
Published in Transactions on Machine Learning Research (08/2023)

Graph Neural Networks for Temporal Graphs: State of the
Art, Open Challenges, and Opportunities

Antonio Longa∗ antonio.longa@unitn.it
University of Trento and Fondazione Bruno Kessler, Trento, Italy

Veronica Lachi∗ veronica.lachi@student.unisi.it
University of Siena, Siena, Italy

Gabriele Santin∗ gsantin@fbk.eu
Fondazione Bruno Kessler, Trento, Italy

Monica Bianchini monica@diism.unisi.it
University of Siena, Siena, Italy

Bruno Lepri lepri@fbk.eu
Fondazione Bruno Kessler, Trento, Italy

Pietro Liò pl219@cam.ac.uk
University of Cambridge, Cambridge, United Kingdom

Franco Scarselli franco@diism.unisi.it
University of Siena, Siena, Italy

Andrea Passerini andrea.passerini@unitn.it
University of Trento, Trento, Italy

Reviewed on OpenReview: https: // openreview. net/ forum? id= pHCdMat0gI

Abstract

Graph Neural Networks (GNNs) have become the leading paradigm for learning on (static)
graph-structured data. However, many real-world systems are dynamic in nature, since the
graph and node/edge attributes change over time. In recent years, GNN-based models for
temporal graphs have emerged as a promising area of research to extend the capabilities
of GNNs. In this work, we provide the first comprehensive overview of the current state-
of-the-art of temporal GNN, introducing a rigorous formalization of learning settings and
tasks and a novel taxonomy categorizing existing approaches in terms of how the temporal
aspect is represented and processed. We conclude the survey with a discussion of the most
relevant open challenges for the field, from both research and application perspectives.

∗Equal contribution

1

https://openreview.net/forum?id=pHCdMat0gI


Published in Transactions on Machine Learning Research (08/2023)

1 Introduction

The ability to process temporal graphs is becoming increasingly important in a variety of fields such as
recommendation systems (Gao et al., 2022a; Wu et al., 2022), social network analysis (Deng et al., 2019;
Fan et al., 2019), transportation systems (Jiang & Luo, 2022; Yu et al., 2017), modeling of face-to-face
interactions (Longa et al., 2022c), human mobility (Mauro et al., 2022; Gao, 2015), epidemic modeling
and contact tracing (Cencetti et al., 2021; So et al., 2020), and many others. Traditional graph-based
models are not well suited for analyzing temporal graphs as they assume a fixed structure and are unable
to capture its temporal evolution. Therefore, in the last few years, several models capable to directly
encode temporal graphs have been developed, such as matrix factorization-based approaches (Ahmed et al.,
2018) and temporal motif-based methods (Longa et al., 2022b). Recently, also GNNs have been successfully
applied to temporal graphs. Indeed, their success in various static graph tasks, including node classification
(Hamilton et al., 2017; Veličković et al., 2017; Kipf & Welling, 2016a; Gao et al., 2018; Gasteiger et al.,
2018; Monti et al., 2017; Wu et al., 2019) and link prediction (Zhang & Chen, 2018; Cai & Ji, 2020; Zhang
& Chen, 2017), has not only established them as the leading paradigm in static graph processing, but has
also indicated the importance of exploring their potential in other graph domains, such as temporal graphs.
With approaches ranging from attention-based methods (Xu et al., 2020) to Variational Graph-Autoencoders
(VGAEs) (Hajiramezanali et al., 2019), Temporal Graph Neural Networks (TGNNs) have achieved state-of-
the-art results on tasks such as temporal link prediction (Sankar et al., 2020), node classification (Rossi et al.,
2020) and edge classification (Wang et al., 2021a). Despite the potential of GNN-based models for temporal
graph processing and the variety of different approaches that emerged, a systematization of the literature is
still missing. Existing surveys either discuss general techniques for learning over temporal graphs, only briefly
mentioning temporal extensions of GNNs (Kazemi et al., 2020; Barros et al., 2021; Xue et al., 2022; Xie et al.,
2020), or focus on specific topics, like temporal link prediction (Qin & Yeung, 2022; Skarding et al., 2021)
or temporal graph generation (Gupta & Bedathur, 2022), or present an overview of GNN models designed
for different types of graphs without providing in-depth coverage of temporal GNNs (Thomas et al., 2022).
This work aims to fill this gap by providing a systematization of existing GNN-based methods for temporal
graphs and a formalization of the tasks being addressed. Our main contributions are the following:

• We propose a coherent formalization of the different learning settings and of the tasks that can
be performed on temporal graphs, unifying existing formalism and informal definitions that are
scattered in the literature, and highlighting substantial gaps in what is currently being tackled;

• We organize existing TGNN works into a comprehensive taxonomy that groups methods according
to the way in which time is represented and the mechanism with which it is taken into account;

• We highlight the limitations of current TGNN methods, discuss open challenges that deserve further
investigation and present critical real-world applications where TGNNs could provide substantial
gains.

2 Temporal Graphs

We provide a formal definition of the different types of graphs analyzed in this work and we structure different
existing notions in a common framework.

Definition 1 (Static Graph - SG) A Static Graph is a tuple G = (V, E, XV , XE), where V is the set of
nodes, E ⊆ V × V is the set of edges, and XV , XE are dV -dimensional node features and dE-dimensional
edge features.

Node and edge features may be empty. In the following, we assume that all graphs are directed, i.e., (u, v) ∈ E
does not imply that (v, u) ∈ E. Moreover, given v ∈ V , the set

N [v] := {u ∈ V : (u, v) ∈ V },

denotes the neighborhood of v in G.

Extending Qin & Yeung (2022), we define Temporal Graphs as follows.

2



Published in Transactions on Machine Learning Research (08/2023)

Definition 2 (Temporal Graph - TG) A Temporal Graph is a tuple GT = (V, E, VT , ET ), where V and
E are, respectively, the set of all possible nodes and edges appearing in a graph at any time, while

VT := {(v, xv, ts, te) : v ∈ V, xv ∈ RdV , ts ≤ te},

ET := {(e, xe, ts, te) : e ∈ E, xe ∈ RdE , ts ≤ te},

are the temporal nodes and edges, with time-dependent features and initial and final timestamps. A set of
temporal graphs is denoted as GT .

Observe that we implicitly assume that the existence of a temporal edge in ET requires the simultaneous
existence of the corresponding temporal nodes in VT . Moreover, the definition implies that node and edge
features are constant inside each interval [ts, te], but may otherwise change over time. Since the same node
or edge may be listed multiple times, with different timestamps, we denote as t̄s(v) = min{ts : (v, xv, ts, te) ∈
VT } and t̄e(v) = max{te : (v, xv, ts, te) ∈ VT } the time of first and last appearance of a node, and similarly
for t̄s(e), t̄e(e), e ∈ E. Moreover, we set Ts(GT ) := min{t̄s(v) : v ∈ V }, Te(GT ) := max{t̄e(v) : v ∈ V } as the
initial and final timestamps in a TG GT . For two TGs Gi

T := (V i, Ei, V i
T , Ei

T ), i = 1, 2, we write G1
T ⊆V G2

T

to indicate the topological inclusion V 1 ⊆ V 2, while no relation between the corresponding timestamps is
required.

Given v ∈ V , the set

Nt[v] := {u ∈ V : ∃ (e, xe, ts, te) ∈ ET with e = (u, v), ts ≤ t}

is the temporal neighborhood of v at time t. i.e., the list of nodes that have been connected to v until time
t.

General TGs have no restriction on their timestamps, which can take any value (for simplicity, we just
assume that they are non-negative). However, in some applications, it makes sense to force these values to
be multiples of a fixed time-step. This leads to the notion of Discrete Time Temporal Graphs, which are
defined as follows.

Definition 3 (Discrete Time Temporal Graph - DTTG) Let ∆t > 0 be a fixed time-step and let t1 <
t2 < · · · < tn be timestamps with tk+1 = tk + ∆t. A Discrete Time Temporal Graph GDT is a TG where for
each (v, xv, ts, te) ∈ VT or (e, xe, ts, te) ∈ ET , the timestamps ts, te are taken from the set of fixed timestamps
(i.e., ts, te ∈ {t1, t2, . . . , tn}, with ts < te).

2.1 Representation of temporal graphs

In the existing literature, dynamic graphs are often divided into DTTG (as in Definition 3) and continuous-
time temporal graphs (CTTG) (or time sequence graphs), which are defined e.g. in (Kazemi et al., 2020;
Barros et al., 2021; Luo & Li, 2022; Gupta & Bedathur, 2022).

However, we find that this separation does not capture well the central difference between various graph
characterizations, which is rather based on the fact that the data are represented as a stream of static
graphs, or as a stream of single node and edge addition and deletion events. We thus formalize the following
two categories for the description of time-varying graphs, based on snapshots or on events. These different
representations lead to different algorithmic approaches and become particularly useful when organizing the
methods in a taxonomy.

The snapshot-based strategy focuses on the temporal evolution of the whole graph. Snapshot-based Temporal
Graphs can be defined as follows.

Definition 4 (Snapshot-based Temporal Graph - STG) Let t1 < t2 < · · · < tn be the ordered set of
all timestamps ts, te occurring in a TG GT . Set

Vi := {(v, xv) : (v, xv, ts, te) ∈ VT , ts ≤ ti ≤ te},

Ei := {(e, xe) : (e, xe, ts, te) ∈ ET , ts ≤ ti ≤ te},

3



Published in Transactions on Machine Learning Research (08/2023)

and define the snapshots Gi := (Vi, Ei), i = 1, . . . , n. Then a Snapshot-based Temporal Graph representation
of GT is the sequence

GS
T := {(Gi, ti) : i = 1, . . . , n}

of time-stamped static graphs.

This representation is mostly used to describe DTTGs, where the snapshots represent the TG captured at
periodic intervals (e.g., hours, days, etc.).

The event-based strategy is instead more appropriate when the focus is on the temporal evolution of indi-
vidual nodes or edges. This leads to the following definition.

Definition 5 (Event-based Temporal Graph - ETG) Let GT be a TG, and let ε denote one of the
following events:

• Node insertion ε+
V := (v, t): the node v is added to GT at time t, i.e., there exists (v, xv, ts, te) ∈ VT

with ts = t.

• Node deletion ε−
V := (v, t): the node v is removed from GT at time t, i.e., there exists (v, xv, ts, te) ∈

VT with te = t.

• Edge insertion ε+
E := (e, t): the edge e is added to GT at time t, i.e., there exists (e, xe, ts, te) ∈ ET

with ts = t.

• Edge deletion ε−
E := (e, t): the edge e is removed from GT at time t, i.e., there exists (e, xe, ts, te) ∈

ET with te = t.

An Event-based Temporal Graph representation of TG is a sequence of events

GE
T := {ε : ε ∈ {ε+

V , ε−
V , ε+

E , ε−
E}}.

Here it is implicitly assumed that node and edge events are consistent (e.g., a node deletion event implies
the existence of an edge deletion event for each incident edge). In the case of an ETG, the TG structure can
be recovered by coupling an insertion and deletion event for each temporal edge and node. ETGs are better
suited than STGs to represent TGs with arbitrary timestamps.

We will use the general notion of TG, which comprises both STG and ETG, in formalizing learning tasks
in the next section. On the other hand, we will revert to the STG and ETG notions when introducing the
taxonomy of TGNN methods in Section 6, since TGNNs use one or the other representation strategy in their
algorithmic approaches.

3 Basic notions on Graph Neural Networks

GNNs are a class of neural network architectures specifically designed to process and analyze graph-structured
data; they learn a function hv = GNN(v, G; θ), with v ∈ V and θ being a set of trainable parameters. GNNs
rely on the so called message passing mechanism, which implements a local computational scheme to process
graphs. Formally, the information related to a node v is stored into a feature vector hv that is iteratively
updated by aggregating the features of its neighboring nodes. After k iterations, the vector hk

v contains both
the structural information and the node content of the k–hop neighborhood of v. Given a sufficient number
of iterations, the node feature vectors can be used to classify the nodes or the entire graph. Specifically, the
output of the k-th layer of a message passing GNN is:

hk
v = COMBINE(k)(hk−1

v , AGGREGATE(k)({hk−1
u , u ∈ N [v]})) (1)

where AGGREGATE(k) is a function that aggregates the node features from the neighborhood N [v] at the
(k − 1)-th iteration, and COMBINE(k) is a function that combines the features of the node v with those of its

4



Published in Transactions on Machine Learning Research (08/2023)

neighbors. The aggregation step often involves employing permutation invariant operations such as mean,
max-pooling, and sum. These operations ensure that the final aggregated representation is insensitive to the
ordering of the nodes. Instead, typical choices for the COMBINE function are concatenation and summation.
In node level tasks, a READOUT function is used to produce an output for each node, based on its features at
the final layer K:

ov = READOUT(hK
v )

whereas, in graph level tasks, a READOUT function produces the final output given the feature vectors from
the last layer K:

o = READOUT({hK
v , v ∈ V }).

In our work we explore models that specifically tackle temporal graphs employing this kind of message
passing scheme.

4 Other approaches to model temporal graphs

Traditionally, machine learning models for graphs have been mostly designed for static graphs (Xia et al.,
2021; Zhang et al., 2020). However, many applications involve temporal graphs (Kumar et al., 2018; Dasgupta
et al., 2018; Taheri et al., 2019). This introduces important challenges for learning and inference since nodes,
attributes, and edges change over time. Many different representation techniques for temporal graphs have
been recently proposed, apart from GNN-based solutions which leverage the message passing architecture
(Section 3).

A popular class of approaches for learning an embedding function for temporal graphs is the class of random
walk-based methods. For example, in Wang et al. (2021b) temporal random walks are exploited to efficiently
and automatically sample temporal network motifs, i.e., connected subgraphs with links that appear within
a restricted time range. Similarly, in Liu et al. (2020), a time-reinforced random walk is proposed to
effectively sample the structural and temporal contexts over graph evolution. Also, Jin et al. (2022) employs
spatiotemporal-biased random walks to identify a collection of representative motifs, enabling the effective
characterization of temporal nodes. With DyANE (Sato et al., 2019), the temporal graphs are transformed
into a static graph representation called a supra-adjacency representation. In this approach, the nodes are
defined as (node, time) pairs from the original temporal graph. This static graph representation retains the
temporal paths of the original network, which are crucial for comprehending and constraining the underlying
dynamical processes. Afterwards, standard embedding techniques for static graphs, utilizing random walks,
are employed.

Temporal graph learning has leveraged the use of temporal point processes as well. Temporal point pro-
cesses are stochastic processes employed for modeling sequential asynchronous discrete events occurring in
continuous time (Lewis, 1972). DyRep (Trivedi et al., 2019) is capable of learning a set of functions that can
effectively generate evolving, low-dimensional node embeddings. By using the obtained node embeddings, a
temporal point process is employed to estimate the likelihood of an edge connecting two nodes at a certain
timestamp. In Trivedi et al. (2017), instead, the occurrence of an edge in a temporal graph is modeled as
a multivariate point process, where the intensity function is influenced by the score assigned to that edge,
which is computed using the learned entity embeddings. The entity embeddings, which evolve over time, are
acquired through a recurrent architecture.

Non-negative matrix factorization (NMF) has been employed for the purpose of link prediction in temporal
graphs. In Ahmed et al. (2018), novel iterative rules for NMF are proposed to construct the matrix factors
that capture crucial features of the temporal graph, enhancing the accuracy of the link prediction process.

Moreover, statistical approaches have been applied to TGs; for example, Daniele et al. (2022) introduces
a novel whiteness hypothesis test specifically designed for spatio-temporal graphs. The test extends tradi-
tional methods used for system identification within graph signals to detect dependencies among temporal
observations and spatial dependencies among graph neighborhoods. The test can also be used to assess the
optimality of forecasting models.

5



Published in Transactions on Machine Learning Research (08/2023)

Lastly, the majority of recently proposed methods employ deep learning techniques. For example, DynGem
(Goyal et al., 2018) is a dynamical autoencoder for growing graphs that construct the embedding of a snap-
shot based on the embedding of the previous snapshot. TRRN (Xu et al., 2021), instead, uses multi-head
self-attention to process a set of memories, enabling efficient information flow from past observations to cur-
rent latent representations through shortcut paths. It incorporates policy networks with differentiable binary
routers to estimate the activation probability of each memory and dynamically update them at the most
relevant time steps. In Xu et al. (2019), a spatio-temporal attentive recurrent network model, called STAR,
is proposed for interpretable temporal node classification. In Opolka et al. (2019), a node-level regression
task is achieved by training embeddings to maximize the mutual information between patches of the graph,
at any given time step, and between features of the central nodes of patches, in the future. In Zhou et al.
(2022a), a spectral-based solution for learning representations of long-range interactions is proposed. They
utilize efficient spectral transforms and graph convolutions to capture temporal features and interactions.
The approach addresses challenges in ETG learning and achieves well-conditioned embeddings with minimal
information loss. TSNet (Zheng et al., 2021) is a comprehensive framework for node classification in tempo-
ral graphs, consisting of two key steps. Firstly, the graph snapshots undergo a sparsification process using
edge sampling, guided by a learned distribution derived from the supervised classification task. This step
effectively reduces the density of the snapshots. Subsequently, the sparsified snapshots are aggregated and
processed through a convolutional network to extract meaningful features for node classification. Finally,
Marisca et al. (2022) introduces a novel class of attention-based architectures called Spatiotemporal Point
Inference Network (SPIN) for addressing the challenge of reconstructing multivariate time-series on sparse
graphs with missing data. SPIN exploits a spatiotemporal propagation process to learn predictive represen-
tations of unobserved samples, taking into account the data missingness. By incorporating a hierarchical
attention mechanism, the proposed method reduces the space and time complexities involved.

Instead of using graphs to represent the topological structure, time-dependent relational data may be mod-
elled using different data structures, such as hypergraphs, heterogeneous networks, or multiplex networks
(Battiston et al., 2020; Bianconi, 2021). Even if surveying this domain goes beyond the scope of this work, we
mention that different recent solutions exist for learning on these structures (Agarwal et al., 2022; Behrouz
et al., 2023; Fan et al., 2022; Wang et al., 2023).

In our survey, we aim to explore and analyze methods that leverage and adapt the GNN framework to
temporal graphs. By delving into this specific subset of techniques, we seek to gain a deeper understanding
of their applicability, effectiveness, and potential in capturing the temporal dynamics of complex graph
structures.

5 Learning tasks on temporal graphs

Thanks to their learning capabilities, TGNNs are extremely flexible and can be adapted to a wide range
of tasks on TGs. Some of these tasks are straightforward temporal extensions of their static counterparts.
However, the temporal dimension has some non-trivial consequences in the definition of learning settings
and tasks, some of which are often only loosely formalized in the literature. We start by formalizing the
notions of transductive and inductive learning for TGNNs, and then describe the different tasks that can be
addressed.

5.1 Learning settings

The machine learning literature distinguishes between inductive learning, in which a model is learned on
training data and later applied to unseen test instances, and transductive learning, in which the input data
of both training and test instances are assumed to be available, and learning is equivalent to leveraging
the training inputs and labels to infer the labels of test instances given their inputs. This distinction
becomes extremely relevant for graph-structured data, where the topological structure gives rise to a natural
connection between nodes, and thus to a way to propagate the information in a transductive fashion. Roughly
speaking, transductive learning is used in the graph learning literature when the node to be predicted and
its neighborhood are known at training time — and is typical of node classification tasks —, while inductive

6



Published in Transactions on Machine Learning Research (08/2023)

Figure 1: Learning settings. Schematic representation of the learning settings on TGs formalized in
Section 5.1. The temporal graphs are represented as sequences of snapshots, with training (red) and inference
(green) nodes connected by edges (solid lines), and where a dotted line connects instances of the same node
(with possibly different features and/or labels) in successive snapshots. The four categories are obtained
from the different combinations of a temporal and a topological dimension. The temporal dimension
distinguishes the future setting, where the training nodes are all observed before the inference nodes (first
row), from the past setting where inference is performed also on nodes appearing before the observation of
the last training node (second row). The topological dimension comprises a transductive setting, where
each inference node is observed (unlabelled) also during training (left column), and an inductive setting,
where inference is performed on nodes that are unknown at training time (right column).

learning indicates that this information is not available — and is most often associated to graph classification
tasks.

However, when talking about GNNs with their representation learning capabilities, this distinction is not
so sharp. For example, a GNN trained for node classification in transductive mode could still be applied
to an unseen graph, thus effectively performing inductive learning. The temporal dimension makes this
classification even more elusive, since the graph structure is changing over time and nodes are naturally
appearing and disappearing. Defining node membership in a temporal graph is thus a challenging task in
itself.

Below, we provide a formal definition of transductive and inductive learning for TGNNs which is purely
topological, i.e., linked to knowing or not the instance to be predicted at the training time, and we complete
it with a temporal dimension, which distinguishes between past and future prediction tasks. A schematic
representation of these settings is visualized in Figure 1. We recall (see Section 2) that Te(GT ) is the final
timestamp in a TG GT .

Definition 6 (Learning settings) Assume that a model is trained on a set of n ≥ 1 temporal graphs
GT := {Gi

T := (Vi, Ei, XV
i , XE

i ), i = 1, . . . , n}. Moreover, let

T all
e := max

i=1,...,n
Te(Gi

T ), V all := ∪n
i=1Vi, Eall := ∪n

i=1Ei,

be the final timestamp and the set of all nodes and edges in the training set. Then, we have the following
settings:

• Transductive learning: inference can only be performed on v ∈ V all, e ∈ Eall, or GT ⊆V Gi
T with

Gi
T ∈ GT .

• Inductive learning: inference can be performed also on v /∈ V all, e /∈ Eall, or GT ̸⊆V Gi
T , for all

i = 1, . . . , n.

• Past prediction: inference is performed for t ≤ T all
e .

7



Published in Transactions on Machine Learning Research (08/2023)

• Future prediction: inference is performed for t > T all
e .

We remark that all combinations of topological and temporal settings are meaningful, except for the case of
inductive graph-based tasks. Indeed, the measure of time used in TGs is relative to each single graph. Moving
to an unobserved graph would thus make the distinction between past and future pointless. Moreover, let
us observe that, in all other cases, the two temporal settings are defined based on the final time of the entire
training set, and not of the specific instances (nodes or edges), since their embedding may change also as an
effect of the change of their neighbors in the training set.

We will use this categorization to describe supervised and unsupervised learning tasks in Section 5.2-5.3,
and to present existing models in Section 6.

5.2 Supervised learning tasks

Supervised learning tasks are based on a dataset where each object is annotated with its label (or class),
from a finite set of possible choices C := {C1, C2, . . . , Ck}.

5.2.1 Classification

Definition 7 (Temporal Node Classification) Given a TG GT = (V, E, VT , ET ), the node classification
task consists in learning the function

fNC : V × R+ → C

which maps each node to a class C ∈ C, at a time t ∈ R+.

This is one of the most common tasks in the TGNN literature. For instance, Pareja et al. (2020); Xu
et al. (2020); Wang et al. (2021a); Zhou et al. (2022b); Rossi et al. (2020) focus on a future-transductive
(FT) setting, i.e., predicting the label of a node in future timestamps. TGAT (Xu et al., 2020) performs
future-inductive (FI) learning, i.e., it predicts the label of an unseen node in the future. Finally, DGNN (Ma
et al., 2020) is the only method that has been tested on a past-inductive (PI) setting, i.e., predicting labels
of past nodes that are unavailable (or masked) during training, while no approach has been applied to the
past-transductive (PT) one. A significant application may be in epidemic surveillance, where contact tracing
is used to produce a TG of past human interactions, and sample testing reveals the labels (infection status)
of a set of individuals. Identifying the past infection status of the untested nodes is a PT task.

Definition 8 (Temporal Edge Classification) Given a TG GT = (V, E, VT , ET ), the temporal edge clas-
sification task consists in learning a function

fEC : E × R+ → C

which assigns each edge to a class at a given time t ∈ R+.

Temporal edge classification has been less explored in the literature. Existing methods have focused on FT
learning (Pareja et al., 2020; Wang et al., 2021a), while FI, PI and PT have not been tackled so far. An
example of PT learning consists in predicting the unknown past relationship between two acquaintances in
a social network given their subsequent behavior. For FI, one may predict if a future transaction between
new users is a fraud or not.

In the next definition we use the set of real and positive intervals I+ := {[ts, te] ⊂ R+}.

Definition 9 (Temporal Graph Classification) Let GT be a domain of TGs. The graph classification
task requires to learn a function

fGC : GT × I+ → C

that maps a temporal graph, restricted to a time interval [ts, te] ∈ I+, into a class.

The definition includes the classification of a single snapshot (i.e., ts = te). As mentioned above, in the
inductive setting the distinction between past and future predictions is pointless. In the transductive setting,

8



Published in Transactions on Machine Learning Research (08/2023)

instead, a graph GT ∈ GT may be classified in a past mode if [Ts(GT ), Te(GT )] ⊆ [ts, te], or in the future
mode, otherwise.

The only existing method addressing the classification of temporal graphs is found in Micheli & Tortorella
(2022), where the discrimination between STGs characterized by different dissemination processes is for-
malized as a PT classification task. The temporal graph classification task can have numerous relevant
applications. For instance, an example of inductive temporal graph classification is predicting mental disor-
ders from the analysis of the brain connectome (Heuvel et al., 2010). On the other hand, detecting critical
stages during disease progression from gene expression profiles (Gao et al., 2022c) can be framed as a past
transductive graph classification task.

5.2.2 Regression

The tasks introduced for classification can all be turned into corresponding regression tasks, simply by
replacing the categorical target C with the set R. We omit the formal definitions for the sake of brevity.
Static GNNs have already shown outstanding results in this setting, e.g., in weather forecasting (Keisler,
2022) and earthquake location and estimation (McBrearty & Beroza, 2022). However, limited research has
been conducted on the application of TGNNs to regression tasks. Notable exceptions are the use of TGNNs
in two FT regression tasks, the traffic prediction (Cini et al., 2022) and the prediction of the incidence of
chicken pox cases in neighboring countries (Micheli & Tortorella, 2022).

5.2.3 Link prediction

Link prediction requires the model to predict the relation between two given nodes, and can be formulated
by taking as input any possible pair of nodes. Thus, we consider the setting to be transductive when both
node instances are known at training time, and inductive otherwise. Instead, Qin & Yeung (2022) adopt
a different approach and identify Level-1 (the set of nodes is fixed) and Level-2 (nodes may be added and
removed over time) temporal link prediction tasks.

Definition 10 (Temporal Link Prediction) Let GT = (V, E, VT , ET ) be a TG. The temporal link pre-
diction task consists in learning a function

fLP : V × V × R+ → [0, 1]

which predicts the probability that, at a certain time, there exists an edge between two given nodes.

The domain of the function fLP is the set of all feasible pairs of nodes, since it is possible to predict the
probability of future interactions between nodes that have been connected in the past or not, as well as the
probability of missing edges in a past time. Most TGNN approaches for temporal link prediction focus on
future predictions, forecasting the existence of an edge in a future timestamp between existing nodes (FT is
the most common setting) (Pareja et al., 2020; Sankar et al., 2020; Hajiramezanali et al., 2019; You et al.,
2022; Xu et al., 2020; Luo & Li, 2022; Wang et al., 2021a; Ma et al., 2020; Rossi et al., 2020; Zhou et al.,
2022b), or unseen nodes (FI) (Hajiramezanali et al., 2019; Xu et al., 2020; Rossi et al., 2020). The only model
that investigates past temporal link prediction is Luo & Li (2022), which devises a PI setting by masking
some nodes and predicting the existence of a past edge between them. Note that predicting past temporal
links can be extremely useful for predicting, e.g., missing interactions in contact tracing for epidemiological
studies.

Definition 11 (Event Time Prediction) Let GT = (V, E, VT , ET ) be a TG. The aim of the event time
prediction task is to learn a function

fEP : V × V → R+

that predicts the time of the first appearance of an edge.

None of the existing methods address this task. Potential FT applications of event time prediction include
predicting when a customer will pay an invoice to its supplier, or how long it takes to connect two similar
users in a social network.

9



Published in Transactions on Machine Learning Research (08/2023)

5.3 Unsupervised learning tasks

In this section, we formalize unsupervised learning tasks on temporal graphs, an area that has received little
to no attention in the TGNN literature so far.

5.3.1 Clustering

Temporal graphs can be clustered at the node or graph level, with edge-level clustering being a minor
variation of the node-level one. Some relevant applications can be defined in terms of temporal clustering.

Definition 12 (Temporal Node Clustering) Given a TG GT = (V, E, VT , ET ), the temporal node clus-
tering task consists in learning a time-dependent cluster assignment map

fNCl : V × R+ → P(V ),

where P(V ) := {p1, p2, . . . , pk} is a partition of the node set V , i.e., pi ⊂ VT , pi ∩ pj = ∅, if i ̸= j,
∪N

i=1pi = VT .

While node clustering in SGs is a very common task, its temporal counterpart has not been explored yet
for TGNNs, despite its potential relevance in application domains like epidemic modelling, e.g., identifying
groups of exposed individuals, in both inductive and transductive settings (Ru et al., 2023; Hiram Guzzi
et al., 2022; Koher et al., 2019; Darbon et al., 2019; 2018), trend detection in customer profiling, mostly in
transductive settings (Ljubičić et al., 2022; Rosyidah et al., 2019), or disease clustering, mostly in future
transductive settings (Jacquez et al., 2019; Meliker et al., 2009; Wheeler, 2007; Ozonoff et al., 2005).

Definition 13 (Temporal Graph Clustering) Given a set of temporal graphs GT , the temporal graph
clustering task consists in learning a cluster-assignment function

fGCl : GT × I+ → P(GT ),

where P(GT ) := {p1, . . . , pk} is a partition of the set of temporal graphs in the given time interval.

Relevant examples of tasks of inductive temporal graph clustering are grouping social interaction networks
(e.g., hospitals, workplaces, schools) according to their interaction patterns (Longa et al., 2022c), or grouping
diseases in terms of similarity between their spreading processes (Enright & Rowland, 2018; Myers et al.,
2023).

5.3.2 Anomaly detection

Anomaly detection in TGs refers to the process of identifying any significant deviations from the expected
or normal patterns of connectivity, behavior, or structural properties within the TG. These anomalies may
indicate critical events, emerging trends, unusual behaviors, or potential threats. The basic idea is to
model the behavior of the data using density estimation methods and then identify instances that deviate
significantly from this behavior as anomalies. In the following we identify and formalize three types of
anomalies.

Definition 14 (Anomalous node detection) Given a TG GT = (V, E, VT , ET ), a TGNN and an appli-
cation dependent threshold C ∈ (0, 1), a node v ∈ V is detected as anomalous if

fDE(TGNN(v, GT ; θ)) < C,

where fDE is a procedure for density estimation like variational autoencoder (An & Cho, 2015), generative
adversarial network (Schlegl et al., 2017) or kernel density estimation (Kim & Scott, 2012).

Fo example, detection of anomaly nodes within a TG can be applied to identify the origin nodes of a virus
in a network. By comparing the activity of each node on the days surrounding a known virus attack to their

10



Published in Transactions on Machine Learning Research (08/2023)

activity on the day of the attack, the nodes that exhibit higher-than-usual activity at the time of the attack
can be detected as the potential source of the virus (Ranshous et al., 2015). Other applications include
discovering anomalies in communication networks (Akoglu & Faloutsos, 2010) and observing the shifts in
community involvement (Khan & Haroon, 2022; Gao et al., 2010; Ji et al., 2013).

Definition 15 (Anomalous edge detection) Given a TG GT = (V, E, VT , ET ), a TGNN, an application
dependent threshold C ∈ (0, 1) and a procedure for density estimation fDE, an edge e ∈ E is detected as
anomalous if

fDE(TGNN(e, GT ; θ)) < C.

Edge anomaly detection finds extensive applications in various fields, such as the analysis of vehicle traffic
patterns (Zhang et al., 2018; Deng et al., 2022) and the identification of improbable social interactions
(Savage et al., 2014; Heard et al., 2010).

Definition 16 (Anomalous graph detection) Given a domain of TGs GT , a TGNN, an application
dependent threshold C ∈ (0, 1) and a procedure for density estimation fDE, a TG GT ∈ GT is detected as
anomalous if

fDE(TGNN(GT ; θ)) < C.

Possible application of anomalous graph detection are identifying accidents in TGs representing vehicle traffic
(Ma et al., 2021; Mongiovi et al., 2013) as well as detecting whether a molecule is mutagenic (Zambon et al.,
2018).

5.3.3 Low-dimensional embedding (LDE)

LDEs are especially useful in the temporal setting, e.g., to visually inspect temporal dynamics of individual
nodes or entire graphs, and identify relevant trends and patterns. No GNN-based models have been applied
to these tasks, neither at the node nor at the graph level. We formally define the tasks of temporal node
and graph LDE as follows.

Definition 17 (Low-dimensional temporal node embedding) Given a TG GT = (V, E, VT , ET ), the
low-dimensional temporal node embedding task consists in learning a map

fNEm : V × R+ → Rd

to map a node, at a given time, into a low dimensional space.

Definition 18 (Low-dimensional temporal graph embedding) Given a domain of TGs GT , the low-
dimensional temporal graph embedding task aims to learn a map

fGEm : GT × I+ → Rd,

which represents each graph as a low dimensional vector in a given time interval.

6 A taxonomy of TGNNs

This section describes the taxonomy with which we categorize existing TGNN approaches (see Figure 2).
All these methods learn a time-dependent embedding hv(t) = TGNN(v, GT ; θ) of each node v ∈ VT of a TG
GT , where again θ represents a set of trainable parameters. Following the representation strategies outlined
in Section 2.1, the first level groups methods into Snapshot-based and Event-based. The second level of the
taxonomy further divides these two macro-categories based on the techniques used to manage the temporal

11



Published in Transactions on Machine Learning Research (08/2023)

Figure 2: The proposed TGNN taxonomy and an analysis of the surveyed methods. The top
panel shows the new categories introduced in this work with the corresponding model instances (Section 6),
where the colored bullets additionally indicate the main technology that they employ. The bottom table
maps these methods to the task (Section 5) to which they have been applied in the respective original
paper, with an additional indication of their use in the future (F), past (P), inductive (I), or transductive
(T) settings (Section 5.1). Notice that no method has been applied yet to clustering and visualization, for
neither graphs nor nodes. Moreover, only four out of ten models have been tested in the past mode (three
in PT, one in PI).

dependencies. The leaves of the taxonomy in Figure 2 correspond to the individual models, with a colored
symbol indicating their main underlying technology.

In the following we will denote as REC(v1, . . . , vk) a network that can process streams of tensors v1, . . . , vk

and predict the next one in the sequence. This is usually a Recurrent Neural Network (from which we set
the name REC), but other mechanisms such as temporal attention can be used.

6.1 Snapshot-based models

Snapshot-based models are specifically tailored for STGs (see Def. 4) and thus, consistently with the defini-
tion, they are equipped with a suitable method to process the entire graph at each point in time, and with a
mechanism that learns the temporal dependencies across time-steps. Based on the mechanism used, we can
further distinguish between Model Evolution and Embedding Evolution methods.

6.1.1 Model Evolution methods

We call Model Evolution the evolution of the parameters of a static GNN model over time. This mechanism
is appropriate for modelling STG, as the evolution of the model is performed at the snapshot level.

More formally, these methods learn an embedding hv(ti) = GNN(v, Gi; θ(ti)), where θ(ti) = REC(θ(ti−j) : 1 ≤
j ≤ imax) is a parameter-evolution network, and imax is the memory length.

To the best of our knowledge, the only existing method belonging to this category is EvolveGCN (Pareja
et al., 2020). This model utilizes a Recurrent Neural Network (RNN) to update the Graph Convolutional
Network (GCN) (Kipf & Welling, 2016a) parameters at each time-step, allowing for model adaptation that
is not constrained by the presence or absence of nodes. The method can effectively handle new nodes
without prior historical information. A key advantage of this approach is that the GCN parameters are no
longer trained directly, but rather they are computed from the trained RNN, resulting in a more manageable

12



Published in Transactions on Machine Learning Research (08/2023)

model size that does not increase with the number of time-steps. The paper presents two versions of this
method: EvolveGCN-O uses a Long Short-Term Memory (LSTM) to simply evolve the weights in time,
while EvolveGCN-H represents the weights as hidden states of a Gated Recurrent Unit (GRU), whose input
is the previous node embedding.

6.1.2 Embedding Evolution methods

Rather than evolving the parameters of a static GNN model, Embedding Evolution methods focus on
evolving the embeddings produced by a static model. This means to learn a node embedding hv(ti) =
REC(hv(ti−j), i = 1, . . . , tmax) as the evolution of previous embeddings, where hv(ti−j) = GNN(v, Gi−j ; θ) are
GNN embeddings for the SG Gi−j .

There are several different TGNN models that fall under this category. These networks differ from one
another in the techniques used for processing both the structural information and the temporal dynam-
ics of the STGs. DySAT (Sankar et al., 2020) introduces a generalization of Graph Attention Network
(GAT) (Veličković et al., 2017) for STGs. First, it uses a self-attention mechanism to generate static node
embeddings at each timestamp. Then, it uses a second self-attention block to process past temporal embed-
dings for a node to generate its novel embedding. Decoupling graph evolution into two modular blocks allows
for efficient computations of temporal node representations. The structural and temporal self-attention lay-
ers, combined and stacked, enable flexibility and scalability. The VGRNN model (Hajiramezanali et al.,
2019) uses VGAE (Kipf & Welling, 2016b) on each snapshot, where the latent representations are conditioned
on a state variable modelled by Semi-Implicit Variational Inference (SIVI) (Yin & Zhou, 2018) to handle
the variation of the graph over time. The learned latent representation is then evolved through an LSTM
conditioned on the previous time’s latent representation, allowing the model to predict the future evolution
of the graph.

ROLAND (You et al., 2022) is a general framework for extending state-of-the-art GNN techniques to
STGs. The key insight is that node embeddings at different GNN layers can be viewed as hierarchical node
states. To generalize a static GNN for dynamic settings, hierarchical node states are updated based on
newly observed nodes and edges through a Gated Recurrent Unit (GRU) update module (Chung et al.,
2014). The paper presents two versions of the model: ROLAND-MLP, which uses a 2-layer MLP to update
node embeddings, and ROLAND-moving average, which updates the node embeddings through the moving
average among previous node embeddings. Finally, reservoir computing techniques have also been proposed.
DynGESN (Micheli & Tortorella, 2022) presents a method where each node embedding is updated by a
recurrent mechanism using its temporal neighborhood and previous embedding, with fixed and randomly
initialized recurrent weights. SSGNN (Cini et al., 2022) follows a similar approach but introduces trainable
parameters in the decoder and combines randomized components in the encoder: initially, the encoder creates
representations of the time series data observed at each node, by utilizing a reservoir that captures dynamics
at various time scales; these representations are then further processed to incorporate spatial dynamics
dictated by the graph structure.

6.2 Event-based models

Models belonging to the Event-based macro category are designed to process ETGs (see Def. 5). These
models are able to process streams of events by incorporating techniques that update the representation of
a node whenever an event involving that node occurs, and they are an extension of message passing to TGs,
since they combine and aggregate node representations over temporal neighborhoods.

The models that lie in this macro category can be further classified in Temporal Embedding and Temporal
Neighborhood methods, based on the technology used to learn the time dependencies. In particular, the
Temporal Embedding models use recurrent or self-attention mechanisms to model sequential information
from streams of events, while also incorporating a time encoding. This allows for temporal signals to be
modeled by the interaction between time embedding, node features and the topology of the graph. Temporal
Neighborhood models, instead, use a module that stores functions of events involving a specific node at a
given time. These values are then aggregated and used to update the node representation as time progresses.

13



Published in Transactions on Machine Learning Research (08/2023)

6.2.1 Temporal Embedding methods

Temporal embedding methods model TGs by combining time embedding, node features, and graph topology.
These models use an explicit functional time encoding, i.e., a vector embedding gt of time based on Random
Fourier Features (RFF) (Rahimi & Recht, 2008), which is translation-invariant (i.e., it depends only on the
elapsed and not the absolute time).

They extend the message passing architecture to temporal neighborhoods, where the time is encoded by gt,
i.e.,

hv(t) = COMBINE((hv(t), g0), AGGREGATE({(hu(t′), gt−t′), u ∈ NT [v]}))

where t′ is the time of the connection event between u and v. Thus, gt−t′ encodes the time elapsed between
the current time t and the time of connection between u and v.

TGAT (Xu et al., 2020), for example, introduces a graph-temporal attention mechanism which works
on the embeddings of the temporal neighbors of a node, where the positional encoding is replaced by a
temporal encoding based on RFFs. In addition, Xu et al. (2020) implement a version of TGAT with all
temporal attention weights set to an equal value (Const-TGAT). On the other hand, NAT (Luo & Li, 2022)
collects the temporal neighbors of each node into dictionaries, and then it learns the node representation
with a recurrent mechanism, using the historical neighborhood of the current node and a RFF based time
embedding. Note that Luo & Li (2022) propose a dedicated data structure to support parallel access and
update of the dictionary on GPUs.

6.2.2 Temporal Neighborhood methods

The Temporal Neighborhood class includes all TGNN models that make use of a special mailbox module to
update node embeddings based on events. When an event ε occurs, a function is evaluated on the details
of the event to compute a mail or a message mε. For example, when a new edge appears between two
nodes, a message is produced, taking into account the time of occurrence of the event, the node features,
and the features of the new edge. The node representation is then updated at each time by aggregating all
the generated messages. In more details, these methods extend message passing by learning an embedding

hv(t) = COMBINE(hv(t), AGGREGATE({mε, ε = (u, t′) with u ∈ NT [v]})),

where ε, with u ∈ NT [v], is the addition or deletion of a temporal neighbor of v.

Several existing TGNN methods belong to this category. APAN (Wang et al., 2021a) introduces the
concept of asynchronous algorithm, which decouples graph query and model inference. An attention-based
encoder maps the content of the mailbox to a latent representation of each node, which is decoded by an
MLP adapted to the downstream task. After each node update following an event, mails containing the
current node embedding are sent to the mailboxes of its neighbors using a propagator. DGNN (Ma et al.,
2020) combines an interact module — which generates an encoding of each event based on the current
embedding of the interacting nodes and its history of past interactions — and a propagate module — which
transmits the updated encoding to each neighbors of the interacting nodes. The aggregation of the current
node encoding with those of its temporal neighbors uses a modified LSTM, which permits to work on non-
constant time-steps, and implements a discount factor to downweight the importance of remote interactions.
TGN (Rossi et al., 2020) provides a generic framework for representation learning in ETGs, and it makes
an effort to integrate the concepts put forward in earlier techniques. This inductive framework is made up
of separate and interchangeable modules. Each node the model has seen so far is characterized by a memory
vector, which is a compressed representation of all its past interactions. Given a new event, a mailbox
module computes a mail for every node involved. Mails will then be used to update the memory vector.
To overcome the so-called staleness problem (Kazemi et al., 2020), an embedding module computes, at each
timestamp, the node embeddings using their neighborhood and their memory states. Finally, TGL (Zhou
et al., 2022b) is a general framework for training TGNNs on graphs with billions of nodes and edges by
using a distributed training approach. In TGL, a mailbox module is used to store a limited number of the
most recent interactions, called mails. When a new event occurs, the node memory of the relevant nodes is
updated using the cached messages in the mailbox. The mailbox is then updated after the node embeddings

14



Published in Transactions on Machine Learning Research (08/2023)

are calculated. This process is also used during inference to ensure consistency in the node memory, even
though updating the memory is not required during this phase.

6.3 Category comparison

The categories of models identified in our taxonomy exhibit various strengths, weaknesses, or suitability for
specific scenarios. First and foremost, the comparison between the macro categories of Snapshot-based and
Event-based methods is straightforward, hinging on the choice of temporal graph representation, namely
STGs or ETGs. Within each macro category, sub-categories exhibit their own set of advantages and disad-
vantages. For instance, in the Model Evolution category, learning the evolution of GNN parameters becomes
complex when the GNN has a large number of parameters. On the other hand, the Embedding Evolution
category has a limitation in that temporal learning exclusively relies on recurrent mechanisms, which may not
fully guarantee the preservation of temporal correlations among substructures. Despite this drawback, the
approach offers simplicity and intuitiveness, allowing for the exploration and evaluation of various recurrent
mechanisms.

In Temporal Embedding methods, defining the time encoding function is not trivial because it should capture
different aspects of the graph, such as the temporal periodicity of interactions, recurrent interactions over
time, and more. One advantage of this category, though, is that ad-hoc time encoding functions can be
defined, depending on the application domain.

Finally, for the Temporal Neighborhood category, constructing the mailbox can be complex. For example,
dense graphs have large mailboxes, which necessitate managing scalability issues. A specific mechanism to
decide which nodes to include in the mailbox needs to be carefully designed, and this mechanism may also be
domain-dependent. Similarly to the Temporal Embedding category, a benefit of the Temporal Neighborhood
models is their ability to define domain-specific mailbox mechanisms.

In summary, each category of models for temporal graph learning has its own set of advantages and disad-
vantages. Choosing a category depends on the representation of the input graph, the complexity of learning
the temporal dynamics, the need for domain-specific encoding or mailbox mechanisms, and scalability con-
siderations.

7 Open challenges

Building on existing libraries of GNN methods, two major TGNN libraries have been developed, namely
PyTorch Geometric Temporal (PyGT) (Rozemberczki et al., 2021), based on PyTorch Geometric1, and
DynaGraph (Guan et al., 2022), based on Deep Graph Library2. While these are substantial contributions
to the development and practical application of TGNN models, several open challenges still need to be faced
to fully exploit the potential of this technology. We discuss the ones we believe are the most relevant in the
following.

Evaluation The evaluation of GNN models has been greatly enhanced by the Open Graph Benchmark
(OGB) (Hu et al., 2020), which provides a standardized evaluation protocol and a collection of graph
datasets enabling a fair and consistent comparison between GNN models. An equally well-founded
standardized benchmark for evaluating TGNNs does not currently exist, even if a promising first step
in this direction is the recently published Temporal Graph Benchmark (TGB)3. As a result, each
model has been tested on its own selection of datasets, making it challenging to compare and rank
different TGNNs on a fair basis. For instance, Zhou et al. (2022b) introduced two real-world datasets
with 0.2 billion and 1.3 billion temporal edges which allow to evaluate the scalability of TGNNs to
large scale real-world scenarios, but they only tested the TGL model (Zhou et al., 2022b). The variety
and the complexity of learning settings and tasks described in Section 5 makes a standardization of

1https://pytorch-geometric.readthedocs.io
2https://docs.dgl.ai/
3https://tgb.complexdatalab.com/

15



Published in Transactions on Machine Learning Research (08/2023)

tasks, datasets and processing pipelines especially crucial to allow a fair assessment of the different
approaches and foster innovation in the field.
Another crucial aspect of evaluating GNN models is explainability, which is the ability to interpret
and understand their decision process. While explainability has been largely explored for standard
GNNs (Luo et al., 2020; Ying et al., 2019; Longa et al., 2022a; Azzolin et al., 2022), only few works
focused on explaining TGNNs (Xia et al., 2022; Vu & Thai, 2022; He et al., 2022).

Expressiveness Driven by the popularity of (static) GNNs, the study of their expressive power has received
a lot of attention in the last few years (Sato, 2020). For instance, appropriate formulations of
message-passing GNNs have been shown to be as powerful as the Weisfeiler-Lehman isomorphism
test (WL test) in distinguishing graphs or nodes (Xu et al., 2018), and higher-order generalizations of
message-passing GNNs have been proposed that can match the expressivity of the k-WL test (Morris
et al., 2019). Moreover, it has been proven that GNNs are a sort of universal approximators on
graphs modulo the node equivalence induced by the WL test (D’Inverno et al., 2021). Finally, also
the expressive power of GNNs equipped with pooling operators have been studied in Bianchi & Lachi
(2023).
Conversely, the expressive power of TGNNs is still far from being fully explored, and the design of
new WL tests, suitable for TGNNs, is a crucial step towards this aim. This is a challenging task
since the definition of a node neighborhood in temporal graphs is not as trivial as for static graphs,
due to the appearing/disappearing of nodes and edges. In Beddar-Wiesing et al. (2022), a new
version of the WL test for temporal graphs has been proposed, applicable only to DTTGs. Instead,
Souza et al. (2022) proposed a novel WL test for ETGs, and the TGN model (Rossi et al., 2020) has
been proved to be as powerful as this test. Finally, Beddar-Wiesing et al. (2022) proved a universal
approximation theorem, but the result just holds for a specific TGNN model for STGs, composed
of standard GNNs stacked with an RNN.
To the best of our knowledge, these are the only results achieved so far on the expressive power of
TGNNs. A complete theory of the WL test for the different TG representations, such as universal
approximation theorems for event-based models, is still lacking. Moreover, no efforts have been made
to incorporate higher-order graph structures to enhance the expressiveness of TGNNs. This task is
particularly demanding, since it requires not only the definition of the temporal counterpart of the
k-WL test but also some techniques to scale to large datasets. Indeed, a drawback of considering
higher-order structures is that of high memory consumption, which can only get worse in the case
of TGs, as they usually have a greater number of nodes than static graphs.

Learnability Training standard GNNs over large and complex graph data is highly non-trivial, often re-
sulting in problems such as over-smoothing and over-squashing. A theoretical explanation for this
difficulty has been given using algebraic topology and Sheaf theory (Bodnar et al., 2022; Topping
et al., 2021). More intuitively, we yet do not know how to reproduce the breakthrough obtained in
training very deep architectures over vector data when training deep GNNs. Such a difficulty is even
more challenging with TGNNs, because the typical long-term dependency of TGs poses additional
problems to those due to over-smoothing and over-squashing.
Modern static GNN models face the problems arising from the complexity of the data using tech-
niques such as dropout, virtual nodes, neighbor sampling, but a general solution is far from being
reached. The extension of the above mentioned techniques to TGNNs, and the corresponding theo-
retical studies, are open challenges and we are aware of only one work towards this goal (Yang et al.,
2020). On the other hand, the goal of proposing general very deep TGNNs is even more challenging
due to the difficulty in designing the graph dynamics in a hierarchical fashion.

Real-world applications The analysis of the tasks in Section 5 revealed several opportunities for the use of
TGNNs far beyond their current scope of application. We would like to outline here some promising
directions of application.
A challenging and potentially disruptive direction for the application of TGNNs is the learning of
dynamical systems through the combination of machine learning and physical knowledge (Willard

16



Published in Transactions on Machine Learning Research (08/2023)

et al., 2022). Physic Informed Neural Networks (PINNs) (Raissi et al., 2017) are already revolution-
izing the field of scientific computing (Cuomo et al., 2022), and static GNNs have been employed in
this framework with great success (Pfaff et al., 2021; Gao et al., 2022b). Adapting TGNNs to this
field may enable to carry over these results to the treatment of time-dependent problems. Climate
science (Faghmous & Kumar, 2014) is a particularly attractive field of application, both for its crit-
ical impact in our societies and for the promising results achieved by GNNs in climate modelling
tasks (Keisler, 2022). We believe that TGNNs may rise to be a prominent technology in this field,
thanks to their unique capability to capture spatio-temporal correlations at multiple scales. Epi-
demics studies are another topic of enormous everyday impact that may be explored through the
lens of TGNNs, since a proper modelling of the spreading dynamics needs to be tightly coupled to
the underlying TG structure (Enright & Rowland, 2018). Both fields requires a better development
of TGNNs for regression problems, a task that is still underdeveloped (see Section 5).

8 Conclusion

GNN based models for temporal graphs have become a promising research area. However, we believe
that the potential of GNNs in this field has only been partially explored. In this work, we propose a
systematic formalization of tasks and learning settings for TGNNs, which was lacking in the literature, and
a comprehensive taxonomy categorizing existing methods and highlighting unaddressed tasks. Building on
this systematization of the current state-of-the-art, we discuss open challenges that need to be addressed
to unleash the full potential of TGNNs. We conclude by stressing the fact that the issues open to date
are very challenging, since they presuppose considering both the temporal and relational dimension of data,
suggesting that forthcoming new computational models must go beyond the GNN framework to provide
substantially better solutions.

Acknowledgments

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and
innovation programme under GA No 952215. M.B. and V.L. are partially supported by the MUR PNRR
project “THE - Tuscany Health Ecosystem” (spoke 3). P.L. acknowledges funding from the EU projects
CHARM and TROPHY. B.L. and A.P. acknowledge the support of the PNRR project FAIR - Future AI
Research (PE00000013), under the NRRP MUR program funded by the NextGenerationEU.

References
S. Agarwal, R. Sawhney, M. Thakkar, P. Nakov, J. Han, and T. Derr. Think: Temporal hypergraph

hyperbolic network. In 2022 IEEE International Conference on Data Mining (ICDM), pp. 849–854, 2022.

N.M. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and W. Li. DeepEye: Link prediction in dynamic networks
based on non-negative matrix factorization. Big Data Mining and Analytics, 2018.

Leman Akoglu and Christos Faloutsos. Event detection in time series of mobile communication graphs. In
Army science conference, volume 1, pp. 141, 2010.

Jinwon An and Sungzoon Cho. Variational autoencoder based anomaly detection using reconstruction
probability. Special lecture on IE, 2(1):1–18, 2015.

S. Azzolin, A. Longa, P. Barbiero, P. Liò, and A. Passerini. Global explainability of GNNs via logic combi-
nation of learned concepts. arXiv preprint arXiv:2210.07147, 2022.

C.D.T. Barros, M.R.F. Mendonça, A. Vieira, and A. Ziviani. A survey on embedding dynamic graphs. ACM
CSUR, 2021.

F. Battiston, G. Cencetti, I. Iacopini, V. Latora, M. Lucas, A. Patania, J.-G. Young, and G. Petri. Networks
beyond pairwise interactions: Structure and dynamics. Physics Reports, 874:1–92, 2020. ISSN 0370-1573.
Networks beyond pairwise interactions: Structure and dynamics.

17



Published in Transactions on Machine Learning Research (08/2023)

S. Beddar-Wiesing, G.A. D’Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F. Scarselli, and J.M.
Thomas. Weisfeiler–Lehman goes dynamic: An analysis of the expressive power of graph neural networks
for attributed and dynamic graphs. arXiv preprint arXiv:2210.03990, 2022.

A. Behrouz, F. Hashemi, S. Sadeghian, and M. Seltzer. CAT-Walk: Inductive hypergraph learning via set
walks, 2023.

F.M. Bianchi and V. Lachi. The expressive power of pooling in graph neural networks. arXiv preprint
arXiv:2304.01575, 2023.

G. Bianconi. Higher-Order Networks. Elements in the Structure and Dynamics of Complex Networks.
Cambridge University Press, 2021.

C. Bodnar, F. Di Giovanni, B.P. Chamberlain, P. Liò, and M. Bronstein. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in GNNs. In ICLR, 2022.

Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pp. 3308–3315, 2020.

G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathe, and B. Lepri.
Digital proximity tracing on empirical contact networks for pandemic control. Nature Communications,
2021.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural networks on
sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

A. Cini, I. Marisca, F.M. Bianchi, and C. Alippi. Scalable spatiotemporal graph neural networks. arXiv
preprint arXiv:2209.06520, 2022.

S. Cuomo, V.S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F Piccialli. Scientific machine learning
through physics–informed neural networks: where we are and what’s next. Journal of Scientific Computing,
2022.

Zambon Daniele, Cesare Alippi, et al. Az-whiteness test: a test for uncorrelated noise on spatio-temporal
graphs. In 36th Conference on Neural Information Processing Systems (NeurIPS 2022), pp. 1–17, 2022.

Alexandre Darbon, Eugenio Valdano, Chiara Poletto, Armando Giovannini, Lara Savini, Luca Candeloro,
and Vittoria Colizza. Network-based assessment of the vulnerability of italian regions to bovine brucellosis.
Preventive veterinary medicine, 158:25–34, 2018.

Alexandre Darbon, Davide Colombi, Eugenio Valdano, Lara Savini, Armando Giovannini, and Vittoria
Colizza. Disease persistence on temporal contact networks accounting for heterogeneous infectious periods.
Royal Society open science, 6(1):181404, 2019.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based temporally
aware knowledge graph embedding. In Proceedings of the 2018 conference on empirical methods in natural
language processing, pp. 2001–2011, 2018.

Leyan Deng, Defu Lian, Zhenya Huang, and Enhong Chen. Graph convolutional adversarial networks for
spatiotemporal anomaly detection. IEEE Transactions on Neural Networks and Learning Systems, 33(6):
2416–2428, 2022.

S. Deng, H. Rangwala, and Y. Ning. Learning dynamic context graphs for predicting social events. In ACM
SIGKDD, 2019.

G.A. D’Inverno, M. Bianchini, M.L. Sampoli, and F. Scarselli. A new perspective on the approximation
capability of GNNs. arXiv preprint arXiv:2106.08992, 2021.

J. Enright and R.K. Rowland. Epidemics on dynamic networks. Epidemics, 2018.

18



Published in Transactions on Machine Learning Research (08/2023)

J. H. Faghmous and V. Kumar. A Big Data Guide to Understanding Climate Change: The Case for
Theory-Guided Data Science. Big Data, 2(3), 2014.

W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin. Graph neural networks for social recommendation.
In The World Wide Web Conference, WWW ’19, pp. 417–426, New York, NY, USA, 2019. Association for
Computing Machinery. ISBN 9781450366748.

Y. Fan, M. Ju, C. Zhang, and Y. Ye. Heterogeneous Temporal Graph Neural Network, pp. 657–665. Society
for Industrial and Applied Mathematics, 2022.

C. Gao, X. Wang, X. He, and Y. Li. Graph neural networks for recommender system. In Proceedings of the
Fifteenth ACM International Conference on Web Search and Data Mining, WSDM ’22, pp. 1623–1625,
New York, NY, USA, 2022a. Association for Computing Machinery. ISBN 9781450391320.

H. Gao, M.J. Zahr, and J. Wang. Physics-informed graph neural Galerkin networks: A unified framework
for solving PDE-governed forward and inverse problems. Computer Methods in Applied Mechanics and
Engineering, 2022b.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale learnable graph convolutional networks. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1416–1424, 2018.

Jing Gao, Feng Liang, Wei Fan, Chi Wang, Yizhou Sun, and Jiawei Han. On community outliers and
their efficient detection in information networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pp. 813–822, 2010.

R. Gao, J. Yan, P. Li, and L. Chen. Detecting the critical states during disease development based on
temporal network flow entropy. Briefings in Bioinformatics, 2022c.

S. Gao. Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in the mobile
age. Spatial Cognition & Computation, 15(2):86–114, 2015.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273, 2018.

M. Guan, A.P. Iyer, and T. Kim. DynaGraph: dynamic graph neural networks at scale. In ACM SIGMOD22
GRADES-NDA, 2022.

S. Gupta and S. Bedathur. A survey on temporal graph representation learning and generative modeling.
arXiv preprint arXiv:2208.12126, 2022.

E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, and X. Qian. Variational graph
recurrent neural networks. NeurIPS, 32, 2019.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NeurIPS, 30,
2017.

W. He, M. N. Vu, Z. Jiang, and M. T. Thai. An explainer for temporal graph neural networks. In GLOBE-
COM - IEEE Global Communications Conference 2022, pp. 6384–6389. IEEE, 2022.

N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand. Bayesian anomaly detection methods for social
networks. The Annals of Applied Statistics, 4(2):645 – 662, 2010.

M.P. Van Den Heuvel, R.C.W. Mandl, C.J. Stam., R.S. Kahn, P. Hulshoff, and E. Hilleke. Aberrant
frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. Journal
of Neuroscience, 2010.

19



Published in Transactions on Machine Learning Research (08/2023)

Pietro Hiram Guzzi, Francesco Petrizzelli, and Tommaso Mazza. Disease spreading modeling and analysis:
A survey. Briefings in Bioinformatics, 23(4):bbac230, 2022.

W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open Graph Benchmark:
Datasets for machine learning on graphs. NeurIPS, 33:22118–22133, 2020.

GM Jacquez, JR Meliker, RR Rommel, and PE Goovaerts. Exposure reconstruction using space-time
information technology. Encyclopedia of Environmental Health, pp. 793–804, 2019.

Tengfei Ji, Dongqing Yang, and Jun Gao. Incremental local evolutionary outlier detection for dynamic social
networks. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II 13, pp. 1–15. Springer,
2013.

Weiwei Jiang and Jiayun Luo. Graph neural network for traffic forecasting: A survey. Expert Systems with
Applications, 207:117921, 2022. ISSN 0957-4174.

Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation learning on
continuous-time dynamic graphs. Advances in Neural Information Processing Systems, 35:19874–19886,
2022.

S.M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. Representation learning
for dynamic graphs: A survey. Journal of Machine Learning Research, 2020.

R. Keisler. Forecasting global weather with graph neural networks. arXiv preprint arXiv:2202.07575, 2022.

Wasim Khan and Mohammad Haroon. A pilot study and survey on methods for anomaly detection in
online social networks. In Human-Centric Smart Computing: Proceedings of ICHCSC 2022, pp. 119–128.
Springer, 2022.

JooSeuk Kim and Clayton D Scott. Robust kernel density estimation. The Journal of Machine Learning
Research, 13(1):2529–2565, 2012.

T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR 2016,
2016a.

T.N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016b.

Andreas Koher, Hartmut HK Lentz, James P Gleeson, and Philipp Hövel. Contact-based model for epidemic
spreading on temporal networks. Physical Review X, 9(3):031017, 2019.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Learning dynamic embeddings from temporal interactions.
arXiv preprint arXiv:1812.02289, 2018.

PAW Lewis. Multivariate point processes. In Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pp. 401. University of California Press, 1972.

Z. Liu, D. Zhou, Y. Zhu, J. Gu, and J. He. Towards fine-grained temporal network representation via
time-reinforced random walk. In AAAI, volume 34, pp. 4973–4980, 2020.

Karmela Ljubičić, Andro Merćep, and Zvonko Kostanjčar. Analysis of complex customer networks: A real-
world banking example. In 2022 45th Jubilee International Convention on Information, Communication
and Electronic Technology (MIPRO), pp. 321–326. IEEE, 2022.

A. Longa, S. Azzolin, G. Santin, G. Cencetti, P. Liò, B. Lepri, and A. Passerini. Explaining the explainers
in graph neural networks: a comparative study. arXiv preprint arXiv:2210.15304, 2022a.

A. Longa, G. Cencetti, S. Lehmann, A. Passerini, and B. Lepri. Neighbourhood matching creates realistic
surrogate temporal networks. arXiv preprint arXiv:2205.08820, 2022b.

20



Published in Transactions on Machine Learning Research (08/2023)

A. Longa, G. Cencetti, B. Lepri, and A. Passerini. An efficient procedure for mining egocentric temporal
motifs. Data Mining and Knowledge Discovery, 2022c.

D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang. Parameterized explainer for graph
neural network. Advances in Neural Information Processing Systems, 33:19620–19631, 2020.

Y. Luo and P. Li. Neighborhood-aware scalable temporal network representation learning. arXiv preprint
arXiv:2209.01084, 2022.

Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman Akoglu. A
comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin. Streaming graph neural networks. In ACM SIGIR, 2020.

Ivan Marisca, Andrea Cini, and Cesare Alippi. Learning to reconstruct missing data from spatiotemporal
graphs with sparse observations. Advances in Neural Information Processing Systems, 35:32069–32082,
2022.

G. Mauro, M. Luca, A. Longa, B. Lepri, and L. Pappalardo. Generating mobility networks with generative
adversarial networks. EPJ Data Science, 11(1):58, 2022.

I.W. McBrearty and G.C. Beroza. Earthquake location and magnitude estimation with graph neural net-
works. In IEEE ICIP, 2022.

Jaymie R Meliker, Geoffrey M Jacquez, Pierre Goovaerts, Glenn Copeland, and May Yassine. Spatial cluster
analysis of early stage breast cancer: a method for public health practice using cancer registry data.
Cancer Causes & Control, 20:1061–1069, 2009.

A. Micheli and D. Tortorella. Discrete-time dynamic graph echo state networks. Neurocomputing, 496:85–95,
2022.

Misael Mongiovi, Petko Bogdanov, Razvan Ranca, Evangelos E Papalexakis, Christos Faloutsos, and Am-
buj K Singh. Netspot: Spotting significant anomalous regions on dynamic networks. In Proceedings of the
2013 Siam international conference on data mining, pp. 28–36. SIAM, 2013.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bron-
stein. Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 5115–5124, 2017.

C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and
Leman go neural: Higher-order graph neural networks. In AAAI, 2019.

Audun Myers, David Muñoz, Firas A Khasawneh, and Elizabeth Munch. Temporal network analysis using
zigzag persistence. EPJ Data Science, 12(1):6, 2023.

F. L. Opolka, A. Solomon, C. Cangea, P. Veličković, P. Liò, and R.D. Hjelm. Spatio-temporal deep graph
infomax. arXiv preprint arXiv:1904.06316, 2019.

Al Ozonoff, Thomas Webster, Veronica Vieira, Janice Weinberg, David Ozonoff, and Ann Aschengrau.
Cluster detection methods applied to the upper cape cod cancer data. Environmental Health, 4:1–9, 2005.

A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and C. Leis-
erson. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In AAAI, 2020.

T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simulation with graph
networks. In ICLR, 2021.

M. Qin and D Yeung. Temporal link prediction: A unified framework, taxonomy, and review. arXiv preprint
arXiv:2210.08765, 2022.

21



Published in Transactions on Machine Learning Research (08/2023)

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NeurIPS, 2008.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561, 2017.

Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Faloutsos, and Nagiza F Sama-
tova. Anomaly detection in dynamic networks: a survey. Wiley Interdisciplinary Reviews: Computational
Statistics, 7(3):223–247, 2015.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein. Temporal graph networks for
deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637, 2020.

Asma Rosyidah, Isti Surjandari, et al. Exploring customer data using spatio-temporal analysis: Case study
of fixed broadband provider. International Journal of Applied Science and Engineering, 16(2):133–147,
2019.

B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres, G. López,
N. Collignon, et al. Pytorch Geometric Temporal: Spatiotemporal signal processing with neural machine
learning models. In ACM CIKM, 2021.

Xiaolei Ru, Jack Murdoch Moore, Xin-Ya Zhang, Yeting Zeng, and Gang Yan. Inferring patient zero
on temporal networks via graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 9632–9640, 2023.

A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural representation learning on dynamic
graphs via self-attention networks. In WSDM, 2020.

Koya Sato, Mizuki Oka, Alain Barrat, and Ciro Cattuto. Dyane: dynamics-aware node embedding for
temporal networks. arXiv preprint arXiv:1909.05976, 2019.

R. Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078, 2020.

David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline Chou, and Qingmai Wang. Anomaly detection in online
social networks. Social networks, 39:62–70, 2014.

Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs. Un-
supervised anomaly detection with generative adversarial networks to guide marker discovery. In Interna-
tional conference on information processing in medical imaging, pp. 146–157. Springer, 2017.

J. Skarding, B. Gabrys, and K. Musial. Foundations and modeling of dynamic networks using dynamic
graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.

M. K.P. So, A. Tiwari, A. M.Y. Chu, J. T.Y. Tsang, and J. N.L. Chan. Visualizing covid-19 pandemic risk
through network connectedness. International Journal of Infectious Diseases, 96:558–561, Jul 2020.

A.H. Souza, D. Mesquita, S. Kaski, and V. Garg. Provably expressive temporal graph networks. NeurIPS,
2022.

Aynaz Taheri, Kevin Gimpel, and Tanya Berger-Wolf. Learning to represent the evolution of dynamic graphs
with recurrent models. In Companion proceedings of the 2019 world wide web conference, pp. 301–307,
2019.

Josephine M Thomas, Alice Moallemy-Oureh, Silvia Beddar-Wiesing, and Clara Holzhüter. Graph neural
networks designed for different graph types: A survey. arXiv preprint arXiv:2204.03080, 2022.

J. Topping, F. Di Giovanni, B.P. Chamberlain, X. Dong, and M. Bronstein. Understanding over-squashing
and bottlenecks on graphs via curvature. arXiv preprint arXiv:2111.14522, 2021.

R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations over dynamic graphs. In
International Conference on Learning Representations, 2019.

22



Published in Transactions on Machine Learning Research (08/2023)

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs. In international conference on machine learning, pp. 3462–3471. PMLR, 2017.

P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention networks.
arXiv preprint arXiv:1710.10903, 2017.

M. N. Vu and M. T. Thai. On the limit of explaining black-box temporal graph neural networks. arXiv
preprint arXiv:2212.00952, 2022.

S. Wang, X. Liu, X. Pan, H. Xu, and M. Liu. Heterogeneous graph transformer for meta-structure learning
with application in text classification. ACM Trans. Web, 17(3), 2023. ISSN 1559-1131.

X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang, B. Sun, et al. APAN:
Asynchronous propagation attention network for real-time temporal graph embedding. In SIGMOD, 2021a.

Y. Wang, Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive representation learning in temporal networks
via causal anonymous walks. arXiv preprint arXiv:2101.05974, 2021b.

David C Wheeler. A comparison of spatial clustering and cluster detection techniques for childhood leukemia
incidence in ohio, 1996–2003. International journal of health geographics, 6(1):1–16, 2007.

J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar. Integrating scientific knowledge with machine
learning for engineering and environmental systems. ACM Computing Surveys, 55(4), 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pp. 6861–6871. PMLR,
2019.

S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recommender systems: a survey.
ACM CSUR, 2022.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning: A
survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, 2021.

W. Xia, M. Lai, C. Shan, Y. Zhang, X. Dai, X. Li, and D. Li. Explaining temporal graph models through
an explorer-navigator framework. In The Eleventh International Conference on Learning Representations,
2022.

Y. Xie, C. Li, B. Yu, C. Zhang, and Z. Tang. A survey on dynamic network embedding. arXiv preprint
arXiv:2006.08093, 2020.

D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on temporal
graphs. arXiv preprint arXiv:2002.07962, 2020.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Xiao Liu, and Xiang Zhang. Spatio-temporal attentive rnn for
node classification in temporal attributed graphs. In IJCAI, pp. 3947–3953, 2019.

Dongkuan Xu, Junjie Liang, Wei Cheng, Hua Wei, Haifeng Chen, and Xiang Zhang. Transformer-style
relational reasoning with dynamic memory updating for temporal network modeling. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pp. 4546–4554, 2021.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong. Dynamic network embedding survey. Neurocom-
puting, 2022.

M. Yang, Z. Meng, and I. King. Featurenorm: L2 feature normalization for dynamic graph embedding. In
ICDM, 2020.

M. Yin and M. Zhou. Semi-implicit variational inference. In ICML, 2018.

23



Published in Transactions on Machine Learning Research (08/2023)

Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating explanations for graph
neural networks. Advances in Neural Information Processing Systems, 32, 2019.

J. You, T. Du, and J. Leskovec. ROLAND: graph learning framework for dynamic graphs. In ACM SIGKDD,
2022.

B. Yu, H. Yin, and Z. Zhu. Spatio-temporal graph convolutional networks: A deep learning framework for
traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Concept drift and anomaly detection in graph streams.
IEEE transactions on neural networks and learning systems, 29(11):5592–5605, 2018.

Huichu Zhang, Yu Zheng, and Yong Yu. Detecting urban anomalies using multiple spatio-temporal data
sources. Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies, 2(1):1–18,
2018.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. NeurIPS, 2018.

Muhan Zhang and Yixin Chen. Weisfeiler-lehman neural machine for link prediction. In Proceedings of the
23rd ACM SIGKDD international conference on knowledge discovery and data mining, pp. 575–583, 2017.

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey. IEEE Transactions on
Knowledge and Data Engineering, 34(1):249–270, 2020.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen, and Wei
Wang. Node classification in temporal graphs through stochastic sparsification and temporal structural
convolution. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III, pp. 330–346. Springer, 2021.

Bingxin Zhou, Xinliang Liu, Yuehua Liu, Yunying Huang, Pietro Lio, and Yu Guang Wang. Well-conditioned
spectral transforms for dynamic graph representation. In Learning on Graphs Conference, pp. 12–1. PMLR,
2022a.

H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis. TGL: A general framework for temporal
GNN training on billion-scale graphs. arXiv preprint arXiv:2203.14883, 2022b.

24


	Introduction
	Temporal Graphs
	Representation of temporal graphs

	Basic notions on Graph Neural Networks
	Other approaches to model temporal graphs
	Learning tasks on temporal graphs
	Learning settings
	Supervised learning tasks
	Classification
	Regression
	Link prediction

	Unsupervised learning tasks
	Clustering
	Anomaly detection
	Low-dimensional embedding (LDE)


	A taxonomy of TGNNs
	Snapshot-based models
	Model Evolution methods
	Embedding Evolution methods

	Event-based models
	Temporal Embedding methods
	Temporal Neighborhood methods

	Category comparison

	Open challenges
	Conclusion

