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Abstract

In off-policy policy evaluation (OPE) tasks within reinforcement learning, Tempo-
ral Difference Learning(TD) and Fitted Q-Iteration (FQI) have traditionally been
viewed as differing in the number of updates toward the target value function: TD
makes one update, FQI makes an infinite number, and Partial Fitted Q-Iteration
(PFQI) performs a finite number. We show that this view is not accurate, and
provide a new mathematical perspective under linear value function approximation
that unifies these methods as a single iterative method solving the same linear
system, but using different matrix splitting schemes and preconditioners. We show
that increasing the number of updates under the same target value function, i.e.,
the target network technique, is a transition from using a constant preconditioner
to using a data-feature adaptive preconditioner. This elucidates, for the first time,
why TD convergence does not necessarily imply FQI convergence, and establishes
tight convergence connections among TD, PFQI, and FQI. Our framework enables
sharper theoretical results than previous work and characterization of the conver-
gence conditions for each algorithm, without relying on assumptions about the
features (e.g., linear independence). We also provide an encoder-decoder perspec-
tive to better understand TD’s convergence conditions, and prove, for the first time,
that when a large learning rate doesn’t work, trying a smaller one may help (for
batch TD). Our framework also leads to the discovery of new crucial conditions
on features for convergence, and shows how common assumptions about features
influence convergence, e.g., the assumption of linearly independent features can be
dropped without compromising the convergence guarantees of stochastic TD in the
on-policy setting. This paper is also the first to introduce matrix splitting into the
convergence analysis of these algorithms.

1 Introduction

In off-policy policy evaluation (OPE) tasks within reinforcement learning, the Temporal Difference
(TD) algorithm [36) 38] can be prone to divergence [2]], while Fitted Q-Iteration (FQI) [[15} 31} 124]
is reputed to be more stable [43]. Traditionally, TD and FQI are viewed as differing in the number
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of updates toward a target value function: TD makes one update, FQI makes an infinite number,
and Partial Fitted Q-Iteration (PFQI) performs a finite number, similar to target networks in Deep
Q-Networks (DQN) [27]]. Fellows et al. [[16] showed that under certain conditions that make FQI
converge, PFQI can be stabilized by increasing the number of updates towards the target. The
traditional perspective fails to fully capture the convergence connections between these algorithms
and may lead to incorrect conclusions. For example, one might erroneously conclude that TD
convergence necessarily implies FQI convergence.

This paper focuses on policy evaluation, rather than control, while using linear value function
approximation without assuming on-policy sampling. We provide a unifying perspective on linear
function approximation, revealing the fundamental convergence conditions of TD, FQI and PFQI,
and comprehensively addressing the relationships between them. Our main technical contribution
begins in Section [3] where we describe these algorithms as the same iterative method for solving
the same target linear system, LSTD [10, 9} 28]. The key difference between these methods is their
preconditioners, with PFQI using a preconditioner that transitions between that of TD and FQI.
However, we also show in Section [§]that the convergence of one method does not necessarily imply
convergence of the other. Additionally, we show that the convergence of these algorithms depends
solely on two factors: the consistency of the target linear system and how the target linear system is
split to formulate the preconditioner and the iterative components.

In Sectionfd] we analyze the target linear system itself. We examine consistency (existence of solution)
and nonsingularity (uniqueness of solution), providing necessary and sufficient conditions for both.
We introduce a new condition, rank invariance, which is necessary and sufficient to guarantee
consistency of the target linear system regardless of the reward function. We demonstrate that this
condition is quite mild and is naturally satisfied in most cases. Rank invariance, together with linearly
independent features, form the necessary and sufficient conditions for the target linear system to have
a unique solution. We also demonstrate that when the true Q-functions can be represented by the
linear function approximator, any solution of the target linear system corresponds to parameters that
realize the Q-function if and only if rank invariance holds.

Sections [§] to[7} study the convergence of FQI, TD, and PFQI, providing necessary and sufficient
conditions for convergence of each, with interpretations of these conditions and the components of
the fixed points to which they converge. We also consider the impact of various common assumptions
about the feature space on convergence. For FQI, when rank invariance holds, the splitting of the
target linear system into its iterative components and a preconditioner is a proper splitting [4]. This
yields relaxed convergence conditions and guarantees a unique fixed point, providing a theoretical
explanation for why FQI exhibits greater robustness in convergence in practice. While it is known
that on-policy stochastic TD converges assuming a decaying learning rate and linearly independent
features [40], we prove that the assumption of linearly independent features can be dropped. For
PFQI, we prove that when the features are not linearly independent, increasing the number of updates
toward the same target without reducing to a smaller learning rate can cause divergence. In methods
that infrequently update the target value function (e.g., DQN), increasing the number of updates
toward each target value function can be destabilizing, particularly when the feature representation is
poor.

Section@ uses our results for the convergence of PFQI, TD, and FQI, along with the close connection
between their preconditioners, to reveal PEQI’s convergence relationship with TD and FQI, elucidating
why the convergence of TD and FQI do not necessarily imply convergence of each other.

Related work Bertsekas and Tsitsiklis [6]] provided early results on convergence and instability
of TD. For linearly independent features, Schoknecht [|34] provides sufficient conditions for TD
convergence. Fellows et al. [16] propose a sufficient condition for TD convergence with general
function approximation. Lee and Kim [25] studies finite-sample behavior of TD from a stochastic
linear systems perspective, while more recent convergence results in OPE scenarios are documented
by Dann et al. [13]. Tsitsiklis and Van Roy [40], and Borkar and Meyn [8]] present an ODE-based
view connecting expected TD and stochastic TD, allowing application of results from Harold et al.
[19], Borkar and Borkar [7]], Benveniste et al. [3]]. These results establish almost sure convergence of
stochastic TD to a fixed-point set, aligning with previous expected TD results [13].

Voloshin et al. [43]] empirically evaluates performance of FQI on various OPE tasks, and Perdomo
et al. [30]] provides finite-sample analyses of FQI and LSTD with linear approximation under linear



realizability assumptions. PFQI can be interpreted as adapting the target network structure from
Mnih et al. [27] to the OPE setting. Fellows et al. [16] and Zhang et al. [45] show that under certain
conditions ensuring FQI convergence, increasing the number of updates toward the same target value
function can also stabilize PFQI. Che et al. [11] shows that under linear function approximation, and
numerous assumptions on features, transition dynamics, and sample distributions, increasing updates
toward the same target value stabilizes PFQI providing high-probability bounds on estimation error.

The unifying view provided in this paper provides a simpler and clearer path to definitively answering
many longstanding questions, while also allowing us to clarify and refine some observations made in
previous work. Corrections to previous results in the literature are discussed in detail in Appendix [I|

2 Preliminaries

The Appendix [A.T]| provides a review of all linear algebra concepts and notation used herein.

An MDP is a tuple, (S, A, P, R,~), where S is a finite state space, A is a finite action space, P : S X
A — A(S) is a Markovian transition model, R : S x A — R is a reward function, and 0 < v < lisa
discount factor. We focus on the common 0 < v < 1 case. A Q-function, Q, : S x A — R, for policy,
m: S — A(A), represents the expected, discounted cumulative rewards starting from (s, a). In vector
form, Q, € R", h =| S x A |, with: Q; = R+ YP,Qr = (I — yP,) 'R, where P, € R"*"
is the row-stochastic transition matrix induced by 7, P, ((s,a), (s',a’)) = P(s' | s,a)w(a’ | §'),
and R € R" is vector form reward function. Policy evaluation finds Q (s, a) for each (s,a). In
on-policy evaluation, data are sampled following 7. In off-policy policy evaluation, they are sampled
with distribution (s, a), which can be uniform, user-provided, or implicit in a sampling distribution.
In the on-policy setting, any state-actions visited with nonzero probability can be removed from the
problem, as it would be impossible to estimate their values under 7 since they can be never visited.
We assume p(s,a) > 0 for every state-action pair that would be visited under , i.e., the assumption
of coverage [39]. We represent 1 as a vector, € R, and D = diag (x2). In an on-policy setting,
is the stationary distribution: uP, = p.

In contrast with the tabular setting [[14, 21], large state and action spaces require function approxi-
mation to represent the Q-function. The linear case is extensively studied because it is amenable to
analysis, computationally tractable, and a step towards understanding more complex methods such
as neural networks, which typically have linear final layers. State-action pairs are featurized with d
features ¢, . . . ¢4, and corresponding d-dimensional feature vector, ¢(s,a) — R?. In matrix form,
D[4, j] = ¢;((s,a);), for (s,a); €| S x A |. The goal of linear function approximation is to find 0
such that ®0 = @y ~ ). We focus on a family of common algorithms interpreted as solving for a
# which satisfies a linear fixed point equation known as LSTD [[10, [9, [28]]. These algorithms share
state-action covariance (.., ) and cross-covariance (X,.) matrices, and mean feature-reward vectoﬂ

Yeoy := @' DP, %, :=d DP,D, 0,,:=d DR (1)

2.1 Introduction to algorithms

The algorithms described below are presented in their expected form, in which the true transition
matrices and complete feature vectors are employed. Appendix [K]provides additional details on the
batch setting, in which these quantities are estimated from batches of data.

FQI The Fitted Q-iteration [15} 31} 24](FQI) update takes the following form under linear function
approximation (detailed introduction in Appendix [A.3.):

Ops1 = V2000 Derbi + 25,060 2)

Stochastic TD and batch TD  Stochastic Temporal Difference Learning (TD) [36,38]] is an iterative
stochastic approximation method that does one update per (s, a,r, s’) sample. With linear function
approximation and learning rate o € R™ the update equation is Equation . Batch TD (update
below) uses the entire dataset instead of samples to update (detailed in Appendix [K).

0k+1 =0y —« [¢(57 CL) (QS(Sa a)Tek' - 7¢(S/a a/)Tak - T(57 a))] 3)
?For more detailed definition of notation in Section please see Appendix




Expected TD This paper largely focuses on expected TD, which can be understood as modeling the
expected behavior of a TD-style update applied to the entire state space simultaneously. This abstracts
away sample complexity considerations, and focuses attention on mathematical and algorithmic
properties rather than statistical ones, but the results in this paper can be easily adapted for stochastic
TD and Batch TD (explained in the Appendix [E.14). The expected TD update equation with linear
function approximation is Equation (@):

9k+1 - (I - azcov)ek + a(vzcrek + 9(2577') (4)

Partially fitted Q-iteration (PFQI) PFQI differs from FQI and TD by employing two sets of
parameters: target parameters ¢, and learning parameters 0 ; [16]. The target parameters 6y
parameterize the TD target [YQy, (s', a’) — r(s, a)], while the learning parameters 6y, ; parameterize
the learning Q-function @y, ,. While 0, ; is updated at every timestep, 6}, is updated only every ¢
timesteps. In this context, (Jp, in the TD target is referred to as the farget value function, and its value
Qo, (s, a) is called the rarget value. After ¢ timesteps, we update the target parameters: 6 = 6y ;.
DQN [27] popularized this approach, using neural networks as function approximators. The net for
the TD target is known as the Target Network. When using a linear function approximator, the update
equation at each timestep becomes: 0y 111 = (I — aXcoy)0k,c + (Ve 0k + 05 ).

Modeling the update to 61 as a function of 0j:

t—1 t—1
Opi1 = (a Z (1 —aXeon) ¥8er + (I — aZcov)t> Op + Z (1—aXeop)' - Op,-
=0 i=0

3 Unified view: preconditioned iterative method for solving linear system

The typical, vanilla, iterative method for solving a linear system Ax = b, where A € R™*" and
beR", is:
Tpp1 = —A)xy, +b (5)

Convergence depends on consistency of the linear system and the properties of / — A. Preconditioning
via a matrix M can improve convergence [33]. M Az = Mb is called a preconditioned linear system,
where nonsingular matrix M is called a preconditioner. Its solution is the same as the original linear
system. The iterative method to solve this preconditioned system is:

xk+1:(I—MA)xk+Mb (6)
H c

Now, convergence depends on the properties of H. The choice of preconditioner adjusts the conver-
gence properties of the iterative method without changing the solution.

Unified view The three algorithms—TD, FQI, and Partial FQI—are the same iterative method for
solving the same linear system / fixed point equation (Equation (7)) but using different preconditioner
M. We refer to this linear system as the target linear system:

(Zcov - ’YZC’I') 0 = 9(1),7' . (7)
—_—— N
A x b

TD uses a positive constant preconditioner: Myp = af. FQI uses the inverse of the feature covariance

matri < Mrqr = Ec_olv as a preconditioner. PFQI uses Mprqr = « Zf;é (I - aZCOU)Z as a precondi-
tioner|*| Equation (8) provides an example of such a formulation for TD. For detailed calculations and
expressions for each algorithm, please refer to Appendix [B.1] When the target linear system is consis-
tent, the matrix inversion method used to solve it is exactly LSTD([L0, 9, [28]]. Therefore, we denote the

A matrix and vector b of the target linear system as Apstp = (Zcov — 7Xer) and brstp = 6., and

3Here, we assume the invertibility of ., later, we provide an analysis of FQI without this assumption.
“Here, we assume that (Zf;é([ — aXecov)") is nonsingular for clarity of presentation. However, this
assumption does not affect generality. Because .., is symmetric positive semidefinite and we can always
easily find a scalar o such that (aXc0. ) has no eigenvalues equal to 1 or 2, under these conditions, Lemma

guarantees that (Zf;é (I — aXcov)") is nonsingular for any eligible ¢.



OLstp as set of solutions of the target linear system, Orstp = {0 € R? | (Seop — 7Xer) 0 = 040}
The H matrix, defined as I — M A, for TD, FQI and PFQI is Hrp, Hrgr and Hpgql, respectively.

0 = |I— ol (Zeop — V2er 0, + ol 04, 8
k+1 \ ( Y ) kT QL Vg, ®)
Trr M 1 on M Y

H -

Preconditioner transformation From above, we can see that TD, FQI, and PFQI differ only in their
choice of preconditioners, while other components in their update equations remain the same—they
all use Apgtp as their A matrix and by grp as their b matrix. Looking at the preconditioner matrix (M)
of each algorithm, it is evident that these preconditioners are strongly interconnected, as demonstrated
in Equation @]} When ¢ = 1, the preconditioner of TD equals that of PFQI. However, as ¢ increases,
the preconditioner of PFQI converges to the preconditioner of FQI. We can clearly see that increasing
the number of updates toward the target value function (denoted by ¢)—a technique known as target
network [27]—essentially transforms the algorithm from using a constant preconditioner to using the
inverse of the covariance matrix as preconditioner in the context of linear function approximation.

t—)oo —
OJ =a E — aYeop) Z Rt Yy 9)
~—
FQI
PFQI

FQI without assuming invertible covariance matrix Our unified view of FQI uses Mpq; = ¥},
as the preconditioner to solve the target linear system, but this requires full column rank ®. When ®
is not full column rank, we revert to the original form of FQI in (2), which we refer to as the FQI

linear system (Equation (I0)), with solution set Ogqr.

(I—9E8,8) 0 =%1,,00,. (10)
—_——— Y N——
AFQI v bFQI

This also implies Hrqr = I — Arqi. See Appendix |B.2| E for more details, where we also prove
Proposition [3.1] showing the relationship between the FQI linear system and the target linear system.

Proposition 3.1. (1) Orsp 2 Opgr. (2) Orsip = Opgr if and only if Rank (Ecop — 7Eer) =
Rank (I VECOUECT). (3) If @ is full column rank, © srp = Opg.

4 Singularity and consistency of the target linear system (LSTD system)

Consistency of the target linear system A linear system Az = b has a solution if and only if
b € col(A), so the target linear system is consistent if and only if by .stp € Col (ALstp). Proposi-
tion provides the necessary and sufficient conditions on consistency for any R, i.e., universal
con51stency We call this “Rank Invariance” (Condltlon@ It can be easily achieved and should
widely exist, as by Lemma it holds if and only if yX7 , 3., has no eigenvalue equal to 1 (detailed
explanation in Appendix wi There are many other conditions equivalent to rank invariance as well
(see Lemma|[C.T). Rank invariance and linearly independent features (Condition are distinct
conditions: One does not necessarily imply the other (explanation in Appendix [C.I)). Therefore, the
existence of a solution to the target linear system cannot be guaranteed solely from the assumption of
linearly independent features.

Condition 4.1 (Rank Invariance). Rank () = Rank (¢ "D(I — yP,)®)

Proposition 4.2 (Universal Consistency). The target linear system: (®"D(I — yP,)®) 0 = ® DR
is consistent for any R € R" if and only if rank invariance holds.

Nonsingularity of the target linear system Below, we identify rank invariance and linearly
independent features (Condition[4.3)) as necessary and sufficient conditions for nonsingularity of the
target linear system. While rank invariance is not difficult to satisfy if linearly independent features
(Condition £.3) holds, it is nevertheless a necessary condition that was overlooked by previous
papers, e.g., Ghosh and Bellemare [17]], which mistakenly claimed that linearly independent features
(Condition .3)) alone is sufficient to ensure the uniqueness of the TD fixed point in the off-policy
setting, assuming the fixed point exists.



Condition 4.3 (Linearly Independent Features). @ is full column rank (linearly independent columns).
Condition 4.4 (Nonsingularity Condition). Apstp = (® " D(I — vP)®) is nonsingular.

Proposition 4.5. (X.,, — YY) is a nonsingular matrix (i.e., Conditionholds) if and only if ®
is full column rank (i.e., Condition .3 holds) and rank invariance (Condition[d.1)) holds.

Nonsingularity of the FQI linear system Unlike the target linear system, which requires both
linearly independent features (Condition .3) and rank invariance (Condition {f.T) to ensure the
uniqueness of its solution, in Proposition 4.6 we prove that the FQI linear system requires only rank
invariance—both as a necessary and sufficient conditions. This highlights the fundamental role of
rank invariance and, more importantly, shows that the FQI linear system forms a more robust linear
system whose nonsingularity is not restricted by independence assumptions but rather relies on a
broadly satisfied condition.

Proposition 4.6. Arg; is nonsingular if and only if rank invariance (Condition holds.

Over-parameterization The consistency and nonsingularity of the target linear system in the
over-parameterized setting are analyzed in detail, with results provided in Appendix

4.1 On-policy setting

Proposition shows that in the on-policy setting, rank invariance holds, implying that the target
linear system is universally consistent, and thus fixed points for TD, FQI, and PFQI necessarily exist.
Moreover, when linearly independent features (Condition [.3)) also holds, Proposition {5 implies
that the target linear system is nonsingular, aligning with Tsitsiklis and Van Roy [40], which proved
that in the on-policy setting with linearly independent features, TD has exactly one fixed point.

Proposition 4.7. In the on-policy setting, rank invariance (Conditiond.1) holds.

4.2 Fixed point and linear realizability

Assumption 4.8 (Linear Realizability). @ is linearly realizable in a known feature map ¢ : S x A —
RY if there exists a vector ™ € R? such that for all (s,a) € S x A, Q(s,a) = ¢(s,a) 0™, i.e.,
Qr = 0O,

Proposition #.9]demonstrates three points: 1) the target linear system may remain consistent even
when the true Q-function is not realizable (©, = 0); 2) if the true Q-function is realizable, the target
linear system is necessarily consistent, and every perfect parameter (any vector in © ) is guaranteed
to be included in the solution set of target linear system; 3) when linear realizability holds, rank
invariance is both necessary and sufficient to ensure that every solution of target linear system is a
perfect parameter, further implying that rank invariance is necessary and sufficient condition to ensure
that any fixed points of the iterative algorithm solving target linear system are perfect parameters.

Proposition 4.9. When linear realizability holds (Assumption , Orstp 2 O always holds, and
OLstp = O holds if and only if rank invariance (Condition §._1)) holds.

5 The convergence of FQI

Theorem [5.1] establishes necessary and sufficient conditions for FQI convergence: 1) the linear
system must be consistent; 2) Hggr must be semiconvergent. The fixed point it converges to

consists of two components: (I — Arqi (AFQI)D) 6o, a vector from Ker (Apqr) associated with

initial point, and (AFQI)D brqr, the Drazin (group) inverse solution of FQI linear syste A detailed
interpretation of the convergence conditions and fixed points is in Appendix [D.I]Theorem [5.1}
establishes necessary and sufficient conditions for FQI convergence: 1) the linear system must
be consistent; 2) Hrgr must be semiconvergent. The fixed point it converges to consists of two

components: (I — Arqr (AFQI)D) 6o, a vector from Ker (Apqr) associated with initial point, and

5The Drazin inverse solution (Arqr)® bror equals the group inverse solution (Arqr) bror (Appendix .



(AFQI)D brqr, the Drazin (group) inverse solution of FQI linear systenﬂ A detailed interpretation of
the convergence conditions and fixed points is in Appendix [D.1]

Theorem 5.1. FQI converges for any initial point 6y if and only if (bpg;) € Col (Argr) and
(Hpor = I — Argy) is semiconvergent. It converges to

[(AFQI)D bror + (I — Aror (AFQI)D> 90} € Osrp.

5.1 Rank invariance

Proper splitting When rank invariance holds, FQI is an iterative method that employs a proper
splitting scheme[4ﬂ to construct its iterative components and a preconditioner for solving the target
linear system (Lemma[5.2), which yields significant advantages. For example, the FQI linear system
(Agqr) becomes nonsingular (Proposition @ ensuring existence and uniqueness of the solution.

This also ensures that 1 is not an eigenvalue of X! 3., a common cause of FQI divergence.

cov

Lemma 5.2. If rank invariance (Condition holds, ¥, and X%, are a proper splitting of
(Zcov - 7Zcr)-

Corollary [5.3] addresses the impact of rank invariance on FQI convergence. The nonsingularity of
FQI linear system is guaranteed, the set of fixed points is just a single point, and the requirement on
Hpqi(= 72!, ) being semiconvergent is relaxed to p (Y2, X¢-) < 1. Thus, rank invariance
can help the convergence of FQI. Although it doesn’t transform the FQI linear system exactly to the
target linear system, the solution of the FQI linear system is also solution of the target linear system.

Corollary 5.3. If rank invariance (Condition holds, FQI converges for any initial point 0y if and
only if p (VE1,,5er) < 1. It converges to [(I — vl Ser) Sl 0006, € OLstp.

Linearly independent features and nonsingular FQI linear system When @ is full column rank,
the FQI linear system becomes exactly equivalent to the target linear system (Section [3). Thus, the
consistency condition changes to by.stp € Col (Arstp), and X.,,, becomes invertible. FQI is then an
iterative method using ¥} as a preconditioner to solve the target linear system, with Mo = X_}
and Hrqr = I — MpoiALstp. Beyond this, the convergence conditions for FQI remain largely
unchanged compared to Theorem [5.1] which lacks the linearly independent features assumption.
We conclude that the linearly independent features assumption does not play a crucial role in FQI’s
convergence but instead determines the specific linear system that FQI is iteratively solvin The
nonsingularity of Aggqy is an ideal setting for FQI, guaranteeing the existence and uniqueness of its
fixed point, and reducing its necessary and sufficient conditions for convergence to p (Hpqr) < 1
(Corollary [5.3). The nonsingularity does not depend on linearly independent features but only on
rank invariance (Proposition[4.6), which commonly holds in practice, making FQI inherently more
robust in convergence. This observation partially explains why FQI is often empirically found to be
more stable than TD, whose uniqueness of the fixed point relies on linearly independent features
(Condition 4.3).

Previously, Asadi et al. [1]], Xiao et al. [44] provided necessary and sufficient conditions for FQI
convergence under the linearly independent features assumption and over-parameterized setting,
respectively, however, as we detail in Appendix [[]they are only sufficient conditions.

The over-parameterized setting is discussed in Appendix [J.2] Also, the results in this section can be
easily adapted to the batch setting, as explained in Appendix

6 The convergence of TD

Theorem [6.1] establishes necessary and sufficient conditions for TD convergence: 1) the linear
system must be consistent; 2) Hrp must be semiconvergent. The fixed point it converges to is
composed of (I — (Arstp)(ALstp)®) o, a vector from Ker (ALstp) associated with initial point,

5The Drazin inverse solution (Arqr)® bror equals the group inverse solution (Arqr)? broi (Appendix @)
7Y cov and X, form a proper splitting of (Xcow — YXer)
8For a detailed conclusion and calculation refer to Appendix



and (ALSTD)D brstp, the Drazin (group) inverse solutiorﬁ of the target linear system. For a detailed
interpretation of the convergence conditions and fixed point, see Appendix

Theorem 6.1. TD converges for any initial point 0y if and only if bpstp € Col (Arsrp), and Hrp is

semiconvergent. It converges to {(ALSTD)D brstp + (I — (Arstp) (Arstp)P ) 90] € Ors7p.

The convergence condition involves the learning rate «. We define TD as stable when there exists
a learning rate that makes TD converge from any initial point §y. For the formal definition, refer
to Definition [E.I] Corollary [6.2] provides necessary and sufficient conditions for the existence of
a learning rate that ensures TD convergence. When such a rate exists, Corollary [6.3]identifies all
possible values, showing that they form an interval (0, €), rather than isolated points, aligning with
widely held intuitions: When a large learning rate doesn’t work, a smaller one may help. It presents
so far the sharpest characterization on convergence of TD. The condition “bystp € Col (ALstp) is
strictly positive stable” was previously shown to guarantee TD convergence under the assumption of
Condition [£.3] [34].

Corollary 6.2. TD is stable if and only if the following 3 conditions hold: (1) Consistency condition:
brstp € Col (Arstp) (2) Positive semi-stability condition: Apsrp is positive semi-stable (3)Index
condition: Index (Arsrp) < 1. Additionally, if Arsrp is an M-matrix, the positive semi-stable
condition can be relaxed to: Aysrp is nonnegative stable.

Corollary 6.3. When TD is stable, TD converges if and only if learning rate « € (0, €), where

. <2 : §R(A)>
€ = min — |-
AET(Beon—75er)\ {0} RY

This highlights a fundamental contrast between TD and FQI. Since TD’s preconditioner is only a
constant, its convergence depends on Ay gp = [@TD(I — WP,T)<I>], an intrinsic property of the
target linear system. In contrast, FQI employs a data—feature adaptive preconditioner that alters its
convergence characteristics. Moreover, in Appendix [E.5] we describe the target linear system as
an encoder-decoder process, showing that TD convergence requires preservation of the positive
semi-stability of the system’s dynamics: D(/ — yP), which is an M-matrix (Proposition [E.9).
This explains why TD can diverge [2], even when each state-action pair is represented by linearly
independent feature vectors (over-parameterization), and proves that TD convergence is guaranteed
when these feature vectors are orthogona (Proposition .

Linarly independent features, rank invariance, and nonsingularity There may be an expectation
that TD is more stable if ® is full column rank, but this does not guarantee any of the conditions
of Corollary [6.2] Ghosh and Bellemare [17] claimed that under the assumption of Condition .3}
the necessary and sufficient condition for TD convergence is Apstp being positive stable, but as we
detail in Appendix [l} it is only a sufficient condition. Rank invariance ensures only the consistency of
the target linear system but does not relax other stability conditions. When the target linear system is
nonsingular, the solution of the target linear system (the fixed point of TD) must exist and be unique.
The necessary and sufficient condition for TD to be stable reduces to the condition that A gtp is
positive stable. More details about these results are presented in Appendix [E.§]

Over-parameterization We also provide convergence results (e.g, necessary and sufficient condi-
tions) in the over-parameterized setting in Appendix and also correct the over-parameterized
TD convergence conditions provided in previous literature[44} [11]].

On-policy TD without linearly independent features In the on-policy setting, it is well-known
that if ® has full column rank, then [® "D(I — vP)®] is positive definite. This property serves as
the central piece supporting the proof of TD’s convergence [40]. It aligns with and is well-reflected
in our off-policy findings in Corollary as further explained in Appendix [E.13.T). However,
when ® does not have full column rank%TD(I — fyP,,)‘b] becomes positive semidefinite [39]],
a property that no longer guarantees TD stability. We demonstrate that even without assuming ®
is full rank, [@TD(I — 'yP,T)CP] is an RPN matrix (Proposition and prove that TD is stable
without requiring ® to have full column rank (Theorem|[6.4), relaxing previous the full column rank
requirements [40].

Q(ALSTD)D bLstp = (ALSTD)# bLSTD, which is proved in Appendix
"Here, "orthogonal" does not imply "orthonormal,” which imposes an additional norm constraint.




Theorem 6.4. In the on-policy setting (uPr = p), when @ is not full column rank, TD is stable.

Stochastic TD and Batch TD It is known that if expected TD converges to a fixed point, then
stochastic TD, with decaying step sizes (as per the Robbins-Monro condition [32}40] or stricter step
size conditions), will also converge to a bounded region within the solution set of the fixed point
[3L19L113140]]. Therefore, the necessary and sufficient conditions for the convergence of expected TD
can be easily extended to stochastic TD, forming necessary and sufficient condition for convergence
of stochastic TD to a bounded region of the fixed point’s solution set. For example, stochastic TD
with decaying step sizes, under the same on-policy setting but without assuming linearly independent
features, converges to a bounded region of the fixed point’s solution set, a relaxation of conditions in
Tsitsiklis and Van Roy [40] that, to our knowledge, has not been previously established. Additionally,
for batch TD, By replacing expected symbol with their empirical counterpart (e.g, >co,, — icov
We can convert the convergence results of expected TD to Batch TD.

7 The convergence of PFQI

In Theorem[7.1} the necessary and sufficient condition for PFQI convergence is established, compris-
ing two primary conditions: 1) consistency of the target linear system and 2) the semiconvergence of
HPFQI =1- MPFQIALSTD' The fixed point is sum of two components: (MPFQIALSTD)D MPFQIbLSTD’
and (I — (MPFQIALSTD)(MPFQIALSTD)D) 90, a vector from Ker (ALSTD) associating with the initial
point. For a detailed interpretation of the convergence conditions and fixed point, see Appendix
Also, the results in this section can be easily adapted to the batch setting, as explained in Appendix [K.3]

Theorem 7.1. PFQI converges for any initial point 0y if and only if bisrp € Col (Arsrp) and Hpror
is semiconvergent. It converges to the following point in Ops7p:

(MPFQIALSTD)D Mproibrstp + (I — (MproiALstp) (MPFQIALSTD)D) 6. (11)

Linea%independent features As we show in Proposition[F.2] linearly independent features (Con-

dition4.3)) does not directly relax the convergence conditions above{ﬂ However, linearly independent
i

features can be indirectly helpful through PFQI’s preconditioner, Mprqr = o Zt.;é (I —aXen).
Without it, Hprgr = I — MprorArstp may diverge (explanation in Appendix [F.3), except in some
specific cases, like an over-parameterized representation, which we show in Appendix [J.3] where
the divergent components can be canceled out. Thus, when the features are not linearly independent,
taking a large or increasing number of updates under each target value function will most likely not
only fail to stabilize the convergence of PFQI, but can make it more divergent. This provides a more
nuanced understanding of the impact of slowly updated target networks, as commonly used in deep
RL. While typically viewed as stabilizing the learning process, they can have the opposite effect if
the provided or learned feature representation is not good.

Rank invariance and nonsingularity Under rank invariance (Condition @.I)), the consistency
condition for the convergence of PFQI can be completely dropped. However, unlike FQI, the
other conditions cannot be relaxed. Moreover, for the convergence of PFQI under nonsingularity
(Condition, the fixed point is unique. In this case, Hprgr must be strictly convergent (p (Hpror) <
1) rather than merely semiconvergent. More detailed results are included in Appendix

Over-parameterization The necessary and sufficient conditions for the convergence of PFQI in
the over-parameterized setting are provided in Appendix[J.3] and the influence of ¢ on its convergence
in this setting is also discussed.

8 PFQI as transition between TD and FQI

PFQI is often intuitively understood as a step from TD towards FQI, an intuition which suggests that
stability might increase as the number of steps ¢ for which the target is held constant increases from 1

"Detailed definition on each symbol’s empirical version, please see Appendix@
12See Appendix for more details on convergence conditions of FQI with linearly independent features.



(TD) towards infinity (FQI). This intuition is partly supported by Chen et al. [12], which shows a
stabilizing effect for target networks under some strong assumptions. This section provides the first
general results on the convergence relationships between PFQI and its limiting cases of TD and FQI
in the linear value function approximation setting. These results show that the intuitive understanding
of these algorithms is mostly correct, but more subtle than it might initially seem, ultimately leading
to surprising cases where TD converges but FQI does not, and vice versa.

We begin by considering what TD implies about PFQI. Our result shows a relationship beween o and
t rather than an unconditional implication:

Theorem 8.1. (when TD stability — PFQI convergence) If TD is stable, then for any finite t € N
there exists e, € R that for any o € (0, ¢;), PFQI converges.

This relationship only holds when ¢ is finite. If £ — oo, € — 0 is possible. Next, we consider what
PFQI tells us about FQI. As with TD and FQI, the implication is not unconditional:

Proposition 8.2. (when PFQI convergence — FQI convergence) For a full column rank matrix

%) if there exists an integer

T € Z such that PFQI converges for all t > T from any initial point 0y, then FQI converges from
any initial point 0.

D (satisfying Condition and any learning rate o € (O7 X

One might wonder whether the convergence of FQI implies the convergence of PFQI when the
features are linearly independent. This is not sufficient, but under the stronger assumption of a
nonsingular target system the relationship does indeed become bidirectional.

Theorem 8.3. (nonsingular target system: PFQI convergence <> FQI convergence) When the
target linear system is nonsingular, the following statements are equivalent 1) FQI converges from

any initial point 0y. 2) For any learning rate o € (0, ﬁ), there exists an integer T € 7.

such that for all t > T, PFQI converges from any initial point 0

Surprising counterexamples Does TD stability imply FQI stability with linearly independent
features? Proposition[8.2]and Theorem [8.3|reveal that the convergence of PFQI for any sufficiently
large ¢ implies convergence of FQI, which necessarily includes the case as ¢ — oo. However, the
stability of TD does not necessarily guarantee the convergence of PFQI when ¢ — co. As ¢t becomes
larger, ¢; usually becomes smaller, shrinking the interval (0, €;), from which « is safely chosen. As
t — 00, € could approach zero, causing this interval to vanish. Appendix [G.3]presents examples
with linearly independent features where TD is stable while FQI does not converge, and vice versa.
We further analyze and establish conditions under which the convergence of TD and FQI imply each
other in Appendix

9 Discussion

We presented a novel perspective that unifies TD, FQI, and PFQI via matrix splitting and precondi-
tioning, in the context of linear function approximation for OPE. This approach offers key benefits:
simplifying convergence analysis, enabling sharper theoretical results, and uncovering crucial condi-
tions and fundamental connections governing each algorithm’s convergence. This framework could
also give insight into policy optimization. This perspective could be expanded to include other TD
variants [36, 39, 137, 138]], and possibly nonlinear function approximation. Our results could also
potentially inform design of new algorithms with improved convergence properties.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on providing mathematical analysis and theoretical ground-
ing for existing methods, and does not perform direct societal impact.

Guidelines:

17


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: this paper does not use existing assets.
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: this paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: this paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminaries

A.1 Linear and matrix algebra

Given an n x m real matrix A, let Col (A) and Row (A) denote its column and row spaces, respec-
tively. The null space of A, denoted Ker (A), is defined as {x € C™ | Az = 0}. The complementary
subspace to Ker (A), denoted Ker (A), includes all vectors in R™ that are not in Ker (A), formally
expressed as Ker (4) = {v € R™ | v ¢ Ker (A)}. Any vector v € R™ must lie in one of these
two subspaces: either Ker (A) or Ker (A4), but not both. A = 0 and A > 0 means matrix A is
element-wise nonnegative and positive, respectively. A is monotone when Ax > 0 implies z > 0,
for all z € R™. AH and v™ are the conjugate transpose of matrix A and vector v, respectively. Given
A € R»*™_ AD is the Drazin inverse of matrix A, A¥ is the group inverse of matrix A, and Atis
the Moore—Penrose pseudoinverse of matrix A. If Col (A) = Col (AT), then AP = AT,

Given an n X n square matrix A with eigenvalue ), v} is an eigenvector of A whose related eigenvalue
is \; o0(A) is the spectrum of matrix A (the set of its eigenvalues); p(A) is the spectral radius of A
(the largest absolute value of the eigenvalues); and () represents the real part of complex number
A. We call a matrix A positive stable (resp. non-negative stable) if the real part of each eigenvalue
of A is positive (resp. non-negative), and we call it positive semi-stable if the real part of each
nonzero eigenvalue is positive. A is inverse-positive when A~! exists and A~! > 0. we define 1
as the identity matrix, Index (A) denotes the index of A, which is the smallest positive integer k
s.t. R™*" = Col (A*¥) @ Ker (A*) (or, equivalently, Col (A¥) N Ker (A*) = 0) holds, where the
symbol & represents the direct sum of two subspaces. The index of a nonsingular matrix is always 0.
When Index (A) = 1, AP = A#. The index of an eigenvalue \ € o (A) for a matrix A is defined
to be the index of the matrix (A — AI): index (A) = Index (A4 — AI).

The dimension dim (V) of a vector space V is defined to be the number of vectors in any basis
for V. Given a vector v € V, ||v||, denotes the £>-norm for v and ||v[|,, denotes the p-weighted
norm for v. alg multa () and geo multa (M) are the algebraic and geometric multiplicities, respec-
tively, of eigenvalue A € o (A). If algmulta (A) = 1, we say that eigenvalue X is simple, and if
algmulta (A\) = geomulta (\), we say that eigenvalue A is semisimple.

Lemma A.1. Given a matrix A € C"*", the spectrum o (I — A) of the matrix (I — A) is given by
{1-X|VA€o(A)} andV\ € o (A),algmults(N\) = algmulty_a (1 — ) and geo multa (N) =
geomulty_a (1 — A).

This lemma is proved in Appendix[A.T.T} Every theorem, lemma, proposition, and corollary in this
paper is accompanied by a complete mathematical proof in the appendix, regardless of whether we
provide an intuitive explanation for its validity in the main body of the paper.

Linear systems: Given a matrix A € R™*™ and a vector b € R", if there exists € R such
that Az = b, the linear system Az = b is called consistent. Given a vector b € R™ and a matrix
B € R™ 7" _if the linear system Ax = Bb is consistent for any b € R”, we call this linear system
universally consistent. If A can be split into two matrices M and N, such that A = M — N,
M~ > 0,and N 2 0, the splitting is called a regular splitting [5, Chapter 5, Note 8.5] [41] [33].
If M~ > 0and M~'N 2 0, it is referred to as a weak regular splitting [42], Page 95, Definition
3.28] [29]]. Lastly, if A can be split into matrices M and N such that A = M — N, and additionally
Col (A) = Col (M) and Ker (A) = Ker (M), the splitting is called a proper splitting [4].

Positive definite matrices: The definition of a positive definite matrix varies slightly throughout
the literature. The following definition is consistent with all the papers cited herein:

Definition A.2. The matrix A € C"*" is called positive definite if R (z1 Az) > 0, for all z €
C™\{0}.

Lemma A.3. Fora A € R"™" R (xHA;v) > 0, for all x € C™"\{0}, is equivalent to x " Ax > 0,
forall z € R"\{0}.

From Lemma we know that a matrix A € R™*" is also positive definite if 7 Az > 0, for all
x € R™\{0}.

Property A.4. For any positive definite matrix A € C™*", every eigenvalue of A has positive real
part, i.e., VA € o (A),R(\) > 0.
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Sometimes the definition of a positive definite matrix includes symmetry, leading to the statement that
a positive definite matrix has only real positive eigenvalues and is necessarily diagonalizable. However,
in this paper, the definition of a positive definite matrix does not require symmetry. Consequently, a
positive definite matrix may not have only real positive eigenvalues (as shown in Appendix[A.1.2)) or
be necessarily diagonalizable (as demonstrated in Appendix [A.T.3).

Range Perpendicular to Nullspace (RPN) Matrices RPN matrix is a class of square matrices
whose column space is perpendicular to its nullspace: {4 € C"*" | Col (4) L Ker (A)} where
L denotes perpendicularity. this is also equivalent to Col (4) = Col (AT) = Row (A), and
Ker (A) = Ker (AT) [26, Page 408], so sometimes it also called Range-Symmetric or EP Matrices.
As shown in Property[A.5] any RPN matrix necessarily has index less than or equal to 1. The following
Lemmal[A.6|shows the tight connection between RPN matrices and positive definite matrices.

Property A.5. If A € C"*" is a singular RPN matrix, then Index (A) = 1.

Lemma A.6. For any positive definite matrix A € R™ "™ and any matrix X € R™*™, X T AX is an
RPN matrix.

Semiconvergent matrices Definition[A.7] provides the definition of semiconvergent matrix, while
Proposition[A.§| characterizes the conditions under which a matrix qualifies as semiconvergent matrix
in terms of its spectral radius and eigenvalues.

Definition A.7. [5, Chapter 6, Definition 4.8] A matrix A € R"*" is said to be semiconvergent
whenever lim;_,, A7 exists.

Proposition A.8. [26] Page 630] A matrix A is semiconvergent iff p(A) < 1 or p(A) = 1, where
A = 1 is the only eigenvalue on the unit circle, and A = 1 is semisimple.

Z-matrix, M-matrix, and nonnegative matrices Definition[A.9|provides the definition of a Z-
matrix, while an M-matrix is a specific type of Z-matrix, with its definition given in Definition [A.T0]
Notably, the inverse of a nonsingular M-matrix is known to be a nonnegative matrix [5].

Definition A.9 (Z-matrix [S]]). The class of Z-matrices are those matrices whose off-diagonal entries
are less than or equal to zero, i.e., matrices of the form: Z = (Zij), where z;; < 0, forall ¢ # j.

Definition A.10 (M-matrix [5]). Let A be a n x n real Z-matrix. Matrix A is also an M-matrix if it
can be expressed in the form A = sI — B, where B = (b;;), with b;; > 0, forall 1 < 4,5 < n, and
s> p(B).

A.1.1 Proof of Lemmal[A_1l

Proof. Given a matrix A € C"*", denote its Jordan form as J, so there is a nonsingular matrix P
that:
A=P'JP.
Therefore,
I-A=I-P'Jp=pP'P-P ' JP=P I -J)P.

Since diagonal entries of matrix J are the eigenvalues of matrix A, and from above we can see
that (I — J) and (I — A) are similar to each other, the two matrices share the same Jordan form.
Moreover, because the Jordan form of I — J is itself, (I — J) is the Jordan form of (I — A), then we
know that diagonal entries of matrix (I — J) are the eigenvalues of matrix (I — A),soo (I — A) =
{1—=A|VX € 0 (A)}, and since the size of every Jordan block of (I — .J) is the same as of .J, we have
VA € 0 (A),algmulta (A) = algmulty_a (1 — N), geomulta (A) = geomulty_a (1 — A). O

A.1.2 Counterexample for real positive definite matrix having only real positive eigenvalue

Consider the matrix A = (% 21) .

1. Quadratic Form: Checking the quadratic form 7 Ax:

=) et ) ()
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vl Ax = 223 — x129 + 2129 + 223 = 227 + 202 > O forall x # 0.
The quadratic form is positive for all non-zero x.

2. Eigenvalues: To find the eigenvalues of A, solve the characteristic equation det(A — A\I) = 0:
2—-Xx -1 )
det (77 5 ) =2=-MN2-A)-(-DI) =X -4r+5=0.

The solutions to the characteristic equation are:

4+16-20 4++/—-4
2 - 2 a

A= 2+,

The eigenvalues are 2 + ¢ and 2 — 4, which are complex.

Thus, A is an example of a non-symmetric matrix with a positive quadratic form but having complex
eigenvalues.

A.1.3 Counterexample of a real positive definite matrix as necessarily diagonalizable

An example of a positive definite but non-symmetric matrix that is not diagonalizable is:
11
(1)

11 T
z Az =( 1, m2)<0 1)<x;>—x%—i—(ml—i-xg)xg—x%—i—xlxg—«—xg>0

This matrix is positive definite because:

for all 1 # 0 and x5 # 0. However, A is not diagonalizable because it has a single eigenvalue,
A = 1, with algebraic multiplicity 2 but geometric multiplicity 1 . Thus, it does not have a full set of
linearly independent eigenvectors.

Therefore, while A being positive definite implies certain spectral properties, it does not guarantee
that A is diagonalizable if A is not symmetric.

A.1.4 Proof of Lemmal[A_J|

Lemma A.11 (Restatement of Lemma. Fora A € R™", R (s" Az) > 0 for all € C™\{0}
is equivalent to (x " Az) > 0 for all z € R™\{0}.

Proof. Assume (z" Az) > 0 for all z € R™\{0}, then we know (z"ATz) = (xTAa:)T > 0 for
allz € R"\{0}, so we have (2" (A+ AT)z) > 0 forall z € R"\{0}. It is clear that (A + A ") is
a symmetric, real matrix, and by Lemma we know that this implies (™ (A + AT)z) > 0 for
all 2 € C"\{0}. Then by Lemma|A.13|and the fact that A is real matrix, we obtain ® (2" Az) > 0
for all z € C™\{0}.

Conversely, assume R (2 Az) > 0 for all 2 € C"\{0}. Since (z" Az) is real number for all
z € R™\{0}, it follows that (2" Az) > 0

Hence, the proof is complete. O

Lemma A.12. Given a symmetric matrix A € R™", if 27 Az > 0 for all x € R™\{0}, then
2H Az > 0 forall z € C™\{0}.

Proof. Given that A is a symmetric real matrix and z " Az > 0 for all z € R™\{0}, we need to show
that 2" Az > 0 for all z € C™\{0}.

Let x € C” be an arbitrary nonzero complex vector. We can write x as = u + v, where u and v
are real vectors in R”™.

The quadratic form in the complex case is 2% Ax:

U Az = (u—iv) T A(u +iv)
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Expanding the expression, we get:
eHAz =uTAu+ivi Au—iu' Av + v ' Av.
Since M is symmetric, v Au = (u' Av) " = u' Av. Therefore:

2 Az =u" Au+ v Av.

Since u and v are real vectors, and A is positive definite, we have:
u'Au>0 foru#o0
viAv >0 forv#0.

For x ## 0, either u # 0 or v # 0 (or both). Therefore:
u' Mu+v'Mv > 0.

Thus, 2 Az = uT Au+v' Av > 0 for all z € C"\{0}.
O

Lemma A.13. Given a matrix A € C™ ™ and for all v € C™"\{0}, (" (A + A™)z) is real number,
and (z% (A + A%)z) has the same sign as R (2 Az).

Proof. Define the quadratic form of A as ™Az = a + bi where a and b are the real part and

imaginary part of the complex number, then we have z7 Atz = (xHAx)H = a — bi, and we know
that

xH(A—I—AH)JC:xHAa:+xHAHx:a—i—bi—l—a—bi:Qa,

so quadratic form x*! (A + AH) x is always real for any x € C”, and it shares the same sign with
R(x1Az) = a.
O

Lemma A.14. If a matrix A € C™*" is Hermitian, then it is positive definite if and only if t™ Az > 0
forall x € C™\{0}.

Proof. Define quadratic form of A as ! Az = a + bi where a and b are the real part and imaginary
part of the complex number, then we have 25 AHy = (xHAx)H = a — bi. Because A is Hermitian,

a + bi = a — bi, which implies b = 0, so 2! Az = a, meaning the quadratic form is always a real
number. If zHAH2 > 0, we have:

1 1 1 1
Hgp = o ([ ZA4+ A+ 247 - _ 4"
T Ar =2 (2 —|—2 +2 3 ):c
:%IH(AJrAJrAHfAH)x (12)
= 2o (A4 ATz oM (A ATz

Because A is Hermitian,
21 (A — AH) z=a"9 Az — 27 A%z = 0.
Therefore, we obtain
1 1
M Ax = §xH (A+ ANz = i(a—i—bi—l—a—bi) =aq,

so 2z Az is real number for all z € C™. Subsequently, R(z" Az) > 0 for all z € C"\{0} is
equivalent to 2L Az > 0 for all x € C™\{0}. O
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A.1.5 Proof of LemmalA.6l

Lemma A.15 (Restatement of Lemma|A.6). For any positive definite matrix A € R™*"™ and any
matrix X € R"™*™ X T AX is an RPN matrix.

Proof. Given a positive definite matrix A € R"*" and a matrix X € R"*"™, then by the definition
of an RPN matrix, we know that X " AX is an RPN matrix if and only if

Ker (X AX) = Ker ([x74x]").
First, by Lemma[A.T6] we know that
Ker (XTAX) = Ker (X).
Second, by Lemma|A.17| it is clear that X T is also a positive definite matrix, then the following
holds:
Ker (XTATX) =Ker (X).
Therefore,
-
Ker (XTAX) = Ker ([x74x] ).
Hence, X " AX is an RPN matrix. O

Lemma A.16. Given any positive definite matrix A € R™™™ and any matrix X € R™™,
Ker (XTAX) = Ker (X)

Proof.
Ker (XTAX) ={z € C™| (XTAX)z =0} (13)
Cl{reC™z"XTAXz =0} (14)
= {r € C"| Xz = 0} (15)
= Ker (X) (16)

The step from Equation to Equation (I3, is because A is positive definite, and by definition
Vr e C™\ {0}, R(="Az)>o0.

So 2" X T AXx = 0 iff vector Xa = 0, so Equation (14)- Equation holds. Next, it is easy to see
that
Va € Ker (X), [XTAX]z =,

which means Ker (X) C Ker (XTAX), so together with Ker (XTAX) C Ker (X), we can get
Ker (X TAX) = Ker (X). O
Lemma A.17. A conjugate transpose of a positive definite matrix is also a positive definite matrix.
Proof. Given an x n positive definite matrix A, define the quadratic form of A as % Az = a + bi,

where a is real part and b is imaginary part. Then, we have 7 A%y = (27 A2)? = a — bi; therefore
R(A) — R(AH).

Hence, if Vo € C", R(z% Az) > 0 then Vo € C", R(zH Ax) > 0, vice versa. O
A.1.6 Proof of Property
Property A.18 (Restatement of Property|[A.5). Given any singular RPN matrix A € C"*",
Index (A) = 1.
Proof. Given an singular RPN matrix A € R™*", by its definition, we have
Col (4) L Ker (4),
which implies Col (4) N Ker (4) = 0. By definition of index of singular matrix, we know that
Index (A) = 1.
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A.2 MDPs

An MDP is classically defined as a tuple, (S,.A, P, R,~), where S is a finite state space, A is a
finite action space, P : S x A — A(A) is a Markovian transition model defining the conditional
distribution over next states given the current state and action, where we denote A(X) as the set of
probability distributions over a finite set X'. P(s’ | s,a), R: S x A — R is a reward function, and
0 < v < 1is adiscount factor. The v = 1 case requires special treatment, both algorithmically and
theoretically, so we focus on the common 0 < v < 1 case. A Q-function @, : S x A — R for a
given policy 7 : S — A(A) assigns a value to every state-action pair (s,a) € S x A. This value,
called the Q-value, represents the expected cumulative rewards starting from the given state-action
pair. Q-functions can also be represented as a vector @, € R", where h =| S x A |. The Q-function
satisfies the Bellman equation:

Qﬂ' =R+ ,YPTI'QTF = (I - ’VPW)_lRa

where P, € R"" is the Markovian, row-stochastic transition matrix induced by policy 7.
The entries of P, represent the state-action transition probabilities under policy 7, defined as
P.((s,a),(s',a’)) = P(s' | s,a)n(a’ | 8'), and R € R" is the reward function in vector form.

Policy evaluation Policy evaluation refers to the problem of computing the expected discounted
value of a given policy, such as estimating the Q-value for each state-action pair. In on-policy policy
evaluation, data (state-action pairs) are sampled following the policy being evaluated. Conversely, In
off-policy policy evaluation, the data sampling does not need to follow the policy being evaluated
and is often based on a different behavior policy. State-action pairs are visited according to a
distribution p(s, a), which can be uniform, user-provided, or implicit in a sampling distribution.
For example, p(s, a) could be the stationary distribution of an ergodic Markov chain induced by a
behavior policy. It is worthwhile to mention that in the on-policy setting, any state-action visited
with nonzero probability can be removed from the problem, and in the off-policy setting, it would be
impossible to estimate the values under r if the state-action pairs would be visited under 7 could
never be sampled according to i and their consequences were never observed. Therefore, we assume
that 11(s,a) > 0 for every state-action pair that would be visited under 7. This assumption is referred
to as the assumption of coverage [39]. Accordingly, we define y as a distribution vector, ;1 € R”,
where each entry represents the sampling probability of a state-action pair. Subsequently, we define
the distribution matrix D = diag (1), which is a nonsingular diagonal matrix with diagonal entries
corresponding to the sampling probabilities of each state-action pair. In particular, in an on-policy
setting, the relationship uP, = p holds, meaning that the distribution p aligns with the stationary
distribution induced by the target policy 7. In contrast, in an off-policy setting, uP . = p does not
necessarily hold, as the sampling distribution ¢ may be influenced by a behavior policy that differs
from 7.

Function approximation Although the state and action sets S and .4 are assumed to be finite, but
the states-action space usually is very large, so it is unrealistic to use a table to represent the value of
every state-action (which is known as the tabular setting[14} 21]), so use of function approximation to
represent the Q-function is necessary. In such cases, some form of parametric function approximation
is frequently used. Linear Function Approximation is the most extensively studied form because it
is both amenable to analysis and computationally tractable. An additional motivation for studying
linear function approximation, despite the growing success and popularity of non-linear methods
such as neural networks, is that the final layers of such networks are often linear. Thus, understanding
linear function approximation, while of interest in own right, can also be viewed as a stepping stone
towards understanding more complex methods.

When function approximation is used, each state-action pair is featurized with a d-dimensional feature
vector, ¢(s,a) — R?, and corresponding feature matrix:

9((s,a)1)”
¢((s,ft)2) c RISxAlxd (17)

6((s,a)n)T

Given this feature matrix, for some finite-dimensional parameter vector 6 € R4, we can build a linear
model of the @ function as Qy(s,a) = ¢(s,a)T8, for all state-action pairs (s, a). The goal of linear
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function approximation is to find 6 such that ®6 = @y ~ Q. In this paper, we focus on a family of
commonly used algorithms that can be interpreted as solving for a # which satisfies a linear fixed point
equation known as LSTD[10} 9, 28]]. In the following, we introduce several quantities arising from
linear function approximation. The state-action covariance matrix, Y., and the cross-covariance
matrix, Y., are defined as:

Yeov i = E [¢(3a a)¢(57 a)T] = q)TD(I’v

(s,a)~p

Yoy 1= ( ]143 [¢(s,a)p(s',a')"| = ©"DP,&.
s,a)~ W
s/~ P(-|s,0),a ~m(s")

Additionally, the mean feature-reward vector, 6y ., is given by:
0s,:= E [¢(s,a)r(s,a)] = @ DR.

A.3 Introduction to algorithms

A31 FQI

Fitted Q-iteration[l15 131, [24]] is one of the most popular algorithms for policy evaluation in practice.
While typically applied in a batch setting, the expected or population level behavior of FQI is modeled
below. In full generality, in every iteration, FQI uses an arbitrary, parametric function approximator,
Qo (s,a), and uses some function “Fit” which is an arbitrary regressor to choose parameters, 6 to
optimize fit to a target function:

9k+1 = Fit(’yPﬂng + R)

The more detailed form as:

Gr=agmin B (@0 1@ ) —rea0?]. a9
s,a)~p
s/NP('\s,a),a'wﬂ'(s')

When using a linear function approximator Qg(s,a) = ¢(s, a) "6 the update is a shown below. For
the detailed derivation from Equation (I9) to Equation (20) please see Appendix

2
o =agmin E (o0 0= 20(0) b= r(s.a) | a9
0 s,0)~p
s'~P(-|s,a),a'~7r(s’)
= ’VZJCFOUZCTGIV + Eioveth' (20)

FQI in the batch setting Given the datset {(s;, a;,7; (s;,a;), s}, a;)}!"_,, with linear function
approximation, at every iteration, the update of FQI involves iterative solving a least squares regression

problem. The update equation is:

n 2
Or+1 =arg minz (¢ (si-a) " 0 =7 (si,a:) — v (s} a}) " 9k> 2D
A
= Wiiovicrek + iiov@ﬁ,r‘ (22)

A32 TD

Temporal Difference Learning (TD)[36, [38]] is the progenitor of modern reinforcement learning
algorithms. Originally presented as a stochastic approximation algorithm for evaluating state values,
it has been extended the evaluate state-action values, and its behavior has been studied in the batch
and expected settings as well. When a tabular representation is used, TD is known to converge to the
true state values. We review various formulations of TD with linear approximation below.
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Stochastic TD TD is known as an iterative stochastic approximation method. Its update equation is
Equation (23). When using linear function approximator Qg (s, a) = ¢(s,a) "6, the update equation
becomes Equation (25), where o € R is the learning rate:

9k+1 =0 —« [Vak QGk (Sv a) (Q(’k (S, a) - A/Q@k (8/7 a/) - T(Sv a))] (23)
where (s,a)wu,s/NP(~\s,a),a/r\aﬂ'(s') (24)
- ek —« [¢(Sva) ((]S(S, a)Tek’ - ’7(;5(5/3 a/)Tak - T(S7a))] . (25)

Batch TD In the batch setting / offline policy evaluation setting, TD uses the entire dataset instead
of stochastic samples to update:

O = = 3" V0, Q0 (5. (Quy (5:0) —1Quy (50) ~ s, )] 26
=1

- ek — Q- % Z [¢(S7 a) (¢(87 a)TGk - ,yqb(sla a/)Tek - T(S? G))] (27)
=1

= ak —Q [(icov - i\:m‘) 0]@ - §¢,T:| . (28)

Expected TD This paper largely focuses on expected TD, which can be understood as modeling
the behavior of batch TD in expectation. This abstracts away sample complexity considerations,
and focuses attention on mathematical and algorithmic properties rather than statistical ones. The
expected TD update equation is:

Ok+1 =0, — E [VOerk (87 a) (Q9k (87 a) - 7Q9k (5/7 a/) - 7’(8, a’))] : (29)

(s,a)~p
s'~P(~|s7a),a'~7r(5')

With a linear function approximator Qy(s,a) = ¢(s,a) " 6:

Opt1 =0 — (S’gw [6(s,a) (o(s, a) 0 —yo(s',a’) 0, —r(s, a))] (30)
s'~P(-]s,a),a'~7(s")
= — a(Zeor = 7Eer)) Ok + by, (31
=6y —a(®'D® -2 DP,® — PDR). (32)
(33)
A33 PFQI

PFQI differs from FQI (Equation (I8))) and TD (Equation (29)) by employing two distinct sets
of parameters: target parameters ), and learning parameters 6y, .[16]]. The target parameters 6,
parameterize the TD target [YQy, (s',a’) — r(s, a)], while the learning parameters 6}, ; parameterize
the learning Q-function Qyg, ,. While 0y, ; is updated at every timestep, 0, is updated only every ¢
timesteps. In this context, (g, in the TD target is referred to as the target value function, and its
value Qg, (s, a) is called the target value. Under a fixed TD target, the expected update equation at
each timestep is:

9"0=t+1 = Hk,t -« ( E)J [vak,t Qak,t (57 a) (Qek,t (57 a) —7Qo, (8/7 a/) - T(S, a))} i
S,a)~
s/NP(~\s,a),a/~7r(s')
(34)
After t timesteps, we update the target parameters ¢; with the current learning parameters 0y, ;:
O = Ok t. (35)

DQN [27] famously popularized this two-parameter approach, using neural networks as function
approximators. In this case, the function approximator for the TD target is known as the Target
Network. This technique of increasing the number of updates under each TD target (or target value
function) while using two separate parameter sets to stabilize the algorithm is often referred to as the
target network approach [16].
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When using a linear function approximator Qg(s,a) = ¢(s,a)' 6, the update equation at each
timestep becomes:

Ok t+1 = Okt — (s,g~u [(;S(s, a)’ (gb(s, a)T0k7t —~p(s',a") T 0y, —r(s, a))] (36)
s'~P(|s,a),a'~m(s")

=0kt —a(®'DPY,, — ©' DP, D0, — PDR) 37)

=1 —aXeon)0kt +a(YEerbk + 05 7). (38)

Therefore, the update equation for every ¢ timesteps, or in other words, the target parameter update
equation is the following:

t—1 t—1
01 = (a > (1= a¥eon) Y8 + (I - azm)t> O t+ad (1—aSe) O (39)
i=0 =0
A.3.4 Derivation of the FQI update equation
Oy = arggmin ( E) [(Qg(s, a) — Qo (s',a") —r (s,a))z} (40)
s,a)~p
s'~P(~|s,a),a/~7r(s’)
With linear function approximator Qg (s, a) = ¢(s,a) ' 6:
. T N 2
Oupr = argmin E (¢(s:0)70 =16 (s, 00 = 7(s,a) @1)
0 s,a)~p
s'~P(-|s,a),a'~7r(s’)
= arg min |90 — P, PO;, — R||i (42)
0
2
= arg min D:I) o — (wDZPﬂq)Qk 4 D? R) . 43)
b 2

There are two common approaches to minimizing || Az — b||,: solving the projection equation and
solving the normal equation. As shown in [26, Page 438], these methods are equivalent for solving
this minimization problem. Below, we present the methodology of both approaches.

The projection equation approach The projection equation is:
Ax = PCol(A)b = (AAT) b, (44)

where Py (4 is the orthogonal projector onto Col (4), equal to (AAT). This method involves

first computing the orthogonal projection of b onto Col (A), namely (AAT) b, and then finding the
coordinates of this projection (i.e., x) in the column space of A. If we use the projection equation
approach to solve Equation (43)), we know that the update of 6 is:

Ori1 = {0 € RYD>00 = D> (D2 )1 (’yD%Pﬂ@Hk + D%R)} (45)
= {y(D>®)'D* P, 0, + (D>®)'D>R + (I - (D%<I>)TD%¢>) v|veRM. (46

The minimal norm solution is:

0.1 =v(D2®)D2P, 00, + (D2®)' DR (47)
—+(¢"Dd)' ® " DP, 00, + (¢ D) DR (48)
= Vziovzcrek + Ei¢)09¢,r' (49)
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The normal equation approach The second method for solving this minimization problem is
tosolve the normal equation AT Az = ATb directly. Therefore, When using the normal equation
approach to solve Equation (43), we know that the update of 6y, is:

Or1 = {0 € RY® ' DPO = & 'DP 20, + ©' DR} (50)
~ {7(27D®)/® DP, 20, + (€ DP)'® DR + (I - (D}®)'DEe) v v e R} (51)

— (/(D}®)'DIP, 06, + (D) DR + (I - (D%é)TDéé) v|veRM. (52)

The minimal norm solution is:
Ors1 = (@' D) 10 DP, 30, + (7 Dd) ¢ TDR (53)
= 15l Serbi + Sl o0, (54)
:W(D%@)TD%P,@G,CJr (D%@)TD%R. (55)

In summary, as shown above, without assumptions on the chosen features (i.e., on feature matrix ®),
the update at each iteration is not uniquely determined. From Equation {6) and Equation (52)), we
know that any vector in the set formed by the sum of the minimum norm solution and any vector

from the nullspace of D2 ® can serve as a valid update. In this paper, we choose the minimum norm
solution as the update at each iteration. As shown in Equation (49) and Equation (54), this leads to
the following FQI update equation:

Ops1 =20 bk + 50000 (56)

Consequently, we know that when @ is full column rank, the FQI update equation is:
Ort1 = VS o Ser Ok + Soonb,r- (57)
When @ is full row rank in the over-parameterized setting(d > h), with detailed derivations appearing
in Lemmal[A.T9] the update equation becomes:
Opir = 1@ P DO, + TR (58)

Lemma A.19. When ® is full row rank in over-parameterized setting(d > h), the FQI update
equation is:

Opr1 =70 P DO, + OTR. (59)

Proof. In the setting where @ is full row rank, in the over-parameterized setting(d > h), we
—1 1
know that (D#)  D}@0TD} — @0TD? and because ® is full row rank, ®BT = I, then

T —1
PO'DD3® — D*D3 . By Greville [I8, Theorem 1], we can get that (D%(b) — o (D%) .
Combining this with update equation (Equation (55)), we can rewrite the update equation as:

T T
01 = (DE@) DiP.0, + (Die) DR (60)
1 -1 1 1 -1 1
— (Df) DiP, o6, + o (Df) D:R 61)
=3P, 0, + OTR. (62)
0

B Unified view: preconditioned iterative method for solving the linear system

B.1 Unified view

One of the key contributions of this work is to show that the three algorithms—TD, FQI, and Partial
FQI—are the same iterative method for solving the same target linear system / fixed point equation
(Equation ), as they share the same coefficient matrix A = (2., — 7X.-) and coefficient
vector b = 04 . Their only difference is that they rely on different preconditioners M, a choice
which impacts the ensuing algorithm’s convergence properties. the following will connect to each
algorithm’s update equation to such perspective.
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TD

0 = |1 — al (Zeop — V2er 0, + ol 04, 63
k+1 ( YEer) k \M Y9, (63)
Tht1 Tk b

———

C

We denote the preconditioner M of TD as Mtp = ol and define Hrp = [I — @ (Zeon — YZer)]-

FQI
9k+1 = |I- 271 (Ecm) - 'YE(:T) Gk + E;o%; 0¢7,1’ (64)
N~ T ———— N
Th41 M Tk M b
———
We denote the preconditioner M of FQI as Mrqr = .}, and define Hrgr = 721 ...
PFQI
t—1 i—1
ek—i—l = |-« (I - azcov)i (Ecov - ’Yzcr) ek +« (I - azcov)i 0¢,r (65)
Th+41 Tk b
M M

H

c

We denote the preconditioner M of PFQI as Mprqr = « Zf;é (I - aZcov)i and define Hppor = 1 —

the PFQI update equation (Equation

Proposition m details the transformation of the traditional

t—1 i
« Zi:()(] — a¥eov)’ (Beov — VEer) ! )
(39)) into this form (Equation (63)).

Preconditioned target linear system (preconditioned fixed point equation): From above we
can easily see that the the fixed point equations of TD, PFQI, and FQI are in form of Equation (66),
which is a preconditioned linear system, As previously demonstrated, solving this preconditioned
linear system is equivalent to solving the original linear system as it only multiply a nonsingular
matrix M on both sides of the original linear system.

M (Zwv — 'yECT) 0 =M HW, (66)
A x b

Target linear system (fixed point equation): Equation (67) presents the original linear system,
therefore as well as the fixed point equations of TD, PFQI, and FQI. We refer to this linear system as
the target linear system.

(Zcov - ’Vzcr) 9 (67)

pr— 0¢,T
~—

A z b
Non-iterative method to solve fixed point equation (LSTD): From Equation (68, it is evident
that if target linear system is consistent, the matrix inversion method used to solve it is exactly LSTD.
therefore, we denote the A matrix and vector b of the target linear system as Ay stp = (Zcov — YXer)
and bistp = 64,-, and Orsp as set of solutions of the target linear system, O stp = {6 € R4 |

(Zcov - 7Zcr) 0= 9¢,T}'

0rs7D = (Zeov — VZer)! 041 (68)
z At b

Bhere we assumed invertibility of oy, in Sectionwe provide analysis for FQI without this assumption
“here we assume (Zf;é (I - aZcov)’) is nonsingular just for clarity of presentation, but it doesn’t lose

generality, as .o, is symmetric positive semidefinite, we can easily find a « that (aXco. ) have no eigenvalue

equal to 1 and 2, in that case Lemmashow us (Z;;é (I — aXcov)") is nonsingular
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Preconditioner transformation From above, we can see that TD, FQI, and PFQI differ only
in their choice of preconditioners, while other components in their update equations remain the
same—they all use Ay grp as their A matrix and by sp as their b matrix. Looking at the preconditioner
matrix (M) of each algorithm, it is evident that these preconditioners are strongly interconnected, as
demonstrated in Equation (69). When ¢ = 1, the preconditioner of TD equals that of PFQIL. However,
as t increases, the preconditioner of PFQI converges to the preconditioner of FQI. Therefore, we can
clearly see that increasing the number of updates toward the target value function (denoted by ¢)—a
technique known as target network [27]]—essentially transforms the algorithm from using a constant
preconditioner to using the inverse of the covariance matrix as preconditioner, in the context of linear
function approximation.

ol = az — a%e0y) 2 w1 (69)
FQI
PFQI

B.2 FQI without assuming invertible covariance matrix

We peviously showed that FQI is a iterative method utilizing ¥_,}, as preconditioner to solve the
target linear system, but which require ® have full column rank. We now study the case without
assuming @ is full column rank. From Equation (20} , we know general form FQI update equation is:

97€+1 = ,VEZOUZCTQIC + Ziov9¢>7”7

Interestingly, which can be seen as :

9k+1 = |[I- (I 72001)267’) Ok +Zcm)0
SN~~~ —_—— | T H,—/
Tt A Tk b

which is a vanilla iterative method to solve the linear system:

(I Pyzcovzcr) 0 = Ziovetﬁ,r . (70)
—_— Y ——
A ® b

We call this linear system,Equation (70), the FQI linear system, and denote the solution set of this
linear system, Ogqr, with A matrix: Agqr = (I WECOUEcr) and brqr = Ecmﬁdj - If we multlply
Ycov ON both side of linear system, we get a new linear system and this new linear system is our
target linear system, and show in Equation (Detailed calculations in Proposition [B.4):

2cov (I VECOUECT) 0= Ecovzioveqb,r -~ (Ecov - ’YECT) 0= 9¢,r (71)

Therefore, we know the target linear system is the projected FQI linear system . Naturally, we have
the Proposition [3.1] which shows that any solution of FQI linear system must also be solution of
target linear system and what is necessary and sufficient condition that solution set of FQI linear
system is exactly equal to solution set of target linear system, and from which we prove that when
chosen features are linearly independent(® is full column rank), the solution set of FQI linear system
is exactly equal to solution set of target linear system.

B.3 PFQI

Proposition B.1. PFQI update can be expressed as:

t—1 t—1

9k+1 = I -« Z(I - azcou)i (Ecov - ’YZCT) 01@ +a Z(I - azcov)i 9¢,r (72)
i=0 — i=0 ~
M M

Proof. As X, 1s symmetric positive semidefinite matrix, it can be diagonalized into:
-1 00
zCO’U - Q [ 0 err :| Q
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where K, is full rank diagonal matrix whose diagonal entries are all positive numbers, and
r = Rank (2., ), and @ is the matrix of eigenvectors. It is straightforward to choose a scalar « such
that (I — aK,«,) nonsingular, so we will assume (I — aK, ) as nonsingular matrix for rest of
proof. For notational simplicity, we will henceforth denote K., as K.

From above, we can derive that

t—1 ; 1 at)l 0
aZ(I—azcov) =Q {(() ) (I—(I—aK))K! ]Q

By Lemmawe know that o Zz;é (I — aX.,,)" is invertible, subsequently its inverse is:

t—1 -t L
. RPN B B
<a E (I— Oézcov) > =Q |: 0 K(I— (I_ aK)t)il :| ©

i=0

Therefore, the PFQI update can be rewritten as:

t—1 t—1
0k+1 = (a’)/z (]- - azcov)i Ecr + (I - azcov)t> ek + « Z (1 - azcov)i : gcb,r (73)
i=0 1=0
t—1 t—1 -1
= lad (I-aXe)' | 7S + (a > a- azcov)i> (I —aXeon)' || Ok (74)
=0 =0
t—1
+aY (1= aXeo) b, (75)
=0
_ atl 0
= {Q 1 [ 0 (I—(I-aK))K! ] @ (76)
A B+ Q71 arl 0 Qe (77)
Ter 0 K(I-(I-aK)) " (I-ak) ’“
t—1
+a) (I = aSew) 0, (78)
=0
[ atl 0 o[ &1 0
K CR Pl LR Gl S
t—1
S [ 8 2( } Q- v%) } O+ (I = aSee) O, (80)
=0
t—1 t—1 -1
=a) (I-aSew) (a > (I- aZcov)Z) — (Beow — YZer) | Ok (81)
=0 =0
t—1
+ad (I—aXew) s, (82)
1=0
t—1 t—1
=|T—a) (I-0a%) (Zeov —78er) | O+ (I —aXeon)’ 04, (83)
M M
O

Lemma B.2. Given any symmetric positive semidefinite matrix A and scalar o > 0, if (I — @A)

is invertible and (aA) have no eigenvalue equal to 2, then Zf;é (I - aA)i is invertible for any
positive integer t.
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Proof. Given any symmetric positive semidefinite matrix A and (I — «A) is invertible, it can be

diagonalized into the form:
-1 00
a=a?[§ %, |o

where K is positive definite diagonal matrix with no eigenvalue equal to 2, and r = Rank (A), so

— i [t o
;(I—QA) :Q 1|:0 (I—(I—aK)t)K1:|Q

and by Lemma|[B.3| we know that (I — (I — aK)?) is invertible, then clearly

tI 0
0 (I-({I—-aK))K!
is full rank, therefore, Zf;é (I — aA)" is invertible. O

Lemma B.3. Given any positive definite diagonal matrix K and scalar o > 0 and nonnegative
integer t, if (a) K have no eigenvalue equal to 2, (I — (I — aK)?) is invertible.

Proof. Since K is positive definite, it has no eigenvalue equal to 0. By Lemma|A.1] it follows that
(I — aK) has no eigenvalue equal to 1, Consequently, (I — aK)! have no eigenvalue equal to 1.
Applying Lemma once more, we can see that (I — (I — aK)?) has no eigenvalue equal to 0,
therefore, it is full rank and hence invertible. O
Proposition B.4. FQI using the minimal norm solution as the update is a vanilla iterative method
solving the linear system:
(I - ’YEIO'UEC"") 0= Elovgﬁﬁﬂ“

and whose projected linear system(multiplying both sides of this equation by ¥..,,) is target linear
system:(Ecoy — Yer) 0 = 04

Proof. When FQI use the minimal norm solution as the update, based on the minimal norm solution
in Equation (#9) and Equation (54), we knwo that the FQI update is:

9k+1 = ,YZZO’UECTGIC + Eloveqﬂ” (84)
We can rewrite this update as
Opir = |1 = (I =7Z1Zer) | O+ Sloubs,r (85)
S~ R N~~~ v
Th41 A Tk b

and thus interpret Equation (84)) as a vanilla iterative method to solve the linear system:

_ A3t — vyt
(I ,yzcovzm‘) N 9 , Zcov9¢,r (86)
A r b

Left multiplying both sides of this equation by X, yields a new linear system, the projected FQI
linear system:
Yeov (I - VZZOUECT) 0= ECOUZ(T2000¢7T

By Lemma|[B.5] we know that

Col (") = Col (Ze0p) 2 Col (Ser)
and

(®"DR) € Col (@) = Col (Scon)
50 Leop2f B = By and B, B

row tovlsr = 04 . Therefore, this new linear system can be rewritten
as:

(Ecov - 720r> 0= 94),7"
which is target linear system.
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Lemma B.5.

Col (¢ 'D®) = Col (#") 2 Col (¢ DP,®) (87)
Col (#TD®) = Col (@) 2 Col (2"D(I —vP,)®) (88)
Ker (2"D®) = Ker (®) C Ker (¢ 'DP,®) (89)
Ker (¢"D®) = Ker (®) C Ker (¢ 'D(I — yP,)®) (90)

Proof. By Lemma|[B.6] we know that
Col (27D®) = Col (¢7D*)
Since D is full rank and Col (@) 2 Col (0T DP &) naturally holds, we get:
Col (#7D#) = Col (©7) 2 Col (¢TDP, )
Next, by Lemma we know that Rank (®7D®) = Rank (®7D*) = Rank (@), which means
dim (Ker (& 'D®)) = dim (Ker (®))

Additionally, we know that Ker (¢ "D®) D Ker (®) and Ker (®) C Ker (¢ DP,®) naturally
hold, therefore we can conclude that:

Ker (¢ 'D®) = Ker (®) C Ker (¢'DP,®)

Since Col (<I>TD<I>) D Col (<I>TDP,F<I>) and Ker (<I>TD<I>) C Ker (<I>TDPW<I>), naturally,

Col (¢ "D®) 2 Col (¢ 'D(I — yP,)®) and Ker (&' D®) C Ker (¢'D(I —1P,)®)

Lemma B.6. Given any matrix A € R"*™,

Col (AAT) = Col (A)

Proof. Since Col (A7) = Row (A) L Ker (A) and Rank (4) = Rank (A7), by Lemmawe
know that Rank (AAT) = Rank (A7) = Rank (A4), and Col (AAT) C Col (A) naturally holds.
Hence,

Col (AAT) = Col (A)
O

Lemma B.7. Given any two matrices A € R"*™ andB € R™*", Assuming Rank (A) > Rank (B),
then

Rank (AB) = Rank (B)
if and only if Ker (A) N Col (B) = {0}.

Proof. By [26, Page 210], we know that
Rank (AB) = Rank (B) — dim (Ker (A) N Col (B))
Therefore, if and only if Ker (4) N Col (B) = {0}, Rank (AB) = Rank (B) O
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B.4 Proof of Proposition 3.1
Proposition B.8 (Restatement of Proposition [3.1). * Orstp 2 OFgr.
* ifand only if Rank (X0, — 7Ecr) = Rank (I —vEl,,2..), Orstp = Oor.

* when Yo, is full rank(or ® is full column rank), © psrp = Opgy

Proof. As we show in Section |3| the target linear system is projected FQI linear system (multiplying
both sides of FQI linear system by 3., ), every solution of FQI linear system must also be solution
of target linear system, which means:

OLstp 2 OFQ1

By Lemma|C.10, we know that ©pstp = Orqr if and only if
Rank (Xc0y — 7Eer) = Rank (I — %], 2.,)
Therefore, when X, is full rank, we know that

Rank (Z.0p — 7Zer) = Rank (Seop (I —1EL,,2er)) = Rank (I —42f,, 5.,

cov

hence ®LSTD = ®FQI- O

C Singularity and consistency of the linear system

C.1 Rank invariance and linearly independent features are distinct conditions

The commonly assumed condition for algorithms like TD and FQI — that the features are linearly
independent, meaning ¢ has full column rank (Condition — does not necessarily imply rank
invariance (Condition [4.T)), which, by Lemma|C.1] is equivalent to:

Ker (®7) N Col (D(I —vP,)®) = {0} 1)

Conversely, rank invariance (Condition [4.T)) does not imply @ has full column rank. The intuition
behind this distinction lies in the fact that Ker (®7) N Row (") = {0} naturally holds, leading
to Ker (®7) N Col () = {0}. However, the relationship Col (D(I — yP,)®) = Col (®) does not
necessarily hold, regardless of whether ® has full column rank. Consequently, there is no guarantee
that Ker (@ ") N Col (D( — vP,)®) = {0} will hold, irrespective of the rank of ®. Thus, linearly
independent features (Condition [4.3)) and rank invariance (Condition [4.1)) are distinct conditions,
with neither necessarily implying the other. Since rank invariance (Condition [4.T)) is necessary and
sufficient condition for the target linear system to be universally consistent (Proposition 4.2), the
existence of a solution to the target linear system system cannot be guaranteed solely from the
assumption of linearly independent features (Condition .3). Consequently, these iterative algorithms
such as TD, FQI, and PFQI that are designed to solve the target linear system does not necessarily
have fixed point just under the assumption of linearly independent features.

Lemma C.1. These following conditions are equivalent to rank invariance (Conditiond.1):

Rank (¥.,,) = Rank (Zcop — 7Xcr) (92)

Col (Ecm;) = Col (Ecm; - 'YE(:T) (93)

Ker (Zcon) = Ker (Zeon — v¢r) (94)

Col (@) = Col (Zcop — YZer) (95)

Ker (@) = Ker (Zcop — 7Z¢r) (96)

Rank (®) = Rank (X.op — 7Xer) 97)

Ker (®) N Col (D(I —vP,)®) = {0} (98)
Ker (@TD%) N Col (D% (I fyP,J(I)) = {0} (99)
Ker (¢ "D(I —vP,)) N Col (@) = {0} (100)
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Proof. From Lemma B3] we know that
Col (2 TD®) = Col (¢") 2 Col (' D(I — vP)®)

and
Ker (¢ D®) = Ker (®) C Ker (2" D(I — +P,)®)

Therefore,
Rank (®) = Rank (& 'D(I — vP,)®)

if and only if the following hold
Col (#"D®) = Col (¢") = Col ("' D(I — vP)®)

and
Ker (& 'D®) = Ker (®) = Ker (¢'D(I — 7P,)®)

Hence, Equations (93) to (97) are equivalent. Subsequently, together with
Rank (& 'D®) = Rank (®)
we can obtain that Equation (92)) is equivalent to Equation (97).
Next, since D(I — P ) is nonsingular matrix,
Rank () = Rank (D(I — vP,)®)
and
Rank (D%<1>) — Rank (D% (I ~yP7r)<I>)

and
Rank (¢ 'D(I — +P,)) = Rank ()

Consequently, by Lemmawe know that Rank (®) = Rank (¢ 'D(I — yP,)®) if and only if
Ker (®7) N Col (D(I —vP,)®) = {0}

or
Ker (7D4) 1 Col (D} (1 - vP,)@) = {0}
or
Ker (&"D(I —vP)) N Col (®) = {0}
So Equations (97) to (I00) are equivalent. Hence the proof is complete. O

C.2 Rank Invariance is a mild condition and should widely exist

From Lemma we can see that the condition of v , 3., having no eigenvalue equal to 1 is
equivalent to rank invariance (Condition holding. Even if yXf_ 3., has an eigenvalue equal to

cov

1, by slightly changing the value of -y, we can ensure that y3.f_ 3., no longer has 1 as an eigenvalue.

In such a case, rank invariance (Condition @) will hold. Therefore, we can conclude that rank
invariance (Condition[4.1)) can be easily achieved and should widely exist.

Lemma C.2. (’YELWZCT) have no eigenvalue equal to 1 if and only if rank invariance ( Condition
holds.
Proof. Assuming rank invariance (Condition {.T)) does not holds, by Lemma [C.I| we know that
Ker (Zeop — vcr) # Ker (Zeon)
then together with Lemma[B.3] we know
Ker (Zeop — vZer) D Ker (Zeow)

SO
Ker (Ecov - 'YZCT) N Row (Ecov) 7é {0}

Moreover, since Y., is symmetric matrix, we know that

Ker (Zcop — 72er) N Col (Xeoy) # {0}
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Therefore, for a nonzero vector v € Ker (2., — vX¢r) N Col (Xcor ), we have:
(Ecov - Pyzcr) v=20

which is equal to ¥.,,v = ¥3.,v. By multiplying 3f__ on both sides of equation we can get:

cov

YEl  Eev =21 Do, (101)

cov

Since (ET Ecm,) is orthogonal projector onto Col (Ziov) and by Lemma we know

cov

Col (£1,,) = Col (S2,,)

cov cov

Additionally, X, is symmetric, so Col (ECTOU) = Col (X.0v), then since v € Col (X,,) We can
obtain that ¥ ¥ ,v = v, therefore, we have:

cov

721— Yerv =,

cov

which means v is eigenvector of (WEZWZCT) and whose corresponding eigenvalue is 1. We can

conclude that when rank invariance (Condition 4.1) does not hold, matrix (vX!,,%.,) must have
eigenvalue equal to 1.
Next, assuming (yX{,, ., ) has eigenvalue equal to 1, then there exist a nonzero vector v that

vET YU =0

cov

and
v € Col (Elm})

By Lemma we know Col (2,,) = Col (£/,,) and o, is symmetric so

v € Col (ET ) = Col (Ecov)

cov

Furthermore, by Lemma we know that Col (#"D®) = Col (") 2 Col (¢ "DP,®), which
implies Col (X.,,) 2 Col (X.,). Therefore multiplying by X, on both sides of YXf , ¥ .v = v,
we get

’72601) E(Tjo'u Ecrv = Zcovv

which is equal to
(Ecov - Pyzcr) v=20

Thus, v € Ker (Yo, — ¥Xer ), implying that
Col (Ecov) NKer (Zeop — 72er) # 0
Since Col (X¢0p) = Row (Xcou ), We conclude that
Ker (Ecov) # Ker (Zcov — 7Xer)
By Lemma|[C.1] this shows that rank invariance (Condition[4.1)) does not hold.

Hence the proof is complete. O

Lemma C.3. Given a matrix A € R"*™, Col (AT) = Col (AT)

Proof. Since AAT is orthogonal projector onto Col (A) and ATA is orthogonal projector onto
Col (AT), by Meyer [26, Page 386, 5.9.11], we know that
Col (AAT) = Col (A) and Col (ATA) = Col (AY)
therefore, we have:
Col (A7) = Col (AT(AT)T) = Col (((AT)")TA) = Col (AT A) = Col (A") (102)
O
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C.3 Consistency of the target linear system

C.3.1 Proof of Proposition[4.2]
Proposition C.4 (Restatement of Proposition[d.2). The target linear system.:
(@' D(I —yP,)2)0 = DR
is consistent for any R € R" if and only if
Rank (X.0,) = Rank (Zeoy — v2¢r)

Proof. For any R € R", the target linear system:
(®'D(I —yP,)®)0 = 'DR
is consistent if and only if for any R € R”,
(®"DR) € Col (¢ 'D(I — P,)®),
which is equivalent to
Col (D) C Col (' D(I — yP,)®).
From Lemma|[B.3] we know that
Col (¢'D) = Col (®") 2 Col (# 'D(I — yP,)®).
Therefore, Col (® 'D) C Col (# "D(I — yP,)®) holds if and only if
Col (D) = Col (' D(I — yP,)®).
Since Col (¢ D) = Col (® "), by Lemma|C.1|we know that
Col (#7D) = Col (® 'D(I — vP,)®)
holds if and only if Rank (2., ) = Rank (Zeop — 7Xer)-
Hence, the target linear system
(®'D(I —P,)®)0 = 2'DR
is consistent for any R € R" if and only if Rank (X.,,) = Rank (Zcop — 7Zer)- O

C.4 Nonsingularity the target linear system
C.4.1 Proof of Proposition

Proposition C.5 (Restatement of Proposition[d.5). (Xcop — vEer) is nonsingular if and only if
® is full column rank and Rank (X)) = Rank (Zcop, — 7Z¢r)

Proof. If T D(I — yP,)® is full rank, by Fact it is clear that ® must be full column rank.

Next, assuming @ is full column rank, we know that Rank (® "D(I — vP)®) is full rank if and
only if
Rank (¢ 'D(I — vP,)®) = Rank (®).
Also, by Lemma [B.5| we know that
Rank (X.,,) = Rank ().

Therefore, Rank (® "D (I — yP,)®) is full rank if and only if

Rank (Sep,) = Rank (Seo, — 75e)
and @ is full column rank. O
Fact C.6. Let A be a K x L matrix and B an L x M matrix. Then,

rank(AB) < min(rank(A), rank(B)).
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C.5 Nonsingularity of the FQI linear system
Proposition C.7 (Restatement of Proposition . I —~%1 3., is nonsingular if and only if rank
invariance (Condition holds

Proof. By Lemma we know that rank invariance (Condition holds if and only if VET Yer

has no eigenvalue equal to 1. Consequently, by Lemma this is equivalent to [ —yXf_ ¥, having

no eigenvalue equal to 0, which in turn it is equivalent to I — yX{_ ¥, being nonsingular. O

C.6 On-policy setting
C.6.1 Proof of Proposition
Proposition C.8 (Restatement of Propositiond.7). In the on-policy setting,
Rank (X.0,) = Rank (Zeoy — vZ¢r) -
Proof. In the on-policy setting, from Tsitsiklis and Van Roy [40] we know that D(I — vP,) is a
positive definite matrix, then by Lemma[A.T6 we know that
Ker (2 'D(I —yP,)®) = Ker (®).
Therefore, by Lemma|C.T we know that
Rank (X.0,) = Rank (Xeop — 72er) -

C.7 Linear realizability
C.7.1 Proof of Proposition 4.9]
Proposition C.9 (Restatement of Proposition d.9). When linear realizability holds (Assumption4.8),

* Orstp 2 O always holds
* Orstp = O holds if and only if rank invariance (Condition[d.1)) holds.

Proof. Since ©pgtp is the solution set of the target linear system:
(®'D(I — yP,)®) 20 = ¢'DR
and ©, is equal to the solution set of linear system:
(I =~Px)0 = R,

we know that
OLstp 2 O

Then, by Lemma [C.10] we know that ©stp = O holds if and only if
Rank (¢ 'D(I — vP,)®) = Rank ((I — yP,)®),

and since (I —Py) is full rank matrix and Rank (& "D®) = Rank (®), from Lemma [B.5] we
know that

Rank ((I —yP,)®) = Rank (®).
Therefore, we know that O gtp = O, holds if and only if

Rank (¢ 'D(I — vP,)®) = Rank (¢ ' D),
which is Rank (X..,) = Rank (Xcop, — 7Xer)- O
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Lemma C.10. Given two matrices A € R"*™ and B € RP*™, and a vector b € Col (A), we
denote the S 4 the solution set for linear system: Ax = b and Sp 4 the solution set for linear system:

BAx = Bb. the following holds:

Sa 2 Spa only holds when S4 = Spa (103)
and

Sa = Spa if and only if Rank (BA) = Rank (A). (104)

Proof. Ttis clear that any z satisfying Ax = b also satisfies BAx = Bb, s0 S4 C Spa. Therefore,
if S4 2 Spa, Sa = SBa.
Next, as b € Col (A) we know that

Sa={ATb+ (I - ATA)w | Vv € R™)},
where {(I — ATA)v | Vv € R™)} = Ker (A) and (ATb) ¢ Ker (A). Also,

Spa = {(BA)Bb+ (I — (BA)'BA)w | Vw € R™)},
where {(I — (BA)'BA)w | Yw € R™)} = Ker (BA) and ((BA)Bb) ¢ Ker (BA). Additionally,
Ker (A) C Ker (BA).

First, we will prove that if S4 = Sp 4, then Rank (A) = Rank (BA).
Since (A'b) ¢ Ker (A) and ((BA)'Bb) ¢ Ker (BA), from above we know if Sy = Spa,
dim (Ker (4)) = dim (Ker (BA)),

which is equivalent to Ker (4) = Ker (BA) since Ker (4) C Ker (BA). From that we can get that
Rank (A) = Rank (BA) by the Rank-Nullity Theorem.

Now we need to prove that if Rank (A) = Rank (BA), then S4 = Spa. We know that
Ker (A) C Ker (BA),
so when Rank (A) = Rank (BA), Ker (A) = Ker (BA) and
{(I—ATA)w | Vv e R™)} = {(I — (BA)'BA)w | Yw € R™)}.

Also, we have that:

A'b — (BA)'Bb = (A" — (BA)'B) b (105)
= (I — (BA)'BA) A" (106)
€ {(I - (BA)BA)w | Yw € R™)} = Ker (BA) = Ker (A) . (107)
Therefore,

ATh € {(BA)'Bb+ (I — (BA)'BA)w | Yw € R™)},

and

((BA)'Bb) € {ATb — (I — ATA)v | Vv € R™)},
which is equal to

((BA)'Bb) € {ATb + (I — ATA)v | Vv € R™)}.
Then, we know that

{(BA)YBb+ (I — (BA)'BA)w | Yw € R™)} = {ATb 4 (I — ATA)v | Vo € R™)}.

Hence we can conclude that if Rank (A) = Rank (BA), Spa = Sa.

Fact C.11. If X;,; = AX; + B, then if update starts from X, we have:

t
Xy = ZAzB + At+1X()
=0
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D The convergence of FQI

D.1 Interpretation of convergence condition and fixed point for FQI

First, Theorem [5.1| provides a general necessary and sufficient condition for the convergence of FQI
without imposing any additional assumptions, such as ® being full rank. Later, we will demonstrate
how the convergence conditions vary under different assumptions.

Theorem D.1 (Restatement of Theorem|5.1). FQI converges for any initial point 0y if and only if
(Ziovt%,,.) € Col (I — 3 . ) and (vX! ZCT.) is semiconvergent. It converges to

cov“—CT cov

|:(I - ryzlovECT)D ZloveqﬁW + (I - (I - ’YEZO’UECT) (I - VEZOUECT)D) 90] € @LSTD'

As previously defined in Section we have brgr = EEOUGW., Apqr =1 — 72T Yer, and Hpgr =

cov

21, Yer. From Theorem |5.1, we can see that the necessary and sufficient condition for FQI

convergence consists of two conditions:
(brar) € Col (Arqr) and Hrgp being semiconvergent.

First, (brqi) € Col (Arqr) ensures that the FQI linear system is consistent, which means that a
fixed point for FQI exists. Second, Hgqr being semiconvergent implies that Hgg; converges on
Ker (Arqr), and acts as an identity matrix on Ker (Agqr) if Ker (Apqr) # {0}. Since any vector can
be decomposed into two components — one from Ker (Agqr) and one from Ker (Apqr) — the above

condition ensures that iterations converge to a fixed point for the component in Ker (Agq;), while
maintaining stability for the component in Ker (Arpqr) without amplification. This stability is crucial
because Hpqr = I — Apqr, and if Ker (Agqr) # {0}, then Hpgr necessarily has an eigenvalue equal
to 1, whose associated component can easily diverge within Ker (Agqr). Consequently, preventing
amplification of Hpqy in Ker (Apqp) during iterations is essential.

The fixed point to which FQI converges consists of two components:
(Arq)” brr and (1 = Arax (Ar)”) - (108)
The term (I — (Arq1) (AFQI)D) o represents any vector from
Ker (Arqi)
because {(AFQI) (AFQI)D} is a projector onto
Col ((AFQI)k) along Ker ((AFQI)k) ,
while (I — (Arq1) (AFQ[)D) is the complementary projector onto

Ker ((AFQI)k> along col(A]:QI)k7

where k£ = Index (Agqr). Consequently,

Col (1 — (Arqr) (AFQI)D) — Ker ((AFQI)’f) .

Since Hpqy is semiconvergent, Index (I — Hpq) < 1 and Apqr = I — Hpqr, we know that
Col (I - (AFQI) (AFQI)D) = Ker (AFQI)

Therefore, (I — (Arq1) (AFQI)D> 0y can be any vector in Ker (Apqr). Additionally, for the term
(AFQI)D brqr in Equation 1) since Index (Apqr) < 1, it follows that

(Arar)® bt = (Arqn) brqi.
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In summary, we conclude that any fixed point to which FQI converges is the sum of the group inverse
solution of the FQI linear system, denoted by (AFQI)# bror, and a vector from the null space of
AFQI, i.e., Ker (AFQ]). Additionally, since Zco'uAFQI = Ajstp and X, pr] = bLsTD (Section and
the FQI linear system is consistent, i.e., (brqr) € Col (Apqr), it follows that (AFQI)# brqr is also a
solution to target linear syste Moreover, as Ker (Apqr) C Ker (Arstp), the sum of (AFQI)# brq
and any vector from Ker (Apqr) is also a solution to target linear system. In other words, any fixed
point to which FQI converges is also a solution to the target linear system. This conclusion aligns
with the results presented in Section [3] where it is shown that target linear system represents the
projected version of the FQI linear system.

D.2  Proof of Theorem
Theorem D.2 (Restatement of Theorem [5.1)). FQI converges for any initial point 0y if and only if

(Ziov%ﬂ.) € Col (I — ’yET ZC,.) and (’yET Em.) is semiconvergent.

cov cov

It converges to [(I — 2! ZCT)D Sloubr + (I — (I -3, 2er) (I — 2 ZCT)D) 00]

cov cov cov

Proof. From Section 3] we know that FQI is fundamentally a iterative method to solve the FQI linear
system

cov

(I - ’YZT ZC”‘)Q = Elovad)-ﬂ"'

Therefore, without assuming singularity of the linear system, by Berman and Plemmons [5, Pages
198, lemma 6.13@, we know that this iterative method converges if and only if the FQI linear system
is consistent:

(2l,,06,r) € Col (I -5, 5, ),

and yXf_, %, is semiconvergent. It converges to

|:|:<I - ’YZZO’UZCT)D zlov6¢;7“ + (I - (I - 7210’[}207) (I - VZZOUZCT)D) 90i|:| € @LSTD'

D.3 Linearly independent features

Proposition[D.3]examines how linearly independent features affect the convergence of FQI. As shown
in SectionE], when @ is full rank (linearly independent features (Condition @), the FQI linear system
that FQI solves is exactly equal to the target linear system. Consequently, the consistency condition
changes from (bpqr) € Col (Arqr) to bLstp € Col (ALstp), and the covariance matrix 3., becomes
invertible. FQI can then be viewed as an iterative method using ¥._,! as a preconditioner to solve
target linear system, with Mrqr = E;}U and Hrqr = I — MrqiALstp. Beyond these adjustments,
the convergence conditions for FQI remain largely unchanged compared to the general convergence
conditions for FQI (Theorem[5.1)), which does not make the linearly independent features assumption.
Thus, we conclude that the linearly independent features assumption does not play a crucial role in

FQI’s convergence but instead determines the specific linear system that FQI is iteratively solving.
Proposition D.3. Given ® is full column rank(Condition 4.3 holds), FQI converges for any initial
point 0q if and only if

9¢77- € Col (Ecov — ")/Zcr)

and (VEC_O%JECT) is semiconvergent. it converges to

[(I A S ) B O + (I (T =48 %) (I - yz;OLECT)D) 90] € OLsm.

15Brief proof: Arstp (AFQI)# brgt = Zeov Arar(Arqr)* brgi = Seovbror = bLsTp.

1®We note that the first printing of this text contained an error in this theorem, by which the contribution of
the initial point, zo, was expressed as (I — H)(I — H)Px rather than I — (I — H)(I — H)"xo. This was
corrected by the fourth printing.
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Proof. From Section [3]we know that when @ is full column rank (X, is full rank), FQI is exactly
iterative method to solve target linear system and the FQI linear system is equivalent to the target
linear system. Therefore, the consistency condition of FQI linear system:

(58,000,) € Col (I —~%f,,2c,)
is equivalent to the consistency condition of target linear system:
0(15,1" € Col (Ecov - 7207‘) ’

and we have ©1 = ¥~1  Then, from Theorem|S.1, we know that in such a setting, FQI converges

for any initial };ant 0o if and only if
0gr € Col(Ecop —¥Eer) and (7271 Ecr) are semiconvergent,

cov

and it converges to

[(I S Se) Y S 0 + (I (I =S S (T - fyz;}vzcr)D) 90} € OLsm.

D.4 Rank Invariance

D.4.1 Proof of Lemmal[5.2]

Lemma D.4 (Restatement of Lemma[5.2). If rank invariance (Condition[d-1)) holds, ¥, and X,
are a proper splitting of (Xcov — YXer)-

Proof. When Rank (X.,,) = Rank (X., — vX¢), by Lemmawe know that
Col (Xcov) = Col (Ecop — 7Eer) and Ker (Xeon) = Ker (Xeop — 7Eer) -
Then, by definition of a proper splitting (in Appendix [A.1)), X, and 3, are a proper splitting of
(Zeov = 18er) -

D.4.2 Proof of Corollary[5.3|

Corollary D.5 (Restatement of Corollary[5.3). Assuming that rank invariance (Conditiond.1)) holds,
FQI converges for any initial point 0 if and only if

p (WZZOUZW) < 1.

It converges to [(I — vX1,,5¢) 7 21,060 € Orsrp.

Proof. From Lemma [5.2] we know when rank invariance (Condition .1 holds, X.,, and X, is
proper splitting of (X.,, — 7X.-). By the property of a proper splitting [4}, Theorem 1], we know
that (I — 3 ECT) is a nonsingular matrix. Then by Lemmawe know that y3f_ ¥, has no

cov cov

eigenvalue equal to 1; therefore, Y1 3., is semiconvergent if and only if p (’yET ECT) <L

cov cov

Morever, since FQI linear system is nonsingular, (Eiovﬁd)m) € Col (I — 3 ECT) naturally holds.

Additionally, “r
(I =351, 50)” = (I =75, Se)

cov cov

Hence, by Theorem we know that in such a setting, FQI converges for any initial point 6 if and
only if

p (WEIOUECT) <1
It converges to [(I — yX{,,Se) 181,00, € OLstp. O
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D.5 Nonsingular target linear system
Corollary D.6. Assuming Argy is full rank, FQI converges for any initial point 8y if and only if

(nyCO’UZC"')
It converges to
|:(Ecov - ’Yzcr)il 0(;5,7”] = ®LSTD

Proof. By Proposmon@ we know that Aggy is full rank if and only if rank invariance (Condltlon@
holds, therefore, it is clear that it share the same convergence result with Corollary [5.3]

E The convergence of TD

Definition E.1. TD is stable if there exists a step size & > 0 such that for any initial parameter
0o € RY, when taking updates according to the TD update equation (Equation ), the sequence
{0k }52, converges, i.e., limg_, o, Oy exists.

E.1 Interpretation of convergence condition and fixed point for TD

Theorem E.2 (Restatement of Theorem [6.1). TD converges for any initial point 0y if and only if
brstp € Col (Arstp), and Hrp is semiconvergent. It converges to

[(ALSTD)D bsto + (I — (Arstp) (Arst)P) 90} € OLstp- (109)

As presented in Section[3] TD is an iterative method that uses a positive constant as a preconditioner
to solve the target linear system. Its convergence depends solely on the consistency of the target
linear system and the properties of Hrp. In Theorem[6.1] we establish the necessary and sufficient
condition for TD convergence. Using the notation defined in Section [3| where bistp = 04,
Arsto = (Zeov — ¥Xer)s and Hyp = (I — aArstp), we know that the necessary and sufficient
conditions are composed of two conditions:

bustp € Col (ALstp) and Hrp = (I — acArstp) is semiconvergent.

First, bstp € Col (ALstp) is the necessary and sufficient condition for target linear system being
consistent, meaning that a fixed point of TD exists. Second, Hyp being semiconvergent implies that
Hrp is convergent on Ker (A stp) and acts as the identity on Ker (A srp) if Ker (A stp) # {0}.

This means that the iterations converge a fixed point on Ker (ALstp) while remaining stable on
Ker (Arstp) without amplification. Since Hrp = I — aArsm, if Ker (Arstp) # {0}, then Hrp
will necessarily have an eigenvalue equal to 1, and we want to prevent amplification of this part
through iterations. From Theorem|[6.1] we can also see that the fixed point to which TD converges
has two components:

(Arstp)Pbrstp and (I — (ALstp) (ALSTD)D) 6o.

The term (I — (ALstp) (ALSTD)D) 6o represents any vector from Ker (ApLstp), because

((ALSTD) (ALstp) ) is a projector onto Col ((ALSTD)k> along Ker ((ALSTD)k) ,

while (I — (ALstp) (ALSTD)D) is the complementary projector onto

Ker ((ALSTD)k) along Col ((ALSTD)k> ;

where & = Index (Arstp). Consequently, we know

Col (I - (ALSTD) (ALSTD)D) = Ker ((ALSTD)k) .
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Since Htp = I — Apstp is semiconvergent, we know

Index (ALSTD) <1

giving us
Col (I — (ALstp) (ALSTD)D) = Ker (Arstp) -

Therefore, (I — (ALsmd) (ALSTD)D) 6 can be any vector in Ker (Arstp). Additionally, because

Index (ALstp) < 1, we have

(Astp)® brsto = (Avstp) brstp.

In summary, we conclude that any fixed point to which TD converges is the sum of the group inverse

solution of the target linear system, denoted by (ALSTD)# bLstp, and a vector from the null space of
ALSTD, i.e., Ker (ALSTD)-

E.2 Proof of Theorem [6.1]

Theorem E.3 (Restatement of Theorem [6.1). 7D converges for any initial point 0 if and only if the
target linear sytem is consistent:

9¢,r € Col (Zcov — 720,«)

and semiconvergent:
P (I -« (Ecov - 'Yzcr)) <1,
or else
P(I -« (Ecov - ’Yzcv')) =1,
where VA € 0 (I — a(Zeop — YEer)) , A = 1 is the only eigenvalue on the unit circle, and \ = 1 is
semisimple.

It converges to [(Ecov - 'YZCT)D 0¢,T + (I - (Ecov - ’yzcr)(zcov - ’yECT)D) 90:| € ®LSTD~

Proof. As we show in Section |3} TD is fundamentally an iterative method to solve its target linear
system:

(Ecov - ’Yzcr) 0= 0¢,r~
When the target linear system is not consistent, this means there is no solution, and naturally TD
will not converge. 0, € Col (X0, — ¥Ee¢r) is a necessary and sufficient condition for the existence

of a solution to the linear system (X0, — YXcr) @ = 0., making it a necessary condition for TD
convergence.

From Berman and Plemmons [ chapter 7, lemma 6.13] or Hensel [20], we know the general
necessary and sufficient conditions of convergence of an iterative method for a consistent linear
system. We know that given a consistent target linear system, TD converges for any initial point 6 if
and only if (I — & (X0 — ¥Xer)) i semiconvergent.

Therefore, we know TD converges for any initial point 6 if and only if (1) the target linear system is
consistent:
Op.r € Col(Econ — 7Zer)
and (2)
P (I -« (Ecov - 'Yzcr)) <1,
or else
p(‘[ -« (Ecov - ’yzcr)) =1

where VA € 0 (I — & (o — ¥Eer)) , A = 1, is the only eigenvalue on the unit circle, and A = 1 is
semisimple. and when it converges, it will converges to

[(Ecov - ’Yzcr)D 9¢,r + (I - (Ecov - Vzcr)(zcov - VECT)D) 901| € GLSTD-
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E.3 Proof of Corollary[6.2]

Corollary E.4 (Restatement of Corollary[6.2). TD is stable if and only if the following conditions
hold:

* 0y € Col (Beop — YZer)
o (Zeov — YXer) is positive semi-stable.
* Index (X.0p — 7Xer) < 1

Additionally, if (Xeov — YXer) IS M-matrix, positive semi-stable condition can be relaxed to:
(Beov — YXer) is nonnegative stable.

Proof. First, from Lemma [E.5| we know that when (X0, — 73, is full rank, there exists a > 0
that
(I — a(Xeop — ¥Xer)) is semiconvergent

if and only if (X0, — 7YX, is positive stable.

Second, from Lemmawe know that when (.o, — ¥X) is not full rank, there exists a > 0 that
(I — a(Zeop — ¥Xer)) 1s semiconvergent if and only if (3., — 7X.-) is positive semi-stable and
the eigenvalue (s _v5.,) =0 € 0 (Xcov — 7E¢r) is semisimple. Moreover, from Lemma
we know "the eigenvalue A5, _~x.) = 0 € 0 (Ec00 — 7Ecr) is semisimple” is equivalent to
Index (Xcop — vEer) = 1.

Combining two above cases where X, — 72, is full rank and not full rank, we conclude that there
exists & > 0 such that (I — « (Zeop — 7Xer)) is semiconvergent if and only if (X, — 72X is
positive semi-stable and Index (X5, — 7X) < 1.

Finally, by Theorem[6.1] we know that there exists & > 0 such that TD converges for any initial point
0o if and only if
Opr € Col(Econ — 7Z¢er)

and
(Beov — ¥Xer) is positive semi-stable

and
Index (Xcop — 7Xcr) < 1.

Additionally, When (X.,, — vX.,) is a singular M-matrix, by Berman and Plemmons [5} Chapter 6,
Page 150, E11,F12], we know that if (.., — ¥X.,) is positive semi-stable, it must be nonnegative
stable. Hence, the proof complete. O

Lemma E.5. Given a square full rank matrix A and a positive scalar o, (I — o A) is semiconvergent

if and only if A is positive stable and o € (0, €) where € = miny ¢, () 2'§|}§(‘>‘) )

Proof. Since A is full rank it has no eigenvalue A = 0 € o (A), therefore, by Lemmal[A.1|we know
that it is impossible that (I — «A) have eigenvalue equal to 1 for any eligible a.

By Proposition we know that (I — aA) is semiconvergent if and only if
p(I—ad) <.
Additionally, because
oc(I—aA)\{1} =0 (I — aA)
and \(4) € o (A), by Lemma we know that
V>‘(I—(xA) €0 (I - OZA) ) |>‘(I—aA)| <1

if and only if
V)\(A) S O'(A) R ()\(A)) >0

and a € (0, €) where € = minyeq(4) %(I/\)
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Hence, We can conclude that (I — «A) is semiconvergent if and only if A is positive stable and
a € (0,¢€), where

. 2R
€= mm —5— .
Aco(A) ||

O

Lemma E.6. Given a square, rank deficient matrix A and a positive scalar o, (I — «A) is semicon-
vergent if and only if

A is positive semi-stable

s the eigenvalue \(4) = 0 € o (A) is semisimple or Index (A) =1

o . 2-R(N)
a € (0,¢€), where € = minycq(a)\ {0} T
Proof. Since A is not full rank it must have eigenvalue A4y = 0 € o (A). Then, by Proposition|A.8]
we know that (I — «A) is semiconvergent if and only if
p(I —ad)=1
where A\(7_q4) = 1 is the only eigenvalue on the unit circle, and A(;_,4) = 1 is semisimple.
Next, by Lemma[E7, we know that
V/\(IfaA) €0 (I - O{A) \{1}7 ‘)‘(IfaA)| <1

if and only if
YA(a) € 0 (A)\{0}, R (A\a)) >0

and v € (0, €) where € = minyeq(a)\ {0} %A(‘)‘)

Thus, VA4 € o (4) \{0},

. 2-R(N)
(A > 0and « € (0,¢) where e =  min
( (A)) 0,€) Aco(M\{0}  |A

are necessary and sufficient condition for p (I — aA) = 1 where A\(;_q4) = 1 is the only eigenvalue
on the unit circle.

Then by Lemmalee know A(;_q 4y = 1is semisimple if and only if A(4) = 0 is semisimple.
Therefore, we can conclude that (I —«A) is semiconvergent if and only if A is positive semi-stable and

R(A))
YV

its eigenvalue \(4) = 0 € o (A) is semisimple and « € (0, €) where € = miny , eo(A)\{0}

From Lemma we know the eigenvalue A\(4) = 0 € o (A) is semisimple is equivalent to
Index (A) = 1. Hence, the poof is complete.

O
Lemma E.7. Given a positive scalar o and matrix A € R"*",
VA(I—aa) € 0 (I —aA)\{1}, [A1—aa)| <1
if and only if VA 4y € o (A)\{0},

2. §R(/\(A)))
R (A > 0and o € (0,€) where e = min ( .
() 0.9 AN} \ [A(a)]

Proof. Assume that there exists an o > 0 such that VA(;_ 4y € 0 (I — aA)\{1},[A1—aa)| < 1.
This means that for every nonzero eigenvalue A(4) # 0 of A, the inequality |1 — aeA(4)| < 1 holds.
Define any nonzero eigenvalue of matrix A as A4y = a + bi, where a and b are real numbers, and i
is the imaginary unit. Using Lemma the condition [1 — aeA(4)| < 1 can be rewritten as:
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V(1 —aa)? + (—ab)2 < 1.

Squaring both sides and simplifying, we get:

(@ +b*) —2aa+1 < 1,
which further simplifies to:
o?(a® +b*) — 2aa < 0, (110)

and since (a? + b?) > 0, we know that there exists o make Equation (110) hold only if quadratic
equation Equation (TTT)) has two roots:

(a® + b*)a? — 2aa = 0, (111)

which means the discriminant of Equation (111): (—2a)® > 0, so a # 0. and when e = 0 and el
the Equation (ITT) holds. Therefore,

* Assuming a < 0, then —*%> < 0, so Equation li holds if and only if o € (ﬁ, 0).

However, this contradicts the fact that o > 0, so 1t cannot hold.

* Assuming a > 0, then 2% > 0, so Equation li holds if and only if o € (0, afﬁ)

Therefore, we can see that A € R™", VA(;_q4) € 0 (I — @A) \{1},|\(7—aa)| < 1if and only if

2a
a?+b2 )*

V)\(A) co (A) \{0}, a>0and a € (0, 6) where € = min)\(A)ea(A)\{o} (
O

E.4 Proof of Corollary[6.3]

Corollary E.8 (Restatement of Corollary [6.3). When TD is stable, TD converges if and only if
learning rate o € (0, €) where

. (2 : 3%))
€ = min .
AET(Seon—7Ter)\ {0} Al

Proof. When TD is stable, from Corollary[6.2] we know that

Op.r € Col(Econ — 7Zer)
and

(Beow — ¥Xer) is positive semi-stable

and

Index (Z0p — 7)) < 1.
In such a case, by Theorem [6.1} we know that TD converges for any initial point if and only if
(I — a(Beon — ¥Xer)) is semiconvergent.

Next, given the above, by Lemma and Lemma we know that (I — a (Zeop — Yer)) is
semiconvergent if and only if

a € (0,€) where € =

. (2 : 3“3(/\)>
min .
A€ (Zeov—72er)\{0} |A‘

Hence, the proof is complete. O
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E.5 Encoder-decoder view

To understand the matrix Apgtp = [® " D(I — vP)®], we begin by analyzing the matrix D(I —
~vP ), referred to as the system’s dynamics, which captures the dynamics of the system (state action
temporal difference and the importance of each state). As established in Proposition D(I—~P,)
is a nonsingular M-matrix. Being positive stable is an important property of a nonsingular M-
matrix[S, Chapter 6, Theorem 2.3, G20]. Moreover, since @TD(I —~P,.)® shares the same nonzero
eigenvalues as D(I — yP,)®® " (Lemma , positive semi-stability of one implies the same
for the other. Interestingly, the matrix D(I — yP,)®® T acts as an encoding-decoding process, as
shown in Equation (TT2)). This encoding-decoding process involves two transformations: First, ®
serves as an encoder, mapping the system’s dynamics into a d-dimensional feature space; then, ®
acts as a decoder, transforming it back to the |S x .A|-dimensional space. The dimensions of these
transformations are explicitly marked in Equation (TIT2). Since from Corollary [6.2] we know that
® "D(I — yP,)® being positive semi-stable is one of the necessary conditions for convergence of
TD. Therefore, whether this encoding-decoding process can preserve the positive semi-stability of
the system’s dynamics determines whether this necessary condition for convergence can be satisfied.

[SxA| 4 1SxA]
—_~—T
D(I-~P,) & & (112)

Encoder Decoder

Proposition E.9. (I — P ) and D(I — yP,) are both non-singular M-matrices and strictly
diagonally dominant.

E.6 TD in the over-parameterized setting

Over-parameterized orthogonal state-action feature vectors To gain a more concrete understand-
ing of the Encoder-Decoder View, consider an extreme setting where the abstraction and compression
effects of the encoding-decoding process are entirely eliminated, and with no additional constraints
imposed. In this scenario, all information from the system’s dynamics should be fully retained, and if
the Encoder-Decoder view is valid, the positive semi-stability of the system’s dynamics should be
preserved. This setting corresponds to | S X A |< d (overparameterization), and more importantly
each state-action pair is represented by a different, orthogonal feature vecton' ', mathematically,
d(si,ai) " ¢(sj,a;) = 0,Vi # j. In this case, we prove that [D(I — yP,)®® " [ is also a nonsingu-
lar M-matrix[]ﬂ just like D(I — vP ), ensuring that positive semi-stability is perfectly preserved
during the encoding-decoding process. Furthermore, we show that in this case, the other convergence
conditions required by Corollary [6.2] are also satisfied. Thus, TD is stable under this scenario, as
formally stated in Proposition [E.10]

Proposition E.10. 7D is stable when the feature vectors of distinct state-action pairs are orthogonal,
Le.,
¢(3i7ai)—r¢(sjvaj) =0, v(shai) 7é (sjva‘j)'

Over-parameterized linearly independent state-action feature vectors Now, consider a similar
over-parameterized setting to the previous one, but without excluding the abstraction and compression
effects of the encoding-decoding process process. This assumes a milder condition, where state-action
feature vectors are linearly independent (Condition rather than orthogonal. In this scenario,
feature vectors may still exhibit correlation, potentially leading to abstraction or compression in
the encoder-decoder process. The ability of this process to preserve the positive semi-stability of
system’s dynamics depends on the choice of features. Not all features guarantee this unless the
system’s dynamics possesses specific structural properties (for example, in the on-policy setting,
any features can preserves positive semi-stability in system’s dynamics). We provide necessary and
sufficient condition of TD convergence for this setting in Corollary [E.TT] These results show that
both the consistency condition and index condition in Corollary [6.2) are satisfied in this setting. Only
the positive semi-stability condition cannot be guaranteed, which aligns with our previous discussion.
Additionally, the star MDP from Baird [2] is a notable example demonstrating that TD can diverge
with an over-parameterized linear function approximator, where each state is represented by different,

In this paper, "orthogonal" does not imply "orthonormal," as the latter imposes an additional norm constraint.
The proof is included in proof of Propositionm
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linearly independent feature vectors. Xiao et al. [44] Theorems 2] further investigate the necessary
and sufficient conditions for the convergence of TD with an over-parameterized linear approximation
in the batch setting, assuming that each state’s feature vector is linearly independent. However, the
proposed conditions for TD are neither sufficient nor necessary. A detailed analysis is provided in
Appendix [} Che et al. [T} Proposition 3.1] attempts to refine the TD convergence results in Xiao et al.
[44], providing sufficient conditions for the convergence of TD under the same setting. However,
as we explain in Appendix [I} this condition, as presented, cannot hold. The results in this section
provide the correct necessary and sufficient condition.

If we take a further step and remove the assumption that the feature vectors for each state-action pair
are linearly independent, while still operating in over-parameterized setting (i.e., | S x A |< d, but ®
is not necessarily full row rank), the consistency of the target linear system (i.e., the existence of a
fixed point) can no longer be guaranteed, as demonstrated earlier in Section[d] Naturally, this leads to
stricter convergence conditions for TD compared to under the previous assumption.

Corollary E.11. Let ® be full row rank. Then TD is stable if and only if either [® "D(I — yP,)®]

is positive semi-stable or [D(I — yP)®® "] is positive stable.

E.7 Proof of Proposition [E.9]

Proof. As P is row stochastic matrix, we know that 0 £ P, < 1, we obtain that (I — vP ) is
Z-matrix by Deﬁnition As D is positive diagonal matrix then D(/ — P, ) is also an Z-matrix.
From below and by Berman and Plemmons [5| page 137, N38] that any inverse-positive Z-matrix is
nonsingular M-matrix, we can see that (I — yP,) and D(I — vP) is nonsingular M-matrix:

(I =9Pr)~ = —7Pr)""
= - - (convergence of matrix power series due to p(vPr) < 1)
P, )" (113)
=0

=0 (yPr=0and20),

so (I — vP) is nonsingular M-matrix, then since D is positive definite diagonal matrix, using
Lemma we know D(I — vP) is also nonsingular M-matrix. O

Lemma E.12. Given any positive definite diagonal matrix G, if A is an nonsingular M-matrix, then
GA and AG are also nonsingular M-matrices.

Proof. 1If A is nonsingular M-matrix, then for any positive definite diagonal matrix G, off-diagonal
entries of matrix GA or AG is also non-positive, means they are also Z-matrix. Furthermore, since
by property of nonsingular M-matrix[[3, Chapter 6, Page 137, N38], A~! > 0, then we can see that
(GA)™! = A7'G7! 2 0and (AG)™! = G1A~! = 0, therefore we know that GA and AG are
both Z-matrix and inverse-positive, so they are nonsingular M-matrix. O

E.8 Linearly independent features, rank invariance, and nonsingularity

While there may be an expectation that if ® is full column rank, TD is more stable, full column
rank does not guarantee any of the conditions of Corollary [6.2] The stability conditions for the full
rank case are not relaxed from Corollary which is reflected in Proposition Additionally, in
Proposition [E.T4] we see that rank invariance ensures only the consistency of the target linear system
but does not relax other stability conditions.

Proposition E.13. When ® has full column rank (satisfying Conditiond.3)), TD is stable if and only
if the following conditions hold

1. (®TDR) € Col (®TD(I — AP,)®)
2. [®"D(I — yP)®]| is positive semi-stable
3. Index (#"D(I — yP,)®) < 1.
If ("D(I — vP,)®) is an M-matrix, the positive semi-stable condition can be relaxed to:

(®"D(I — vP,)®) is nonnegative stable.
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Proposition E.14. Assuming rank invariance (Condition holds, TD is stable if and if only the
Sollowing 2 conditions hold: (1)(Xcon — YXer) is positive semi-stable. (2) Index (Xcop — 72¢r) <
1.

Nonsingular linear system When the target linear system is nonsingular, the solution of target
linear system (the fixed point of TD) must exist and be unique. Additionally, the necessary and
sufficient condition for TD to be stable reduces to the condition that A grp is positive stable, as
concluded in Corollary Interestingly, if (<I><I>T) is a Z-matrix, meaning that the feature vectors
of all state-action pairs have non-positive correlation (i.e., Vi # 7, (s;, a;) T é(sj,a;) < 0), and
its product with another Z-matrix, D(I — vP), is also a Z-matrix, then (D(I —yP,)®® ") isa
nonsingular M-matrix. In this case, using the encoder-decoder perspective we presented earlier, we
can easily prove that TD is stable. This result is formalized in Corollary

Corollary E.15. When (Xcop — YXcr) is nonsingular (satisfying Condition , TD is stable if and
only if (Xeon — YXer) is positive stable.

Corollary E.16. When (X0, — 7Xcr) is nonsingular (satisfying Condition and two matrices:
23", (D(I —~P,)®d")

are Z-matrices, TD is stable.

E.9 Linearly independent features
E.9.1 Proof of Proposition [E.13]

Proof. Since @ is full column rank does not necessarily imply any of three conditions in Corollary [6.2]
therefore, its existence will not alter the condition of TD being stable. When @ is full column rank ,
TD is stable if and only if the three conditions in Corollary [6.2]hold. O

E.10 Rank invariance

E.10.1 Proof of Proposition [E.14]

Proof. When Rank (3.,,) = Rank (X.p, — 7X¢r), from Propositionwe know that it implies
Opr € Col(Zeop — ¥Eer). Then, as Rank (X.,,) = Rank (3.0, — 7X.r) does not necessar-
ily imply "(Xcon — ¥Xer) is positive semi-stable” or "Index (3.0, — 72s-) < 1". By Corol-
lary we know that when when Rank (3.,,) = Rank (X.,, — 7X.), TD is stable if and only if
"(Xeov — 7YXer) is positive semi-stable" and "Index (Yoo, — 7X0r) < 1" O

E.11 Nonsingular linear system

E.11.1 Proof of Corollary [E.15|

Proof. Assuming that ® is full column rank and rank invariance (Condition holds, by Proposi-
tion 4.5l we know that
(Ecov - 'Yzcr)

is nonsingular if and only if ® is full column rank and rank invariance (Condition 4.1 holds. There-
fore, Index (X0, — 72er) = 0 and (2.0, — 72E.) has no eigenvalue equal to 0. Consequently,
(Xeow — ¥Xer) is positive semi-stable if and only if it is positive stable. Moreover, by Proposi-
tion we know that Rank (X.0,) = Rank (Xco, —7Xcr) implies 64, € Col (Zeon — 78er).
Finally, from Corollary we know that when ® is full column rank and Rank (X..,) =
Rank (Xcor, — 7E¢r), TD is stable if and only if (X0, — 7Xr) is positive stable. O

E.11.2  Proof of Corollary [E.16]

Proof. When each feature has nonpositive correlation, the matrix ®® " has nonpositive off-diagonal
entries and is thus a Z-matrix. At the same time, it is clearly symmetric and positive semidefinite,
meaning all of its nonzero eigenvalues are positive. This implies that it is also an M-matrix [5}
Chapter 6, Theorem 4.6, E11]. From this property and Proposition[E.9] it follows that D(I — yP)

is a nonsingular M-matrix. Therefore, when ®® "D (I — yP.;) is a Z-matrix, it is also an M-matrix
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[S) Chapter 6, Page 159, 5.2], and hence positive semi-stable. Given that 3., — 73, is nonsingular,
Lemma [E. 18] implies:

o (@"D(I —yP;)®) =0 (2@ 'D(I — yP,)) \{0}.

Thus, ® " D(I — yP,)® is positive stable, and by Corollary [E.15} TD is stable.

E.12 Over-parameterization
E.12.1 Proof of Corollary [E.I1]

Proof. Assuming @ is full row rank, by Proposition we know that target linear system is
universal consistent so that 64, € Col (¥, —YX-). Then, by Lemma we know that
Index (® "D(I — vP,)®) < 1, and by Corollary we can conclude that in such a setting,
TD is stable if and only if (® "D(I — 4P, )®) is positive semi-stable. Additionally, by Lemma
wesee o (@' D(I —vP)®) \{0} =0 (D(I —vP;)®® "), as we know D(I —yP,)®® " is non-
singular matrix, so (® "D(I — yP,)®) is positive semi-stable if and only if (D(I —yP,)®®")
is positive stable. We can conclude that TD is stable if and only if (D(I — vP,)®® ") is positive
stable. O

Lemma E.17. If ® is full row rank,
Index (¢ 'D(I —yP,)®) <1
and

o (2"D(I —~P-)®)\{0} =0 (D(I —+P,)®d").

Proof. Given that ® is full row rank, as we know D(I — vP) is full rank, so when h > d,
(D(I —yP)®® ") is full rank, then by LemmaE.19|we know that: Index (® "D(I — yP,)®) =
1.

When h = d, ® is a full rank square matrix, so <I>TD(I — 4P, )® is nonsingular matrix, and
Index (@TD(I — fyPW)(I)) = (. We can conclude that given that @ is full row rank,

Index (¢ 'D(I —yP,)®) < 1.
Next, @ is full row rank, so ®® T is also full rank, therefore D(I - ’wa)fIKI)T is a full rank matrix,
and then by Lemma [E. 18] we know that:

o ("D —+P,)®)\{0} =0 (DI —P,)2®").

O

Lemma E.18. Given any matrix A € C™*" and matrix B € C"*™, suppose m > n, then the
matrices AB and B A share the same non-zero eigenvalues:

o (AB) \{0} = o (BA) \{0},
and every non-zero eigenvalue’s algebraic multiplicity:
VA € 0 (AB)\{0},algmultap(\) = algmultga (N).
Proof. Given any matrix A € C"™*" and matrix B € C"*™, suppose m > n. From [26, Chapter
Solution, Page 128, 7.1.19(b)], we know that it has:
det (AB — A1) = (—=\)"""det (BA— \I),

where det (AB — AI) is characteristic polynomial of matrix AB and det (BA — AI) is characteristic
polynomial of matrix BA. Therefore, they share the same nonzero eigenvalues and every nonzero
eigenvalues’ algebraic multiplicity. O
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Lemma E.19. Given any matrix A € C™*"™ and matrix B € C"*™, suppose m > n and A is full
column rank and B is full row rank, if BA is nonsingular matrix, then:

Index (AB) = 1.

Proof. Given that m > n and A is full column rank and B is full row rank, and B A is nonsingular
matrix. let’s define Jordon form of AB as
—1 _7_ | Sz O
P (AB)P—J—{O Jreo |

where J) is composed by all Jordan blocks of nonzero eigenvalues, and Jy—¢ is composed by all
Jordan blocks of eigenvalue 0. Next, we define Jordon form of B A as:
P (BA)P = Joxn.
J is full rank matrix: Rank (j ) = n. Since BA is a nonsingular matrix, then by Lemma we
know that AB and B A share the same non-zero eigenvalue and every non-zero eigenvalue’s algebraic
multiplicity, so
o (AB) =0 (BA)U{0},
and
VYA € o (BA),algmultag()\) = algmultpa (A),
which means we have that Jy( is a nonsingular matrix whose size is equal to Jnxn, Which is an
n x n matrix, so Rank (Jy0) = n. Assume that eigenvalue 0 of matrix ® 'D(I — yP,)® is not
semisimple, means that Rank (Jy—o) > 0, then clearly Rank (.J) > n. In this case from Fact[C.6| we
know it violates the maximum rank J can have, which is n, as Rank (4) = n and Rank (B) = n, so

it is impossible. Finally, we conclude that the eigenvalue O of matrix AB is necessarily semisimple,
so by LemmalE.24] we know that Index (AB) = 1. O

E.12.2 Proof of Proposition [E.I0]

Proposition E.20 (Restatement of Proposition [E.10). When the state-action pairss features are
orthogonal to each other, TD is table.

Proof. When the state-action pairs’ feature are orthogonal to each other, we know that the rows
of ® are orthogonal to each other, as well as linearly independent, so ® is full row rank and ®® "
is a positive definite diagonal matrix. Subsequently, by Proposition we know D(I — P ) is
a nonsingular M-matrix. Therefore, by Lemma [E.12] we can see that D(I — 4P, )®® " is also a
nonsingular M-matrix, and then by the property of nonsingular M-matrix [S, Chapter 6, Page 135,
G20], we know that D(I — 4P, )®® is positive stable. Hence, by Corollary[E.11} TD is stable. [

E.13 On-policy

E.13.1 Alignment with previous results

In the on-policy setting, it is well-known that if ® has full column rank (linearly independent features
(Condition ), then [@TD(I — ’yPﬂ)@] is positive definite, which directly supports the proof of
TD’s convergence [40]]. This result aligns with our off-policy findings in Corollary [6.2] as explained
below:

First, as demonstrated in Proposition@ the consistency condition is inherently satisfied in the
on-policy setting. Second, because [q) D(I - VP,T)CIJ] is positive definite, all its eigenvalues have
positive real parts (as shown in Property [A.4), which ensures that it is positive stable. Additionally,
since [® " D(I — vP,)®] is nonsingular, we have Index (® 'D(I — vP)®) = 0. Thus, both the
positive semi-stability condition and the index condition are satisfied, so the necessary and sufficient
conditions for TD being stable are fully met.

Proposition E.21. In the on-policy setting (P~ = 1), [ "D(I — yP)®] is an RPN matrix.

Proof. In the n-policy setting, as show in [40], [D(yP, — I)] is negative definite, therefore,
[D(I —4P,)] is positive definite. Hence, by Lemma we know that @ TD(I — P, )® is
RPN matrix.

O
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E.13.2 Proof of Theorem[6.4]

Theorem E.22 (Restatement of Theorem[6.4). In the on-policy setting when ® is not full column
rank, TD is stable.

Proof. First, as shown in Proposition [E.21]
[@TD(I — yP,)®]

is an RPN matrix, and from LemmalE.23| we know that its eigenvalue A = 0 € o (A4) is semisimple.
Subsequently, by Lemma[E.24] we can obtain that

Index (' D(I —yP,)®) = 1.

Second, because D(I — vP ) is positive definite, by Lemma we know that
Ker (@ "D(I — vP,)®) = Ker (®).

Then, by Lemma@ we know that
Rank (X.0,) = Rank (Zc0p — vZ¢r) -

Moreover, from Proposition4.2) we know that 0y, € Col (Zeo0 — 7Eecr). As
R (z"D(I — 4P,)z) > 0 forall z € C"\{0},

SO
R (2" "D(I — 4P,)®z) > 0 forall z € C*\ Ker (@),

we know that for [® " D(I — 4P )®], for eigenvector vy € Ker (®), the corresponding eigenvalue
A = 0,and for eigenvector vy ¢ Ker (®), the corresponding eigenvalue R(A) > 0. Therefore,
[®"D(I — yP,)®] is positive semi-stable.

Finally, by Corollary we know TD is stable. O

Lemma E.23. For any singular RPN matrix A € C™*", its eigenvalue A = 0 € o (A) is semisimple.

Proof. As A is singular RNP matrix, A = 0 € o (A) and Index (A4) = 1 by the Property [A.5]for
singular RNP matrices. Hence, by Lemma[E.24we know that its eigenvalue A = 0 is semisimple. [

Lemma E.24. Given a singular matrix A € C"*", its eigenvalue A\ = 0 € o (A) is semisimple if
and only if Index (A) = 1.

Proof. Given a singular matrix A € C"*", and A denoting its eigenvalue. from [26] Page 596, 7.8.4.]
we know that index (A) = 1 if and only if A is a semisimple eigenvalue. and by definition of index of
and eigenvalue:

index (A = 0) = Index (A — 0I) = Index (A),

so Index (A) = 1 if and only if its eigenvalue A = 0 is semisimple. O

E.14 Expected TD results in this paper can be easily adapted for stochastic TD and batch TD

Stochastic TD From the traditional ODE perspective, it has been shown that if expected TD
converges to a fixed point, then stochastic TD, with decaying step sizes (as per the Robbins-Monro
condition [32, 40] or stricter step size conditions), will also converge to a bounded region within
the solution set of the fixed point [3} [19, 13| 40]. Additionally, if stochastic TD can converge,
expected TD as a special case of stochastic TD must also converge. Therefore, the necessary and
sufficient conditions for the convergence of expected TD can be easily extended to stochastic TD,
forming necessary and sufficient conditions for convergence of stochastic TD to a bounded region
of the fixed point’s solution set. Thus, all our previous result in this section automatically extend
to for convergence of stochastic TD to a bounded region of the fixed point’s solution set. All the
convergence condition results presented in Section [6|naturally hold as convergence condition results
for convergence of stochastic TD to a bounded region of the fixed-point’s solution set.
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For instance, as demonstrated in Theorem[6.4] expected TD is guaranteed to converge in the on-policy
setting of Tsitsiklis and Van Roy [40], even without assuming linearly independent features. This
implies that stochastic TD with decaying step sizes, under the same on-policy setting and without
assuming linearly independent features, converges to a bounded region of the fixed point’s solution
set. In other words, the linearly independent features assumption in Tsitsiklis and Van Roy [40] can
be removed — a result that, to the best of our knowledge, has not been previously established.

Batch TD By replacing ®, D, P, S0y, Se, and 64, with their empirical counterparts , D, P,
Yeovs 2er and 0y ., respectively, we can extend the convergence results of expected TD to batch

Tlf_gl For example, Corollary which identifies the specific learning rates that make expected TD
converge, is particularly useful for batch TD. By replacing each matrix with its empirical counterpart,
we can determine which learning rates will ensure batch TD convergence and which will not. This
aligns with widely held intuitions in pratical use of batch TD: When a large learning rate doesn’t
work, trying a smaller one may help. If TD can converge, it must do so with sufficiently small
learning rates. In summary, reducing the learning rate can improve stability.

F The convergence of PFQI

F.1 Interpretation of convergence condition and fixed point for PFQI

In Theorem the necessary and sufficient condition for PFQI convergence are established,
comprising two primary conditions: b stp € Col (Arstp), and the semiconvergence of Hppgr =
I — MppgiAvstp. As demonstrated in Section@, the condition by stp € Col (Arstp) ensures that the
target linear system is consistent, which implies the existence of a fixed point for PFQI. The semi-

convergence of Hppqr indicates that Hprgp converges on Ker (Apstp) and functions as the identity
matrix on Ker (Arsmp) if Ker (Arstp) # {0}.

Since any vector can be decomposed into two components — one from Ker (Arstp) and one from

Ker (ALstp) — the above condition ensures that iterations converge to a fixed point for the component

in Ker (A stp) while remaining stable for the component in Ker (Arstp), with no amplification.
Given that Hppqr = I — MpriALstp, if Ker (ALstp) # {0}, then Hppqp necessarily includes an
eigenvalue equal to 1, necessitating measures to prevent amplification of this component through
iterations.

The fixed point to which FQI converges is composed of two elements:
(MPFQIALSTD)D MPFQIbLSTD and (I - (MPFQIALSTD)(MPFQIALSTD)D) 6o.
The term (I — (MprqiALstp) (MprqiAvLsp)P) 6o represents any vector from Ker (Apstp), because
{(M prQIALsTD ) (MpEQI ALSTD)D }
acts as a projector onto
Col ((MPFQIALSTD)k) along Ker ((MPFQIALSTD)k) )

while
(I- (MPFQIALSTD)(MPFQIALSTD)D)
serves as the complementary projector onto

Ker ((MPFQIALSTD)k) along Col ((MPFQIALSTD)k)

where k = Index (MprqiALstp). Consequently,

Col (I - (MPFQIALSTD)(MPFQIALSTD)D) = Ker ((MPFQIALSTD)k) .

While the extension to the on-policy setting is straightforward in principle, in practice when data are sampled
from the policy to be evaluated, it is unlikely that 7P, = 1 will hold exactly.
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Given that Hpgqy is semiconvergent, it indicates that Index (MprqrALstp) < 1 since MprorALstp =
I — Hpqp. Then, we deduce that

Col (I - (MPFQIALSTD)(MPFQIALSTD)D) = Ker (MprqiALstp) -

Since Mpgqr is an invertible matrix, it follows that
Ker (MPFQIALSTD) = Ker (ALSTD) .

Thus, (I — (MprqiALsp) (MproiALstp)®) 0o can represent any vector in Ker (Apstp). Addition-
ally, given that Index (MprorALstp) < 1, we obtain
(MPFQIALSTD)D MprqibLstp = (MPFQIALSTD)# MprqibLstp-

In summary, we can conclude that any fixed point to which PFQI converges is the sum of the group

inverse solution of target linear system, i.e.,(ALSTD)# bLstp, and a vector from the nullspace of
ALSTD’ i.e., Ker (ALSTD)'

F.2 Proof of Theorem[7.1]

Theorem F.1 (Restatement of Theorem [7.1). PFQI converges for any initial point 0y if and only if
'9¢,r € Col (Ecov - VZCT)
and

I -« Z Yeov)' (Zcov — YEer) is semiconvergent.

It converges to

t—1

t—1 Dy
<Z(I - O‘Ecov)i(zcov — Xer ) Z Ycov ‘9¢ r (114)

=0 =0

t—1 t—1
+ (I - (Z(I - azcov)i(zcov - 'Vzcr))(Z(I - azcov)i(zcov - chr))D> 00 (115)

i=0 =0
€ Orsrp. (116)

Proof. From Proposition [B.I| we know that PFQI is fundamentally a iterative method to solve the
target linear system

(Zcov - fyzcr) 0= 9(25,7"-
Therefore, by Berman and Plemmons [5, Pages 198, lemma 6.13] we know that this iterative method
converges if and only if (X0, — YEcr) @ = 0 - 18 consistent:

0g,r € Col (Ecop — VEer)
and

I—a Z Yeov)' (Zeow — YEer) is semiconvergent.

It converges to

t—1

t—1 D,_
<Z(I - O‘Ecov)i(zcov — Xer ) Z Ycov 9¢ r (117)

=0 =0
t—1 t—1
+ (I - (Z(I - azcov)i(zcov - Vzcr))(Z(I - azcov)i(zcov - ’YECT)>D> 00 (118)

i=0 =0
€ O1s1D- (119)
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F.3 Linearly independent features

Proposition studies the convergence of PFQI, showing that linearly independent features does
not really relax the convergence conditions compared to those without the assumption of lin-
early independent features. However, linearly independent features remains important for the
preconditioner of PFQI: Mppqr = azz;é (I — aX.)', because it is upper bounded with in-
creasing t, precisely as lim; o « Zi;é (I —aXee)" = XL, Without linearly independent fea-
tures, Mprqr = o Zf;é (I — aX.,)" will diverge with increasing t (for a detailed proof, see
Appendix [F.3.1), and consequently, Hprqr = I — MprgrArstp may also diverge. This will cause
divergence of the iteration except in some specific cases, like an over-parameterized representation,
which we will show in Appendix [J.3| where the divergent components can be canceled out. Therefore,
we know that when the chosen features are not linearly independent, taking a large or increasing
number of updates under each target value function will most likely not only fail to stabilize the
convergence of PFQI, but will also make it more divergent. Thus, if the chosen features are a poor
representation, the more updates PFQI takes toward the same target value function, the more divergent
the iteration becomes. This provides a more nuanced understanding of the impact of slowly updated
target networks, as commonly used in deep RL. While they are typically viewed as stabilizing the
learning process, they can have the opposite effect if the provided or learned feature representation is
not good.

Proposition F.2. Let Condition .3\ be satisfied, i.e., ® is full column rank. Then PFQI converges for
any initial point 0 if and only if

brsrp € Col (Arsrp)

and
(I — MppoiALstp) is semiconvergent.

It converges to

[(MPFQIALSTD)D Mprorbistp + (I - (MPFQIALSTD)(MPFQIALSTD)D) 90} € Orsrp.

F.3.1 When @ is not full column rank, Mpgqp diverges as ¢ increases

When @ is not full column rank, ¥.,, = ® ' D® is a symmetric positive semidefinite matrix, and it
can be diagonalized into:

_ 0 0
Ecov = Q ! |: 0 err :|Q7

where K, is a full rank diagonal matrix whose diagonal entries are all positive numbers,r =
Rank (X.v), and @ is the matrix of eigenvectors. We will use K to indicate K.« for the rest of the
proof. Therefore, we know

t—1
MPFQI = @Z(I - Oézcov)i = Q_l |: (()Oét)l ?I o (I o CkK)t) Kil Q
=0

Clearly, given a fixed «, we can see that as t — oo, [(at)I] — oo in the matrix above. Therefore,
Mprqr will also diverge.

F.3.2 Proof of Proposition[F.2]

Proposition F.3 (Restatement of Proposition[E2). When ® is full column rank (Condition 4.3 holds),
PFQI converges for any initial point 0y if and only if

* Opr € Col(Econ — yEer)and

* {I -« Z:;(l)<l - azcov)i (Zcov - 'Yzcr):| or
(YEehBer + (I — aZcon) (I — ¥Sg0h Ser)] is semiconvergent.

cov
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It converges to

t—1 4 Dy
(Z(I - azcov)z<zcov - ’yzcr ) Z I azco’u 9(25, (120)
=0

=0

t—1 t—1 D
+ | 1- (Z(I — aeov) (Beov — 7&0) lZ(I = 0%e00) (Beow = 18er) | | B0 (121)

i=0 =0
S @LSTD~ (122)

Proof. As we show in Proposition [B.T} when ® is full column rank,

ll - Z(I - azcov)i (Ecov - Vzcr)‘| [FYZCOUZCT + (I O‘Ecov) (I ,}/ECOUECT)} .

Then, using Theorem we know PFQI converges for any initial point 0y if and only if
Op.r € Col(Econ — 7Zer)
and
(VE oo Zer + (I — aZeou)' (I — vE L Eer)] is semiconvergent.
It converges to

t—1 Dy
(Z(I — a%eon) (Beov — v%)) D (I = a%eon) 0. (123)
1=0 1=0
t—1 t—1 D
+ I— (Z(I - azcov)i(zcov - VECT)> [Z(I - azcov)i<zcov - WECT) 00 (124)
i=0 i=0
€ @LSTD~ (125)
O

F.4 Rank invariance and nonsingularity

First, Proposition [F.4] shows the necessary and sufficient conditions for convergence of PFQI under
rank invariance (Condition [4.T). We see that while the consistency condition can be completely
dropped, the other conditions cannot be relaxed, unlike FQI. Second, in Proposition we provide
necessary and sufficient condition for convergence of PFQI under nonsingularity (Condition 4.4)).
We can see that in such a case, the fixed point is unique, and requires Hprgy to be strictly convergent
(p (Hprqr) < 1) instead of being semiconvergent.

Proposition F.4. When rank invariance (Conditiond.1) holds, PFQI converges for any initial point
0o if and only if Hppgr = (I - M, PFQ[ALSTD) is semiconvergent. It converges to

[(MPFQIALSTD)D Mprobrstp + (1 — (MPFQIALSTD)(MPFQIALSTD)D) 90] € Orstp.

Corollary F.5. When (X.0, — vE¢r) is nonsingular (Condition holds) and (I — aX.oy) is
nonsingular, PFQI converges for any initial point 0y if and only if p (I — MpporArstp) < 1. It
converges to

[(Ecov —Se) 9¢,r} € Orsmp

F.5 Rank invariance

F.5.1 Proof of Proposition [F.4]

Proposition F.6 (Restatement of Proposition . If Rank (X.0,) = Rank (3.0, — vE¢) (Condi-
tion[d.1olds), then PFQI converges for any initial point 0, if and only if

l[ —a Z(I — aZcov)i (Beov — YEer) | is semiconvergent.
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It converges to

t—1

t—1 Dy
(Z(I - azcov)i(zcov — YXer ) Z Ycov 045 r (126)

i=0 i=0
t—1 ‘ t—1 ‘ D
+ I - (Z(I - Oézcov)z(zcov - ’Yzcr)> [Z(I - azcov)l(zcov - ’}/Ecr) 00 (127)
i=0 =0
S @LSTD~ (128)
Proof. When Rank (X.,,) = Rank (X.5, — 7X.), from Proposition we know that it implies
Opr € Col (Zcop — ¥8er).
Next, Since Rank (X.,,) = Rank (X.o, — 73¢) does not necessarily imply

l[ —a Z(I — aBeon)" (Zeov — VECT)l being semiconvergent,

by Theorem|7.1] we know that when Rank (X.,,) = Rank (X.0, — 7Xcr), PFQI converges for any
initial point g if and only if

l[ -« Z(I — ¥o0)" (Zeov — YEer)| is semiconvergent.

It converges to

t—1 t—1
(Z(I - azcov)i(zcov - "}/Ecr ) Z I azcov 0(1) T (129)
=0

=0

t—1 t—1 D
+ I - (Z(I - azcov)i(zcov - ’YECT)> [Z(I - azcov)i(zcov - ’yzcr) 00 (130)

i=0 i=0
€ OLstp- (131)

F.6 Nonsingular linear system
F.6.1 Proof of Corollary[F.3|

Corollary F.7 (Restatement of Corollary . When (Xcon — YXer) is nonsingular ( Condition
holds) and (I — oY) is nonsingular, PEQI converges for any initial point 0y if and only if

t—1
P (I - OzZ(I - azcov)i (Zcov - 'Yzcr)> <1
=0

It converges to [(Ecov — 'chr)fl Odmﬂ} € Orsp.

Proof. Given that (X.,, — 72, ) is nonsingular and (I — aX,,) is nonsingular, by Lemmawe
know that o Z:;é (I — aXpy) is full rank. Therefore,

t—1
« Z(I - aZCOU)i (Beov — ¥Xer) is full rank,
i=0

which means it has no eigenvalue equal to 0. Therefore, by Lemmawe know that [ —« Zz;é (I—
Y eon)! (Zeow — YEer) has no eigenvalue equal to 1.
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Subsequently, I — « Z:;é([ — % eou)! (Beov — ¥Xer) is semiconvergent if and only if

t—1
4 (I - aZ(I - O‘Ecov)i (Zcov - 'YZCT)> <L

i=0
By Proposition 4.2 we know that Rank (3., ) = Rank (X0, — 7X.r) implies
Opr € Col(Econ — 7Eer) -
Next, using Theorem we can conclude that when (X, — ¥X.,) is nonsingular (Condition

holds) and (I — aX.,y) is also nonsingular, then PFQI converges for any initial point 6 if and only
if

t—1
4 (I — OZZ(I - O‘Ecov)i (ECOv - PYZCT)> <L

=0

Additionally, as « Zf;é([ — a¥eon)t (Beow — ¥8er) is full rank,

t—1 b t—1 -1
(Z(I - azcov)i (Ecov - ’Yzcr)> = (Z(I - azcov)i (Ecov - ’Yzcr)) .

=0 i=0

Hence, we know that converges to

t—1 Dy
(Z(I - azcm;)i(zcm) - 72c1)> Z(I - a2c01;)i0¢,r (132)
=0 =0
t—1 ‘ t—1 ‘ D
+ I - (Z(I - Oézcov)l(zcov - VECT)> [Z(I - CVzcov)l(zcov - 'VECT)‘| 00 (133)
=0 =0
t—1 ' “lia '
= (Z(I - Oézcm;)Z (Ecmz - ’Yzcr)> Z([ - szcm;)lab,r (134)
=0 =0
t—1 A= _
= (Ecov - ’Yzcr)_l (Z(I - O[Ecoq))z) Z(I - azcm))le¢,r (135)
=0 1=0
= (Zcov - 'YZCT)_I 9@5,7‘ (136)
€ Orstp- 137)
O

G PFQI as transition between TD and FQI

G.1 Relationship between PFQI and TD convergence

G.1.1 Proof of Theorem[8.1]

Theorem G.1 (Restatement of Theorem [8.1). If TD is stable, then for any finite t € N there exists
€ € RT that for any o € (0, ;) PFQI converges.

Proof. Assuming TD is stable, then by Corollary [6.2] we know that

* 94577‘ € COI (ZCOU - ’7Ecr)y
o (Zeov — 7Xer) is positive semi-stable, and

* Index (X 0y — 7Xer) < L.
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From Theorem [7.1{we know that for any ¢ € Z™, if PFQI converges from any initial point 6 if and
only if

t—1
(I — Z(I - aEcm,)i (Beow — ’yZCT)> semiconvergent (138)
i=0
and
050 € Col (Seon — V5er) -

From Lemma|[E.5|and Lemma[E.6| we know that Equation (I38) holds when

t—1

Z(I - azcov)i(zcov - 'Yzcr)

i=0

is positive stable or positive semi-stable, where A =0 € o (Zﬁ;é (I — aZeor) (Beon — ’yECT)> is

semisimple, and « € (0, €) where
. R(A)
€ = min —_ .
)\60(25;3(I_O‘Ecov)i(zcov_'YZCT))\O ‘)\|

Next, from Lemma [G.2] we know
t—1

Z(I - azco”)i (Zeov = 1Zer) =t (Zcov — YEer) (139)
=0
Lt
i—2 i—1
- (12_; (Z) (Oé) (_Ecov) ) (Zcov - ’YZCT) . (140)

For a fixed, finite ¢ € Z*, define an operator
Ti(a) = A+ aF,

where A =t (Xcop — 7¥er) and E = (22:2 (f) (a)i_Q(_Zcov)i_l> (Beov — ¥Xer), so clearly,

t—1

Tt(a) - Z(I - azcov)z (Zcov - ’Yzcr) .

i=0
From Meyer [26, Page 425, 5.12.4.], we know for any sufficiently small perturbation when the
£o-norm of perturbation is smaller that the smallest nonzero singular value of unperturbed operator,
then the perturbed operator must have greater or equal rank than unperturbed operator. Therefore,
for any sufficiently small « such that ||aF||; is smaller than the smallest nonzero singular value
of A, Rank (T3(«w)) > Rank (A). Obviously oF € Row (A4) so Rank (A + aF) < Rank (A).
Therefore, for any sufficiently small «, Rank (7;(«)) = Rank (A), so

geomult, ) (0) = geomult (0) = dim (Ker (4)).

It is easy to see that lim, 0 T3(«r) = T3(0) = A, so Ty(«) is continuous at the point « = 0.
By the theorem of continuity of eigenvalues[22, Theorem 5.1], we know that if the operator
T;(«) is continuous at o« = 0, then the eigenvalues of T'(x) also vary continuously near o = 0.
This means small changes in « will lead to small changes in the eigenvalues of T3(«). There-
fore, if T;(0) is positive semi-stable, there must exist small enough ¢ € RT that for any
a € (0,¢), Ty(«) is positive semi-stable, and the sum of the algebraic multiplicity of every
nonzero eigenvalue for T3 () is the same as for 73(0) (no nonzero eigenvalue of 7;(0) changes
to 0 by perturbations (af)), which implies alg multr, (0)(0) = algmultr, 4)(0). Then, when
A = 0 € o(A) is semisimple, it means alg multy,)(0) = geomulty,g)(0). Since we al-
ready know alg multr, (9)(0) = algmulty,,)(0) and geomultr,g)(0) = geomulty,(4)(0),

then alg mult, ()(0) = geomultp,(0y(0), A = 0 € o (Zf;é([ — X eo0) (Beou —7207.)) is
semisimple. Thus, if & € min(e, '), the PFQI convergence condition satisfies.

Finally, we can conclude that if when (X.,, — 7X,;) is positive semi-stable and A = 0 € o (A) is
semisimple, for any finite ¢ € N, there must exist a ¢ € RT that for any « € (0, €), PFQI converges
from any initial point 6.

O
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Lemma G.2.

t—1

Z(I - azco’u)i (Ecov - ’yzcr) =t (Ecou - ’7207‘) (141)
=0
e
i—2 i—1
- (2 (z) ) ) (Beov =7Zer) - (142)

Proof. As ¥, is symmetric positive semidefinite matrix, it can be diagonalized into:

[0 o0
ZCO’U - Q |: 0 K’I’XT‘ } Q)

where K., is full rank diagonal matrix whose diagonal entries are all positive numbers, and
r = Rank (2.0, ). Thus, it’s easy to pick a « that (I — aK,«,) nonsingular, so we will assume
(I — aK,x,) as nonsingular matrix for rest of proof. We will also use K to indicate K., for rest of
proof. Therefore, we know

o g(f —a¥ey) = Q7" (()at)l (Ea Sl aK)i) ] Q (143)
—q| ¢ (()1 — (I - aK)) K~ } @ (144)
— Q! | (()at)l (&I s (a)i(_K)i) K-t 1 Q (145)
e éam O(— St (@) (—K)) K ] @ (146)

[ (at)I ©
=0 (@ - S (- ] ¢
= ()l =Q™ [ : %zf_g () () (~K)~) ] q a48)
= (at)I - <§; (Z) (a)%—xcov)i—l) (149)
= (at)] - (aQizt; C) (a)”(Ecov)“> : (150)

Moreover,

2(1 — a%eov)’ (Zeov = Ver) = t (Zeov — 7Zer) (151)
- (ai; (f) (a)”(—Ecov)i*) (Beow = ¥er) . (152)
0

Lemma G.3. Given a matrix: A € R"™, if B € R"™™ and Col(B) C Col(A), then
Rank (A + B) < Rank (A).

Proof. Assuming Col (B) C Col (A), then we know there exists a matrix C' € R™*™ such that
B = AC. Therefore, A+ B = A(I + C), and by Fact we know that Rank (A + B) <
min (Rank (A),Rank (I 4+ C)) < Rank (A4). O
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G.2 Relationship Between PFQI and FQI Convergence

Proposition G.4 (Restatement of Proposition[8.2). For a full column rank matrix ® and any learning

, m), if there exists an integer T € 7" such that PFQI converges for allt > T

from any initial point 0y, then FQI converges from any initial point 6.

rate o € (0

Proof. From Lemma we know that when @ is full column rank, Hprgr = I — « Z:;é([ —
Y eor)! (Leow — YEer) can be also expressed as
Hprgr = (V3 Zer + (I — a3c00) (I — 7S Xer))

and the PFQI update equation can be written as:

Opt1 = ('Vzc_olvzcr + (I - azcov)t(j - ’YZC_O%JECT)) Ok

+ (I = (I = aZeo0) ) e, '

From Theorem [5.1} we know that PFQI converges from any initial point 6, if and only if 04 , €
Col (Xcov — 7Zer) and Hppgy is semiconvergent.

Next, when « is not sufficiently small, its value can be easily adjusted so that aZf;é (I -
aYeov)! (Beov — 7Xer) has no eigenvalue equal to 1. By Lemma this implies that I —
o Zf;é (I — aXeop)’ (Zeon — YEer) has no eigenvalue equal to 0, and thus it is nonsingular. There-

fore, assuming I — Z:;é([ — aeon)" (Zeow — YEer) to be nonsingular in such cases does not
lose generality.

When « is sufficiently small, the entries of o Zf;é (I — aXeop) (Zeop — 7Xer) are also sufficiently

small. From [26} Chapter 4, Page 216], we know that the rank of a matrix perturbed by a sufficiently
small perturbation can only increase or remain the same, so [ — « Zz;é (I—0a%eor) (Beov — YEer)

is nonsingular since [ is nonsingular.

Overall, we can see that [ — « Zf;é (I —aXeon)" (Xeow — YEer) is a nonsingular matrix, which has
no eigenvalue equal to 0, independent of ¢.

Therefore, when there exists an integer 7 € Z™ such that forall ¢ > T', 6, , € Col (Xcop — 7Ecr)
holds and Hpgqyp is semiconvergent, by theorem of continuity of eigenvalues[22, Theorem 5.1] we
know that:

-1

Jim (Voo Zer + (I = 0%00) (I = ¥E 0y Ber)) = YE oy Ser is semiconvergent.
—00
Then, by Theorem we know that FQI converges for any initial point 6.

Lemma G.5. When ® is full column rank, the PFQI update can also be written as:
9k+1 = (72;;1vzcr + (I - Oézcov)t(j - ’YZ;,IUZCT)) ok

153
+({ -~ O‘Ecov)t)z;vl1;9¢m (159

Proof. As we know that when & is full column rank, >.,, = & TD® is full rank. Therefore, by
Fact[G.6] we know that
t—1
QZ(I — aEcov)i = (I — (I - azcov)t) E;)lvj
i=0

Then, we plug this into the PFQI update:

t—1 i—1
Opir =T =Y (I-0%con) (Seov = ¥8er) | O + @ D> (I = aZeor) O (154)
i=0 =0
= [I - ([ - (I - O[Ecm))t) E(;%;(Ecm; - ’Yz(’r)] 0k+1 + (I - (I - aZcm;)t) Z;;lve¢7,r
(155)
= [VEohSer + (I — aSeon) (I = ¥E b Ber) | Ok + (I — (I — aZcon)') Epoh b, (156)
O
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Fact G.6. For a square matrix 7" and a positive integer n, the geometric series of matrices is defined
as:

n—1
S, = ZTk. (157)
k=0

Assuming that I — T is invertible (where [ is the identity matrix of the same dimension as T), the
sum of the geometric series can be expressed as

Sy=I-THI-T) '=I-T)"*I~-T"). (158)
This is implied by Lemma[G.8]

Lemma G.7. Given three square matrices A, B,C € R"*™, if A commutes with B and C then, A
also commutes with B + C.

Proof. If A commutes with B and C, this means AB = BA and AC = C'A. Therefore A(B+C) =
AB+AC =BA+CA=(B+(C)A. O

Lemma G.8. Given a square matrix A € C"*", (I — Ai) and (I — A)f1 commute for any v € N.

Proof. Foranyt > 1:

t—1
S AT -A)=T1- A,
=0

so Y20 Al = (I — A')(I — A)~". Next, we also have:

t—1
(I-A) Al=T1-A4A"
i=0

s0 Y10 AT = (I — A)~Y(I — A"). Therefore, we know:
(I—ANT—A) =T -A)71 - AY.
Thus, (I — A?) and (I — A) commute. O

Theorem G.9 (Restatement of Theorem[8:3). When the target linear system is nonsingular (satisfying
Condition#-4), the following statements are equivalent:

1. FQI converges from any initial point 6.

2. For any learning rate o € (O, ﬁ) there exists an integer T € 7 such that for
t > T, PFQI converges from any initial point 6.

Proof. First, since Proposition[8.2has proven that under linearly independent features (Condition[d.3)),
Item2]implies Item|T] and Condition[4.4]implies Condition 43| therefore, under Condition[4.4] Item

implies Item|[I] Second, from Corollary [D.6] we know that FQI converges from any initial point 6y if
and only if p (YX,L Ec,) < 1. Next, for any learning rate o € (0

cov )’ P (I - Oézcov) < L
SO

2
’ )\WLaw(Ecou)
Jim (1 = aBen) (I = 7855, Zer)) = 0.
—00

Therefore, by the theorem of continuity of eigenvalues[22, Theorem 5.1] we know that if
p (VE s Xer) < 1, then there must exist an integer 7’ € Z such that for all ¢ > T*:

P (VE;olm;Ecr + (I - azcov)tu - 7220le”’>) <L

In this case, by Corollary [F:3] we know PFQI converges from any initial point 6. Therefore, Item|T]
implies Item 2}

The proof is complete.
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G.3 Convergence of TD and FQI: no mutual implication

TD converges while FQI diverges Consider a system with |S x A| = 3,d = 2, and v = 0.8,
where the feature matrix ®, the state-action distribution D, and the transition dynamics P, are
defined as follows:

0.1 0.1 07 0 0 0 1 0
»=(08 02], D=(0 01 0o}, P,=(05 0 05].
0.8 0.4 0 0 02 0.7 0.2 0.1

In this system, the matrix ® "D (I — yP,)® has two distinct, positive eigenvalues, 0.09385551 and
0.01006449, indicating that it is nonsingular and positive stable. Therefore, by Corollary TD

is stable. On the other hand, v (¢ " D®) “'$TD® ~ 1.011068 > 1, and from Corollary [D.6} this
implies that FQI diverges.

FQI converges while TD diverges Now, consider a different system, again with |S x A| = 3,
d = 2, and v = 0.8, where the feature matrix @, the state-action distribution D, and the transition
dynamics P, are defined as follows:

0.1 0.2 02 0 0 0.1 0.3 0.6
¢=(06 03], D=0 07 0], P=(01 02 07].
0.7 1.0 0 0 01 0.1 0.1 0.8

In this case, the matrix ® " D (I —~P,.)® has two complex eigenvalues, —0.00056+0.024845867 and
—0.00056 — 0.024845861, which shows that it is nonsingular but not positive semi-stable. Therefore,

by Corollary [E.15, TD diverges. Meanwhile, (<I>TD(I>)71 ®TDP =~ 0.94628 < 1, and from
Corollary [D.6] we know that FQI converges.

H TD and FQI in a Z-matrix system

In the previous section, we showed that the convergence of TD and FQI do not necessarily imply
each other, even when the target linear system is nonsingular. A natural question arises: Under what
conditions does the convergence of one algorithm imply the convergence of the other? In this section,
we investigate the conditions under which such mutual implications hold.

Assumption H.1. [Z-matrix System]
(1) (Zeor — Y8er)is aZ-matrix  (2)XL >0 (3)XL¥.,. >0 (159)

cov cov

First, we will introduce Assumption[H.I| which essentially requires preserving certain properties from
the system’s dynamics: D(I — yP.) and its components, D and P.. Assumption is composed
of two parts: First, ALstp(= Xcop — 7Eer) is @ Z-matrix; second, E;olv =2 0and X > = 0, which

means that X, and X, form a weak regular splitting of (X.,, — 73¢-). Given these matrices’
decomposed forms:

Seov = 18er = @' D(I —AP7)®, Ty = @'DP, L., =& DP,®,

examining the components between ® " and ® in each matrix reveals something interesting: First,
D(I — yP,) from (®"D(I — yP,)®) is a Z-matrix (proven in Proposition , and second, D
and (YDP) form a weak regular splitting of [D( — vP)]. Essentially, Assumption [H.1|requires
that these properties be preserved when the matrices are used as coefficient matrices in the matrix
quadratic form where @ is the variable matrix.

Theorem H.2. Under Assumption and rank invariance (Condition 1), the following statements
are equivalent:

1. TD is stable.
2. FQI converges for any initial point 0.
Theorem [H.2] shows that when Assumption and rank invariance (Condition [.T)) are satisfied,

the convergence of either TD or FQI implies the convergence of the other. The intuition behind this
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equivalence in convergence is that when Assumption [H.T]and rank invariance (Condition[d.T)) hold,
the target linear system is a nonsingular Z-matrix system, and the matrix splitting scheme FQI uses to
formulate its preconditioner and iterative components is both a weak regular splitting and a proper
splitting. In such cases, from the convergence of either TD or FQI, we can deduce that target linear
system is a nonsingular M-matrix system (where A stp is nonsingular M-matrix), which is naturally
positive stable (TD is stable) and whose every weak regular splitting is convergent (FQI converges).
Overall, from above we see that under the Z-matrix System(Assumption [H.T)) and rank invariance
(Condition [A.T)), the convergence of TD and FQI imply each other:

TD is stable < FQI converges

H.1 Feature correlation reversal

First, let us denote each column of the feature matrix ® as ;, where ¢ represents the index of that
feature. For a feature matrix with d features, the columns are: @1, @2, @3, ..., 4. Each ¢; represents
the ¢-th feature across all state-action pair. We call ¢; the feature basis vector, which is distinct from
the feature vector ¢(s, a) that forms a row of ®.

Assumption presents an interesting scenario where the transition dynamics (P ;) can reverse
the correlation between different feature basis vectors, and importantly, it satisfies the Z-matrix
System(Assumption . More specifically: First, ¥.., = ® ' D® being a nonsingular Z-matrix
means that the feature basis vectors are linearly independent (i.e., ® is full column rank). Moreover,
after these vectors are reweighted by the sampling distribution, any reweighted feature basis vector
has nonpositive correlation with any other original (unreweighted) feature basis vector, i.e., Vi #
j,0; Dp; < 0. Second, ¥ = ®"DP,® > 0 means that P, can reverse these nonpositive
correlations to nonnegative correlations, i.e., Vi # j, goZTDPﬂgoj > 0. Under this scenario, as shown
in Proposition [H.3] Assumption [H.1|is satisfied, and consequently, all previously established results
apply to this case.

Proposition H.3. If Assumption holds, then Assumption[H.1|also holds.
Assumption H.4. [Feature Correlation Reversal]

(1)X0y is nonsingular Z-matrix  (2)X.,. = 0 (160)

H.2 Proof of Theorem[H.2|

Proof. Under Assumption and rank invariance (Condition [4.1)), (Zco, — 72,) is a Z-matrix,
Y ! > 1and X} ¥.. > 0. Then by definition, X.,, and Y2, form a weak regular splitting of

Ccov = cov

(Zeov — YXer), and by Proposition[4.5] (Xcor — 7¢r) is a nonsingular matrix.

TD is stable=FQI converges: When TD is stable, by Corollarywe know that (Xcop, — vZ¢r)
is positive semi-stable. Since (Y., — 7X) is also a Z-matrix, by [5, Chapter 6, Theorem 2.3,
G20] we know that (2.0, — 73¢) is @ nonsingular M-matrix. Therefore, since ., and v, form
a weak regular splitting of (X.., — 72X ), by the property of nonsingular M-matrix[5, Chapter 6,
Theorem 2.3, O47], every weak regular splitting is convergent, so p (WEJO%JECT) < 1. Then, by
Corollary we know that FQI converges for any initial point 6.

FQI converges=TD is stable: Assume FQI converges. By Corollary [D.6] we know that
p(YEZLY) < 1. As . and 7X.,. form a weak regular splitting of (Bcop — 7Xe) and
(Beov — ¥Xer) is Z-matrix, by [5, Chapter 5, Theorem 2.3, N46], (X, — 7X¢) is @ nonsingular
M-matrix. By the property of nonsingular M-matrix |5, Chapter 6, Theorem 2.3, G20], (Xc0p — vE¢r)

is positive stable. Then, by Corollary [D.6] we know TD is stable.

The proof is complete.

H.3 Proof of Proposition [H.3|

Proof. When Assumption holds, Ycov 18 @ nonsingular Z-matrix, and .. = 0. Since X.,,
is also symmetric positive definite, by Berman and Plemmons [5, Chapter 6, Page 156, 4.15], we
know that X, is a nonsingular M-matrix. Moreover, by the property of nonsingular M-matrix[5}
Chapter 6, Theorem 2.3, N38], we know that - >0. Together with X.,. = 0, this implies:

cov
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First, (Zc0p — 7Xr) has nonpositive off-diagonal entries, which means (2.0, — 7X¢) is Z-matrix.
Second, ! %, > 0. Therefore, Assumption is satisfied. O

cov

I Corrections to previous results

Section 2.2 of Ghosh and Bellemare [17] The paper claims that in the off-policy setting and
assuming linearly independent features when TD has a fixed point, that fixed point is unique, citing
Lagoudakis and Parr [23]]. This result is used throughout their paper. However, Lagoudakis and
Parr [23] does not actually provide such a result, and this claim does not necessarily hold. More
specifically, as we show in Section 4] the fixed point is unique if and only if both linearly independent
features and rank invariance hold, where rank invariance is a stricter condition than target linear
system being consistent (which is equivalent to the existence of a fixed point). Therefore, when TD
has a fixed point (target linear system is consistent) and linearly independent features holds, the fixed
point is not necessarily unique since the target linear system being consistent does not imply rank
invariance. It is aslo worth mentioning that in the on-policy setting with linearly independent features,
when TD has a fixed point, that fixed point is unique, as we demonstrate in Section[d.1]

Proposition 3.1 of Ghosh and Bellemare [17] It is a only sufficient but not necessary condition.
Specifically, the proposition states that, assuming ® is full column rank, TD is stable if and only
if (@TD(I — fwa)@) is positive stable. As interpreted in this paper, while positive stability of
(@TD(I — vPﬂ)fb) is indeed a sufficient condition, it is not strictly necessary.

In Proposition :E.13|, we establish that, under the assumption that & is full column rank, TD is stable
if and only if the following three conditions are satisfied:

1. The system is consistent, i.c., (P DR) € Col (¢ "'D(I — vP,)®).
2. [2"D(I — yP,)®] is positive semi-stable.
3. Index (2'D(I — vP,)®) < 1.

If (2"D(I —vP,)®) is positive stable, then [®"D(I — yP,)®| is necessarily positive semi-
stable and nonsingular. As shown in Section 4] any nonsingular linear system must be consistent;
hence, the nonsingularity of (CDTD(I — ’YPW)% ensures that (@TDR) € Col (CDTD(I — 'yP,r)(D)
holds. By definition, this also implies Index (CDTD(I — 'yP,r)‘I') = 0, satisfying the condition
Index (@ "D(I — yP,)®) < 1. Therefore, the positive stability of (® "D(I — vP,)®) guarantees
TD stability.

However, the three conditions in Proposition reveal that TD can still be stable when
(@"D(I — yP,)®) is singular and not strictly positive stable. Therefore, while positive stabil-

ity of (® "D (I — yP)®) is a sufficient condition for TD stability, it is not a necessary one.

Corollary 2 of Asadi et al. [1] It is a only sufficient but not necessary condition. In the context
of our paper, their Corollary 2 states that, given ® has full column rank, FQI ("Value Function
Optimization with Exact Updates" in_their paper) converges for any initial point if and only if
P (7271 ECT) < 1. In Proposition we demonstrate that, given ® has full column rank, FQI

cov
converges for any initial point if and only if the following two conditions are met: (1) the target linear

system must be consistent, i.e., 84 » € Col (Ecop — ¥E¢r), and (2) (72;011)2070) is semiconvergent.

When p (72*1 ECT) < 1, it implies that (72’1 ECT) is semiconvergent and that (I —yxt ECT) is

cov cov cov
nonsingular, as it has no eigenvalue equal to 1 (see Lemmal|A.1). Since X, is full rank, it follows

that ¥, (I — A2 Yer) = Eeov — YEer is also full rank, ensuring the consistency of the system,

cov

ie., 0y, € Col (Seop — 7Eer). Therefore, p (YE,L e, ) < 1is indeed a sufficient condition for

cov

convergence. However, as we show, (72_1 ZCT) being semiconvergent, according to Deﬁnition

does not necessarily imply that p (v2_,}X¢-) < 1. Thus, while p (y3_}Sc,) < 1 is a sufficient

cov cov
condition for FQI convergence, it is not a necessary condition.

Theorem 2 and Theorem 3 of Xiao et al. [44] In Theorem 2, Xiao et al. [44] study the convergence

of Temporal Difference (TD) learning with over-parameterized linear approximation, assuming that
the state’s feature representations are linearly independent. The paper proposes a condition claimed
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to be both necessary and sufficient for the convergence of TD. However, the proposed condition is
flawed and does not hold as either sufficient or necessary due to errors in the proof. Specifically,
between equations (51) and (53), it is claimed that for a non-symmetric matrix, |[W || < 1 implies:
"Given |W|| < 1/, all eigenvalues of I, — yW are positive." This claim is incorrect, as we can
only guarantee that the eigenvalues of I, — YW have positive real parts, not that they are strictly
positive.

Additionally, the matrix 5 (I}, — YW ) MM "Dy, is not generally symmetric positive definite,
as its eigenvalues can be negative or have an imaginary part. Consequently, the condition

Hn(I r—YW)MM TD;CH < 1 does not necessarily imply that the matrix power series
ZE:O (Ik —n(I —yW) MMTDk) converges, and vice versa.

In Theorem 3, Xiao et al. [44] also attempts to analyze the convergence of Fitted Value Iteration (FVI)
in the same setting, providing a condition claimed to be both necessary and sufficient. However, the
paper does not provide a proof for it being a necessary condition, and as we demonstrate, while the
condition is sufficient, it is not necessary for convergence.

Proposition 3.1 of Che et al. [11] In Proposition 3.1, the paper claims that the convergence
of TD in their overparameterized setting (d > k) can be guaranteed under two conditions. One
of them is p (I —nM "Dy(M —yN)) < 1, where M € R¥*? and N € R**¢. Since d >
k, we know that M TDk(M — vN) is a singular matrix. Then, by Lemma , we know that
(I =M T Dy(M —~N)) must have an eigenvalue equal to 1, which contradicts the condition
p (I —nMTDy(M —~N)) < 1. Therefore, this condition can never hold. FEI

J Over-parameterized setting

J.1 Consistency and nonsingularity in the over-parameterized setting

Consistency Condition [J.T|describes an over-parameterized setting in which the number of features
is greater than or equal to the number of distinct state-action pairs (h < d), and each state-action pair
is represented by a different, linearly independent feature vector (row in ®). It is completely different
from linearly independent features, which means full column rank of ®. Condition|J. I{implies rank
invariance. Therefore, it also implies the target linear system is universally consistent. In this case,
the existence of a fixed point is guaranteed for these iterative algorithms that solve the target linear
system. However, in the over-parameterized setting rank invariance does not necessary hold without
Condition [I.T]

Nonsingularity For the nonsingularity of the target linear system under the over-parameterized
setting, when h = d, it can still be guaranteed if linearly independent features (Condition 4.3) holds.
however, in the case of h < d, the linearly independent features (Condition condition can
never be satisfied, and thus nonsingularity—and consequently the uniqueness of the solution—is
impossible.

Condition J.1 (Linearly Independent State-Action Feature Vectors). & is full row rank.

Proposition J.2. If ® has full row rank (satisfying Condition d.3)), then rank invariance (Condi-
tion[d.1)) holds and the target linear system is universally consistent.

J.1.1  Proof of Proposition[J.2]
Proof. Since @ is full row rank, we know that Rank (®) = h and
Col (®) = R"
therefore, Col (P®) C Col (®). By Lemma[J.3|we know that Col (P, ®) C Col (®) implies
Rank (X.0,) = Rank (Zc0p — vZ6r) -

Hence, the proof is complete. O

2We expect that this will be corrected in the arXiv version of the paper. (Personal communication with Che
et al., October 2025)
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Lemma J.3. [f Col (P, ®) C Col (D), then
Rank (X.0,) = Rank (Zc0p — 726 -

However, the converse does not necessarily hold.

Proof. First, assuming Col (P, ®) C Col (®), by Lemma[J.4] we know that
Col (®) = Col (® — 4P, ®)
holds. Then by Lemma([J.5] we know that

Col (D}@) = Col (D} (1= 1P)@).
Subsequently, by Lemma|C.1] we know that Rank (&7 D(I — vP,)®) = Rank (®) if and only if
Ker (@TD%) A Col (D%(I _ VPF)Q) .
Next, since we have
Col (D%(I - WPﬂ)q)) = Col (D%q>) = Row (@TD%) 1 Ker (@TD%) :
we know Ker (@TD%) N Col (D% (I- fyPﬂ)@) = {0}, therefore,
Rank (& 'D(I — vP,)®) = Rank (®).

Second, we will show that Rank (¥.,,) = Rank (¥.,, —yX.) does not necessarily imply
Col (P,®) C Col (®) by demonstrating that

Ker (@TD%) N Col (D% (I - fyP,r)tb) = {0}

does not necessarily imply Col (P,®) C Col (®). This follows from Lemma which estab-
lishes the equivalence between Ker (@TD%) N Col (D% (I - 'yPW)CD) = {0} and Rank (2.,,,) =
Rank (Xeop — 7Xer)-

Assuming that Ker (@TD%) A Col (D% (I- VPW)q>) = {0} does imply Col (P, ®) C Col (®).
When ® "Dz doesn’t have full column rank:
Ker (@TD%) £ {0}.
From Lemma , we know Ker (@TD%) N Col (D% (I- yPﬁ)q)) = {0} implies
Col (®) = Col(® —vP, ),
which is equal to Col (D%CI)> = Col (D% (I- VPW)CI)) by Lemma

Since
Row (@TD%) — Col (D%q>) :

we deduce that Ker (@TD%) N Col (D% (I - 'yPW)CD) = {0} if and only if
Row (@TD%) = Col (D% (I- WPW)<I>> ,
which means among all subspaces whose dimension is equal to dim (Rovv (@TD%D,
Row (¢7D}?)
is only subspace for which

Ker (@TD%) N Row (@TD%) = {o}.
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However, as Ker (@TD%) # {0}, we know this is impossible as it is contradicted by Lemma
Therefore, we conclude that
Ker (@TD%) N Col (D% (I - 'yPﬂ)(ID) = {0}

does not necessarily imply Col (P, ®) C Col ().

Lemma J.4. Col (®) = Col (® — yP,®) if and only if Col (P, P) C Col (D).

Proof. First, assuming Col (&) = Col (& — vP,®), we know that there must exist a matrix C' €
R"*4 guch that
OC = (I —AP,)d
which is equal to YP,® = &(I — C). Therefore, the following must hold :
Col (7P, ®) C Col (D).
Next, assuming Col (yP,®) C Col (®), then we know that there must exist a matrix C' € R"*?
such that ®C' = vP . ®, and therefore,
(I-~4P)d = —&C = &(I — C), (161)
which implies Col ((I — vP,)®) C Col (®). Subsequently, as (I — vP ) is full rank and
Rank ((I — yP,)®) = Rank (®),
we can get:
Col (I —vP,)®) = Col (D).
From above we know that
Col (@) = Col (® —vP,P) < Col (vP,P) C Col (®).
Then, as Col (yP,®) = Col (P, ®), we have
Col (®) = Col (® —yP,P) < Col (P,®) C Col (D).
O
Lemma J.5. Given two matrices A € R"*™ and B € R™™™ and a full rank matrix X € R™"*", if
Col (X A) = Col (XB),

then
Col (A) = Col (B),

and vice versa.

Proof. If Col (X A) = Col (X B), then there must exist two matrices V, W € R™*"™ such that
XAV =XB, XBW =XA.
Since X is invertible, naturally, we have:
AV =B, BW =A,

which implies respectively: Col (A) C Col (B) and Col (A) 2 Col (B). Therefore, we can conclude
that Col (A) = Col (B).

Next, Assuming Col (A) = Col (B), then there must exist two matrices V', W € R™*™ such that
AV =B, BW=A
then for any full rank matrix X € R"*"
XAV = XB, XBW = XA

which implies respectively: Col (X A) C Col (X B) and Col (X A) 2 Col (X B). therefore, we can
conclude that Col (X A) = Col (X B).

Finally, the proof is complete. O
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Lemma J.6. Given any matrix A € R"*™ that Ker (A) # {0}, there must exist subspace W that
dim (W) = Rank (A), W # Row (A) and Ker (A) N W = {0}.

Proof. Assuming Rank (A) = r and Row (A) = {vy,---, v, } where v; - - - v, are r linearly inde-
pendent vectors which are the basis of Row (A4). Since Ker (A) # {0}, we define a nonzero vector
u € Ker (A), and subspace

W= {(vr +u), , (0, + )}

Since Vi € {1,---,r},u L v;, we know that vectors (vy +u),---, (v, +u) are also linearly
independent and

{(vr+u), -, (vr +u)} NKer (A) = {0}
, 80 dim (W) = dim (A). Subsequently, we know

W # {v1,-- ,v.} = Row (A),
e.g. v1 € Row (A) and v; ¢ W. Hence, the proof is complete. O

J.2  Over-parameterized FQI

Linearly independent state-action representation In the over-parameterized setting (h < d),
when each distinct state-action pair is represented by linearly independent features vectors (Con-
dition [I.T), from Proposition we know that the target linear system is universally consistent.
Furthermore, we can prove that p (Y3, S, ) < 1 (see Appendix for details). Consequently, by
Corollary [5.3] FQI is guaranteed to converge from any initial point in this setting. And in such setting,
the FQI update equation can be simplified as: 01 = Y®'P,®0; + ®'R (detailed derivation in

Lemma[A:T9)

Linearly dependent state-action representation However, if we relax the assumption of a linearly
independent state-action feature representation (Condition[J.T)) in the same over-parameterized setting
(h < d), the previous conclusion no longer necessarily holds. In this case, FQI is not guaranteed
to retain the favorable properties established above for the case of linearly independent state-action
feature representation. Consequently, its convergence is not necessarily guaranteed, but all results
(e.g., Theorem[5.1) that did not assume any specific parameterization remain valid.

J2.1 Whyis p (70, Z.) <1

cov

First, as we know when @ is full row rank, v3{, %, = y®TP,®, and by Lemma|E.18] we know

that o (y@TP,®) \{0} = o (y®®'P ) \{0}. Additionally, y®®'P, = vP as ® is full row rank,
and p (YP) < 1. Therefore, p (vE],,Z¢r) = p (v@TP®) = p(7P,) < L.

J.3 Over-parameterized PFQI

Over-parameterized PFQI with linearly independent state action feature vectors Corollary
reveals the necessary and sufficient condition for the convergence of PFQI when each state-action
pair can be represented by a distinct linearly independent features vector (Condition[J. 1{is satisfied).
In this setting, its preconditioner Mppqr = o Zf;é (I — aX.0p)" is not upper bounded as ¢ increases,
indicating that Mprq; will diverge with increasing t. However, MprgiALstp remains upper bounded
as ¢ increases. This is because the divergence in Mprqy is caused by the redundancy of features rather
than the lack of features, and the divergent components in Mpgqr that grow with ¢ are effectively
canceled out when Mpgqr is multiplied by Apstp. For more mathematical details on this process,
please see Appendix Leveraging this result, in Proposition[I.8] we prove that under this setting,
if updates are performed for a sufficiently large number of iterations toward each target value, the
convergence of PFQI is guaranteed. Che et al. [11, Proposition 3.3] previously proved the same
result as Proposition[J.8|using a different proof path. It is worth noting, however, that this proposition
does not guarantee PFQI’s convergence in all practical batch settings, even for sufficiently large t. A
detailed explanation is provided in our batch setting section(Appendix [K.3).

Corollary J.7. When ® is full row rank (Condition[J |is satisfied) and o (aX¢00)N{1,2} = 0, PFQI
converges for any initial point 0y if and only if p (Hproi) = 1 where the X = 1 is only eigenvalue on
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the unit circle. It converges to

t—1 # i1
(Z(I - azcov)i(zcov - ’Vzcr > Z cov 9¢>, (162)

=0 =0
t—1 . t—1 , #
+ 11— (Z(I — aXeov)" (Zeov — v%)) [Z(I — 0%%00) (Beow —YZer)| | 00 (163)
i=0 =0
€ Orsrp. (164)

Proposition J.8. When ® is full row rank and d > h, for any learning rate o € (O, ﬁ) there
must exist big enough finite T such that for any t > T, Partial FQI converges for any initial point 0.

Over-parameterized PFQI without linearly independent state-action feature vectors In this
over-parameterized setting, our previous results that assumed & to be full row rank no longer apply.
However, all results (e.g., Theorem [5.1)) that do not rely on any specific parameterization remain
valid.

J.3.1 Why the divergent part in Mpgqr can be canceled out when @ is full row rank

As we know from Appendix . when @ is not full column rank, Mppgr = o Zz;é (I —aSeon)
will diverge as ¢ increases. However, when & is full row rank (which also includes the case where ®
is not full column rank), (MprqrArstp) becomes:

t—1 t—1 )
ad (I =aZewn) (Zeon — 78er) | = a I—a® ' D®) ®' DI —+P,)d (165)
K ) ( YEer) > ( g
i=0 =0

=adT > (I - aD®dT)' D(I —7P,)®.  (166)

In Equation . <I>TD<I) 1s a singular positive semidefinite matrix. From Appendlxm

we know that Ker (#"D®) # {0}, so in I — a® " D®, there are components that cannot be
reduced by adjusting « (see the mathematical derivation in Appendix [F3.T). These components will
accumulate as ¢ increases, causing Mprqr to diverge. However, when @ is full row rank and Mprqy is

multiplied with Ay grp, & TD® can be transformed as (D<I><I>T) as shown in Equation li which
is a nonsingular matrix. Thus, Ker (DCI)CIJT) = {0}, meaning that by adjusting « we can always

control p (I — aD<I><I>T) < 1. This also indicates that the previously divergent components are
canceled out by Ay stp.

J.3.2  Proof of Corollary|[J.7]

Proof. When h > d and @ is full row rank, we know that X.,, and (X.,, — 7X..) are singular
matrices and the PFQI update is:

t—1

9k+1 - ( - az cov Ecov - ’Yzcr)> ek + (XZ(I - azcov)ieqﬁ,r-

=0

From Proposition [J.2] we know the target linear system is universal consistent, then by Theorem
we know that PFQI converges for any initial point 6 if and only if

( -« Z cov Ecov - 'VECT)>
is semiconvergent. Since

t—1
<Oz Z(I - azcov)i(zcov - ’7267‘)>

=0
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is singular matrix, by Lemma[A.T| we know that

(I -« i(I - Oézcov)i (2001) - ’YECT))

=0

must have eigenvalue equal to 1. Therefore, by definition of semiconvergent matrix in Definition
we know that PFQI converges for any initial point 6y if and only if

=0

t—1
P (I — OZZ(I - O‘Ecov)i (ECOv - PYZCT)> =1,

where the A = 1 is only eigenvalue on the unit circle and is semisimple. Next, from Lemmal[J.9] we
know Index (a Z:;é (I —aXeon) (Zeow — ’YECT)) =1, so we have

t—1

t—1 D - #
(O{ Z(I - azcov)i (Ecov - 7207")> = (Oé Z(I - Oézcov)i (Ecov - ’Yzcr)> -

=0 i=0
Then, by Lemma and Lemma[A.T|we can get:

t—1
A=1lco <I -« Z(I —0%eon)" (Beon — nycr)> is semisimple.
i=0

Therefore, we can conclude that when h > d and ® is full row rank and o (aX.0,) N {1,2} = 0,
PFQI converges for any initial point 6 if and only if

t—1
P (I - OZZ(I - O‘Ecov)i (Ecov - 7207‘)> =1,

i=0

where the A = 1 is only eigenvalue on the unit circle. By Theorem[7.1] it converges to

t—1 #1
(Z(I - O‘Ecov)i(zcov - 7207’)> Z(I - O‘Ecov)iagb,r (167)
=0 =0
t—1 . t—1 . #
+ I - <Z(I - azcov)z(zcov - ’yECT‘)> [Z(I - azcov)z(zcov - ’Vzcr) 00 (168)
i=0 =0
€ Orstp- (169)
[

Lemma J.9. When h > d, ® is full row rank and o (aXc0p) N {1,2} = 0 and P is full row rank,
then

t—1
Index (a Z(I —0Xeon)" (Beon — yzw)> =1.
i=0
Proof. First, we have

t—1 t—1 )
<a Z(I — 0% con)! (Beow — yzw)) =a) (I-a®'Dd) @"D( —P,)® (170)
i=0 =0

=adT > (I - aD®dT)' D(I —7P)®.  (171)

As we know that a® " D® is a singular matrix, «D®® " is a nonsingular matrix and o (aCI)TD<I>) N
{1,2} = 0. By Lemma we can obtain that

o (@ 'D®)\{0} =0 (aDPP"),
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which implies o (aD®® ") N {1,2} = (. By Lemma/l.10, we know
t—1

> (I -aDoaTy
i=0
is a full rank matrix, and subsequently,

<§(I —aD®d")'D(I - VP,F)>

i=0
is a full rank matrix. Together with ® " being a full column rank matrix, we know that

t—1
(Z(I — aD®®")'D(I - 7P,r)<I><I>T>
i=0
is a nonsingular matrix. Therefore, by Lemma[E.T9] we know that:

t—1 )
Index <a<I)T > (I-aD®2T) D(I - VPW)<1>> =1.
=0

Hence, Index (a Zf;é (I —aSeon) (Zeov — ’YZC’I‘)> =1. O

Lemma J.10. Given a nonsingular matrix A € R™*" if o (A) N {1,2} =0, ZE:O (I — A is
nonsingular for any positive integer t.

Proof. Given a nonsingular matrix A € R™*"™, assuming o (4) N {1,2} = 0, by Lemma we
know o (I — A)N{0,1,2} = . Next, we define the Jordan form of A as

QAQ™! =1,
where J is full rank upper triangular matrix with nonzero diagonal entries. By Lemma[A.T] we know
the Jordan form of full rank matrix (I — A) is:

QU-A)Q ™ =(~1J),
where (I — J) is also a full rank upper triangular matrix with no diagonal entries equal to 0, 1 and -1.

Therefore, Vi € N, (I — J )Z is an full rank upper triangular matrix with no diagonal entries equal to
Oand 1,so0Vi € N, (I - -J )1) is nonsingular. Moreover, by Factwe know that:

NUI-A =Y (I-N)'Q ' =Q(UI-T-n")J Q™
1=0

i =0
Since Q, (I — (I — J)**') , J are all nonsingular, S, (= A)" is nonsingular. O

J.3.3  Proof of Proposition[J.§|

Proposition J.11 (Restatement of Proposition [I.8). When ® is full row rank and d > h, for any
learning rate o € (O, ﬁ) there must exist a big enough finite T for any t > T, such that PFQI

converges for any initial point 0.

Proof.
t—1
(a > (I = a%eon) (Beow — vzc,,)> (172)
1=0
t—1 ]
=a) (I-a®'D3) ¢"D( —+P,)® (173)
=0
t—1 )
- a@TZ (I —aD®3") ' D(I —P,)® (174)
=0
=3" (I-(I-aD22")") (DP®")'D(I —vP,)® (175)
=o' (I-(I-aD22")") (22") (I — +Px)®. (176)
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By Lemma [E.T§ we know that:

o (@"(I—(I-aD®2")) (®d")" (I —4P,)®) \{0} (177)
=0 (@' (I-(I—aD®®")") (227)" (I —~P,)), (178)

then by Lemma [A.T| we know that
c(I-2" (I—-(I—-aD®@")") (22") (I —Px)?) (179)
=0 (I-2®" (I —(I—-aD®®")") (@2") (I —yP,)) U {1}, (180)

and we get that

I-22" (I—(I—aD®®")") (@2")" (I —yPx) (181)
=P, + @7 (I — aD®® ") (@D T)"1(I — 4P,). (182)

Since p (I — aD®®T) < 1, lim; o0 (I — aD®DT)" = 0, then
Jim (VP + @@ (I — aD®® ") (®® ")~ (I —yP,)] =P
— 00

As we know that p (yP,) < 1, then by the theorem of continuity of eigenvalues[22, Theorem 5.1],
we can know that there must be finite positive integer 7" that for any ¢t > T,

p(YPr+ @27 (I —aD®® ") (@2") (I —P,)) < L.
In that case, we know that
VA£leo(I—-@" (I-(I-aD®@")") (20") ' (I —P,)®), [\ < 1.

Therefore, p (I — @7 (I — (I — aD®®")") (")~} (I — yP,)®) = 1, and eigenvalue A = 1 is
only eigenvalue in the unit circle. By Lemma [J.9] and Lemma [E.24] we know that A\ = 1 is also
semisimple. By Definition[A.7] we know that

(I-@" (I-(I-aD22")") (®®")"*(I —vP,)®) is semiconvergent.

Additionally, Proposition [J.2{shows that 84, € Col (X0, — 7X,,) naturally holds when & is full
row rank. By Theorem 7.1] we know that PFQI converges for any initial point 6. O

J.4 Over-parameterized TD

The results on TD in over-parameterized setting are presented in Appendix [E.6]

K Batch case

Offline policy evaluation is a special but realistic case of the policy evaluation task, where sampling
from the environment is not possible. Instead, a collected batch dataset {(s;, a;, ; (si, i), s})} iy
comprising n samples, is provided. Therefore, this is also referred to as a batch setting. In this
dataset, we define (s;, a;) as the initial state-action, sampled from some arbitrary distribution D. The
reward is represented as r; (s;,a;) = R (s, a;), and the next state is sampled from the transition
model, s; ~ P (- | s;,a;). Since the next action is sampled according to 7, a} ~ m (s}), we can
express the dataset as {(s;, a;,7; (s;,a;) , 85, a;)};_, for clarity of presentation. We refer to (s, a})
as the next state-action. Here, the sample number n > 7, since usually multiple actions at a single
state have a nonzero probability of being sampled.

Let m denote the total number of distinct state-action pairs that appear either as initial state-action
pairs or as next state-action pairs in the dataset. Let n(s,a) = >, I[s; = s, a; = a] represent the
number of times the state-action pair (s, a) appears as the initial state-action pair in the dataset. For a
state-action pair (s, a) that appears as an initial state-action pair, we define i(s, a) = n(s,a)/n. For
state-action pairs (s, a) that appear only as next state-action pairs and not as initial state-action pairs,
we set fi(s,a) = 0. Thus, 1 € R™ is the vector of empirical sample distributions for all state-action

pairs in the dataset. Next, ® € R™*d ig the empirical feature matrix, where each row corresponds to
a feature vector ¢(s, a) for a state-action pair (s, a) in the dataset.
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The empirical counterparts of the covariance matrix X.,,, cross-variance matrix >.,., and feature-
reward vector 0y .-, as defined are given by:

icou = Z¢ 8270’7, Szaaz)—r = C/I\)TD(P7

Ser == iva;) ¢ (sh,a}) =@ DP,®
n;ws a;) ¢ (s}, @}) : (183)
~ 1 & —— o~
04, = — i) Qi i, a;) = ® DR.
s, n;sb(s,a)r(s a;)

Here, we define the empirical distribution matrix D= diag (1) as a diagonal matrix whose diagonal

entries correspond to the empirical distribution of the state-action pairs. Similarly, R € R™ is the
vector of rewards for all state-action pairs in the dataset@ The empirical transition matrix between

state-action pairs, P, € RIS*AIXISXA| s defined as:

i Ilsi=s,ai=aqa,s,=¢,a,=d]

15; ro _
(.d | 5,0) T

for state-action pairs (s, a) that appear as initial state-action pairs, and P, (s',a’ | s,a) = 0 for
state-action pairs that only appear as next state-action pairs but not as initial state-action pairs. As a
result, P is a sub-stochastic matrix.

It is worth noting that for state-action pairs that appear in the dataset only as next state-action pairs
but not as initial state-action pairs, we do not remove their corresponding entries from & when
defining iwv, icr, and §¢ ~ in Equation (183). Including these state-action pairs does not affect
generahty, as their interactions with other components are effectlvely canceled out. For example,
in ECOU = <I>TD<I> their feature vectors in @ are nullified by D, since their observed sampling
probabilities are zero. However, retaining these enEries facilitates analysis. For instance, it ensures

that we can model the empirical transition matrix P, as a sub-stochastic square matrix, which has

desirable properties, such as p (P,r) < 1, rather than as a rectangular matrix.

FQI in the batch setting Given the datset {(s;, a;,7; (s;,a;), s}, a;)}}_,, with linear function

approximation, at every iteration, the update of FQI involves iterative solvmg a least squares regression
problem. The update equation is:

n ~\2
Ok+1 =arg min Z ((b (sivai)' 0 —r(ss,a:) —vo (sh,a)) 9,5) (184)
o o
= 78!y Berbh + S 0,0 (185)

Batch TD In the batch setting / offline policy evaluation setting, TD uses the entire dataset instead
of stochastic samples to update:

n

9k+l = ak — Q- % Z [VGkQGk (Saa) (Q‘gk (Saa’) - ,YQ@k (S/7a/) - T(S’ a))] (186)

=1
1 n

=0k —a- > [6(s,a) (¢(s,a) Ok — yo(s',d') Ok — 1(s,0))] (187)
i=1

=0y —« [(icov - i\]cr) O — é\qb,r} . (188)

2! For state-action pairs whose rewards are not observed, we set their rewards to 0.
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K.1 Extension of FQI convergence results to the batch setting

~ ~

By replacing ®, D, Pr, Ycov, Xer, and 6 . with their empirical counterparts (f ]3 P Yeovs Zers
and 9¢ » respectively, we can extend the convergence results of expected FQI to Batch FQI. However,
the conclusion in Appendix [J.2[holds only when D is a full-rank matrix, but D is not necessarily
full rank, and FQI in the batch setting does not necessarily converge unless D is a full-rank matrix

(even in the over-parameterized setting where ® has full row rank). Nevertheless, the batch version
of Theorem [5.1]still implies necessary and sufficient condition convergence conditions under these
circumstances.

K.2 Extension of TD convergence results to the batch setting

By replacmg ®, D, Py, Ycou, Xer and 0y » with their empirical counterparts <I> D P,r, Zcov, EAICT

and 0¢, -, respectively, we can extend the convergence results of expected TD to Batch T‘ For
example Corollary [6.3] which identifies the specific learning rates that make expected TD converge,
is particularly useful for Batch TD. By replacing each matrix with its empirical counterpart, we can
determine which learning rates will ensure Batch TD convergence and which will not.

K.3 Extension of PFQI results to the batch setting

By replacing @, D, P, X0, ¢ and 0, . with their empirical counterparts (TD ]5 15; icov, icr
and 64 .., respectively, we can extend the convergence results of expected PFQI to PFQI in the batch
setting, with one exception: Proposition[J.8] which relies upon D being a nonsingular matrix, while
D is not necessarily nonsingular anymore.However, if D is nonsingular, then Proposition [J.8| can
apply.

22While the extension to the on-policy setting is straightforward in principle, in practice when data are sampled
from the policy to be evaluated, it is unlikely that 7P, = 1 will hold exactly.
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