Participation Incentives in Online Cooperative Games

Haris Aziz
UNSW Sydney
Sydney, Australia
haris.aziz@unsw.edu.au

ABSTRACT

This paper studies cooperative games where coalitions are formed
online and the value generated by the grand coalition must be
irrevocably distributed among the players at each time step. We in-
vestigate the fundamental issue of strategic participation incentives
and address these concerns by formalizing natural participation
incentive axioms. Our analysis reveals that existing value-sharing
mechanisms fail to meet these criteria. Consequently, we propose a
family of equal sharing rules that fulfill these desirable participation
incentive axioms. Additionally, we refine our mechanisms under
superadditive valuations to ensure individual rationality while pre-
serving the previously established axioms.
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1 INTRODUCTION

Cooperative game theory studies the behavior of self-interested
players in strategic settings when binding agreements among groups
are feasible. A central objective is to design allocation rules that
fairly distribute the collective benefits among players, thereby en-
suring the cooperation incentives. Canonical cooperative games
typically assume the static grand coalition containing all the in-
volved players and the focus lies in determining how the total
surplus should be allocated. Prominent solution concepts in this
setting include the Shapley Value [33], the Banzhaf Index [6], and
the Nucleolus [32], among others.

In many real-world contexts, however, coalitions do not emerge
instantaneously. Instead, players may join sequentially, with the
value generated at each stage requiring irrevocable allocation be-
fore the eventual grand coalition can be realized. Consider, for
example, the formation of a startup: the venture may begin with
a handful of founders, while additional contributors arrive over
time, each bringing distinct skills and resources. It is typically in-
feasible for participants to defer all compensation until the final
composition of the coalition is known, and in practice, it may be
unclear whether the set of contributors has even stabilized. Such
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scenarios naturally give rise to online cooperative games, where
each newly arriving player augments the coalition’s value, which
must then be distributed among current members. This dynamic
setting introduces new strategic considerations, as players may
strategically manipulate the timing of their entry into the coalition.

The formal online cooperative game model that considers strate-
gic arriving behavior was first proposed by Ge et al. [22]. They
study axioms including incentivizing players for early arrival, i.e.,
joining the coalition as early as possible, staying in the coalition
as long as possible, and ex-ante fairness termed Shapley-Fairness,
which requires the expected reward achieved by each player un-
der uniform-distributed permutations equals to the offline Shapley
Value. The authors first study the classic Shapley Value rule and
the simple Distributing Marginal Contribution (DMC) rule, under
which newly arriving player receives the whole marginal value.
Unfortunately, the former rule faces the fundamental flaw that play-
ers might have incentive to leave the coalition as the total reward
could decrease over time while the later one fails to incentivize
players joining the coalition as early as possible as some players
may delay their arrival for obtaining higher marginal contribution.
In view of this, they proposed the Rewarding First Critical Player
(RFC) rule, which allocates rewards to the first arriving player who
is essential in generating value. While the RFC rule does not gener-
ally satisfy the incentive for early arrival, it has been shown that in
0-1 games, the incentive for early arrival, the incentive for staying,
and Shapley-fairness cannot all be satisfied simultaneously, and the
RFC rule fulfills these axioms whenever feasible.

In this paper, we primarily focus on participation incentive ax-
ioms, which not only include the incentive for early arrival and
the incentive for staying, but also introduce new natural incentive
principles. The first axiom we examine is the Strong Incentive to
Stay (S-STAY), which refines the incentive for staying studied by Ge
et al. [22]. It not only requires that each player’s allocated share be
non-decreasing over time, but also ensures that any player being
essential in generating marginal value with a newly arriving player
receives a strictly positive reward. Intuitively, it provides a strong
incentive for players to remain in the coalition, as continued partic-
ipation can lead to additional benefits through collaboration with
future arrivals. The second axiom we introduce is the Incentive for
Participation (PART). This axiom requires that whenever a newly
joining player contributes a positive marginal value to the existing
coalition, she must receive an immediate positive reward, which
can be interpreted as an instant incentive for players to participate
in the coalition. The third aspect is a classic participation incentive
axiom known as Individual Rationality (IR). According to IR, if a
new player joins the coalition but cannot secure a share of the
value greater than what she could achieve on her own, she may be
discouraged from participating in the coalition. In summary, this
paper aims to address the following central questions:



For the online cooperative game setting, what are the
key participation incentive properties? How do the ex-
isting rules fare with respect to these properties? Can we
design new rules that perform even better with respect
to participation properties?

1.1 Our Contribution

In this paper, we focus on participation incentive axioms in online
cooperative games with strategic arrivals. Beyond the STAY and EA
axioms studied by Ge et al. [22], we introduce three new axioms,
S-STAY, PART, and IR, which capture natural and practical concerns
in online value-sharing design. We first show that existing sharing
rules, including the DMC, SV, and RFC rules, fail to satisfy these
incentive axioms, motivating the development of new rules that
fulfill all participation incentives. To this end, we propose a class
of “Equal Sharing" rules, where at each stage, a subset of players
equally share the new marginal contribution. We establish sufficient
conditions under which these rules satisfy S-Stay, PART, and EA,
and introduce two representative rules, Marginal Equal Share (MES)
and Non-Dummy Marginal Equal Share (NDMES) rules. We further
explore a greedy-based variant, termed Upward Lexicographic Mar-
ginal Equal Share (ULMES) rule, and extend it to eULMES rule via
the game decomposition framework from Ge et al. [22]. Finally,
we investigate the IR axiom under superadditive valuation func-
tions and refine our proposed rules to ensure IR satisfaction while
preserving all previously held axiomatic properties. Table 1 summa-
rizes both existing and newly proposed rules with respect to their
satisfaction of the studied axioms. All omitted proofs are provided
in the Appendix due to space constraints.

Rules IR* PART EA STAY S-STAY OD SF Poly-time
DMC v v - v - v v v
Y% v v v - - v v
eRFC - - - v - v v -t
MES - v v v v - - v
NDMES - v v v v VR —*
ULMES - v - v v v - v
eULMES - v v v v VR -t
IR-eULMES v v v v v - -t

Table 1: Summary of results: axioms and rules in bold are
newly presented in this paper. 7: Poly-time in 0-1 online
cooperative games; ¥: Poly-time with subadditive valuation.
*: IR axiom is considered in superadditive valuation.

1.2 Related Work

Cooperative Games. Cooperative game theory, originating from
the last century [33, 35], is a significant branch of game theory that
studies scenarios where players can benefit by forming coalitions
and making collective decisions. One of the key problems in this
area is how to distribute the value created by coalitions among
players, considering axiomatic characterizations (e.g., stability, con-
sistency, etc.). The Shapley Value [33] initiated the research, laying
the foundation for a series of subsequent works. von Neumann et al.

[35] first proposed the core concept for cooperative games. In the
context of transferable utility cooperative games, Shubik [34] stud-
ied market games, while Aumann and Maschler [3] investigated
cooperative bargaining scenarios. Schmeidler [32] first introduced
the concept of the nucleolus, and Roth and Sotomayor [31] bridged
cooperative game theory with practical matching markets. There is
also a line of research focusing on cooperative games with hedonic
preferences [1, 4, 5, 12, 16]. Further details about classic cooperative
game theory can be found in several books (see, e.g., [11, 15]).
Online cooperative games study the games in an online manner
where players arrive in a random order and the coalition formation
decision should be made without any knowledge regarding the
players arriving in the future. Our paper is closely related to the
work by Ge et al. [22], which was the first to study online coopera-
tive games with consideration of strategic arrivals. Recently, Zhang
et al. [36] explores the cost sharing game in the context of online
strategic arrivals and propose the Shapley-fair shuffle cost sharing
mechanisms. Zhang et al. [37] consider the online cooperative game
model where each arriving player can choose to create new coali-
tion or join an existing coalition and design value-sharing policies
to optimize the competitive ratio with respect to social welfare.
Another branch studying cooperative game in an online manner,
mainly concerning on hedonic games, focuses on addressing ap-
proximation to the social welfare and stability [13, 19]. The biggest
difference from the aforementioned online cooperative game is
that it typically assume that players reveal their preferences truth-
fully without incentive to misreport. Moreover, Flammini et al. [19]
studied the online coalition structure generation problem, while
Bullinger and Romen [13] investigated online coalition formation
with random arrival. An online or dynamic perspective has also
been applied to matching and hedonic games (see, e.g., [10, 14, 17]).

Online Mechanism Design. In the online cooperative game model
where players can strategically manipulate their arrival time, the
arrival time is private information and the problem can be viewed
as a dynamic mechanism design problem. Mechanism design in
dynamic environments focuses on problems involving multiple
players with private information, where the goal is to elicit this
private information while making decisions without knowledge of
future events. There is a vast body of work considering mechanism
design in the online manner [2, 7, 8, 27]. Lavi and Nisan [26] initi-
ated the study of truthful online auctions in dynamic environments.
Later, Friedman and Parkes [20] coined the concept of online mech-
anism design. Some works [28, 29] discussed the state-of-the-art
VCG mechanism in dynamic online settings. Online matching has
also been a hot topic in dynamic algorithm design [18, 21, 24, 25].
Moreover, there is a wide literature on solutions for different se-
quential mechanism design problems, including scheduling [30],
online combinatorial optimization [9, 23].

2 PRELIMINARY
2.1 Model

An online cooperative game (OCG) G is a triple (N, v, ), where
N := {1,2,...,n} is the set of n players, v : 2V — R, is the
valuation function mapping a subset of players to a non-negative
real number, and 7 € II(N) is a permutation of N representing the



arrival order of all the players over all possible permutations II(N).
Given any subset S C N, S creates a coalition with value v(S). In
this paper, we focus on normalized and monotone general valuation
function: (1). Normalized: v(0) = 0; (2). Monotone: S C T C N,
o(T) > v(S). We then introduce several types of functions regarding
the valuation set function. A valuation function v : 2N — R is
submodular if for any S, T s.t. S € T C N, we have v(S) + v(T) >
o(SUT) +0(SNT); A valuation function v : 2V — R is subadditive
ifforany S, Ts.t. SC T C N,o(S) +o(T) = v(SUT); A valuation
function o : 2V — R is superadditive if for any S, T s.t. SN T = 0,
0(S) +o(T) <o(SUT).

Given a permutation 7, for any pair of players i,j € N, let
i <, j denote that player i arrives earlier than player j, according
to the permutation 7. An online value-sharing rule ¢ maps the game
G = (N,u,7) to an n-tuple ¢(G) = (#(G,1),...,¢(G,n)), where
¢(G, i) denotes the value assigned to player i. For any player i € N,
we assume ¢(G,i) > 0and };cn ¢(G, i) =v(N).

We now introduce two significant definitions that will serve as
the foundation for the axioms and sharing rules. The first is the
notion of a prefix subgame. A subset S C N is called a prefix of the
arriving order 7 if S consists of the first |S| players to arrive. In this
case, we write S C 7. Given an OCG G = (N, v, 7) and a prefix S C
7, the prefix subgame is defined as GS = (S, v;s, m|s), where v|s is the
valuation function restricted to coalitions C C S, and 75 denotes
the arrival order of players in S. For any player i in the arriving order
7, we denote by N|; the prefix consisting of all players who arrive
no later than i (including i). The corresponding prefix subgame
is then GNnli = (Ng)i, 0N 7r|N”‘i). When the context is clear, we
simplify this notation by writing G* = (N, v}, 7).

We next define the Simple Online Cooperative Game (SOCG)
with a restrictive 0-1 valuation function. In an SOCG, there is a
pivotal player such that, upon her arrival, the value of the coalition
jumps from 0 to 1. Given that the valuation function is monotone,
the grand coalition value remains at 1 after all players have arrived,
ie, 9(N) = 1. Formally, an OCG G = (N,u,7) is an SOCG if
the valuation function o(-) satisfies: VS C N,v(S) € {0,1} and
v(0) =0,0(N) =1.

2.2 Incentive Axioms from Ge et al. [22]

We revisit some existing axioms introduced by Ge et al. [22]. The
first property is termed Incentive to Stay ! , which guarantees that
each player’s shared value is non-decreasing as more players arrive.
This encourages the arrived players staying in the grand coalition
for more potential rewards.

Definition 2.1 (Incentive to Stay (STAY)). An online value-sharing
rule ¢¢ satisfies incentive to stay (STAY) if given an OCG G =
(N, v, 1), for any two prefix subgames GS = (S, v|s, 7|s) and GT =
(T, o7, m7), where T C S,and T, S C 7, every player g € T satisfies
$(GT,q) < $(G5, ).

STAY is the first natural participation incentive axiom studied
by Ge et al. [22]. Next, we revisit another participation incentive
axiom called Incentive for Early Arrival. Recall that in the online

!In the original paper [22], this property is referred to as Online Individual Rationality
(OIR). However, it differs from the classic notion of individual rationality. As discussed
in Section 2.3, we revisit the axiom of individual rationality (IR) that aligns with the
classic notion.

cooperative game model, the arrival time of each agent is treated as
private information. So players might strategically choose to delay
their arrival for extra benefits. The axiom of EA requires that for
every player i, when fixing the arrival order of all other players,
arriving as early as possible is the dominant strategy for player i.

Definition 2.2 (Incentive for Early Arrival (EA)). An online value-
sharing rule ¢(G) incentivizes early arrival (EA) if, for any two
OCGs G = (N,v, ) and G’ = (N, v, n"), for each player i, it always

holds ¢(G,i) > ¢(G’,i) whenever mn\(i} = fr"N\{i} and Ny; C
Nlr’|i~

Before introducing the next axiom called Shapley-Fairness, we
first introduce the concept of marginal contribution and the classic
Shapley Value. Given an OCG G = (N, v, 7), for each player i € N,
we define the marginal contribution of i to a coalition S in G as
MC(G, S, i) =v(SU{i}) —ou(S). Based on the definition of marginal
contribution, we introduce the Shapley Value.

Definition 2.3 (Shapley Value [33] (SV)). Given an OCG G =
(N, v, ), each player i’s Shapley Value is

SV(G,i):ﬁ Z S|t (IN| =S| = 1)! - MC(G, S, i).

" SCN\{i}

The Shapley value assigns to each player their average marginal
contribution across all possible coalitions. It ensures that players
are rewarded fairly based on how much they add to the value of any
coalition they join. A follow-up definition, termed Shapley-Fairness
extends the Shapley Value in online cooperative games.

Definition 2.4 (Shapley-Fairness (SF)). Givenan OCGG = (N, v, 1),
an online value-sharing rule ¢(G) is said to satisfy Shapley-Fairness
(SF) if, for each player i € N,

1 . ,
w2 96D = VG,
" well(N)

Intuitively, SF requires that, for any online coalition game (OCG)
G, if all arrival orders of the players are equally likely, then the
expected payoff of each player coincides with her Shapley value.
However, Shapley-Fairness only guarantees fairness in expectation
across permutations; for a fixed arrival order, the payoffs assigned
by an SF rule need not match the Shapley values exactly. In online
settings, by contrast, only one arrival order is realized, and the total
value must be allocated sequentially as players appear. This makes
SF overly restrictive and motivates relaxing the requirement for two
key reasons. First, incentivizing early arrivals necessarily reduces
the shares available to later players, since the total value of the grand
coalition is fixed; Shapley-Fairness, being insensitive to arrival
order, fails to capture this trade-off and therefore cannot serve as a
participation-incentive axiom. Second, beyond its incompatibility
with STAY and EA (as shown by Ge et al. [22]), SF is conceptually
misaligned with the sequential nature of online value sharing.

2.3 New Incentive Axioms

In the previous section, we revisited two participation incentive
axioms, STAY and EA, originally introduced by Ge et al. [22]. We
now turn to additional natural axioms that further refine our under-
standing of participation incentives in online cooperative games.
To formulate these axioms, we first introduce an auxiliary notion



for players whose arrival generates a strictly positive marginal
contribution, which we refer to as contributional players.

Definition 2.5 (Contributional Player). Givenan OCGG = (N, v, ),
for each player i in arriving order 7, if 9(Ny|;) > 0(Ny; \ {i}), then
player i is called a contributional player under permutation r in G.

Building on this notion, we propose new participation incentive
axioms. The first, termed Strong Incentive to Stay (S-STAY), strength-
ens the STAY axiom by imposing a more stringent requirement.

Definition 2.6 (Strong Incentive to Stay (S-STAY)). An online value-
sharing rule ¢(G) satisfies Strong Incentive to Stay (S-STAY) if, for
any OCG G = (N, v, 7), it satisfies the STAY axiom, and, for every
contributional player i, and every player j <, i such that o(Ny;) >
0(Nyji \ {j}), it holds that for player j, $(G', j) > ¢(G/, j).

Intuitively, S-STAY requires not only that each player’s cumula-
tive allocation be non-decreasing, but also that if an already-arrived
player j is essential for creating the positive marginal value gener-
ated by a newly-arrived contributional player i, then j must receive
a share of this newly created value. In this way, S-STAY provides
stronger incentives for players to remain in the grand coalition,
as it ensures that they can benefit from potential future coopera-
tion with later arrivals. We refer to the second axiom as Incentive
for Participation (PART), which ensures that each arriving player
receives an immediate share of value if they contribute to the coali-
tion. We consider this a minimal and natural requirement in the
online setting.

Definition 2.7 (Incentive for Participation (PART)). An online
value-sharing rule ¢(G) satisfies Incentive for Participation (PART)
if, for any OCG G = (N, v, w) and every player i, whenever i is a
contributional player, it holds that ¢(G, i) > 0.

Intuitively, PART requires that in any OCG G, every contri-
butional player i receives a strictly positive share immediately
upon joining the coalition. S-STAY and PART are two natural ax-
ioms which give players strong incentive to participate to join the
coalition. To give a more intuitive feeling, consider a simple exam-
ple, an SOCG with two players, player 1 joins the coalition first.
When player 2 subsequently joins, the coalition value increases
to 1, whereas neither player alone can generate this value. In this
case, S-STAY provides a strong guarantee for player 1 to join and
remain in the coalition as she will benefit once player 2 arrives.
PART incentivizes player 2 joining since she is a contributional
player and she will receive immediate reward. However, in the next
section, we will show that prior existing sharing rules fail these
simple and natural axioms.

Apart from these two new axioms, we also consider the classical
notion of Individual Rationality (IR), which aligns with its definition
in standard cooperative games and can likewise be viewed as a
participation incentive axiom.

Definition 2.8 (Individual Rationality (IR)). Given an OCG G =
(N, v, 1), an online value-sharing rule ¢ is individual rational (IR)
if for each player i € N, ¢(G, i) > v({i}).

Although we relax the Shapley-Fairness axiom in this paper,
we consider an alternative fairness criterion by introducing the
concept of Online-Dummy (OD) to evaluate value-sharing rules.

The Online-Dummy concept is defined within each prefix subgame
G', requiring that any dummy player in G' receives no share of
the marginal value MC(G', Nyji \ i,i). Consequently, the Online-
Dummy property generalizes the Dummy axiom from classical
cooperative games. We begin by formally defining a dummy player.

Definition 2.9 (Dummy Player). Given an OCG G = (N, v, ),
for player i, if v (S U {i}) = 0(S) for any S C N, then playeriisa
dummy player in G.

In classical cooperative games, the Dummy axiom requires that
every dummy player receives no positive share of the value. We
now extend this axiom to the online setting by introducing the
Online Dummy axiom.

Definition 2.10 (Online Dummy (OD)). An online value-sharing
rule ¢ satisfies Online-Dummy if for each prefix subgame G' =
(N}i, v}, m)3), for any dummy player j in game G, ¢(G'j) =o.

OD axiom requires that dummy players receive zero payoff not
only in the final allocation but also at every subgames. In particular,
any dummy player in a certain prefix subgame receives no share
at that stage, even though they may later contribute positively
through interactions with subsequently arriving players.

3 LIMITATION OF EXISTING RULES

In this section, we first revisit three existing online value-sharing
rules: the Distribute Marginal Contribution (DMC) rule, the Shap-
ley Value (SV) rule, and the extended Reward First Critical Player
(eRFC) rule [22] and highlight their limitations with respect to the
participation incentive axioms introduced above.

DMC rule simply distributes the whole new marginal value to
the newly arrived player, i.e., for each arriving player i, #(G, i) =
MC(G', Nprji \ {i},1). Ge et al. [22] prove that it satisfies STAY and
SF, but fails EA in general?. SV rule simply computes the Shapley
value for each prefix subgame and distributes these values among
the players. When the grand coalition is eventually formed, each
player’s allocation coincides with its Shapley value. Ge et al. [22]
prove that it satisfies both EA and SF, but fails STAY. Furthermore,
Ge et al. [22] proposed a novel rule, termed the Reward the First
Critical Player (RFC) rule, which was initially developed for SOCGs
and later extended to general OCGs through game decomposition.

Reward First Critical Player (RFC) Rule

Input: G = (N, v, 1)
Vi € N, initialize ¢(G, i) « 0;
For each player i in arriving order 7,
LetS' —{j|je Nn|i,U(N7r|i_) > Z’(J\Ilrli \{ib}
J* « first arrived player in S*;
$(G, Jj*) — ¢(G,j*) + MC(G', Nj; \ {1}, 0);
Output: $(G).

J

Given any SOCG G and any prefix subgame G’ with arriving
player i, the RFC rule first identifies the set of players S’ who are
essential for generating the positive marginal contribution, namely,
those players whose absence would cause the coalition value to

21t satisfies EA if and only if o(-) is submodular



drop from 1 to 0. The entire marginal contribution is then allocated
to the first-arriving player in S* according to the arrival order 7.

For general OCGs, Ge et al. [22] further proposed a greedy mono-
tone (GM) decomposition method (see Appendix A for algorithm
details and examples) and extended the RFC rule to the eRFC rule
by decomposing an OCG into multiple SOCGs and aggregating the
results obtained from applying the RFC rule to each decomposed
SOCG. The RFC rule is shown to satisfy Stay and SF, but not EA,
even within SOCGs. Moreover, Ge et al. [22] demonstrated the
inherent incompatibility among Stay, EA, and SF by proving the
existence of a class of unsolvable games, in which no value-sharing
rule can simultaneously satisfy all three properties. The RFC rule
thus satisfies all three properties except for these unsolvable cases.

In light of the aforementioned impossibility result and our fo-
cus on participation incentive axioms, we relax the SF axiom and
investigate the extent to which all participation incentive axioms, in-
cluding Stay, EA, S-STAY, and PART, can be simultaneously satisfied
by value-sharing rules. Our first observation is that, unfortunately,
the three existing value-sharing rules not only violate STAY and
EA, but also fail to satisfy our newly introduced S-Stay and PART
axioms. We summarize these shortcomings below.

ProposITION 3.1. SV and DMC satisfy PART while eRFC does not.

Proor. Consider the following SOCG G = (N, v, ), where N =
{1,2},r = (1,2) and v({1}) = v({2}) = 0,0({1,2}) = 1. Firstly,
player 1 arrives with no value, then player 2 arrives and the grand
coalition value is 1. eRFC rule allocates the entire value 1 to player 1,
who is the first arrived player and contributes to the grand coalition.
However, player 2, as a contributional player, receives zero shared
value, thereby violating the PART axiom. O

PROPOSITION 3.2. DMC, SV, and eRFC rules do not satisfy S-STAY.

ProoOF. Since SV rule fails to satisfy STAY, it does not satisfy
S-STAY. For DMC and eRFC rules, consider an SOCG G = (N, v, )
where N = {1,2,3}, 7 = (1,2,3), and v({1}) = 0({2}) = 0v({3}) =
v({1,2}) =0({1,3}) =0({2,3}) =0,0({1,2,3}) = 1. DMC allocates
the value 1 to player 3 because 3’s arrival creates the new marginal
value 1, ie., ¢(G,1) = ¢(G,2) = 0,$(G,3) = 1. It does not satisfy
S-STAY for player 1 and 2 as they both contribute to the grand
coalition after player 3’s arrival, in which S-STAY requires player
1 and 2 should receive some positive value. With regard to eRFC
rule, value 1 will be wholely allocated to player 1, ie., ¢(G,1) =
1,¢(G,2) = #(G,3) = 0. Note that player 2, who is essential for
creating the value 1, however, gets 0 in G. This violates S-STAY
which requires that ¢(G, 2) > 0. O

REMARK 1. The DMC, and eRFC rules fail not only the EA axiom
but also our newly introduced incentive axioms, S-STAY and PART,
in general. Although the SV rule satisfies EA, this is rather trivial,
as its allocation is entirely independent of the arrival order. These
observations motivate us to investigate whether there exist sharing
rules satisfying all three main incentive axioms simultaneously. In
the next section, we address this question by introducing a family of
sharing rules, termed the “Equal Sharing Rule".

4 NEW DESIRABLE RULES

In the previous section, we highlighted the failure of existing rules to
satisfy the existing and newly proposed incentive axioms, including
EA, S-STAY, PART, etc. Motivated by these concerns, we study a
family of value-sharing rules, termed Equal Sharing rules, which
based on the simple and natural idea that once a new contributional
player joins the coalition, the value is equally by a set of players
where the set varies differently by designing different types of rules.

Equal Sharing Scheme

Input: G = (N, v, )
For each player i in arriving order r,
Initialize ¢(G, i) « 0.
Decide the sharing set S’.
For each player j € S/,
$(G.j) «— ¢(G. J) + g MC(G", Ny \ {1}, ).
Output: ¢(G).

4.1 Initial Attempts: MES and NDMES

Based on the selection of the sharing set S’ in each subgame, we
consider three different types of equal sharing rules. We begin by
considering a simple sharing rule, termed Marginal Equal Share
(MES) rule, which distributes the marginal contribution among all
the existing players, i.e., for each prefix subgame G’ with arriving
player i, S' = Ny);. Interestingly, this simple MES rule satisfies not
only PART and S-STAY, but also EA (Proposition 4.4).

Although the simple MES rule satisfies all of these three partic-
ipation incentive axioms, it is easy to verify that the value shar-
ing may be perceived unfair as some of the players could be the
“free-riders", i.e., those dummy players who never contribute to the
grand coalition also receive positive rewards. That is, MES rule fails
the Online Dummy (OD) axiom. This directly rises a immediate
question, can we exclude these dummy players while persevering
these incentive axioms? This leads to our second value-sharing
rule, Non-Dummy Marginal Equal Share (NDMES) Rule, which
allocates the marginal contribution to all the existing non-dummy
players. Specifically, for each prefix subgame G, let D; denote the
dummy player set under G'. Define S’ = N,|; \ D; as the sharing
player set. For each player j € S', j receives an equal share of
\5_1i| MC(G, Nyji \ {i}, i). It is straightforward that NDMES rule
satisfies OD as in each prefix subgame, by the definition of NDMES,
dummy players will never be included in the value sharing set.
Surprisingly, this rule not only satisfies OD, but also maintains the
satisfaction of S-STAY, EA, and PART (Proposition 4.4).

Before formally proving that the MES and NDMES rules sat-
isfy the S-StAY, PART, and EA axioms, we first introduce two key
structural properties, sharing consistency and order independence.

Definition 4.1 (Sharing Consistency). Givenany OCGG = (N, v, 1),
for any Equal Sharing rule ¢, we say that ¢ is sharing consistent if,
for any prefix subgames G’ and G/ with arriving players i and j,
where i <,; j, it holds that S C /.

Recall that for any prefix subgame G’ with arriving player i, S*
denotes the sharing set of players in G' under the Equal Sharing
scheme. The property of sharing consistency requires that once



an player k € S, this player remains in the sharing set for all
subsequent prefix subgames G/ where j =, i.

Definition 4.2 (Order Independence). Given two OCGs G,
and G, = (N, v, m3), for any Equal Sharing rule ¢, we say that ¢
is order independent if, for any i, j € N such that Ny |; = Np,;, it
holds that S! = S

Intuitively, order independence means that for any two prefix
subgames G! and Gg with the arriving players i and j, if the set of
existing arrived players (including i and j) is identical, i.e., Ny, |; =
Ny,|;, then the resulting sharing sets S and Sg are the same. In other
words, the sharing sets of subgame G! and Gg are independent of
the arrival order among the players in N, |; and Ny, ;.

Building on these two properties, we establish a key lemma
stating that if an Equal Sharing rule satisfies S-STAY, PART, sharing
consistency, and order independence, then it also satisfies the EA
axiom.

LEMMA 4.3. For any Equal Sharing rule ¢ that satisfies S-STAY
and PART, if ¢ satisfies Sharing Consistency and Order Independence,
then it satisfies EA.

ProoOF. Let ¢ denote an Equal Sharing rule that satisfies S-Stay
and PART. Assume further that ¢ satisfies Sharing Consistency and
Order Independence. Consider two OCGs G; = (N, v, 1) and G, =
(N, v, 7r5) that differ only in the arrival order of some player i € N,
where i delays her arrival in 7, relative to ;:

o (L2, i—Lii+1,..., =1, j+1,...,n);
(L2, i—Li+1,. . j—1jij+1...,n).

We prove that ¢ satisfies EA axiom by discussing two cases based
on whether i is a contributional player in G;. For any player i, let
S! (resp. S!) denote the sharing set in subgame G! (resp. G1).
Case 1. i is a contributional player in G;. Since ¢ satisfies PART, we
havei e Si. By sharing consistency, the total reward received by i
in G can be expressed as

n

$(Gu,1) = Z| £ MO N\ (8.,

On the other hand, in G,, player i’s total share can be upper-
bounded by

$(Go, ><—Mc<cn m\{}l)+zlk MC(Ga, Ny i\ {k}, k).

| Z| k=j+1

Since ¢ satisfies order independence, the corresponding sharing
sets in the two games satisfy S{ = Sé, andforallk € {j+1,...,n},
S{‘ = S;‘. Thus, the value shared with i from players arriving after j
is identical in both games and cancels out in the comparison. We
therefore focus on the difference of shared values for player j and

= (N,v,m)

derive that

$(Gu i) — $(G, 1)
J
>3 L MC(Gr Ny \ (k) K) —

|Sk| _MC(GL) 7Z2|l\{l} l)
k=i "1

15,1

\%
.~\|"‘
‘M\

MC(Gy, Ny e \ {k} k) — ﬁ MC(Gy, Ny i \ {i}, 1)
= S,
(Sharing consistency)

zﬁ(o(mlu)—vwﬂlu\{i})) |5,|(U(Nﬂz‘> o(Ny1))
' (MC definition)

z|;j|<o<Nn2‘, oNai \ (D)) (S = Sh Nayyy = Neyp)
1

> 0. (Valuation monotonicity)

This implies that when player i is a contributional player, i has no
incentive to delay her arrival.

Case 2. If i is not a contributional player in G;. The first sub-case
is that i is also not a contributional player in Gy, then it follows
that MC(GL, N, ); \ {i}, i) = 0. Since ¢ satisfies order consistency,
for every k € {j + 1,...,n} we have S¥ = S, implying that after
player j + 1’s arrival, the value shared with i is identical in G;
and G,. However, because ¢ satisfies S-STay, player i may obtain
extra benefit in G; if she is essential in generating the marginal
contribution of some player g who arrives between i and j in ;.
Thus, i again has no incentive to delay her arrival. Now consider
the remaining sub-case where i is not a contributional player in G;
but becomes one in G, after delaying. This implies that i is essential
for generating the marginal contribution of some player arriving
between i and j in m; (Otherwise i cannot be a contributional
player after delay the arrival). Let g be the first such player, i.e.,
0(Nz,1q) > 0(Np g \ 1) with i <5, g <z, j (or g = j). Recall that ¢
satisfies S-Stay and sharing consistency. i will be included in the
sharing set since ¢’s arrival. Hence, i’s total share in G; is

$(Gr, i) = Z 55 MO N\ (83,
For G,, by PART and sharing consistency, we have

77 MC(Gh Ny (8.9 +Z

4 k]

¢(Gz,1)— MC(Ga, Ny ic \ {k}. k).

Applying the same reasoning as in Case 1, we obtain the difference
between ¢(Gy, i) and ¢(Gg, i)
¢(Gl’ l) - ¢(G2’ l) =

1
S—”(U(Nm\j) = 0(Ngy|(g-1)))

IS¢

L”(v(zvmu \ {}) = 0(Niy g-1)-

|51
We claim that 0(Ny,|(g-1)) = 9(Ng;|(g-1) \ {i}). To see this, sup-
pose not, by monotonicity, it must be the case that v(Ny|(g-1)) >
0(Np|(g-1) \ {i}), implying that player i is essential to create the
marginal value when player g — 1 joins the coalition, contradict-
ing our assumption that player q is the first player such that i is



essential to create the marginal contribution. Therefore, we have
U(N,m(q_l)) = U(N,m(q_l) \ {i}). Consequently,

$(Gr,i) = $(Goy 1) = ﬁ(v(m \ ) = 0Ny (g1)))
o
S|

(0N \ {i}) = 0(Nyj g-1y \ {i})) 2 0.

(Valuation monotonicity)

Combining both cases, we conclude that player i never benefits
from delaying her arrival. Therefore, any Equal Sharing rule ¢ that
satisfies S-STAY, PART, sharing consistency, and order independence
also satisfies EA. ]

PrROPOSITION 4.4. MES and NDMES satisfy S-STAY, PART, and
EA.

Proor. We first show that both the MES and NDMES rules sat-
isfy S-StAY and PART. For the MES and NDMES rules, the StAy ax-
iom is immediately satisfied since every player’s shared value is non-
decreasing throughout the process. Now consider any online coop-
erative game G = (N, v, ) and any prefix subgame G’ correspond-
ing to the arrival of player i. Take any player j such that j <, i and
0(Nyj;) > 0(Nyy; \ j). For the MES rule, the sharing set in G’ is Ny,
which includes j. Therefore, player j receives an additional positive
share in G, given by \N_71r|1| MC(G', Nyy; \ {i}, i) > 0, which implies
that ¢(G', j) > ¢(G/, j). The same reasoning applies to the NDMES
rule: since every player j with o(Ny|;) > v(Ny|;\ ) is a non-dummy
player, j is included in the sharing set S’ of G, and thus also satis-
fies S-Stay. Next, we verify PART. Under the MES rule, any newly
arriving player who makes a positive marginal contribution im-
mediately receives a positive share, |er“‘ MC(G, Nyji \ {i}, 1) > 0,
which establishes PART. For the NDMES rule, any such contribu-
tional player is non-dummy and thus included in the sharing set S,
again satisfying PART. Having established that both the MES and
NDMES rules satisfy S-Stay and PART, by lemma 4.3, it remains to
show that they satisfy sharing consistency and order independence.

The MES rule trivially satisfies both properties, as its sharing set
in each subgame is simply the set of all existing players. For the
NDMES rule, observe that for any two subgames G’ and G’ with
i <z j, every non-dummy player in G' remains non-dummy in G/.
Moreover, the set of non-dummy players in each subgame depends
solely on the player set rather than the arrival order. Hence, NDMES
also satisfies sharing consistency and order independence. Applying
lemma 4.3, we conclude that both MES and NDMES satisfy the EA
axiom. m|

REMARK 2. Designing rules under the Equal Sharing scheme that
satisfy S-STAY and PART is relatively straightforward. In contrast,
ensuring the EA axiom is considerably more challenging and non-
trivial. Our lemma 4.3 provides a characterization, in fact, a sufficient
condition, showing that there exists a family of Equal Sharing rules
satisfying sharing consistency and order independence that also guar-
antee the EA axiom. Notably, this family includes simple rules such
as MES and NDMES. It remains open to provide a complete charac-
terization for Equal Sharing rules to satisfy EA axiom.

4.2 Alternative Rules: ULMES and eULMES

In the previous subsection, we characterized a class of Equal Sharing
rules that satisfy three key participation incentive axioms, S-STAy,
PART, and EA, and introduced two representative instances: MES
and NDMES. However, the MES rule fails to satisfy the fairness
notion of Online Dummy, while the NDMES rule faces computa-
tional challenges, as identifying all dummy players in each subgame
requires exponential time due to the need to verify all coalitions®.

In this subsection, we move beyond the scope of the previous
characterization and focus on designing a polynomial-time com-
putable Equal Sharing rule. The proposed rule follows a greedy ap-
proach, which we term the Upward Lexicographic Marginal Equal
Share (ULMES) rule.

Upward Lexicographic Marginal Equal Share (ULMES)

Input: G = (N, v, )

For each player i in arriving order 7 = (1,2,...,n):
Initialize ¢(G, i) « 0, St Nyjin € — i.
While ¢ > 0

If o(S\ {£}) = o(Np):
Update S* « S*\ {¢}
t—t-1
For j € S,
$(G.j) «— ¢(G. ) + g MC(G", Ny \ {1}, ).
Output: ¢(G).

J

The ULMES rule follows a greedy procedure. For any prefix
subgame G/, it first initializes the sharing set as S' = N,;|; and then
determines which players to retain in S’ in an upward lexicographic
order. Specifically, for each player ¢ (starting from i), the rule checks
whether removing ¢ decreases the grand coalition value in G'. If
the coalition S \ ¢ yields the same value as v(Ny;), then player ¢
is considered dispensable for generating the marginal contribution
and is removed from S'. This procedure proceeds iteratively with
¢ < ¢ — 1 until all players have been examined. The remaining
players in S’ equally share the marginal contribution.

Intuitively, when a new player i arrives, there may exist multiple
coalitions capable of generating the same marginal contribution.
Among all such coalitions, ULMES selects the player set S* for which
the last arriving player is the earliest, that is, it favors the coalition
that is lexicographically minimal in terms of arrival order.
The ULMES rule runs in O(n?) time as computing the sharing set
Si requires O(n) time for verifying whether each existing player
should be removed from S'.

We show that ULMES satisfies the S-Stay, PART, and OD axioms.
However, it unfortunately fails to satisfy the EA axiom. Due to
space limitations, we defer the formal proofs of these properties to
Appendix B.2, but provide here a counterexample illustrating why
ULMES fails to meet the EA condition.

THEOREM 4.5. ULMES satisfies S-STAY, PART, and OD, but fails
EA.

3We show that NDMES runs in O(n) time when the valuation function is subadditive;
see proposition B.1 in Appendix B.1.



Example 4.6. Consider two OCGs G; = (N, v, 1), N ={1,2,3,4},
m = (1,2,3,4) and G, = (N, v, my) where m, = (1,2,4,3), that is,
the instance where player 3 delays her arrival in G;, which leads to
G,. For the valuation function, we have

o({1}) =v({2}) =o({3}) =v({4}) = 0;

o({1,2}) =o({L,4}) =v({2.4}) =0({1,2,4}) = 0;
0<0({1,3}) <0({2,3}) <0({L23}) = x (x > 0);

0({3,4)) =0({1,3,4}) =0({2.3,4}) =0({1,2,3,4}) =y > x.

We now focus on player 3. For G;, when player 3 arrives, the value
jumps from 0 to x and ULMES selects the sharing set $* = {1, 2, 3},
so we have ¢(G3,3) = 3, when player 4 comes, only {3, 4} survive
in ULMES and the marginal contribution (y — x) is equally shared
by 3 and 4. Hence we have ¢(G,,3) = § + % In contrast, when 3
delays her arrival, i.e., in Gy, 1, 2, 4 share no value as ({1, 2,4}) = 0.
When 3 arrives in 7, the marginal contribution will be y and it
is shared by S} = {3, 4} according to ULMES rule. Then we have
#(Gz,3) = % which is greater than ¢(G;,3) = 5+ % This implies
that ULMES fails EA axiom.

Intuitively, ULMES fails to satisfy EA in general because a player
might choose to delay their arrival to become a contributional player
who shares a larger marginal value with fewer players. Although
this player might forfeit some shared value from previous timesteps,
the potential gain from the new marginal value can outweigh the
losses, thereby undermining the EA property. Although ULMES
fails EA in general, we observe that it adheres to the EA axiom for
every simple online cooperative game (SOCG). The proof proceeds
via a case analysis, considering whether a player i is pivotal and
how her delayed arrival position affects the sharing set. Due to
space constraints, the detailed proof is deferred to Appendix B.3.

LEMMA 4.7. For any SOCG, ULMES satisfies EA.

Recall the Greedy Monotone (GM) decomposition algorithm pro-
posed by Ge et al. [22], which generalizes the RFC rule for SOCGs
to the eRFC rule for general OCGs without compromising any ax-
iomatic guarantees. Following a similar idea, we extend our ULMES
rule to the extended Upward Lexicographic Marginal Equal Share
(eULMES) rule by leveraging the GM decomposition framework.
We briefly outline the main steps of the GM decomposition and
refer readers to Appendix A for detailed explanations and examples.

In general, the GM decomposition algorithm takes any OCG G
as input and outputs a linear combination of component games,
denoted as D(G). Each component is represented as a pair (c, G),
where c is the coefficient and G is an SOCG. Given any OCG G =
(N, v, ), the eULMES rule proceeds as follows:

(1) apply the GM decomposition to decompose G into multiple
component games;

(2) execute the ULMES rule within each component game;

(3) aggregate the weighted results across all components to
obtain each player’s total share.

THEOREM 4.8. eULMES satisfies S-STAY, EA, PART, and OD.

Due to space limitations, we defer the formal proof of theorem 4.8
to Appendix B.4. To further illustrate the behavior of the eULMES

rule and its distinction from ULMES, we provide a specific exam-
ple in Appendix B.5, in which ULMES fails the EA axiom, while
eULMES successfully satisfies it.

5 INDIVIDUAL RATIONALITY UNDER
SUPERADDITIVITY VALUATION

In the previous sections, we explored participation incentives through
the lens of the EA, S-StAy, and PART axioms. We now shift our focus
to the individual rationality (IR) axiom, which reflects a fundamen-
tal participation incentive, requiring that a player chooses to join
the grand coalition only if the value they receive from it is at least
as great as their standalone (singleton) valuation.

We begin by presenting an impossibility result regarding the
satisfaction of the IR axiom in online cooperative games.

PROPOSITION 5.1 (IMPOSSIBILITY). There is no value sharing rule
satisfying IR for OCG under general valuation.

Proor. Consideran OCGG = (N, v, ), where N = 1,2,0({1}) =
2,0({2}) =3,0v({1,2}) = 4, and = = (1,2). To satisfy the IR ax-
iom, player 1 must receive at least v({1}) = 2 upon arrival. When
player 2 subsequently joins, the total additional value created by
their arrival is v({1,2}) — 0({1}) = 2. Hence, the maximum value
that can be allocated to player 2 is 2 < v({2}) = 3, violating the IR
requirement. m]

In light of the impossibility result, we restrict our attention to
the superadditive valuation. Specifically, for an OCG G = (N, v, ),
we say that G is a superadditive OCG if its valuation function v is
superadditive. In what follows, we first verify that both the DMC
and SV rules satisfy the IR axiom, whereas the eRFC rule does not.
We then introduce an IR-refinement paradigm that modifies all
three rules to ensure IR satisfaction while preserving their other
desirable axiomatic properties.

PROPOSITION 5.2. In OCGs with supe-radditive valuations, DMC
and SV satisfy IR while eRFC does not.

Unfortunately, MES, NDMES, and eULMES also fail IR axiom.
To address this, we propose a simple IR refinement to modify these
rules such that IR axiom is satisfied. The refinement follows a
simple yet effective idea. For each subgame G', we first allocate
value v({i}) to player i to ensure satisfaction of the IR axiom. After
that, we apply the Equal Sharing rule to determine the sharing set
Si, and then equally distribute the remaining marginal contribution,
MC(G’, Ny; \ {i}, i) — o({i}), among S'.

IR Refinement Framework

Input: G = (N, v, 1), value-sharing rule ¢
Vi € N, initialize ¢(G, i) « 0.
For i in arriving order 7:
$Gi) —o({i)).
Compute sharing set S* by the rule ¢.
For each player j € S
9; = MC(G", Ny \ {i}, i) — o({i}).
$(G.i) < $(G,1) + 370:.
Output: qg(G).




For each Equal Sharing rule, we denote its refined counterpart
by adding the “IR-” prefix, for example, eULMES becomes the IR-
eULMES rule. This refinement guarantees compliance with the IR
axiom while preserving all other desired properties.

THEOREM 5.3. For any superadditive OCG, the IR-MES, IR-NDMES,
and IR-eULMES rules satisfy IR while preserving all other axioms that
were satisfied prior to the refinement.

6 DISCUSSION

In this paper, we study participation incentive axioms in online
cooperative games with strategic arrivals, including the existing
StAaY and EA axioms, and our newly studied S-Stay, PART, and
IR. We first identify that existing sharing rules fail the axioms.
To address this, we design a class of “Equal Sharing" rules and
provide sufficient conditions for satisfying S-Stay, PART, and EA. An
intriguing open question that remains is: “What are the necessary
and sufficient conditions for an Equal Sharing rule to satisfy these
axioms?" Moreover, studying online hedonic games with strategic
arrivals presents a promising direction for future research.
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Below is the Technical Appendix for our submission (#249) “Par-
ticipation Incentives in Online Cooperative Games".

A  GREEDY MONOTONE (GM)
DECOMPOSITION

We revisit the greedy monotone (GM) decomposition algorithm

proposed by Ge et al. [22]. GM decomposition maps a general OCG

G = (N, v, ) into a linear combination of multiple SOCGs. The de-

tailed procedures of GM decomposition is provided in Algorithm 1.

Algorithm 1 Greedy Monotone (GM) Decomposition

Input: : An OCG G = (N,v, 7).
Output: : A decomposition D(G).
1: Initialize D(G) < 0, and k « 1;
2: while maxycn{o(T)} > 0 do
3 S« argmin o(T);
TCN,0(T)>0
Coefficient ¢ < v(S);
Initialize component SOCG Gr = (N, 0y, 7);
for T € N do
if v(T) > 0 then
0(T) « 15
else
10: O (T) « 0;
11 end if
12: Update o(T) « o(T) — ¢, (T);
13:  end for
14 Add component SOCG (¢, Gy) into D(G);
15:  Update k «— k + 1;
16: end while

R A A

Algorithm 1 first initializes D(G) = 0 and create an iteration
counter k = 1. While there exists a subset of N with a positive
value, it identifies the subset S with the minimum value among all
subsets with positive value. Let ¢, = v(S) denote the coefficient
of the k-th component game. To determine the valuation function
0k (+) for the k-th component game, for any subset T C N such that
o(T) > 0, it assigns Gx(T) = 1. For all other coalitions with zero
value, their values remain zero in i (-). Accordingly, it updates
the original valuation function v(-) for each subset T with positive
value by setting 0(T) = v(T) — ck. This completes the creation of
the k-th component game Gy = (N, g, 7) with coefficient ci. To
better illustrate the algorithm, we provide the following example
showing how GM decomposition runs.

Example A.1. Consider an OCG G = (N, v, ), where N = {1, 2},
v({1}) =v({2}) = L,v({1,2}) =5, and 7 = (1, 2). We first initialize
D(G) =0 and k = 1. For the first component game Gy = (N, oy, ),
we first identify the minimum positive coalition value is 1 and let
the coefficient ¢; = 1. For the valuation, since v({1}) = v({2}) =
1,0({1,2}) =5,we have d;({1}) = 1,5, ({2}) = 1,5;({1,2}) = 1and
updates v({1}) = v({2}) = 0,0({1, 2}) = 4. Next we update k to 2,
and for the second component game Gy = (N, 0y, 1), we identify
the minimum positive coalition value is 4 (i.e., v({1,2}) = 4), and
let ¢, = 4. For the valuation function, note that only v({1, 2}) = 4
is positive, we then have 0,({1}) = 0,5,({2}) = 0,32({1,2}) = 1.
After that, we update the original valuation function v({1}) =

v({2}) =0,0({1,2}) =4 — ¢z = 0. Since there is no coalition with
positive value, the algorithm terminates and returns D(G) = {(¢; =
1,Gy), (cy = 4,G,)}, where

=16 :N={12},r=(12),5({1}) =1,5.({2}) =1,5;({1,2}) =1
02=4,Gy: N ={1,2}, 7 = (1,2),5,({1}) = 0,55({2}) = 0,55({1, 2}) = 1.

for G;, we have 9,({1}) = 1,5,({2}) = 1,5, ({1,2}) = 1 while for
G,, we have 0,({1}) = 0,3,({2}) =0,3,({1,2}) = 1.

Ge et al. [22] proved the following properties of the GM decom-
position method,

e GM decomposition outputs the D(G) satisfying for each
T C N,o(T) = Xk cx0x(T) and 0 () is 0-1 valued monotone
functions.

e Given a decomposition D(G), for any player i in 7 with
subgame G, the decomposition of D(G?) is consistent with
D(G) within players in Nj; (consistency between the global
game and prefix subgames).

B OMITTED PROOFS IN SECTION 4

B.1 Proof of Proposition B.1

PRrOPOSITION B.1. Given an OCG G = (N, v, ), if the valuation
function v(-) is subadditive, NDMES rule runs in linear time O(n).

Proor. Toidentify all the dummy players in each prefix subgame
G', we need to verify for every player j € N,; whether o(S U
{j}) = 0(S) holds for all subsets S C N, ;. However, when the
valuation function v(-) is subadditive, we show that player j is
a dummy player in G' if and only if v({j}) = 0. Note that v(-)
is subadditive, for any subset S, o(S U {j}) < v(S) + o({j}) =
v(S). On the other hand, we assume the valuation function v(-) is
monotone, i.e., v(S U {j}) = v(S). Combining the two inequalities
yields o(S U {j}) = v(S) for all S, implying that j is a dummy
player. Conversely, if j is a dummy player, then taking S = 0 gives
o({j}) = v(0) = 0. Hence, under subadditivity, j is a dummy in G
ifand only if v ({j}) = 0. Therefore, determining all dummy players
in each subgame G’ can be done in linear time O(n), as it suffices
to check whether o({;}) = 0 for every j € Nyj;. O

B.2 Proof of Theorem 4.5

ProOF. (S-STAY) ULMES rule satisfies STAY as each player’s
shared value is non-decreasing. To show ULMES rule satisfies S-
STAY, consider an OCG G = (N, v, ), for any player j € N and
any prefix subgame G’ where j < i, assume i is a contributional
player, if j satisfies 0(Ny|;) > v(Ny; \ {j}), then j must be in the
final S after the elimination process of ULMES rule. The proof is
as follows. Denote S'(j) as the tentative S' when checking whether
player j should be eliminated or not. Recall the valuation function is
monotone and S*(j) € Ny;. It means o(Ny; \ {j}) = o(S'(j) \ {i})-
Since o(Ny|i) > 0(Ngj; \ {j}), then we have o(Ny;) > v(S'(j) \
{j}), which implies j must be kept in S’'(j). Then, j will share
\s_li| MC(G', Ny)i \ {i}.i) > 0. Therefore, ULMES rule satisfies S-
STAY.

(PART) Consider an OCG G = (N, v, ), for any prefix subgame G
with arriving player i, if i is a contributional player, then i is kept
in §* as MC(G", Ny); \ {i}, i) = 0(Ngji) — 0(Ngpi \ {i}) > 0.



(OD) Consider an OCG G = (N, v, 7), for any prefix subgame G!
with an arriving contributional player i, we show that ULMES
rule never assigns positive value to dummy players in G’. Prove
by contradiction. Assume that there exists some dummy player
j in G' who gets assigned positive value, then j must survive in
the elimination of S, however, by the definition of dummy player,
for any subset T C Ny;, o(T) = o(T U {j}). Denote S'(j) as the
tentative S’(j) for the time-step when j is checked whether she
should be eliminated from S’. According to ULMES rule, j € S'(j)
and o(S'(j)) = o(Ngpp), let T = S'(j) \ {j}, we have o(S'(j) \
{j} = v(S(j)) = v(Ny;), meaning j must be eliminated from
Si(j). Hence, j will not survive in the final sharing set S’ to share
the value, contradicting to the assumption that j gets some positive
sharing value in G. O

B.3 Omitted Proof of Lemma 4.7

Proor. Consider an SOCG G; = (N, v, ;) where 71 = (1,2,...,i—

1,i,i+1,...,n). Let g denote the pivotal player in G;, that is, in sub-
game G?,9(Ny |4 \ {q}) = 0 and 0(Ny,)q) = 1. Let G5 = (N, v, 72),
where 7, = (1,2,...,i—1,i+1,...,j,1,...,n) represents the arriv-
ing order in which all other players’ arriving orders are fixed and
i delays her arrival. For i, there are three cases: ¢ <, i,q =iand
I <7 g
Case 1: g <, i.If a coalition with value 1 has formed before i’s
arrival in my, i shares no value in both 7y and 7, and ¢(Gy,i) =
¢(Gz, l) =0.
Case 2: q = i. I i is the pivotal player in G, there are two possible
cases if i delays her arrival.
(a). i loses her pivotal role in 7,, i.e., some player in {i+1,i+2,.. ., j}
becomes the pivotal player. Then, ¢(Gy, i) > ¢(Ga, i) = 0. Player i
has no incentive to delay.
(b). i remains to be pivotal in ;. Let Si be the player set sharing
value 1 in G;. When i delays in s, there will be no change of
S{ \ {i} which creates the new marginal value along with i. Thus,
ULMES will eliminate all the playersin {i+1,..., j} (because of the
existence of S! \ {i}) in G,. Hence, players in S still share the value
1in G,. Player i receives the same value in G; and G,. Therefore, i
has no incentive to delay in case 2.
Case 3: i <,, q Denote S}I as the set of players among whom the
value 1 is shared. There are two possible cases.
(a).i¢ ST ie, p(Gi)=0.i¢ Sf is either because there exists no
coalition including i along with g creating value 1 or because i is
in some coalition creating value 1 with g, however, eliminated by
ULMES rule. In the former case, i) i delays between i + 1 and g,
there is still no coalition including i can creating value 1 with g;
ii) i delays after ¢’s arrival, which makes no change for the value
sharing as i’s delay does not influence SZ. For the latter case, it
implies that among players {1,2,...,i,...,q— 1}, there are multiple
coalitions with g creating value 1 and i is in one of these coalitions,
denoting it by Sf. However, Sf is eliminated because of the existence
of $7. Since i ¢ S, i’s any delay strategy in 7, has no effect on S,
keeping ¢(Ga, i) = ¢(Gy,i) = 0.
(b).i€ S ie, $(Gy,i) = ﬁ. There are two different situations:
1
i) Sf is the unique coalition creating value 1 in GY. If i delays
between i + 1 and g, it does not change value sharing in 7, and

¢ (G, i) = ¢(Gy, i) = ﬁ; If i delays the arrival after g, one case
1

is some players in m; between g and i, along with some players

in{1,2,...,i—1,i+1,...,q} construct a coalition with value 1,

then ¢(G,, i) = 0; the other case is that after i’s delay, i becomes

the pivotal player. However, i will still share the value in S? as

all the other such coalitions creating value 1 will be eliminated

by ULMES because of the existence of Sf. Therefore, $(Gz, i) =
1

¢ (G, i) = Gk ii) there are multiple coalitions including some
1

players in {1,2,...,q — 1} creating value 1 with g and S? is the
coalition survives in ULMES rule. If i delays her arrival between
i+ 1 and g, it could be either Sf is still the coalition to share the
value (¢(Ga, i) = ¢(Gr,i) = ﬁ) or because of i’s delay, Sf get
eliminated in ULMES rule, makling some other coalition survives
(¢(G1,i) > ¢(Gy, i) = 0); If i delays her arrival after g, ¢(Gz,i) =0
as there exists some other coalition creating and sharing the value
1. Combining the aforementioned three cases, we conclude that
ULMES satisfies the EA axiom in any SOCG. O

B.4 Omitted Proof of Theorem 4.8

Proor. (S-STAY) Consider an OCG G = (N, v, x), for any prefix
subgame G’ with an arriving contributional player i, for every
player j satisfying j < i and 0(Np|;) > 0(Nyg; \ {j}). According
to the GM decomposition D(G), the valuation is decomposed into
linear combinations. Since v(Ny|;) > v(Ny|; \ {j}), there exists at
least one component in D(G) such that 5(N|;) > d(Ng; \ {j})
and i is a contributional player in G'. For this component (c, G),
according to Theorem 4.5, ULMES rule satisfies S-STAY, meaning
in G', ¢(G', j) > 0. Due to the consistency of D(G) and D(G'), we
have ¢(G', j) = Yk ckp(GL, j) > 0. eULMES rule satisfies S-STAY.
(PART) Consider an OCG G = (N, v, 7), for any prefix subgame G’
with an arriving contributional player i. In the decomposition D(G)
of G, there exists at least one component (c, G) such that i is still a
contributional player in G. Prove by contradiction, assume there is
no component such that i is a contributional player. By the linearity
and consistency of D(G) regarding the valuation function, i is not
a contributional player in G, contradicting i is the contributional
player in G'. For G, as ULMES rule is PART, meaning i get positive
value in G': ¢(G,i) > 0. So i has positive shared value in G’ as
the value c - ¢(G', i) will be added into ¢(G', i). Then eULMES rule
satisfies PART.

(OD) Notice that ULMES rule satisfies OD, assigning no value to
dummy players for each component (c, G) of the decomposition
D(G). Also, consider any OCG G = (N, v, ), for any player i, if
i is dummy in G, then for SOCG G, in each component of D(G),
i is still a dummy player. Thus, for eULMES rule which outputs
the weighted sum of ULMES rule’s output over each component, it
never assigns a positive value to dummy players in G. So, eULMES
rule satisfies the OD axiom.

(EA) Consider an OCG G = (N, v, 1), according to lemma 4.7,
ULMES rule satisfies EA for every SOCG. It means ULMES rule
satisfies EA for every SOCG in each component (c, G) of D(G). For
any player i in arriving order x, assume i delays her arrival and
changes the order into 7" w.r.t. the OCG G’ = (N, v, ’). Notice
that the GM decomposition only depends on the valuation function
and is unrelated with the arriving order. Thus, for player i, for
each component (c, G = (N,9,7)) and (¢, G’ = (N,3,7’)), ULMES



rule satisfies the EA axiom implies ¢(G, i) > ¢(G’, i). Furthermore,
$(G,i) = Yk ck - ¢(Gr, 1) 2 X ek - $(G,, i) = ¢(G',1). So i has no
incentive to delay her arrival, meaning eULMES rule satisfies the
EA axiom. ]

B.5 Omitted Example for ULMES and eULMES

Example B.2 (ULMES and eULMES rules). Consider an OCG G =
(N,v, ) where N = {1,2,3,4}, © = (1,2,3,4). For the valuation
function v(-), all the coalition valuation are enumerated in the first
row of Table 2.

Under the ULMES rule, during the first two timesteps, players 1
and 2 arrive but generate no value. When player 3 joins, the coalition
{1, 2,3} generates a value of 2, and no other sub-coalition achieves
this value. Consequently, the three players share the total value
equally, each receiving % Upon the arrival of player 4, the grand
coalition achieves a total value of 3, with a marginal contribution
of 1. To determine Sy, we start from player 4. Removing player 4
reduces the value to 2, indicating that player 4 must be included
in Sy Similarly, player 3 must also be in S, since v({1,2,4}) = 0.
Conversely, player 1 and 2 are excluded from S, since v({1,3,4}) =
v({3,4}) = 3. Hence, the marginal contributional value of 1 is
evenly distributed between player 3 and 4, each receiving % The
final value distribution is ¢(G) = (i, g % ;) Now consider the
OCG G’, where player 3 delays her arrival, changing the arriving
order from 7 = (1,2,3,4) to 7’ = (1, 2,4, 3). In this scenario, player
3 strategically delays her arrival to ensure that she shares the entire
value of 3 solely with player 4, resulting in each receiving % Hence,
the final value distribution under 7’ is ¢(G’) = (0,0, 3 35 ). Table 3
compares the outcomes for ULMES rule in G and G’. This shows
that ULMES rule fails to satisfy the EA axiom as player 3 can gain
extra benefit from delaying her arrival.

Regarding eULMES rule, firstly, since the GM decomposition is
independent with the arriving order, OCG G and G’ share the same
game decomposition components shown in Table 2, i.e., decom-
posing G into three components D(G) = {(1,G1), (1,Gz), (1,G3)}
with three distinct valuation functions @, (), d2(-), and d5(-). After
the decomposition, we run ULMES rule in each decomposed com-
ponent in G and G’, respectively. Taking G as the example, under
the arriving order = = (1,2, 3, 4), for Gi, player 1 and 2 arrive with
no value sharing, when player 3 comes, we compute S; = {1,3}
since 91 ({1,3}) = 1, then player 1 and 3 each shares % Similarly,
we can compute the value distribution in G, and Gs. The results
are demonstrated in the left part of Table 4 while the outcome of
eULMES rule in G’ is shown in the right part of Table 4.

For the three components with G;, G;, and Gs, we omit the co-
efficient for each SOCG as their coefficients are all the same 1 in
this example. It is not hard to see that player 3 has no incentive to
delay her arrival when we apply eULMES rule.

C OMITTED PROOF IN SECTION 5

C.1 Omitted Proof of Proposition 5.2

Proor. Consider an OCG G = (N, v, 1), DMC rule satisfies the
IR axiom since for each player i € N, ¢(G,i) = MC(G",N,[‘,- \
{i}, i) = v({i}) with superadditive valuation function. For SV rule,
it degenerates to the classic cooperative game in which the Shapley
Value satisfies IR in games with superadditive valuation functions.

Next, we show that eRFC rule does not satisfy the IR property

with superadditive valuation function by the following example.

Consider a game G = (N, v, 7) where N = {1,2}, 7 = (1,2), and
o({1}) = L,u({2}) = 2,0({1,2}) = 5. According to eRFC rule in

[22], G will be decomposed into D(G) = {(1,G1), (1,Gz), (3,G3) }.

The decomposed valuation function is provided in Table 5.

Finally, for the original game G, ¢(G,1) = 4 and ¢(G,2) = 1.

Note that 0({2}) = 2 > ¢(G,2) = 1. Thus, eRFC rule does not
satisfy the IR property. O

C.2 Omitted Proof of Theorem 5.3

Proor. For the IR-MES rule, IR-NDMES rule, and IR-eULMES
rule, all three rules satisfy the IR axiom. For any OCG G =
each rule first assigns the value v({i}) to any arriving player i in the
order 7. The superadditive valuation function ensures the validity
of this allocation.

Next, we show each rule maintains to satisfy all the axioms
before the refinement.

We first clarify S-STAY is incompatible with IR if there exists
some player i, MC(G', N\ {i}, i) =o({i}) > 0. Consider an OCG

G = (N,u, r) where N = {1,2}, 7 = (1,2),and o({1}) = v({2}) =1,
v({1,2}) = 2. According to IR, it must be #(G,1) = #(G,2) = 1.
However, this value distribution does not satisfy S-STAY axiom.

Therefore, we next mainly focus on the superadditive valuation
where for any OCG G = (N, v, 7), MC(G', Ny ; \ {i}, i) > 0({i}) for
each arriving player i when discussing the S-STAY axiom.

We first show that IR-MES satisfies S-STAY, PART, EA axioms
as follows.
(S-STAY) Consider an OCG G = (N, v, ) with arriving order
7 =(1,2,...,n). For the prefix sub-game G! with arriving player
i, (GLi) = ‘S—lil(MC(Gi,N,r“ \ {i}, i) — U({i})) For any other
|Sl (MC(NM,, i) —

o({i})) + Zk 1 (MC(Nyjk, k) —v({k})) = ¢(G, i). IR-MES rule
satisfies STAY. Furthermore, if in G/, MC(Ny;, j) > 0({j}), then
#(G, i) > ¢(G', i), satisfying S-STAY.

(PART) Consider an OCG G = (N, v, 7), for any arriving player i,
the value shared immediately by i is ¢ (G, i) = o({i})+ = B (MC(Gl
{i},i) —v({i})) > 0. Hence, IR-MES rule satisfies PART.

(EA) Consider any player i € N and two OCGs G; = (N, v, ;) and
G, = (N, v, m,) with two different arriving orders 7; and 7.

o (L2 i—Lii+,.. -1/, j+1,...,n),
m (L2 i—Li+1,..,j—1jij+1....n).

prefix subgame G/ where i <, j. ¢(Gj, i) =

For each prefix subgame G!(G}) within G (G), denote the player
set sharing the marginal value by S!(S!) in IR-MES rule. Then, the
value shared by i in G; can be represented as

#(Gr.) =o({i }>+Z| k|(Mc<c’<, N\ (kLK) =0 ({K})). (1)

The value shared by player i in G, can be written as

$(Ga, 1) v({z}>+m(MC(GZ, Najjo1) = o({i})

. @
- k|(MC(GZ, Nog \ (K} K) = o({kD)).

k=j+1

(N,o, 1),

7[\1\



Coalition Coef {1} {2} {3} {4} {L2} {13} {14} {23} {24} {34} {123} {124} {134} {234} {1,234}

Valuation 0 0 0 0 0 1 0 1 0 3 2 0 3 3 3
57() =1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1
5() =1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
g5() =1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

Table 2: Coalition valuation and decomposition of the OCG G with 3 components (1,G;), (1,G,), (1,G3).

#(G, i) 1 2 3 4
r=(1,234) 2/3 2/3 7/6 1/2
7 =(1,243) 0 0 3/2 3/2

Table 3: ULMES rule outcome in G and G’

For every player k who arrives after player j, we have N, x = Np, k.

Hence,

¢(Gl, i) = §(Ga, i)
_Z |Sk (MC(Gk’NmIk \ {k}, k) - U({k}))

i (MC(GZ, )i \ {i} 1) —v({l}))

J

2577 2.

zk:

(MC(GE, Nyi \ (K}, ) = o({kD) )

5 — (MC(GY Ny \ 101,) (1))

J
D o({kD)

k=i

(MC(GY Ny \ 102, 1) —o(iD)).

|Slz|(U(N7f1|1) 0(Ngy; \ {iD) -

1S3

Note that N, ; \ {i} ={1,2,...,i—
{i+1,...,j}. Therefore we have

Li+1,...,j} =Ny \ {i} U

J
|Slz| ( (N7T1|J) U(Nﬂl |j \ {l}) ZU({k}))
k=i

|S,l(MC<Gl, i V(i1 D) = o({)

J
> o({kp)

k=i+1

J
Z u({k})) > 0.

k=i+1

(4)
5 (vuv,m, \{i}) = 0Ny \ {i}) -

1
>—

I (U({z+1 cJh -

The last two steps are from superadditivity, we have U(N,rl i \{i}) =
o(Ng, i \{iD)+o({i+1,...,j}) ando({i+1,.

Next, we show that IR-NDMES satisfies S-STAY, PART, OD, and
EA axioms as follows.

o J1) 2 gy o({kD).

(S-STAY) Obviously, IR-NDMES rule satisfies STAY as every player’s
shared value is non-decreasing. Next, we show the satisfication of S-
STAY. Consider an OCG G = (N, v, 7), for any player j, consider any
prefix subgames G, (j <, i) and i is a contributional player, if j sat-
isfies (N (i) > o(Ng: \ {j}), thenj is non-dummy in G. So, j is in-
cluded in S’ and share the value —- IS’ (MC(G’ Nyi\i} i)- o({i})) >
0. Hence, for player j, (G, j) > ¢(G/, j), satisfying S-STAY axiom.
(PART) For each arriving player i, if i is a contributional player,
i.e, MC(Ny|;,i) > 0, iisnota dummy player and will be included
in S’. Then, i immediately gets 2 IS’ (MC(N,,‘l \ {i}, i) —ov({i}) >0,
satisfying the PART axiom.
(OD) Consider an OCG G = (N, v, 7). For every prefix subgame
G', the IR-NDMES rule eliminates all the dummy players in G,
just like the NDMES rule, aligning directly with the definition of
Online-Dummy.
(EA) Consider two OCGs G; = (N, v, m1) and G, = (N, v, 1) with
two different orders 7; and 7, as follows

m (L2 i—Lii+l,...,j—1,j,j+1...,n)

5
(1,2, i—1i+1,.. Ljij+1,...,n) ®)

-
For any player i € N, we discuss the satisfication of the EA
axiom in the following four cases.
Case 1. MC(G!, Ny, ;i \ {i},i) = MC(GL, Ny, \ {i},i) = 0. The
shared value after player j + 1’s arrival remains the same for these
two orders. The only difference is that player i might gain some
shared value when i is not a dummy player in subgames from G'*!
to G/. Therefore, the value shared by player i in ; will always be
at least as much as in
Case 2. MC(G!, Ny, : \ {i}, i) > 0, MC(GL, Ny, ; \ {i}, i) = 0. For my,
i will never be a dummy player in all subgames after her arrival,
thus i shares all the marginal value from i to n. However, in my,
player i only shares marginal value from player j + 1 to player n.
Case 3. MC(G!, N i \ {i},i) = 0,MC(GL, Ny, ; \ {i},i) > 0.In
thise case, we discuss cases concerning whether i is dummy or not.
The first situtation is that i keeps to be dummy (No shared value
from i to j — 1) until j’s arrival (This is because i has some positive
marginal value in ;).

01, =0((1) + Y] i (MO(Gh N\ (619 = (kD). @
k=j "1

$(601) =0(1)+ 3} 1 (MOGh N\ (B)F)o( D). )
k= 02

Let S{ be the set of players who share the value from j’s partici-

pation in ;. S{ = Sé because they both represent the set of non-
dummy players in players {1,2,..., j}. Another observation is that



G G’

o (i) 1 2 3 4 o(- i) 1 2 4 3
Gy 1/2 0 1/2 0 G 1/2 0 0 1/2
G, 1/3 1/3 1/3 0 G, 1/3 1/3 0 1/3
G 0 0 1/2 1/2 G 0 0 1/2 1/2
G 5/6 1/3 4/3 1/2 G’ 5/6 1/3 1/2 4/3

Table 4: eULMES rule outcomes in G and G’. The left part shows results in G, and the right part shows results in G’ where player

3 delays her arrival.

{1} {2} {12}

Coalition  Coef

Valuation 1 2 5
01(+) ¢ =1 1 1 1
5(0) =1 0 1 1
0] c3 =3 0 0 1

Table 5: Coalition valuation and game decomposition of G

starting from player j + 1’s participation, the value shared by player
i in /1y and 7, will be the same. Hence,

$(G1, 1) = ¢(Ge. i)

1 i N
= | (MC(GL, Nz \ 1) ®

—0({j}) = (MC(Gj, Nayji \ {i}, ) = v({i}))]-

Note that player i creates no new marginal valution with N, |; and
she is a dummy player for all subgames before j’s arrival in this
situation, thus we have v({i}) = 0 and o(Ny,|; \ {j}) = o(Ng; \
{i, j}). Therefore,

¢(Gls l) - ¢(GZ’ l)

=|—1j|(v<NmU \ (i) = 0Ny \ 1) = 045D

©)
5 (0N 5\ 7))+ 00) = 0Ny \ 11 3D) = 0())

=0.

The other situation is that player i is not dummy after some player
q’s arrival where i <, g <, Jj, in this case, ¢(Gj, i) can be written
as

1
$(Gr.i) =o({i}) + Z 5 (MC(GE N\ (k) = (kD).
q 1
(10)
Note that v({i}) = 0 because of the superadditivity. Also, denote
Xhjn @(MC(G’C, Ny ik \ {k}, k) — v({k})) by A for simplicity.
1

Then, we have

J
$(611) = 3, o (MCOE Nei \ (61,80 —o( (k) +
k= 1

q

(11)
J
> (0(Nmy 1y = 0N g \ {gD) = Y 0(k)) +
|Sl| k=q
For the game Gy, ¢(G2, i) can be written as
$(Gu) =o(iD) + o o (MC(GY Ny \ 13,1 = 0()) + A
(12)

|S’| — MC(GL, N, i \ {i}, 1) + A

where MC(GL, Ny, i \ {i},i) =0(Ng, ;) —0(Ng,; \ {i}). Further,
$(G1, i) — ¢(Go, i)

J
(0 (Na13) ~ 0Ny g \ () - Zo({k}))

|sf| (13)

& (00N = 0N\ (8D):
For every player k who arrives after player j, we have Ny, |, and
Ny, k- That is |5{| = |S£|,
¢(Gls l) - ¢(GZ’ l)

20({1@))

k=q

5 (0N 15 \ ) = 0N \ ) -

J
|(”(N’”"’ \{i.q)) + Zv(k) o(Nayjq \ {a}) = Y o({kD)

=q k=q

:@(”(leq \{i,q}) —o(Npy g \ {i, q})) = 0.

(14)
The penultimate inequality follows from superadditivity and the last
step is because i is a dummy player of prefix Ny g = {1,2,...,i,...,q}.

Case 4. MC(GI,th \{i},i) =0, MC(GZ,NM, \{i}L,i) >0 For Gy,
¢(Gy, i) can be represented as

$(Gi,i) = v({z})+2 —k(Mc<ck, ik \ (K3 — (kD)

k=i
1 kN

—k(MC(c Ny \ k3.0 = o({kD)).
l

(15)

k=j+1



For G;, ¢(Gy, i) can be represented as

$(Gai) = o((i)+ - (MC(Gh N \ (1) = o((i)

e
o MC(GE N \ (k3.5 = o({kD)).
(16)

Still, we have S{ = S;, and from the arrival of player j + 1 to the
last player, the value shared by player i in G; and G, remains the
same. Thus,

¢(G1, i) = §(Gy, 1)

2
LIS

_Z |Sk (MC(Gk’Nﬂ1|k \ {k}, k) - U({k}))

& (MC(G', ol \ (i} 1) —U({’})) 17)

J

2%( Z (MC(GF, Niry i \ {k}, k) — v ({k}))

1 k=i
= MC(Gh, Nigyi \ {1k 1) + 0({1})).

To show ¢(Gy, i) —P(Gz, i) > 0, we next show Z’ (MC(GI,Nmk\
{k}, k)—o({k}))—MC (G, N, i\ {i}, i) +0({i}) = 0 We first rewrite
the equation as
J
0(Niy 1) =0 (N, i\ {i}) - Z o({k}) =MC(Gy, Ny, i \{i}, i). (18)
k=i+1

Notably, Ny, ; \ {i} ={1,2,...,i-Li+1,..
function v is superadditive, then we have,

., j} and the valuation

J
0(Nry 1) = 0(Nmy i \ {i}) - Z o({k}) = MC(Gj, Ny \ {i}, i)
k=i+1
J
=0(Npy i \ {i}) =0 (Ngyi \ {i}) — Z v({k})

k=i+1

J J
> 0(Npy i \ (i) + D 0({k}) = o(Nyi \ (i) = D" o({k})
k=i+1 k=i+1
=0.

From Case 1 to Case 4, for any player i, i has no incentive to delay
her arrival under the IR-NDMES sharing scheme. Thus, the IR-
NDMES rule satisfies the EA axiom.

Finally, we show that IR-eULMES satisfies S-STAY, PART, OD,
and EA. Recall IR-eULMES rule runs as follows. For an OCG G =
(N, v, ), we first decompose G into D(G) by Algorithm 1. For each
SOCG component (c, G), we run the IR refinement paradigm, that
is, first assign o({i}) for each arriving player i; then compute S’ in
G and equally share the value MC(G', N;) — v({i}).

(S-STAY) It is obviously that IR-eULMES rule satisfies the STAY ax-
iom as each player shared value is the linear combination (positive
coefficient) of the outputs of SOCGs, in which the shared value is
non-decreasing. Next we show for each component SOCG G, the
rule satisfies S-STAY. Consider an SOCG G = (N, 3, 7). For any pre-
fix subgame G', since we assume that MC(G’, N ;\{i}, ) -9 ({i}) >
0, then for any player j who satisfies 9(Ny|;) > 9(Ng; \ {j}), j

must be included in S? in G (The same proof procedures of the
S-STAY axiom for ULMES rule in Theorem 4.5). Then j must get a
positve fraction 2 of (MC(G', N ;\{i}, ))—a({i})) > 0, satisfying
S-STAY.

(PART) Since IR-eULMES rule outputs the linear combination of
IR-ULMES rule in each decomposed component SOCG G, we show
that the PART axiom is satisfied in each G. Consider an SOCG
G = (N, 3, n), for any prefix subgame G’ with arriving player i,
if i is a contributional player, 9(Ny|;) > 9(Ny; \ {i}), then i is
kept in S as 9(Ny|;) — 8(Ny; \ {i}) > 0. Futher, we have ¢(G, i) =
a({i}) + ‘SLL (MC(G', Nyji \ {i},0) — a({i})). If a({i}) > 0, then
#(G,i) >0 as MC(G%, Nyi \ {i}, i) — 9({i}) = 0. When ({i}) = 0,
#(G,i) = \51| (MC(G', Nyi \ {i}. i) — 8({i})) > 0. Therefore, IR-
eULMES rule satisfies PART.

(OD) The proof of satisfication of the Online-Dummy axiom directly
holds as the IR refinement does not affect the selection of S? for any
OCG G. Thus the proof of the OD axiom directly follows the proof
in Theorem 4.8.

(EA) To show IR-eULMES rule satisfies EA, it is sufficient to show
that IR-ULMES rule satisfies EA in each decomposed component
SOCG G. The reason is that if player i has no incentive to delay her
arrival in every decomposed SOCG G, then i can not change the
shared value by delaying her arrival because the GM decomposition
does not depend on the arrival order 7. Now we focus on the EA
property of IR-ULMES rule in SOCG G = (N, o, 7). Notice that
in SOCG with superadditive valuation function, there could be at
most one player with singleton value 1. We discuss the following
two cases: (1). There is no player with singleton value 1 in G. In
this case, IR-ULMES rule degenerates to ULMES rule. This means
IR-ULMES rule satisfies EA as well as we have proved that ULMES
rule satisfies EA in SOCGs in Theorem 4.7. (2). The other situation
is that there exists some player g satisfying 5({q}) = 1. In this case,
as we know IR-ULMES rule satisfies IR, it means that in such an
SOCG with 4({q}) = 1, the value 1 is wholely allocated to player
q. Then, firstly g has no incentive to delay her arrival as it does
not change the outcome. Secondly, for any other player i # g, i
cannot delay her arrival to share some part of the value 1 because
IR property guarantees IR-ULMES rule distributes the value 1 to
player q. This completes the proof of the EA satisfication of IR-
ULMES rule. Therefore, we have IR-eULMES rule satisfies the EA
axiom.
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