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ABSTRACT

Learning holistic computational representations in physical, chemical or biological
systems requires the ability to process information from different distributions and
modalities within the same model. Thus, the demand for multimodal machine
learning models has sharply risen for modalities that go beyond vision and language,
such as sequences, graphs, time series, or tabular data. While there are many
available multimodal fusion and alignment approaches, most of them require
end-to-end training, scale quadratically with the number of modalities, cannot
handle cases of high modality imbalance in the training set, or are highly topology-
specific, making them too restrictive for many biomedical learning tasks. This
paper presents Multimodal Lego (MM-Lego), a general-purpose fusion framework
to turn any set of encoders into a competitive multimodal model with no or minimal
fine-tuning. We achieve this by introducing a wrapper for any unimodal encoder
that enforces shape consistency between modality representations. It harmonises
these representations by learning features in the frequency domain to enable model
merging with little signal interference. We show that MM-Lego 1) can be used as a
model merging method which achieves competitive performance with end-to-end
fusion models without any fine-tuning of the original encoder weights, 2) can
operate on any unimodal encoder, and 3) is a model fusion method that, with
minimal fine-tuning, surpasses all benchmarks in five out of seven datasets.

Figure 1: The Multimodal Lego workflow to turn a set of encoders into a performant multimodal
model. LegoBlock (1) makes unimodal encoders compatible with model merging techniques by
learning a latent representation in the frequency-domain to prevent signal interference effects upon
aggregation. Any set of LegoBlocks can be merged into a multimodal model without any fine-tuning
(LegoMerge (2a)) or with minimal fine-tuning to achieve state-of-the-art performance (LegoFuse (2b)).
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1 INTRODUCTION

The utility and demand for multimodal machine learning approaches has sharply risen due to their
potential to derive holistic representations in various systems, including physics (Zubatiuk & Isayev,
2021), chemistry (Belianinov et al., 2018), neuroscience (Alberdi et al., 2016), or biology (Boehm
et al., 2022). Multimodal models in the vision & language domains leverage the same data
distributions, which are represented across different modalities (Yu et al., 2019; Li et al., 2021b; Tu
et al., 2023), such as vision-text pairs of the same concepts. However, in many biomedical domains,
modalities represent data at different scales (e.g., cellular, genomic, transcriptomic), cardinalities that
are not paired (e.g., many single-cell reads for a single tissue slide per patient), and follow separate
distributions. While large foundation models have excelled in tasks confined to individual modalities
(Cui et al., 2024; Nguyen et al., 2024; Chen et al., 2024), training these models across modalities
is expensive, requires paired modalities, and is still an end-to-end process.

Multimodal fusion methods (Zadeh et al., 2017; Liu et al., 2018; Nagrani et al., 2021; Li et al., 2021a)
attempt to derive a common representation from different data structures and distributions whilst
preserving its salient signals (Baltrusaitis et al., 2019). However, there are several shortcomings of
existing fusion methods that relate to their utility, scalability and underlying data assumptions. First,
many fusion methods require end-to-end training of the multimodal model, and even in scenarios
with existing unimodal models, the fusion operation still has to be trained for a downstream task,
typically in a supervised manner. This leads to redundant computational overhead and an inability
to extend the model with additional modalities after it has been trained. Second, many commonly
used fusion methods either scale quadratically (with the number of modalities) (Zadeh et al., 2017;
Chen et al., 2022) or are only designed to operate with two modalities (Chen et al., 2021; Xu &
Chen, 2023). Third, many of these methods follow a monolithic design, requiring all modalities to be
available for every sample during training. This means that they are not robust to missing modalities,
modality imbalance, or non-overlapping training sets, which is a very common challenge in a variety
of real-world settings (Swamy et al., 2023). Finally, many end-to-end fusion architectures are highly
topology-specific, making them difficult to extend to other domains.

Some of these challenges can be addressed through model merging (Labonne, 2024) (also referred to as
knowledge fusion (Jin et al., 2023)), an approach commonly used in the context of multi-task settings
and language modelling, which capitalises on combining well-performing unimodal models trained
in isolation. Model merging methods attempt to combine two architecturally identical models trained
on different distributions through interpolation, arithmetic manipulation, and aggregation of their
weights (Yadav et al., 2023; Stoica et al., 2024; Ilharco et al., 2023), or stacking their layers (Akiba
et al., 2024), often without additional training/fine-tuning. While model merging has been extended to
some multimodal vision and language tasks (Sung et al., 2023), its crucial challenges in a multimodal
setting are that: a) the merged components are still trained in isolation, and b) we cannot assume
topological equivalence between two models for separate modalities due to their separate input shapes.

In this paper, we present Multimodal Lego (MM-Lego) – a flexible framework for combining any
unimodal models into a multimodal model with no or minimal fine-tuning (Figure 1). We introduce
two approaches within our framework – LegoFuse and LegoMerge, enabling performant multimodal
models given a set of unimodal encoders with either little (LegoFuse) or no (LegoMerge) fine-tuning.
We show that MM-Lego satisfies multiple desirable properties in a range of real-world multimodal
applications combining imaging, tabular, and time series modalities. We demonstrate the utility of
MM-Lego on seven medical datasets across three separate downstream tasks, showing that it is:

1. Performant without end-to-end training: LegoMerge is highly computationally efficient and
achieves competitive performance wrt. state-of-the-art without any fine-tuning, while LegoFuse
exceeds the state-of-the-art in some tasks with only a few epochs of fine-tuning.

2. Scalable: Both variants of MM-Lego scale linearly with the number of modalities whilst outper-
forming methods with quadratic time complexity.

3. Topology agnostic: Unlike most model merging approaches, LegoMerge does not require equiva-
lent architectures between the merged models, allowing users to take advantage of the plethora of
open-source models for multimodal learning.

4. Handling modality imbalance & non-overlapping sets: MM-Lego is robust in cases of missing
modalities and strong modality imbalance, a common problem in medical domains. MM-Lego
can be used even if each modality was trained on unpaired (non-overlapping) training samples.
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2 BACKGROUND & RELATED WORK

Preliminaries. Let X(M) =
⋃

m∈Mm be a multimodal dataset where M = {A,B, . . . , Z}
represents the set of modalities m such as images (A), tabular data (B), time series (C), etc. Let
X

(A)
i,j,k correspond to the element in the dataset for modality A at sample i, column j, and channel k,

assuming A ∈ RI×J×K where 1 ≤ i ≤ N , 1 ≤ j ≤ J , 1 ≤ k ≤ K. Each sample in X has a set of
discriminative task labels y(T ) =

⋃
t∈T y(t), where T = {T1, T2 . . . , Tc} is the set of possible tasks

such that y(T1) = {yT1
1 , yT1

2 , ..., yT1

N } are the scalar target values for task T1 for N samples.

Fusion methods. Given multiple data inputs or latent representations, fusion methods construct a
single learning representation that can be used for downstream tasks, often whilst reducing dimension-
ality. Many fusion methods (Alberdi et al., 2016; Chen et al., 2022) first learn a set of modality-specific
encoders G = {gm : m → h(m)} assuming a single task label y. This results in a set of latent
representations H = {gm(m),m ∈ M}, which are combined with a fusion operator to obtain the
final fused representation z = ψ(H) and its final prediction ŷ = f(z). Following this problem setup,
fusion methods can be differentiated by: 1) the choice of the fusion operator ψ(·); 2) the fusion stage
in the pipeline of when ψ(·) is applied; and 3) the fusion order in which the fusion operations are ap-
plied (i.e., sequential vs. parallel). The fusion operator can be either static (e.g., concatenation (Jaegle
et al., 2021), Kronecker product (Zadeh et al., 2017)) or learnable (e.g., low-rank tensor fusion (Liu
et al., 2018), cross-attention mechanisms (Nagrani et al., 2021; Li et al., 2021a; Xu & Chen, 2023),
mixture of experts (Mustafa et al., 2022; Han et al., 2024)). The fusion stage is typically characterised
as early, intermediate or late fusion. Early fusion methods apply a static fusion operator ψ(·) to the
raw data while only applying this after passing each modality through G. Intermediate fusion methods
often do not apply a static aggregation but rather learn a fusion function (i.e., a small sub-network
or neural layer) in the latent space as part of its end-to-end training (Baltrusaitis et al., 2019).

A shortcoming of existing fusion methods for many real-world applications is the fusion order –
most fusion methods use a monolithic task setup, where all modalities are required during training
and inference to calculate the set of latent representations H. This often leads to noisy fused
representations in cases when a modality is (partially or fully) missing, as the missing tensor requires
imputation. Moreover, ψ({gm(m,y),m ∈ M}) is typically trained end-to-end. This hinders the
potential of extending the multimodal model with additional modalities (beyond the ones it has
been trained on), without training anew. Rerunning the complete training pipeline just to add one
(or more) additional modality can be infeasible or can lead to redundant computational overheads.
Finally, many methods are highly domain-specific and are either not designed for |M| > 2 or scale
quadratically with the number of modalities (Li et al., 2021a; Chen et al., 2021; Xu & Chen, 2023).

Model merging. The core idea behind model merging, typically deployed in multi-task settings,
is that earlier layers in a network may learn similar features that may be used across tasks (Sundar
et al., 2024). Using linear interpolation (Labonne, 2024) or arithmetic manipulation (Ilharco et al.,
2023) of the task-specific weights, model merging approaches have shown that they can effectively
generalise to new tasks without any fine-tuning. Formally, given multiple tasks y(T ) for the same
modality A, they first learn the set of task-specific functions F = {ft(ωt) : A → ŷ(t) | t ∈ T }
where ω denotes the corresponding model parameters. Assuming the same architecture for each
model in F , parameters from a pre-trained base model ωbase can be used to derive task vectors as
V = {τt ← ωt − ωbase | t ∈ T } (Ilharco et al., 2023) . Given these task vectors, a multi-task model
can be constructed by updating the weights of the base model ω′ = ωbase + λ

∑T
t τt. This idea

has been extended by the TIES (Yadav et al., 2023) and DARE (Yu et al., 2024) that merge models
through sparsifying and resolving sign conflicts in the task vectors. Another popular approach is
spherical linear interpolation (SLERP), a method used to smoothly interpolate between two vectors
while respecting the geometric properties of the vector space (Labonne, 2024). More specifically,
given model parameters ωT1

and ωT2
∈ Rd, derived from two models with identical architectures,

the merged multi-task model parameters can be calculated as ω′ = ωT1

sin(θ·(1−µ))
sin(θ) + ωT2

sin(θ·µ)
sin(θ)

where θ is the radian between the two vectors ωT1
and ωT2

(Shoemake, 1985). The underlying
assumption of the above model merging approaches is that the models should have an equivalent
network topology, ensuring that the dimensions Rd match up between tasks. However, while this is an
acceptable constraint for multi-task learning, it is infeasible for multimodal models where modality
shapes and the corresponding network topologies vary greatly.
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3 MULTIMODAL LEGO

MM-Lego introduces two novel approaches for multimodal model merging (LegoMerge) and mul-
timodal model fusion (LegoFuse). It addresses a number of limitations of existing model merging
(topological equivalence) and fusion methods (such as scalability for |M | > 2, missing modality
handling, end-to-end training, paired data, etc.). The core component of MM-Lego is a LegoBlock -
a wrapper for any modality-specific encoder that imposes several constraints on the latent feature
space and structure. These constraints are a necessary condition for LegoMerge, which aggregates the
latent encodings with minimal signal interference between modalities to perform a multimodal model
merge. Moreover, using LegoFuse, MM-Lego allows us to fine-tune the combined blocks, ensuring
that cross-modal dependencies and mutual context can be learned.

Architecture. Rather than learning a single fusion operator ψ(H) that applies to all latent representa-
tions at once, we learn a set of latent update functions for each modality, in the form of

B = {ψm : (gm(X(m)), L(m)
s )→ L

(m)
s+1 | s ∈ S,m ∈M}, (1)

where L(m)
t ∈ L is our target latent representation for each modality that we will later use in the

merge and fusion, and S is the number of update steps. Using the iterative update architecture with
latent state passing in Equation 1 has a number of advantages. First, iterative attention architectures
have been shown to be highly generalisable across modalities (Jaegle et al., 2022), and effective at
dealing with missing individual modalities (Swamy et al., 2023; Hemker et al., 2024). Second, since
all modalities are encoded into a self-defined latent representation, we can impose a dimensionality
constraint such that each latent has the same dimensions (e.g., L(A), L(B), L(C) ∈ Rc×d for latent
channels and dimensions c and d). Third, we can do latent state passing between elements in B,
which allows us to “stack” the update functions on top of each other (hence the name) to sequentially
encode each modality’s signal into the same latent representation.

LegoBlocks. Each element in B represents a LegoBlock (Figure 2), which learns the latent update
function ψm for any given encoder gm. Acknowledging that different data modalities and structures
require different inductive biases to effectively encode each modality’s information (gm), LegoBlock
acts as a wrapper to accurately encode hm into L(m). The benefit of training each modality update
function separately instead of end-to-end is that we can train on entirely separate samples for the
same tasks. For example, in many medical domains, we may have single-cell data for one subset
of patients and bulk sequencing data for a different subset, while having the same task labels for
the entire set. To address this, we use latent representations L that effectively encode signal across
modalities, and are robust or invariant to transformations (shifts, rotations, etc.), noise and signal
interference. Alleviating signal interference is particularly important for model merging, as it is
undesirable to apply an aggregate function on the learned modality latents L that can cancel out each
other’s signal. Beyond preventing signal interference, Fourier features have also been shown to be
effective as mixing mechanisms (Lee-Thorp et al., 2021), positional encodings (Lee-Thorp et al.,
2021), and to be naturally emerging in invariant networks (Marchetti et al., 2023).

Figure 2: Frequency-domain state passing in LegoBlock. The latent bottleneck L0 is randomly
initialized as a model parameter at the start of training and iteratively updated by each pass through
the LegoBlocks. The real components of the FFT (LF

0 )
r and F(h(A))r are used in the cross-attention

update, and the imaginary component (LF
0 )

r is used for reconstruction.
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This motivated us to design MM-Lego for learning latent representations in the frequency domain,
taking advantage of a number of desirable properties for multimodal merging and fusion. In particular,
frequency-domain representations are: 1) signal-preserving as frequency features are less prone to
signal interference upon aggregation (see Appendix F); 2) distance-preserving, as the Euclidean
distance between two signals remains unchanged after the Fourier Transform (following from
Parseval’s Theorem (Parseval, 1806)), making them suitable for distance-based loss functions;
3) invertible as the spatial/temporal domain can be reconstructed, allowing for the iterative updates
outlined in Equation 1; and 4) efficient, as the Fast Fourier Transform (FFT) has a time complexity of
O(n log(n)), making it scalable to very large datasets (Lee-Thorp et al., 2021). Further detail on why
the Fourier transform exhibits desirable properties for model mergin can be found in Appendix B.

Figure 2 depicts a single update of LegoBlock that operates over frequency-domain latent of modality
X(A). Starting with the latent representation in the spatial domain, we first apply a discrete FFT
F(·) (Nussbaumer, 1982) along each dimension of the 2D Tensor to yield a frequency domain
representation:

LF
t (u, v) =

c−1∑
i=0

d−1∑
j=0

Lt(i, j)e
−2πi(ux

c + vy
d ), (2)

where i, j denote the spatial-domain indices, and u, v denote the frequency-domain indices. This
results in a complex frequency-domain representation from which we separate the real (symmetrical)
and imaginary (asymmetrical) components of the FFT ((LF

t )
r and (LF

t )
i) (Smith et al., 1997). We

update the real component using a standard cross-attention layer (Vaswani et al., 2017), where we
aim to learn the weight matrices W q

m for the update query (LF
t )

r, and W k
m, W v

m for the keys and
values (h(A)) resulting in the latent update:

(LF
t+1)

r = softmax
(
(LF

t )
rW q

m · (F(h(A))rW k
m)⊤√

dk

)
· (F(h(A))rW v

m). (3)

In contrast to other Fourier-based architectures (Lee-Thorp et al., 2021), which only use the real
component of the transform, we keep track of the imaginary component (LF

t )
i as well. This allows

us to reconstruct the complex representation, and subsequently apply the inverse transform. We found
this to be critical for our iterative architecture, as otherwise the signal gets distorted and we lose
phase information (encoded in the imaginary component) at each update pass. Once we reconstruct
the complex representation, we apply the inverse transform to recover the spatial representation in
preparation of the next pass Lt+1 = F−1((LF

t+1)
r + i(LF

t )
i). Finally, the last task-specific heads

of each block are a fully-connected layer after applying layer normalisation. We omit the inverse
transform after the last update such that each head is trained in the frequency domain. This ensures
that we can apply aggregations with low signal interference on L during LegoMerge.

LegoMerge. With the architectural assumptions imposed on each modality encoder in G through
LegoBlocks B, we can apply model merging techniques in a multimodal setting. With L ⊆ Rc×d

and each element in L being in the frequency domain, we can use aggregation functions ψ(·),
which are less prone to cancelling out signal. For example, let L(A) and L(B) be the final frequency
domain latent representations for modalities A and B, then we can calculate a merged multimodal
representation as:

ψ(L(A), L(B)) = (
2|L(A)| · |L(B)|
|L(B)|+ |L(A)|

) · ei·
∠L(A)+∠L(B)

2 , (4)

where the real component is the harmonic mean of the magnitudes (| · |), and the imaginary component
is the arithmetic mean of the phases (∠) of L(A) and L(B). We take the harmonic mean since it is less
prone to outliers (Smith et al., 1997), that is, the merged representation is less likely to be strongly
skewed towards either modality by very large frequency components. With the cross-modal combined
representation L(M), we need to combine the task heads of each block, where we apply spherical
linear interpolation (SLERP) (Shoemake, 1985) for the set of task headsY from each element inB. As-
suming two task heads with weight vectors wy1 and wy2, where wy1 ⊂ ωA,wy2 ⊂ ωB , we calculate
the merged weights as wy1y2 = wy1 · sin(θ·(1−µ)

sin(θ) +wy2 · sin(θ·µ)sin(θ) (Shoemake, 1985), where θ is the an-
gle (in radians) between both vectors and µ is a binary variable indicating whether wy1 or wy2 is used.

LegoFuse. LegoMerge is designed to construct a performant multimodal model without any additional
training. Nevertheless, its key limitation is that each element in B is trained in isolation. To allow
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for modalities to mutually contextualise each other, a limited amount of fine-tuning is beneficial.
To avoid fine-tuning a potentially noised signal emerging from the merged latent L(M), rather than
directly fine-tuning the merged model (at the parameter-level), LegoFuse operates at the layer level
by sequentially passing through all layers in B. Specifically, the shape consistency introduced by
L ⊆ Rc×d allows the stacked model to pass the Fourier-transformed latent states either between
blocks (stacking) or different layers between blocks (weaving), as illustrated in Figure 1. We then
fine-tune the stacked or the weaved model for a few epochs with all (paired) modalities, such that
the state updates are conditioned on all modalities’ updates. This, in turn, becomes the query for
the cross-attention layer. Note that both the stacked and weaved variants of LegoFuse allow for
fine-tuning all model parameters, including the ones of the initial modality-specific encoders.

4 EXPERIMENTAL SETUP

Datasets. We evaluate MM-Lego (LegoMerge and LegoFuse) and its components (LegoBlock) on
seven multimodal medical datasets from three separate studies: The Cancer Genome Atlas (TCGA)
(Institute, 2006), Medical Information Mart for Intensive Care (MIMIC) (Johnson et al., 2016) and the
International Skin Imaging Collaboration (ISIC)) (Collaboration, 2020). The TCGA study includes
data from four cancer subtypes (BLCA, BRCA, KIRP, UCEC) across four different modalities:
digitalised pathology (whole slide image data), gene expression (continuous variables, tabular data),
copy number variations (categorical variables tabular data), and mutations (binary variables, tabular
data). The MIMIC study includes intensive care data captured in two distinct modalities of continuous
and time-series data. The ISIC study comprises image and time-series data pertaining to clinical data
from melanoma patients. The seven tasks shown in our results correspond to survival analysis tasks
on four TCGA sites (BLCA, BRCA, KIRP, UCEC), classification tasks on two variants of MIMIC
(disease classification (ICD9) and patient in-hospital mortality (MORT)), and predicting melanoma
for the ISIC patients. Full details on the datasets and their pre-processing steps can be found in
Appendix C, and details on task losses and evaluation metrics are in Appendix D.

Baselines. For all experiments, we compare LegoMerge and LegoFuse to several uni- and multimodal
baselines to evaluate their performance. For all tabular modalities, we use a self-normalising network
(Klambauer et al., 2017) due to its performance and regularisation mechanisms suitable for high-
dimensional tabular data. For the image and time series modalities, we use an attention-based Multiple
Instance Learning (AMIL) (Shao et al., 2021). Across all modalities, we benchmark two related
iterative-learning architectures: MultiModN (Swamy et al., 2023) and Perceiver (Jaegle et al., 2022),
which generally show strong performance across a wide range of unimodal tasks. In terms of specific
multimodal baselines, we use two late fusion combinations of SNN+AMIL, namely concatenation
of their final latent representation and bi-linear fusion (Li et al., 2022). For the Perceiver, we use
the same multimodal setup as suggested in the original paper, that is, concatenation of modalities
before passing them into the model. We use two additional domain-specific multimodal baselines:
the Hybrid Early-Fusion Attention Learning Network (HEALNet) (Hemker et al., 2024), which is
using an end-to-end trained iterative cross-attention architecture, and the Multimodal Co-Attention
Transformer (MCAT) (Chen et al., 2021), which is using the tabular (1D) modality as context for the
imaging (2D) modality.

Implementation Details. For each experiment and dataset, we perform a 5-fold repeated random
sub-sampling with a 70-15-15 train-test-validation split. We re-ran all of the baseline models in this
paper using their open-source code to ensure that no performance differences are caused by different
task setups, losses, or training splits. We ran a brief Bayesian Hyperparameter search (Biases, 2024)
for key parameters of each model (learning rate, decay, schedulers, dropout, layer dimensions). The
experiments were run on a single Nvidia A100 80GB GPU on a Ubuntu 22.04 virtual machine. Both
the complete MM-Lego experimental code as well as its “lightweight” PyTorch package (installable
via the Python Package Index (PyPI)) will be published on GitHub.

5 RESULTS

The results across the three prediction tasks (survival analysis, multi-class, and binary classification)
are summarised in Table 1, showing the mean and standard deviation of the task-relevant performance
metric across the 5 random sub-sampling folds. We compare our baselines to: 1) LegoMerge, which
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Table 1: Mean and standard deviation of unimodal and multimodal task performance, showing
the concordance Index (survival analysis tasks) and AUC (classification tasks) on 5 random sub-
sampling folds with the best and second-best models highlighted. LegoMerge achieves competitive
performance with multimodal baselines across all tasks without end-to-end training or any fine-tuning.
LegoFuse achieves top-2 performance for all datasets and has the highest performance amongst
all benchmarked models in five out of seven datasets. CC and BL denote the monolithic fusion
operators ψ(·) of concatenation and bilinear fusion respectively. Modalities: img=image; ts=time
series; mut=mutations (binary); cnv=copy number variations (categorical); rna=gene expressions
(continuous); tab=other tabular

BLCA BRCA KIRP UCEC ICD9 MORT ISIC

Samples n=436 N=1021 n=284 n=538 n=32616 n=32616 n=2875

Modalities
img, mut, img, mut, img, mut, img, mut, tab, ts tab, ts tab, img

cnv, rna cnv, rna cnv, rna cnv, rna

Metric c-Index c-Index c-Index c-Index AUC Macro AUC AUC

Unimodal (Tabular)

SNN 0.689±0.012 0.544±0.020 0.798±0.035 0.589±0.057 0.731±0.023 0.634±0.020 0.507±0.005

MultiModN 0.500±0.000 0.500±0.000 0.525±0.140 0.500±0.000 0.500±0.000 0.500±0.000 0.500±0.000

Perceiver 0.686±0.009 0.557±0.016 0.836±0.053 0.615±0.035 0.629±0.023 0.658±0.000 0.840±0.084

LegoBlock 0.681±0.015 0.591±0.021 0.840±0.135 0.615±0.031 0.645±0.017 0.619±0.028 0.668±0.141

Unimodal (Image/Time-series)

ABMIL 0.591±0.057 0.610±0.093 0.741±0.080 0.558±0.040 0.614±0.025 0.691±0.014 0.500±0.000

MultiModN 0.520±0.022 0.527±0.150 0.570±0.156 0.564±0.097 0.500±0.000 0.544±0.033 0.500±0.000

Perceiver 0.532±0.027 0.604±0.064 0.716±0.063 0.534±0.106 0.700±0.013 0.715±0.016 0.719±0.050

LegoBlock 0.568±0.029 0.533±0.000 0.630±0.182 0.565±0.069 0.643±0.013 0.711±0.008 0.706±0.147

Multimodal

LegoMerge 0.701±0.021 0.601±0.025 0.825±0.114 0.625±0.080 0.684±0.015 0.751±0.027 0.721±0.143

Uplift (Merge vs. best Block) 2.9% 1.7% -1.8% 1.6% 5.7% 5.3% 2.1%

SNN + ABMIL (CC, Late) 0.561±0.000 0.541±0.104 0.841±0.128 0.601±0.018 0.628±0.020 0.617±0.015 0.661±0.196

SNN + ABMIL (BL, Late) 0.622±0.054 0.557±0.089 0.811±0.108 0.666±0.031 0.500±0.000 0.500±0.001 0.501±0.002

Perceiver (CC, Early) 0.547±0.060 0.561±0.105 0.692±0.000 0.548±0.000 0.733±0.028 0.723±0.015 0.721±0.198

MultiModN (Inter.) 0.524±0.018 0.500±0.000 0.602±0.076 0.512±0.008 0.500±0.000 0.500±0.000 0.500±0.000

MCAT (Inter.) 0.702±0.032 0.564±0.000 0.823±0.076 0.633±0.068 0.500±0.000 0.500±0.000 0.627±0.059

HEALNet (Inter.) 0.714±0.025 0.618±0.063 0.842±0.063 0.594±0.023 0.767±0.022 0.748±0.009 0.639±0.09

LegoFuse, w/ 2 epochs 0.734±0.032 0.626±0.046 0.863±0.112 0.634±0.010 0.771±0.020 0.759±0.041 0.701±0.023

is taking two LegoBlocks, trained unimodally, and merges them without fine-tuning, and 2) LegoFuse,
which is taking the same blocks and fine-tuning them for two epochs. Note that, we did not see a
significant performance difference between the “stack” and “weave” variants of LegoFuse, therefore
the reported results in Table 1 correspond to stacked blocks. Across all datasets, LegoFuse is within
the top 2 performers of all uni- and multimodal datasets with only two epochs of fine-tuning.

Both LegoFuse and LegoMerge generalise well across domains (pathology, clinical care, dermatology),
which some unimodal and multimodal baselines struggle with and heavily overfit (AUC of 0.5).
Despite never seeing a single multimodal training step, LegoMerge achieves strong results, closely
matching the performance of the best baselines in six out of seven datasets. We note that the

Figure 3: Mean task performance (concordance Index/AUC) of LegoBlock (Tabular), LegoBlock
(Image/Time Series) and LegoMerge, showing the increase in task performance by applying a
multimodal model merge without any fine-tuning. Our proposed multimodal model merge shows a
positive performance improvement on 6 out of 7 datasets.
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Figure 4: AUC performance on the MIMIC dataset when merging existing encoders (SNN for tabular,
AMIL for Time Series) using LegoMerge and LegoFuse. Our multimodal model merge shows much
better performance than using an ensemble, exhibiting the performance gains, at no additional costs,
through the merge even prior to fine-tuning in LegoFuse.

performance stability across folds is in line with or better than the multimodal baselines for all
datasets except TCGA-KIRP, where we have significantly larger standard deviations. We believe that
this instability is caused by the relatively low sample size of this dataset, and posit that this could be
alleviated by pre-training LegoBlocks on other TCGA datasets before fine-tuning them on KIRP. The
SIIM-ISIC dataset exhibits a case of multimodal collapse (also referred to as dominance), where all
multimodal models struggle to effectively take advantage of both modalities.

We assess the gains afforded by LegoMerge in Figure 3, where we use LegoMerge to merge LegoBlock
for tabular data with either LegoBlock for imaging or LegoBlock for times series data (depending on
the dataset). We compare the performance of the unimodal LegoBlocks with the resulting multimodal
LegoMerge and find a performance uplift gained from the merge. Namely, the harmonic mean
(Equation 4) of each block’s latent states coupled with spherical linear interpolation of the weights
and biases in the task heads leads to a better performance than for either unimodal block in 6 out of
7 datasets. Again, the outlier to this trend is the dataset with the lowest sample size (KIRP) where
LegoMerge generally struggles for stability. As outlined in Figure 1, the blocks can either be trained
as models from scratch or can be used as a wrapper for a unimodal encoder. This is demonstrated
in Figure 4, which shows the performance of the SNN and AMIL, compared to three multimodal
combinations of the two: 1) a naive ensemble that is taking the average logits of each encoder,
2) LegoMerge applied after wrapping each encoder in LegoBlock, and 3) LegoFuse with limited
fine-tuning. For both MIMIC tasks, we can see that LegoMerge beats the ensemble by 7.1% and
7.3% on the MIMIC disease classification (ICD9) and mortality prediction (MORT) respectively.
Moreover, LegoFuse improves the performance even more over all other models by a further 1-3%.

6 DISCUSSION

In this work, we introduce two novel approaches for both multimodal model merging (LegoMerge)
and fusion (LegoFuse) to address some common limitations of existing methods for multimodal
modelling. We outline five desirable criteria of multimodal models for biomedical data in Tabel 2 to
highlight scenarios in which we believe our introduced methods to be highly beneficial.

Table 2: Comparison of desirable requirements of multimodal systems for clinical practice.
LegoMerge and LegoFuse present two alternatives to existing, end-to-end trained, multimodal fusion
approaches (early, intermediate, and late fusion) and multi-task merge methods applied to multimodal
settings. ✓: meets requirement, (✓): some approaches meet requirement, ✗: fails requirement.

Criteria/Method
Fusion

Multi-task Merge LegoMerge LegoFuse
Early Intermediate Late

Learns cross-modal interactions ✗ ✓ (✓) ✗ ✗ ✓

Architecture agnostic ✓ (✓) ✓ ✗ ✓ ✓

Handles strong modality imbalance ✗ (✓) ✗ ✓ ✓ ✓

Add modalities without re-training ✗ ✗ ✗ ✗ ✓ (✓)
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Performance without end-to-end training. With the increasing volume, complexity and diversity
of collected biomedical data, (re)training multimodal models from scratch becomes more expensive,
unsustainable, and even infeasible in the long run. Similar to trends seen in large language models,
providing access to fine-tuning and merging frameworks can help to make established state-of-the-art
unimodal models more accessible to tailor for highly specific applications, as it is commonly a
requirement in medicine. The results in Table 1 show that we can achieve state-of-the-art performance
by combining existing, pre-trained unimodal models and fine-tuning them accordingly: LegoFuse
outperforms end-to-end trained baselines with as little as 2 epochs of fine-tuning. We anticipate that
LegoMerge, where no multimodal supervised data is required, and LegoFuse, where only a limited
number of supervised paired samples are required, can aid in fields where paired observations are
scarce. These scenarios are frequent and very realistic, from studies on rare diseases to data gathered
from clinics that do not have access to sophisticated data acquisition technologies. In such cases,
training large encoders wrapped in LegoBlocks on similar domains, and then fine-tuning them on a
small amount of supervised paired samples may present a feasible path for domain adaptation for
multimodal models. A further advantage of our modular approach is that additional data (from either
the same or novel modalities) can be added at different points in time. For example, if a large bimodal
model was already trained and a new modality becomes available later on, MM-Lego can be readily
applied to extend such model without training a new model, saving time, costs and energy.

Missing modalities and modality imbalance. The results in Section 5 support our hypothesis that we
can build performant multimodal models without having perfectly paired training data. This is evident
by the highly competitive performance of LegoMerge in comparison with existing multimodal base-
lines (Table 1). Paired data requirements can be problematic when modalities are missing for some
of the samples, leading to a data-performance trade-off: one can either attempt to use all the available
data and impute the missing values, which introduces noise, or can take the intersection of samples
with available data modalities, which may dramatically reduce the sample size available for training.

MM-Lego overcomes this data-performance trade-off as it can be effectively trained on non-
overlapping training sets. This is further supported by our experiments (see Appendix G), where
we found that the performance of MM-Lego remains stable even when trained with completely
non-overlapping (symmetrically different) sets of samples. In contrast, such a training scenario
is infeasible for any other current end-to-end model setup. Moreover, MM-Lego can effectively
handle missing modalities. During training, value imputation is not an issue for MM-Lego, since
we can train LegoBlocks independently, and subsequently combine them into a performant model,
as shown in Figure 4. During inference, we can easily skip missing modalities, which is another
benefit of making each block compatible with an iterative attention architecture (Equation 1). That
is, while a monolithic fusion operator ψ(·) requires the entire set of unimodal encodings H to be
present, MM-Lego’s architecture can just query the elements in B for the available modalities. Fi-
nally, MM-Lego’s modular design allows for handling high modality imbalance and one-to-many
cardinalities (|X(A)| ≠ |X(A)|). An example of such a case would be a dataset where A are the
histopathology slides (one per patient) and B is the associated single-cell data (many per patient).

Architecture agnostic. A key limitation of existing model merging literature in multi-task learning
is the assumption that the majority of the network topology between tasks is equivalent. While
this is a feasible assumption for merging in multi-task learning, the data heterogeneity limits its
application in multimodal settings. Therefore, the design of LegoBlock is sufficiently permissive to
use any unimodal encoder as part of this framework, while complying with the necessary architectural
assumptions required for model merging. Our results in Table 1 and Figure 4 support this by showing
that any unimodal encoder (SNNs and AMIL in this example) can be wrapped in a LegoBlock without
any practical loss in performance, whilst making them capable for further merging and/or fusion.
To the best of our knowledge, MM-Lego is the first general-purpose model merging framework for
multimodal data outside of the vision & language domain.

Low computational requirements. Scaling to more than two modalities is increasingly important
for multimodal models as more modalities are captured at scale: this was one of the main motivations
for the modular design of MM-Lego. Many intermediate fusion approaches (Chen et al., 2021; Xu &
Chen, 2023; Sundar et al., 2024; Zhang et al., 2024) are natively designed for two modalities, and
centred around a cross-attention layer between the modalities with a time complexity of O(N2).
Scaling to more than two modalities requires calculating the modality-guided cross-attention for all
unique pairwise combinations

(
M
2

)
= M(M−1)

2 , which isO(M2), leading to a total upper bound time
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complexity of O(M2N2). MM-Lego improves on this wrt. both M and N . The time complexity
of LegoBlock is bound by the cross-attention unit, which reduces the quadratic time complexity by
using the latent L ∈ Rc×d as the query to O(dN) for latent dimensions d. The sequential design in
Equation 1 ensures linear scaling wrt. the number of modalities, leading to a final time complexity of
O(dMN). Beyond time complexity, another key benefit of MM-Lego is the number of training steps
required at the given complexity. For the end-to-end baselines, we typically observe loss convergence
around ∼10 training epochs, while LegoMerge and LegoFuse, by design, require zero or as little as
two training epochs, respectively. This results in a very low total train time, as shown in Table 3.

Table 3: Train time per epochs and total wall time for training on the TCGA-UCEC dataset on a single
A100 80GB GPU. For encoders wrapped with a LegoBlock during training, LegoMerge achieves
competitive performance despite requiring no additional training.

Model Time/epoch (s) Train Time (s)

SNN+ABMIL (BL) 5.7 102.6
SNN+ABMIL(CC) 4.7 84.6
Perceiver 9.6 172.8
MultiModN 3.2 57.6
MCAT 4.8 86.4
HEALNet 10.1 181.8

LegoMerge 0 0
LegoFuse 8.1 16.2

Limitations. We believe that our MM-Lego approach would benefit from further research of
parameter-efficient ways to design the fusion layer within each LegoBlock (Equation 3), that is,
efficiently encoding h(A) into the updated latent representation (LF

t+1)
r. Whilst this is suitable in

both our solutions and has proven to be effective in other work (Jaegle et al., 2022; Carreira et al.,
2022; Hemker et al., 2024), finding a more parameter-efficient solution is desirable. Note that,
employing the LegoBlock adapters requires minimal fitting. This can be achieved by either training it
together with the modality-specific encoder or retrospectively, when applied to a pre-trained encoder
(e.g., a large foundation model). In the latter case, this still requires a small amount of training
(supervised) samples for LegoMerge to be effective. As such, MM-Lego would benefit from further
research on self-supervised fitting of the adapters. Finally, while in this paper we limit our focus to
multimodal problems from biomedical domains, MM-Lego is designed to be general-purpose and
applicable to any multimodal tasks. Therefore, we leave it to future work to further demonstrate these
properties for more (and other) data modalities and domains, including vision & text tasks.

7 CONCLUSION

We present MM-Lego, a general-purpose and modular learning framework to build performant
multimodal models with minimal fine-tuning. To achieve this, we introduce three novelties. First, we
introduce a wrapper for unimodal encoders (LegoBlock) that a) enforces shape consistency between
modality representations, and b) harmonises the latent representations in the frequency-domain to
enable model merging with little signal interference. Second, we introduce the first multimodal model
merge framework (LegoMerge) that goes beyond vision & language modalities and outperforms many
unimodal baselines without seeing a single multimodal supervised training sample. Third, we show
that these building blocks can be combined to construct a fusion model that achieves state-of-the-art
performance with only a few epochs of fine-tuning (LegoFuse).
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APPENDIX

A NOTATION

Objects.

• X(A): matrix corresponding to modality A

• x(A): a vector in X(A) (e.g., a sample of modality A)

• X
(A)
i,j,k: elements of matrix X(A) at row i, column j, channel k, assuming X(A) ∈ RI×J×K

where 1 ≤ i ≤ I , 1 ≤ j ≤ J , 1 ≤ k ≤ K
• X(M) =

⋃
m∈MX(m): multimodal dataset

• y ∈ Y =
⋃

t∈T y(t): set of task labels for all available tasks T

• y(T1): task labels for task T1

Sets.

• M: set of modalities
• T : set of tasks
• Y: set of task-specific heads

• G = {gm : m→ h(m) | m ∈M}: set of modality-specific encoders
• Hy = {gm(m,y)|m ∈M}: set of task- and modality-specific embeddings

• B = {ψm : (gm(X(m)), L
(m)
s )→ L

(m)
s+1 | s ∈ S,m ∈M}: set of LegoBlocks

Functions and Operators.

• gm(·): modality-specific encoder
• ψ(·): fusion operator (monolithic)
• ψm(·): modality-specific latent update
• F : Fourier transform
• F−1: Inverse Fourier transform
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B PROPERTIES OF FREQUENCY-DOMAIN REPRESENTATIONS

In this section, we further elaborate on the desirable properties of frequency-domain representations
that motivate MM-Lego design.

• Signal preserving: The general motivation for signal-preserving aggregation for multimodal
machine learning has been extensively studied in the context of fusion methods. For example,
bilinear pooling of two latent vectors h1 ∈ Rn , h2 ∈ Rm and resulting tensor h12 ∈ Rd

(y = hT1 Ah2 + b) with a learnable parameter A ∈ Rn×m×d follows the same motivation.
Several related works in different domains and modalities [1, 2, 3] emphasise the importance
of fusion or aggregation methods that avoid signal interference, where meaningful patterns
or complementary information from individual modalities may be attenuated, distorted, or
lost due to naive aggregation approaches such as averaging or summation. With the same
motivation in mind, we take advantage of the Fourier transform’s orthogonal properties, as
after the transform each frequency component (represented by sine and cosine waves) is
orthogonal to the others, such that

∫∞
−∞ sin(ω1h1)cos(ω2h1)dh = 0 for angular frequencies

ω1 ̸= ω2 [4]. This means that the contribution of each frequency is independent of others
and there is no overlap between them. It follows that if we take the harmonic mean of two
fourier-transformed latents F1(ω) and F2(ω) as H(w) = 2F1(ω)F2(ω)

F1(ω)+F2(ω) , the harmonic mean
aggregates each ω in a localised manner. This means that each frequency component in
F1(ω) interacts only with the corresponding frequency component in F2(ω), i.e., without
interference from other frequencies.

• Distance preserving: Parseval’s Theorem shows that the Fourier transform is a unitary
operator, meaning that the sum or integral of the square of a function is equal to the sum
or square of its transform [4,5]. As such, the distances between two signals are the same
between the transformed and untransformed representations. - Concretely, the theorem
states that the energy of a signal is preserved in both the time domain and frequency domain,
where its energy is measured as the integral of the function.

– Formally
∫∞
−∞ |f(h)|

2dh =
∫∞
−∞ |F(f)(ω)|

2dω for latent signal f(h) and its fourier
transform F .

– The Euclidean distance between two signals f1(h) and f2(h) in the spatial domain is:

||f1 − f2|| =
√∫∞

−∞ |f1(h)− f2(h)|2dh
– The Euclidean distance between the Fourier transforms of two signals is ||F(f1) −
F(f2)|| =

√∫∞
−∞ |F(f1)(ω)−F(f2)(ω)|2dω

– From Parseval’s Theorem, it follows that ||f1 − f2|| = ||F(f1)−F(f2)||.
– This distance-preserving capability is beneficial in designing loss functions in a multi-

modal setting.
• Invertible: The Fourier transform is not an idempotent function but periodic with a period of

4, i.e., F4(f) = f . This would prevent the iterative architecture outlined in Section 3 from
working since a repeat application of the transform would lead to different representations.
Meanwhile, the Fourier Inversion Theorem [6] shows that we can invert the frequency-
domain representation to its original function without the 4x repeat application, making it
suitable for the chosen iterative architecture.

• Efficient: The Fast Fourier Transform (FFT) has a time complexity of O(nlog(n)) making
it scalable to very large datasets.
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C DATASETS

We evaluate MM-Lego (LegoMerge and LegoFuse) and its components (LegoBlock) on seven multi-
modal medical datasets covering three separate modalities (images, tabular, time series) from three
separate sources: histopathology (The Cancer Genome Atlas (TCGA)) Institute (2006), intensive
care data (Medical Information Mart for Intensive Care (MIMIC)) Johnson et al. (2016), and skin
imaging (Society for Imaging Informatics in Medicine & International Skin Imaging Collaboration
(SIIM-ISIC)) Collaboration (2020).

TCGA: Some of the results shown in this paper here are based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga. The Cancer Genome Atlas (TCGA)
is an open-source genomics program run by the United State National Cancer Institute (NCI)
and National Human Genome Research Institute, containing a total of 2.5 petabyts of genomic,
epigenomic, transcriptomic, and proteomic data. We predict survival of right-censored patients
based on the high-resolution histopathology slides (∼80, 000× 80, 000 pixels) and multi-omic data
(gene expressions, copy number variations and gene mutations) captured from bulk sequencing in a
tabular format. We train on four separate cancer cohorts with multimodal data available: Urorethelial
Bladder Carcinoma (BLCA, n = 436), Breast Invasive Carcinoma (BRCA, n = 1021), Kidney Renal
Papillary Cell Carcinoma (KIRP, n = 284), and Uterine Corpus Endometrical Carcinoma (UCEC,
n = 538).

We use the following encoders for each modality in the TCGA datasets:

• WSI Encoder

– Sample Input: Raw image converted to a bag of patches, dwsi = npatches × 256 ×
256× 3

– Encoded input using ResNet50, pre-trained on Kather100k : hwsi = npatches × 2048

• Mutation Encoder

– Non-variable mutation genes were filtered (i.e., every sample contains mutation or
none contains mutation)

– Input: Raw input mutation data vector for cross-attention (Figure 2)
– Encoder: none as the vector is already relatively small after ETL: dmut = hmut = 21

• Copy Number Variation Encoder

– Non-variable copy number genes were filtered
– Input: Copy number variations for each gene (categorical variable ranging -2 (deep

deletion) to +2 (strong oncogenic amplification): dcnv = 1333

– Encoder: SNN (1333 → 512): hcnv = 512

• Gene Expression Encoder

– Low variable genes were filtered
– Input: log1p transformed bulk RNAseq gene expression: drna = 1558

– Encoder: SNN(1558 → 512): hrna = 512

MIMIC-III: We train models on two separate tasks: patient mortality (multi-class classification) and
disease classification (ICD-9 codes), which we formulate as a binary classification task. We use both
clinical variables and small time series data on various vital signs measured at 24 time steps. Both
tasks have n = 32616 and the same feature set for different task labels.

SIIM-ISIC: Stems from the Society for Imaging Informatics in Medicine & International Skin
Imaging Collaboration (SIIM-ISIC) melanoma classification Kaggle challenge Collaboration (2020),
which contains both tabular data and images of skin leisures to be classified for melanoma patients.
To account for class imbalance, we randomly downsampled the majority class to a 5:1 ratio for
the class of interest (melanoma) to a sample size of n = 2875. All images were patched and
encoded using the resnet50-kather100k for TCGA (ResNet pre-trained on a large histopathology
patch collection) Pocock et al. (2022) and a regular ImageNet v2 pre-trained ResNet for the pictures
of skin leisures. Both images (patch encodings) and times series were represented as 2D tensors, and
the tabular clinical and multi-omic data as 1D tensors to pass into the modality-specific encoders g(·).
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D LOSSES AND METRICS

The results report the (unseen) test set performance, by evaluating the concordance Index (c-Index) in
the case of TCGA, AUC in the case of MIMIC-III-ICD9 and ISIC, and Macro-AUC (“one-vs-rest”)
for MIMIC-III-ICD9. As indicated in Figure 1 the output of each task head in Y are the logits with
predictions for each class given the final Fourier-transformed latent state yl = f(LF

T ). Since TCGA
is a survival prediction task with right-censored data, we have divided the survival period into four
non-overlapping bins and use the logits of these bins to calculate the hazard (yh = 1

1e−yl
) and survival

(ys =
∏k

1 1− yh) respectively for k bins. Given the hazards, censorship, and ground truth bins, we
can calculate the negative log-likelihood loss from a proportional hazards model Zadeh & Schmid
(2021) which is used as the survival loss. We evaluate the performance using the Concordance
Index (c-Index), for which we determine the fraction of paired samples in which the prediction
outcomes are concordant with the ground truth. As MIMIC and ISIC relate to classification tasks, we
employ categorical cross-entropy loss for training. Note that both AUC and the c-Index have similar
interpretations, therefore the values range between [0.5− 1].
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E HYPERPARAMETERS

Scope
Parameter

Value

Shared
Learning Rate 0.003
Epochs 40
Early Stopping Patience 7
L1 Regularization 0.0002
Batch size 512
Optimizer Adam
LR Scheduler ReduceLROnPlateau

MM-Lego

Tune Epochs 2
Fuse Method Stack
Merge method Harmonic
Head method SLERP
Alpha 0.5
Track imaginary True
Normalise True
Latent dims 17 x 126
Depth 4
Attention Dropout 0.45
FCNN Dropout 0.36

MultiModN Latent dims 1000
Error penalty 1
State change penalty 0
Layer dims 512, 256, 128, 64

HEALNet Depth 2
Latent dims 17x126
Attn Head dims 64
Attention Dropout 0.4
FCNN Dropout 0.27

AMIL Layer sizes 1024, 512, 256
Dropout 0
Attention Dropout 0.25

SNN Layer dims 256
Depth 4
Dropout 0.25

Perceiver Depth 2
Latent dims 17x126
Attn Head dims 64
Attention Dropout 0.4
FCNN Dropout 0.36

MCAT
AMIL layers 1024, 512, 256
AMIL dropout 0
Attention Dropout 0.25
SNN Layer dims 256
SNN Depth 4
SNN Dropout 0.25
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F SIGNAL INTERFERENCE ON LATENT VARIABLES

Figure 5: Example of signal interference on a random normal latent variable and its additive inverse
variable with some added noise, showcasing a severe case of signal interference where nearly all
signal cancels out. We can see that the fourier-transformed data does not suffer this problem when
we apply the harmonic mean. This is a key reason for the choice of model merging architecture.
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Figure 6: The argument against Fig. 5 would be to use absolute or only positive values. This example
shows that this logic can also be flawed. We demonstrate this using a squarewave function with a
frequency offset beteen ModA and ModB and a scaled amplitude by a normal distribution. We can
see that the mean of the regular and the absolute values suffers some signal interference while the
FFT aggregation does not.
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G TRAINING ON UNPAIRED DATA

Figure 7: Test performance of LegoMerge (SNN+AMIL) compared to the SNN-AMIL ensemble when
training on different levels of overlapping samples between the modalities. A symmetric difference
of 1 means no overlap between the samples, 0 being perfect overlap. We selected N=10,000 MIMIC
examples for this experiment.
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