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Abstract

Machine learning is increasingly used to discover
diagnostic and prognostic biomarkers from high-
dimensional molecular data. However, a variety
of factors related to experimental design may af-
fect the ability to learn generalizable and clini-
cally applicable diagnostics. Here, we discuss
building a diagnostic based on a specific, recently
established high-dimensional biomarker — adap-
tive immune receptor repertoires (AIRRs), and
investigate how causal modeling may improve the
robustness and generalization of developed diag-
nostics. We examine how the main biological and
experimental factors of the AIRR domain may in-
fluence the learned biomarkers, especially in the
presence of dataset shifts, and provide simulations
of such effects. We conclude that causal modeling
could improve AIRR-based diagnostics, but also
that causal modeling itself might find a powerful
testbed with complex, high-dimensional variables
in the AIRR field.

1. Introduction

High-throughput sequencing technologies now allow for the
examination of a variety of patient characteristics (Frazer
et al., 2009; Locke et al., 2019; Byron et al., 2016; Huang
et al., 2021; Arnaout et al., 2021; Greiff et al., 2020). Proof-
of-concept studies showed that such molecular markers hold
great promise for disease diagnostics, especially in combi-
nation with machine learning (ML) (Locke et al., 2019;
Byron et al., 2016; Arnaout et al., 2021; Maros et al., 2020).
However, there exist several challenges to using ML for di-
agnostics. First, the data used in diagnostic studies may be
selected based on availability, e.g., collected from patients
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visiting the clinic or having a similar genetic background
(sometimes referred to as “convenience sampling”). Further-
more, the data might be collected at multiple locations or at
distinct time points. These factors may introduce systematic
differences between datasets, such as batch effects, which
need to be taken into account when designing a new study,
or adjusted for when the data are already collected. A failure
to do so can lead to models failing in real-world application
despite showing promising performance during diagnostic
development (Subbaswamy & Saria, 2020; Castro et al.,
2020; Whalen et al., 2021; Dockes et al., 2021). Finally,
biomarker data are typically high-dimensional, which makes
it more challenging to disentangle noise, biases, and other
conditions from the true markers associated with the disease
(Teschendorff, 2019; Weber et al., 2022).

Addressing the biases that emerge due to environment
change, confounding, and sample selection are main chal-
lenges in developing ML-based diagnostics. The causal
inference framework described by Pearl (2009) can be used
to estimate causal effects from non-experimental data when-
ever the effect is identifiable under a given causal structure,
and could help in resolving these biases. More specifically,
a causal model of the biological process may determine
which mechanisms (conditional distributions of variables of
interest given their direct causes) are likely to remain sta-
ble across populations. The ML model may then be based
on these invariant mechanisms (Scholkopf et al., 2021) en-
suring the robustness of the ML model in the presence of
different dataset shifts (Subbaswamy & Saria, 2020; Storkey,
2008; Kouw & Loog, 2018). Additionally, causal models
can help to formally or intuitively reason about how diag-
nostic accuracy may be affected by a variety of differences
between application contexts.

In this paper, we focus on one particular use case — that
of adaptive immune receptor repertoires (AIRRs). AIRRs
are high-dimensional molecular markers reflecting past and
present immune responses of a patient and can be efficiently
assayed based on targeted high-throughput sequencing from
a standard blood sample. These approaches may enable
earlier diagnosis, complement existing diagnostic tests, and
have in principle the capacity to diagnose a broad range of
diseases by a single test (Arnaout et al., 2021). For this rea-
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son, AIRRs are highly promising as biomarkers of immune-
mediated diseases (Arnaout et al., 2021; Greiff et al., 2020),
like cancer (Ostmeyer et al., 2019; Beshnova et al., 2020),
celiac disease (Shemesh et al., 2021; Yao et al., 2021), mul-
tiple sclerosis (Ostmeyer et al., 2017), rheumatoid arthritis
(Liu et al., 2019), systemic lupus erythematosus (Liu et al.,
2019), cytomegalovirus (Emerson et al., 2017), and hepati-
tis C virus (Eliyahu et al., 2018). Here, we discuss why
and how accounting for the biological and experimental as-
pects of the underlying data-generating processes is crucial
to avoid capturing spurious correlations and to anticipate
changes in diagnostic performance between development
and deployment (the clinic).

2. Adaptive immune receptor repertoires
capture all immune-related diseases

Adaptive immune receptors (AIR) are proteins used by B
and T cells to recognize foreign threats like viruses or can-
cerous cells and mount an immune response to destroy them.
AlRs are generated by an individualized stochastic process
(Slabodkin et al., 2021) resulting in an estimated 10*° dif-
ferent receptors (Sewell, 2012; Nikolich-Zugich et al., 2004;
Zarnitsyna et al., 2013; Murugan et al., 2012), defining an
extremely high-dimensional space for biomarker discovery.
When examining individual AIRs, one is mostly analyzing
an ~15 amino acid long part of the receptor called CDR3.

The set of all AIRs present in an individual is referred to
as the adaptive immune receptor repertoire (AIRR). There
are an estimated 10® unique receptors (Elhanati et al., 2015;
Greiff et al., 2015; Elhanati et al., 2018) sampled from the
pool of 10'° possible receptors, leading to the very low
overlap of receptors between AIRRs of different individuals
(Elhanati et al., 2018). Additionally, very few receptors in
an AIRR are specific to any one disease, and the rules deter-
mining disease specificity of receptors are largely unknown
due to complex sequence patterns. See the review by Greiff
and colleagues (2020) for a general discussion of AIRR ML.

3. Challenges in AIRR diagnostics study
design

The typical workflow for building an AIRR-based diagnos-
tic is to select a study cohort of disease affected (cases) and
healthy individuals (controls) from an underlying source
population, collect blood or tissue samples from each in-
dividual, and perform targeted high-throughput DNA se-
quencing to obtain a set of approximately 10°~10% immune
receptors per individual that can be used to learn the patterns
indicative of disease (Figure 1). Current diagnostic studies
typically recruit in the order of 100 — 1000 individuals for
learning disease-specific AIRR-based biomarkers. The com-
mon assumption that training and deployment data come in

the form of independent samples from a common underly-
ing distribution (the i.i.d. assumption) rarely holds (Nestor
et al., 2018; Ghassemi et al., 2020). Marginal distributions
may change due to label shift (e.g., change in disease preva-
lence) or covariate shift (e.g., change in age distribution).
The conditional distribution of variables may change if it
describes an anticausal relation (when predicting the cause
from the effect, e.g., immune state from AIRR) or due to
the occurrence of unstable mechanisms (Subbaswamy &
Saria, 2020) (e.g., changing the time of sequencing in the
course of the disease might result in estimates that only hold
for the study cohort). The biases may arise from different
aspects of the data generating process leading to the identi-
fication problem as defined in the causal inference (Herndn
& Robins, 2020).

To illustrate these biases in the AIRR domain, we introduce
an example of building a diagnostic for a viral infection
(Figure 2). In this example, the immune state is defined
as the presence of the pathogen of interest in an individual
in a way that gives rise to changes in AIRR. In addition
to the immune state, AIRR is also influenced by prior im-
mune events (e.g., prior infections or vaccinations), age
(Britanova et al., 2014), sex (Schneider-Hohendorf et al.,
2018), genetics (Slabodkin et al., 2021), and the environ-
ment. The human leukocyte antigen (HLA), a genetic com-
ponent determining the presentation of pathogens to initiate
the immune response, influences the AIRR as well either
through its type or though level of expression on the cell
surface (Dendrou et al., 2018; Ishigaki et al., 2022). Fi-
nally, the observed sequencing AIRR data reflect only a
limited proportion of a patient’s full AIRR, introducing ad-
ditional sampling variability and sequencing protocol biases
(Barennes et al., 2021; Triick et al., 2021). For other types
of diseases, such as autoimmunity or cancer, the graphs and
connections might differ. We expand on the characteristics
and implications of these variables and their relations in the
remainder of the paper.

3.1. Representation and dimensionality of AIRR data

Building diagnostics based on AIRRs (and molecular data
in general) is made more challenging by the high dimen-
sionality of the data. While we have represented an AIRR
by a single node in the causal graph (Figure 2), it represents
millions of individual AIRs. How to represent these data for
causal or machine learning analysis is not trivial. A typical
ML representation would be to consider each possible im-
mune receptor sequence as a feature, annotating each patient
with an indicator vector of which sequences are present. As
there are more than 10*° such receptors, this representation
is however not computationally feasible. Alternatively, each
AIRR can be represented directly as the set of sequences
present in a patient. A challenge with this representation
is the lack of a common feature space across patients (ex-
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Figure 2. An example of an AIRR causal graph for a viral infection.

amples), which is required by the majority of causal and
ML approaches. Some form of aggregation across recep-
tors in a repertoire is thus typically needed. However, even
representing a single receptor sequence is not trivial. A
basic representation is to one-hot encode each amino acid
of the sequence, which leads to a low-dimensional feature
space (with 20 different amino acids in ~15 long recep-
tor sequences) with very strong interaction effects between
these dimensions since neighboring amino acids together
influence the folding of the resulting receptor protein and its
binding to the pathogen. To capture at least the low-order
interaction effects directly in single dimensions, another
common receptor representation is to consider all k-mers
for a given k as features, as k-mers are in contact with the
pathogen (Akbar et al., 2021; Ostmeyer et al., 2019; Dash
etal., 2017), and then represent each receptor as an indicator
vector of k-mers being present. Repertoire representations
can then also be constructed by aggregating k-mer presence
values for all receptors. To avoid manual feature construc-

tion, the latent AIRR representation could be learned from
the data, e.g., via autoencoders or similar methods cou-
pled with domain-specific restrictions (Widrich et al., 2020;
Sidhom et al., 2021; Davidsen et al., 2019), although inter-
preting the learned representation and associating it with the
causal model may be a challenging task.

3.2. Confounder variables

A variety of patient factors, like age (Britanova et al., 2014),
sex (Schneider-Hohendorf et al., 2018), and genetic back-
ground (Krishna et al., 2020) have been demonstrated to
influence the immune repertoire, and are often also asso-
ciated with disease risk, making them act as confounders
in disease diagnostics. While confounding is in general
not problematic for predictive purposes, the distribution of
these particular factors may be dramatically different be-
tween training and deployment settings, e.g., based on con-
venience of access to patients with particular characteristics
during training, as well as various forms of pre-screening
before a diagnostic is to be used in a clinical setting. It
may thus be important to explicitly consider statistical trans-
portability (Correa & Bareinboim, 2019) of immune-based
diagnostics for a particular disease. Additionally, the recov-
ered biomarkers could be reflecting the confounders just
as much as the immune state (Whalen et al., 2021) so that
if the aim is to obtain biological insight (discover causal
effects), confounding should be controlled for. However,
due to the complex high-dimensional nature of AIRRs, it
is very hard to learn the relations between AIRRs and pa-
tient factors, restricting the ability to perform reasonably
precise confounder correction or analysis of sensitivity to
distributional shifts of patient characteristics.
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3.3. Measurement timing and batch effects

Batch effects are systematic biases in the statistical sense,
connected to experimental protocols exhibiting different
behavior across conditions (Leek et al., 2010). Although
always present, the batch effects are more problematic when
correlated with the label (e.g., immune state), for which a
predictive model may achieve good performance in a study
cohort by learning batch effect associations but fail to gen-
eralize to deployment settings. Additionally, sequencing
errors in the AIRR domain (Barennes et al., 2021) are chal-
lenging to correct since the ground truth (e.g., exact receptor
sequences) is not known.

The timing of sequencing in the course of the disease is also
very important for diagnostic development. For example,
the positive examples (diseased individuals) in the dataset
used for training might be collected retrospectively, after in-
dividuals exhibited symptoms of the disease and were diag-
nosed and possibly already treated by medical professionals.
In this case, the collected AIRRs will not be representative
of the AIRRs of individuals who would get tested to estab-
lish the diagnosis. To mitigate this issue, the study cohort
should be representative of the target population in terms of
the timing of measurement or at least include individuals
sequenced across the disease progression spectrum.

3.4. HLA - one variable, many roles

Some biological variables can have different roles in the
causal graph depending on the disease or immune event,
with important implications for the analysis. One such ex-
ample is the genetic variants that a particular individual has
for a molecule known as human leukocyte antigen (HLA).
For adaptive immune cells to recognize a pathogen, frag-
ments derived from the pathogen must be presented on the
surface of a cell, bound to an HLA molecule. Genetic varia-
tion of the HLA molecule influences how a given peptide is
presented, which again influences which immune receptors
are recognizing the pathogen. Due to the way newly created
immune cells are filtered during their development (known
as thymic selection), the HLA type will have some influence
on the overall distribution of immune receptor sequences.
For a viral infection, HLA type is not assumed to influence
disease risk and thus has the role of a precision covariate.
However, for many autoimmune diseases HLA is known
to also influence disease risk, and thus has the role of a
confounder. Additionally, HLA can be a moderator of how
given immune receptors are contributing to disease risk. For
example, the presence of particular HLA types is a neces-
sary condition for potentially harmful immune cells to be
causing celiac disease. Finally, in some cancers, tumor cells
have mutations that affect the functioning of HLA and help
tumor cells evade immune recognition (Schaafsma et al.,
2021). In this case, HLA acts as a mediator between disease

and AIRR.

The different roles of HLA also point to different strate-
gies potentially being useful. In diseases where HLA type
acts as a confounder, a diagnostic model might exploit the
backdoor path from repertoire via HLA to disease risk. For
predictive purposes, this would primarily contribute to im-
proved diagnostic accuracy, although the accuracy observed
during training may then not be representative of deploy-
ment settings where the HLA distribution is very different.
This distributional difference is common, as patients to be
diagnosed may be pre-selected by a separate test of HLA
type. In diseases where HLA type acts as a moderator, it
may be useful to at least analyze predictive accuracy strati-
fied by HLA type, and potentially also to enrich for patients
with challenging HLA types in study recruitment, so as to
have more available data for learning more subtle predictive
patterns for this stratum. As also discussed in the section
on confounders, even though the existence of a dependency
between AIRR and HLA is biologically highly plausible,
the complex nature of AIRRs makes it very hard to estimate
the precise form of the relation from available patient data.

4. Experiments show the influence of the
underlying causality on predictive models

To illustrate the influence of different variables in the causal
model on the performance of ML algorithms, we perform
two experiments where we train the algorithm to predict
the immune state from the AIRR data without considering
potential biases ((Figure 3)). The first experiment illustrates
how the confounding influences the prediction of the im-
mune state (Figure 3a-c). The confounder and immune
state are binary variables: the confounder has values C1
or C2 and the immune state can be diseased (positive) or
healthy (negative). The parameters of the probability dis-
tribution of the immune state depend on the value of the
confounder, making examples with confounder C1 much
more likely to be diseased. We constrain the resulting distri-
bution of the immune state variable to have balanced classes
(approximately the same number of diseased and healthy ex-
amples), following a typical setting in ML, and then vary the
confounder distribution while keeping the classes balanced
to examine the effect of the confounder on the prediction
performance. As discussed previously, the presence of a
confounder is not always an issue for the prediction task:
if the confounder distribution does not change from source
to target population, similar performance can be expected
on both datasets (Figure 3b). However, if the confounder
distribution changes, the performance may drop (Figure 3c).

In the second experiment (Figure 3d), we examine how
selection bias and batch effects influence immune state pre-
diction. The causal graph includes the immune state which
causes changes in AIRRs, the hospital the patients came
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Figure 3. Experiments showing the influence of different variables from the AIRR causal model on immune state prediction task.

from, the experimental protocol for sequencing AIRRs set
by the hospital, and the sequenced AIRRs themselves. We
simulate the training data in the presence of selection bias,
which introduces a correlation between hospital and immune
state, even though the hospital does not have any influence
on it. When an ML approach is trained on data that are
biased in this way, it also learns the signal of the sequencing
protocol since it is predictive of the immune state through
the spurious correlation between the immune state and the
hospital. When such a model is then applied to new data
that are not biased, its performance decreases (Figure 3e).

We also show that even in the absence of any relation be-
tween the immune state and AIRR, it is possible for an
ML model to learn a spurious correlation as a consequence
of the selection bias and achieve deceivingly good perfor-
mance, depending on how strong the correlation is between
the immune state and protocol (Figure 3f).

For experiments, we simulated 200 AIRRs for training and
100 for testing using OLGA (Sethna et al., 2019) for AIRR
simulations with 500 TCR sequences per AIRR from the
default human OLGA model. We used DagSim (Al Hajj
et al., 2022) to simulate the data from the causal graph. As
the next step, we implanted 3-mers into some of the AIRs
of individual repertoires with the appropriate immune state
and confounder values. To assess ML performance, we
encoded the AIRRs via 3-mer frequencies and fitted logistic
regression with the L1 penalty to perform the prediction, as
previously described by (Kanduri et al., 2022). The model
performance was measured via balanced error rate. For
AIRR-ML analyses, we used immuneML (Pavlovi¢ et al.,
2021). All analyses are available at https://github.com/uio-
bmi/Causal AIRR.

5. Conclusion

There has recently been substantial theoretical development
on how underlying causality influences the stability of pre-
dictive ML models. An interesting application area for this
theory is to help anticipate the behavior and performance of
diagnostics when translated from a study setting to clinical
application. To materialize this potential for practical appli-
cation, we believe that the field should work to increasingly
consider the broad variety of subtleties and complexities
inherent to real scenarios. We here proposed AIRR to be
a particularly interesting case. In our understanding, the
methodology for e.g., analyzing path contributions and sen-
sitivity to distributional shifts is still in its infancy for set-
tings involving complex and high-dimensional variables like
AIRRs. Since the AIRR setting offers a clear mechanistic
understanding of several aspects of the underlying causality
having a basis in immune cells with discrete disease-specific
receptor sequences, we believe it can provide a powerful
testbed for the development of new methodology for esti-
mating causal relations that involve complex variables.

An additional observation from our use case is that a causal
analysis of immune-based diagnostics might need to con-
sider subtly different causal models for each disease in ques-
tion. Even the causal direction between AIRRs and immune
state may need to be modeled differently across diseases,
where immune cells can be seen as causing autoimmune dis-
ease, while a viral infection is more naturally seen as causing
an immune response. Also, the same variable can play dif-
ferent roles in different disease settings, where e.g., HLA
can be seen as either a precision covariate, a confounder,
and/or a moderator depending on the disease.
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