, providing comparison points for evaluat- 391

ing our proposed approach of two-step adaptation 392

in downstream clinical NLP tasks. The baseline 393

models used in the evaluation are as follows: 394

• Bio+ClinicalBERT (Alsentzer et al., 2019): 395

Bio+ClinicalBERT is pretrained on MIMIC-III 396

clinical notes. It is initialised from a biomedi- 397

cal language model called BioBERT (Lee et al., 398

2019), which is pretrained on biomedical re- 399

search articles. 400
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• BlueBERT (Peng et al., 2019): BlueBERT is pre-401

trained on MIMIC-III clinical notes and PubMed402

abstracts starting from the pretrained checkpoint403

of BERT (Devlin et al., 2019), a general-domain404

language model.405

• CORe (van Aken et al., 2021): CORe is pre-406

trained on MIMIC-III clinical notes and biomed-407

ical articles starting from the pretrained check-408

point of BioBERT (Lee et al., 2019).409

• UmlsBERT (Michalopoulos et al., 2021):410

UmlsBERT is pretrained on MIMIC-III clin-411

ical notes using the pretrained weights of412

Bio+ClinicalBERT with modified architecture413

and pretraining objective that incorporates knowl-414

edge from the Unified Medical Language System415

(UMLS) Metathesaurus (Schuyler et al., 1993).416

4 Results and Analysis417

4.1 Domain-adaptive Pretraining418

The pretraining results can be found in Table 2.419

We employ PEFT techniques for domain-adaptive420

pretraining, requiring a significantly smaller num-421

ber of parameters ranging from just 0.001% to422

0.24% of the original model parameters. This ap-423

proach substantially reduces the required compu-424

tational resources and training time. We perform425

a full-parameter domain-adaptive pretraining of426

LLaMA, referred to as Clinical LLaMA, using427

four NVIDIA A100-80GB GPUs which took 49.5428

hours. Instead, PEFT techniques require less than429

24 hours per epoch on average with only a single430

GPU with a comparable perplexity score.431

LoRA emerges as the best-performing PEFT432

method for both LLaMA and PMC-LLaMA in the433

clinical domain-adaptive pretraining, achieving the434

lowest perplexity scores of 2.244 and 2.404, respec-435

tively, which are very similar to Clinical LLaMA’s436

perplexity score of 2.210. This pretrained LoRA437

is referred to as Clinical LLaMA-LoRA in the438

subsequent sections. The following experiments in439

downstream fine-tuning will utilise this pretrained440

Clinical LLaMA-LoRA.441

4.2 Downstream Fine-tuning442

From the downstream fine-tuning results shown443

in Table 3, we can decompose the analysis into444

multiple research questions:445

Can LoRA help fine-tune LLaMA from other446

domains (general and biomedical) to achieve447

higher AUROC scores in clinical tasks? We448

compare the results obtained by LLaMA and449

LLaMA + LoRA, as well as PMC-LLaMA and 450

PMC-LLaMA + LoRA, as presented in Table 3. 451

The obtained results consistently demonstrate im- 452

proved AUROC scores when utilising LoRA across 453

all tasks. The macro-averaged AUROC score of 454

LoRA-equipped LLaMA shows a notable 13.01% 455

increase when compared to the LLaMA-only base- 456

line. Similarly, LoRA-equipped PMC-LLaMA ex- 457

hibits a 12.19% improvement in macro-averaged 458

AUROC compared to the original PMC-LLaMA 459

Both LLaMA and PMC-LLaMA, when equipped 460

with LoRA, show significant AUROC score im- 461

provements in all tasks except the PMV prediction 462

task, which is challenging for all model variants. 463

Furthermore, the marginal difference in AUROC 464

scores between PMC-LLaMA and the general- 465

domain LLaMA may be attributed to two factors. 466

Firstly, the original LLaMA has been exposed to 467

biomedical concepts during its pretraining, reduc- 468

ing the need for domain-adaptive pretraining to the 469

biomedical domain. Secondly, clinical outcome 470

prediction requires an understanding of how to ap- 471

ply biomedical knowledge in an interconnected 472

manner to provide prognostic. We believe that 473

biomedical pretraining may not be sufficient in pro- 474

viding such practical knowledge. 475

Can LoRA-equipped LLaMA and PMC- 476

LLaMA perform comparably in comparison to 477

clinically trained LMs? We compare the AU- 478

ROC scores obtained by the baseline models, and 479

LoRA-equipped LLaMA and PMC-LLaMA (see 480

Table 3). Among the baseline models, UmlsBERT 481

performs the best with a macro-averaged AUROC 482

score of 72.70%. Compared to UmlsBERT, both 483

LLaMA and PMC-LLaMA underperform with 484

macro-averaged AUROC scores of 58.61% and 485

60.51%, respectively. This finding highlights the 486

importance of clinical-specific fine-tuning. 487

Significant improvements can be observed in 488

LoRA-equipped LLaMA and PMC-LLaMA, with 489

macro-averaged AUROC scores of 71.62% and 490

72.70%, respectively, with noticeable improve- 491

ments in the diagnoses and procedures prediction 492

tasks. LoRA-equipped LLaMA achieves AUROC 493

scores of 78.37% and 87.49% in the diagnoses and 494

procedures prediction tasks, respectively, compared 495

to 72.08% and 78.32% for UmlsBERT. This repre- 496

sents improvements of 6.29% in diagnoses predic- 497

tion and 9.17% in procedures prediction. Improve- 498

ments are also observed in the results obtained 499

by LoRA-equipped PMC-LLaMA, outperforming 500
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Base Model PEFT Trainable Params Train Ppl Test Ppl GPU Train Time (h:m:s)

Clinical LLaMA - 6.7B (100%) 1.811 2.210 4x80GB 49:26:38

LLaMA

LoRA 8.4M (0.12%) 1.858 2.244 1x80GB 21:37:42
Adaptation Prompt 1.2M (0.02%) 2.561 2.865 1x80GB 24:57:17
Prefix Tuning 5.2M (0.08%) 2.815 2.748 1x80GB 20:11:07
Prompt Tuning 61.4K (0.0009%) 4.846 4.007 1x80GB 23:27:28
P-tuning 16.1M (0.24%) 2.723 3.271 1x80GB 23:49:31

PMC-LLaMA

LoRA 2.1M (0.03%) 1.938 2.404 1x80GB 21:32:59
Adaptation Prompt 1.2M (0.018%) 2.374 2.867 1x80GB 23:33:10
Prefix Tuning 2.6M (0.04%) 1.789 2.848 1x80GB 20:13:10
Prompt Tuning 41K (0.0006%) 4.821 4.385 1x80GB 22:25:32
P-tuning 2.2M (0.03%) 3.491 4.572 1x80GB 22:28:15

Table 2: Domain-adaptive Pretraining results of LLaMA and PMC-LLaMA trained on MIMIC-IV clinical notes
with a language modelling objective. Lower perplexity scores indicate better language modelling performance. The
boldface row indicates the model with the lowest perplexity score from each base model variant.

UmlsBERT by 6.73% in diagnoses prediction and501

8.36% in procedures prediction.502

Can LLaMA and PMC-LLaMA with Clinical503

LLaMA-LoRA achieve higher AUROC scores504

than the clinically trained LMs? The domain-505

adaptive pretraining step yields the clinically-506

trained LoRA adapters for LLaMA and PMC-507

LLaMA, denoted as Clinical LLaMA-LoRA. We508

compare the results of Clinical LLaMA-LoRA-509

equipped LLaMA and PMC-LLaMA with the base-510

line models. We evaluate Clinical LLaMA-LoRA511

with and without fine-tuning, referred to as "Train-512

able" and "Frozen" respectively.513

The results indicate that Clinical LLaMA-LoRA-514

equipped LLaMA and PMC-LLaMA outperform515

the baseline models. LLaMA with a trainable Clin-516

ical LLaMA-LoRA achieves an AUROC score of517

75.13%, surpassing UmlsBERT’s score of 72.32%.518

PMC-LLaMA with a trainable Clinical LLaMA-519

LoRA achieves a lower AUROC score of 72.23%.520

LLaMA with a trainable Clinical LLaMA-LoRA521

also outperforms Clinical LLaMA which achieves522

an AUROC score of 58.86%.523

These findings indicate that the Clinical LLaMA-524

LoRA contributes to higher AUROC scores for525

LLaMA and PMC-LLaMA over clinically trained526

LLMs, while biomedical domain-adaptive pretrain-527

ing may not be necessary to improve the model’s528

performance in the clinical settings.529

Can LLaMA and PMC-LLaMA with Clinical530

LLaMA-LoRA achieve higher AUROC scores531

than the other fine-tuning variants? We exam-532

ine the importance of the domain-adapted LoRA533

by comparing the results obtained by LLaMA and534

PMC-LLaMA equipped with Clinical LLaMA-535

LoRA against the results of LLaMA and PMC- 536

LLaMA fine-tuning, both original and with LoRA. 537

Firstly, we evaluate the frozen pretrained Clin- 538

ical LLaMA-LoRA. Both LLaMA and PMC- 539

LLaMA with frozen Clinical LLaMA-LoRA do 540

not exhibit a significant increase in performance 541

compared to the original fine-tuning. This indicates 542

that, despite the domain-adaptive pretraining, the 543

limited number of trainable parameters during the 544

downstream fine-tuning restricts the potential im- 545

provement that the model can achieve. A similar 546

finding can also be observed in the Clinical LLaMA 547

fine-tuning whose overall performance does not dif- 548

fer from the original fine-tuning. This finding is fur- 549

ther supported by the improvement in the AUROC 550

scores of LLaMA and PMC-LLaMA with trainable 551

Clinical LLaMA-LoRA, which achieve 75.13% 552

and 72.23% macro-averaged AUROC scores, re- 553

spectively. These represent substantial improve- 554

ments from the vanilla fine-tuning performance, 555

58.61% and 60.51% AUROC scores. 556

Can a downstream LoRA adapter improve the 557

AUROC scores of LLaMA and PMC-LLaMA 558

equipped with Clinical LLaMA-LoRA? By 559

considering Clinical LLaMA-LoRA as the "delta- 560

updating" outcome of the domain-adaptive pre- 561

training, we can view the downstream fine-tuning 562

process as an additional "delta-updating" step. 563

To investigate the impact of this approach, we 564

conduct experiments by adding a Downstream 565

LLaMA-LoRA to LLaMA and PMC-LLaMA 566

models that were already equipped with Clinical 567

LLaMA-LoRA. From Table 3, we can observe 568

that Downstream LLaMA-LoRA fails to improve 569

the performance of LLaMA and PMC-LLaMA 570

with frozen Clinical LLaMA-LoRA. On the other 571
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Model PMV MOR LOS DIAG PROC Macro Average

BlueBERT 57.31 81.34 72.92 73.39 76.62 72.32
UmlsBERT 58.29 81.83 73.02 72.08 78.32 72.70
Bio+ClinicalBERT 54.00 72.67 72.21 76.65 83.21 71.75
CORe 52.11 71.52 64.17 72.40 84.51 69.40

Clinical LLaMA* 52.28 63.22 56.06 59.31 63.42 58.86

LLaMA∗ 51.38 66.80 57.65 60.06 63.83 58.61
+ LoRA 51.65 74.89 65.70 78.37 87.49 71.62
+ Clinical LLaMA-LoRA (Frozen) 52.22 60.88 55.05 57.64 62.48 57.65

+ Downstream LLaMA-LoRA 52.31 61.72 55.16 57.70 62.58 57.90
+ Clinical LLaMA-LoRA (Trainable) 51.41 81.16 72.44 81.97 88.69 75.13

+ Downstream LLaMA-LoRA 53.81 83.02 73.26 81.93 88.31 76.07

PMC-LLaMA∗ 53.06 66.77 57.94 60.17 64.63 60.51
+ LoRA 53.84 78.03 66.14 78.81 86.68 72.70
+ Clinical LLaMA-LoRA (Frozen) 51.33 67.19 58.13 63.59 68.26 60.06

+ Downstream LLaMA-LoRA 50.90 67.00 58.31 60.50 64.42 60.23
+ Clinical LLaMA-LoRA (Trainable) 52.88 75.86 65.89 79.66 86.85 72.23

+ Downstream LLaMA-LoRA 52.21 76.54 68.42 78.67 87.08 72.58

Table 3: AUROC scores in clinical downstream document classification tasks. The macro-averaged AUROC score
is calculated by taking the average of AUROC scores across all tasks. The boldface cell indicates the highest
AUROC score in a column, the row in italic indicates the variant with the highest macro-averaged AUROC in its
category. + LoRA denotes applying LoRA on top of the pretrained LLM without domain-adaptive pretraining. +
Clinical LLaMA-LoRA denotes applying Clinical LLaMA-LoRA that is domain-adaptively pretrained on top of
the pretrained LLM. + Downstream LLaMA-LoRA denotes applying Downstream LLaMA-LoRA on top of the
LLM + Clinical LLaMA-LoRA. Frozen means that the parameters are not trainable, while Trainable means that the
parameters are trainable. ∗ Due to restricted computing resources, the fine-tunings of Clinical LLaMA, LLaMA,
and PMC-LLaMA were constrained to only training the final classification layer.

hand, improvement can be observed when adding572

Downstream LLaMA-LoRA to LLaMA with train-573

able Clinical LLaMA-LoRA. This combination of574

LLaMA with trainable Clinical LLaMA-LoRA and575

Downstream LLaMA-LoRA achieves the highest576

macro-averaged AUROC score of 76.07%. The577

macro-averaged AUROC score of Clinical LLaMA-578

LoRA was almost similar to that of PMC-LLaMA579

with LoRA, suggesting similar efficacy between580

Clinical LLaMA-LoRA and the full fine-tuning581

process that PMC-LLaMA has undergone. More-582

over, Clinical LLaMA-LoRA offers the advantage583

of reduced computational resources and training584

time, which is aligned with the requirements of585

practical implementation in clinical settings.586

Overall, our proposed method manages to587

achieve better performance in comparison to clini-588

cally trained models. We also provide a comparison589

with the state-of-the-art method of PMV, mortality,590

and length of stay predictions, called BEEP (Naik591

et al., 2022), which leverages retrieval augmen-592

tation method to provide more contextual infor-593

mation to the model during inference. The com-594

parison is only partial as BEEP models were not595

evaluated on the diagnosis and procedure predic-596

tion tasks. As shown in Appendix C, our best-597

performing model achieves a 70.03% averaged AU- 598

ROC score, which is slightly worse compared to 599

the best-performing BEEP model with 72.26% av- 600

eraged AUROC score. However, it is worth noting 601

that our proposed method and the state-of-the-art 602

method are complementary to each other. Hence, 603

future work may explore the possibility of combin- 604

ing the two approaches. 605

5 Conclusions 606

In this study, we propose a two-step PEFT frame- 607

work. We introduce Clinical LLaMA-LoRA, 608

a LoRA (Hu et al., 2022) adapter built upon 609

LLaMA (Touvron et al., 2023). Then, we intro- 610

duce Downstream LLaMA-LoRA, a task-specific 611

adapter that is trained on top of the pretrained 612

Clinical LLaMA-LoRA. The fusion of the two 613

adapters achieves an AUROC score of 76.07% 614

macro-averaged across all clinical NLP down- 615

stream tasks, which represents a 3.37% improve- 616

ment over the best-performing clinical LLM. Our 617

proposed framework achieves improvement in per- 618

formance while reducing the computational require- 619

ments, which is suited for clinical settings that are 620

often constrained by their computational power. 621

8



Limitations622

This study presents a two-step PEFT framework623

aimed at effectively adapting LLMs to diverse clin-624

ical downstream applications. However, the evalu-625

ation of our model was restricted to MIMIC-based626

datasets, which are constrained to English and ob-627

tained exclusively within the Commonwealth of628

Massachusetts, United States of America. Con-629

sequently, despite the promising efficacy demon-630

strated by our proposed method, it would have been631

advantageous to directly assess its performance632

across diverse hospital systems spanning other ge-633

ographical locations and languages. This would634

enable a more comprehensive understanding of its635

applicability and generalizability. However, it is636

essential to acknowledge that conducting such an637

analysis would require working within a trusted638

research environment and obtaining the necessary639

permissions to access the relevant datasets.640

It is crucial to recognise the restrictions imposed641

on accessing internal clinical datasets, as they limit642

our ability to evaluate the effectiveness of our643

approach across different care provider systems.644

Therefore, we encourage care providers to conduct645

internal experiments within their trusted research646

environment to ensure the efficacy of our proposed647

method within their specific use cases should they648

adopt this approach.649

Despite the demonstrated performance improve-650

ments, the proposed model may still be suscep-651

tible to spurious correlations. Predicting patient652

outcomes solely based on clinical notes presents653

significant challenges due to the other factors that654

may not be captured within those notes. For in-655

stance, the length of a patient’s in-hospital stay656

is not solely correlated with their diagnoses and657

disease progression. Factors such as the patient’s658

insurance status, which is not typically mentioned659

in clinical notes, can severely impact the duration660

of a patient’s stay. Therefore, we encourage end661

users of such clinical LLMs to consider additional662

measures to ensure predictions that reflect a holistic663

view of the patient’s situation, instead of relying664

solely on the predictions of LLMs.665

Ethics Statement666

In this study, we use MIMIC-based datasets ob-667

tained after completing the necessary training.668

These datasets comply with de-identification stan-669

dards set by the Health Insurance Portability and670

Accountability Act (HIPAA) through data cleans-671

ing. Due to privacy concerns, we refrain from in- 672

cluding direct excerpts of the data in the paper. We 673

also refrain from publicly sharing the pretrained 674

checkpoints. 675

While our model demonstrates effectiveness, it is 676

important to acknowledge the risks associated with 677

relying solely on clinical outcome prediction mod- 678

els. There are crucial pieces of information that 679

can be found beyond the scope of clinical notes. 680

Considering the potential impact on patient health 681

outcomes, it is crucial to exercise caution when util- 682

ising these clinical LLMs. Therefore, we propose 683

that the PEFT adapter generated by our framework, 684

in conjunction with the pretrained LLM, should be 685

used as an aid rather than a replacement for trained 686

clinical professionals. 687
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A Hyperparameters for the938

Domain-adaptive Pretraining939

A.1 Fixed Model Hyperparameters940

Hyperparameter Value

Learning rate 3e-4
Warmup steps ratio 0.06
Maximum sequence length 512
Gradient accumulation step 4
Batch size 10

Table 4: Fixed model hyperparameters for language
modelling pretraining. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

A.2 PEFT Hyperparameters Optimisation941

Search Space942

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Prefix Tuning num virtual tokens [1, 5, 10, 15, 20]
prefix projection [true, false]

Prompt Tuning
num virtual tokens [1, 5, 10, 15, 20]
prompt init [text, random]

P-Tuning

num virtual tokens [1, 5, 10, 15, 20]
reparameterisation ["MLP", "LSTM"]
hidden size [64, 128, 256, 768]
num layers [1, 2, 4, 8, 12]
dropout [0.0, 0.1, 0.2]

Adaptation Prompt adapter length [5, 10]
adapter layers [10, 20, 30]

Table 5: The search space for PEFT Hyperparameters
optimisation runs during the domain adaptation fine-
tuning with language modelling objective. Each PEFT
technique has a specific set of hyperparameters to tune,
we selected the combination of hyperparameters which
has the lowest perplexity score.

Specifically for Prompt Tuning, we use a com-943

mon prompt initialisation text "Finish this clinical944

note:".945

B Hyperparameters for the Downstream946

Fine-tuning947

B.1 Fixed Model Hyperparameters948

Hyperparameter Value

Learning rate 5e-5
Warmup steps ratio 0.06
Maximum sequence length 512
Gradient accumulation step 10
Batch size 10

Table 6: Fixed model hyperparameters for the clinical
downstream fine-tuning. These hyperparameters remain
unchanged to fit LLaMA into a single GPU.

B.2 PEFT Hyperparameters Optimisation 949

Search Space 950

PEFT Hyperparameter Search space

LoRA
r [2, 4, 8, 16]
alpha [4, 8, 16, 32]
dropout [0.0, 0.1, 0.2]

Table 7: The search space for PEFT Hyperparameters
optimisation runs during the downstream fine-tuning.
Each PEFT technique has a specific set of hyperparam-
eters to tune, we selected the combination of hyperpa-
rameters which has the highest AUROC score.

C Comparison with BEEP (Naik et al., 951

2022) 952

Model PMV MOR LOS Avg

BEEP 59.43 84.65 72.71 72.26
Our method 53.81 83.02 73.26 70.03

Table 8: AUROC scores in a subset of the clinical
downstream document classification tasks. The macro-
averaged AUROC score is calculated by taking the aver-
age of AUROC scores across this subset of tasks. The
row in italic indicates the model variant with the highest
macro-averaged AUROC.

We compared our method with the state-of-the-art 953

clinical outcome prediction model, BEEP (Naik 954

et al., 2022), which leverages a retrieval augmen- 955

tation technique to enhance the predictive capabil- 956

ities of clinical language models. A small caveat 957

is that BEEP focused on three downstream tasks: 958

prolonged mechanical ventilation, mortality, and 959

length of stay predictions. We selected the best- 960

performing solution from BEEP, UmlsBERT with 961

weighted voting retrieval augmentation, based on 962

the averaged AUROC score to compare with our 963

solution. While BEEP outperforms our approach, 964

particularly in the prediction of PMV, it is crucial to 965

emphasise that our method achieves its predictions 966

without relying on retrieval augmentation. Future 967

work may explore using retrieval augmentation on 968

top of our proposed method. 969

D Training Configurations 970

We use HuggingFace’s Transformers (Wolf et al., 971

2020) and PEFT (Mangrulkar et al., 2022) libraries 972

for the experiments. All LLaMA-based models are 973

trained on one NVIDIA A100-80GB GPU, while 974

the baseline models are trained on a single NVIDIA 975

GeForce GTX 1080 Ti-16GB GPU. 976
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E Artefacts977

The pretrained baseline models including BioClini-978

calBERT (Alsentzer et al., 2019), BlueBERT (Peng979

et al., 2019), and CORe (van Aken et al., 2021)980

were released under the Creative Commons desig-981

nation CC0 1.0 Universal license, whereas Umls-982

BERT (Michalopoulos et al., 2021) was released983

under the MIT license. LLaMA (Touvron et al.,984

2023) was released under a noncommercial license.985

MIMIC-III and MIMIC-IV dataset was released986

under the PhysioNet Credentialed Health Data Li-987

cense 1.5.0 and can only be accessed after one fin-988

ishes the CITI Data or Specimens Only Research989

training2.990

2https://physionet.org/about/citi-course/
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