
Semantic Membership Inference Attack
against Large Language Models

Hamid Mozaffari
Oracle Labs

hamid.mozaffari@oracle.com

Virendra J. Marathe
Oracle Labs

virendra.marathe@oracle.com

Abstract

Membership Inference Attacks (MIAs) determine whether a specific data point was
included in the training set of a target model. In this paper, we introduce the Seman-
tic Membership Inference Attack (SMIA), a novel approach that enhances MIA
performance by leveraging the semantic content of inputs and their perturbations.
SMIA trains a neural network to analyze the target model’s behavior on perturbed
inputs, effectively capturing variations in output probability distributions between
members and non-members. We conduct comprehensive evaluations on the Pythia
and GPT-Neo model families using the Wikipedia dataset. Our results show that
SMIA significantly outperforms existing MIAs; for instance, SMIA achieves an
AUC-ROC of 67.39% on Pythia-12B, compared to 58.90% by the second-best
attack.

1 Introduction

Large Language Models (LLMs) appear to be effective learners of natural language structure and
patterns of its usage. However, a key contributing factor to their success is their ability to memorize
their training data, often in a verbatim fashion. This memorized data can be reproduced verbatim
at inference time, which effectively serves the purpose of information retrieval. However, this
regurgitation of training data is also at the heart of privacy concerns in LLMs. Previous works have
shown that LLMs leak some of their training data at inference time [1–7] Membership Inference
Attacks (MIAs) [8, 1, 2, 9, 10] aim to determine whether a specific data sample (e.g. sentence,
paragraph, document) was part of the training set of a target machine learning model. MIAs serve as
efficient tools to measure memorization in LLMs.

Existing approaches to measure memorization in LLMs have predominantly focused on verbatim
memorization, which involves identifying exact sequences reproduced from the training data. How-
ever, given the complexity and richness of natural language, we believe this method falls short.
Natural language can represent the same ideas or sensitive data in numerous forms, through different
levels of indirection and associations. This power of natural language makes verbatim memorization
metrics inadequate to address the more nuanced problem of measuring semantic memorization, where
LLMs internalize and reproduce the essence or meaning of training data sequences, not just their
exact wording.

Previous MIAs against LLMs has predominantly focused on classifying members and non-members
by analyzing the probabilities assigned to input texts or their perturbations [11, 5, 12, 13]. In contrast,
we introduce the Semantic Membership Inference Attack (SMIA), the first MIA to leverage the
semantic content of input texts to enhance performance. SMIA involves training a neural network to
understand the distinct behaviors exhibited by the target model when processing members versus
non-members.

Red Teaming GenAI Workshop @ NeurIPS’24

Target
Sequence

Mask Model
(T5)

(n neighbors)

1) Neighbor Generation 2) Semantic Embeddings

4) SMIA Model Inference

3) Target Model Behavior

Embedding
Model (Cohere)

Target Model
(Pythia 12B)

SMIA Model
(Simple NN)

non-member

member

Figure 1: Our Semantic Membership Inference Attack (SMIA) inference pipeline.

Our central hypothesis is that perturbing the input of a target model will result in differential changes
in its output probability distribution for members and non-members, contingent on the extent of
semantic change distance. Crucially, this behavior is presumed to be learnable. To implement this,
we train the SMIA model to discern how the target model’s behavior varies with different degrees of
semantic changes for members and non-members. Post-training, the model can classify a given text
sequence as a member or non-member by evaluating the semantic distance and the corresponding
changes in the target model’s behavior for the original input and its perturbations.

Figure 1 illustrates the pipeline of our proposed SMIA inference. The SMIA inference pipeline
for a given text x and a target model T (.) includes four key steps: (1) Neighbor Generation:
The target sequence is perturbed n times by randomly masking different positions and filling them
using a masking model, such as T5 [14], to generate a neighbour dataset x̃ (similar to [5, 15]). (2)
Semantic Embedding Calculation: The semantic embeddings of the input text and its neighbours
are computed by using an embedding model, such as Cohere Embedding model [16]. (3) Loss
Calculation: The loss values of the target model for the input text and its neighbours are calculated.
(4) Membership Probability Estimation: The trained SMIA model is then used to estimate the
membership probabilities. These scores are averaged and compared against a predefined threshold to
classify the input as a member or non-member.

Empirical Results: We evaluate the performance of our proposed SMIA across different model
families, specifically Pythia and GPT-Neo, using the Wikipedia dataset. To underscore the significance
of the non-member dataset in evaluating MIAs, we include two distinct non-member datasets in
our analysis: one derived from the exact distribution of the member dataset and another comprising
Wikipedia pages published after a cutoff date, which exhibit lower n-gram similarity with the members.
Additionally, we assess SMIA under two settings: (1) verbatim evaluation, where members exactly
match the entries in the target training dataset, and (2) slightly modified members, where one word is
either duplicated, added, or deleted from the original member data points.

Our results demonstrate that SMIA consistently outperforms all existing MIAs by a substantial
margin. For instance, SMIA achieves an AUC-ROC of 67.39% for Pythia-12B on the Wikipedia
dataset. In terms of True Positive Rate (TPR) at low False Positive Rate (FPR), SMIA achieves
TPRs of 3.8% and 10.4% for 2% and 5% FPR, respectively, on the same model. In comparison, the
second-best attack, the Reference attack, achieves an AUC-ROC of 58.90%, with TPRs of 1.1% and
6.7% for 2% and 5% FPR, respectively.

2 Background

Membership inference attacks (MIAs) against large language models (LLMs) aim to determine
whether a given data point was part of the training dataset used to train the target model or not.
Given a data point x and a trained autoregressive model T (.), which predicts P (xt|x1, x2, ..., xt−1)
reflecting the likelihood of the sequence under the training data distribution, these attacks compute a
membership score A(x, T). By applying a threshold ϵ to this score, we can classify x as a member

2

(part of the training data) or a non-member. In Appendix A, we provide details about how existing
MIA work against LLMs.

MIAs provide essential assessments in various domains. They are cornerstone for privacy auditing [6,
5], where they test whether LLMs Leak sensitive information, thereby ensuring models do not
memorize data beyond their learning scope. In the realm of machine unlearning [17], MIAs are
instrumental in verifying the efficacy of algorithms to comply with the right to be forgotten, as
provided by privacy laws like the General Data Protection Regulation (GDPR) [18] and the California
Consumer Privacy Act (CCPA) [19]. These attacks are also pivotal in copyright detection, pinpointing
the unauthorized inclusion of copyrighted material in training datasets[12, 20]. Furthermore, they aid
in detecting data contamination – where specific task data might leak into a model’s general training
dataset [21, 22]. Lastly, in the tuning the hyperparameters of differential privacy, MIAs provide
insights for setting the ϵ parameter (i.e., the privacy budget), which dictates the trade-off between a
model’s performance and user privacy [23, 24, 6].

3 Our Proposed SMIA

MIAs seek to determine whether a specific data sample was part of the training set of a machine
learning model, highlighting potential privacy risks associated with model training. Traditional MIAs
typically verify if a text segment, ranging from a sentence to a full document, was used exactly as
is in the training data. Such attacks tend to falter when minor modifications are made to the text,
such as punctuation adjustments or word substitutions, while the overall meaning remains intact. We
hypothesize that a LLM, having encountered specific content during training, will exhibit similar
behaviors towards semantically similar text snippets during inference. Consequently, an LLM’s
response to semantically related inputs should display notable consistency.

Member Neighbor of Member

Non-Member Neighbor of Non-Member

Figure 2: Input features for our SMIA: semantic
change and taregt model behaviour change for in-
puts and their neighbors.

In this paper, we introduce the concept of a Se-
mantic Membership Inference Attack (SMIA)
against LLMs. This novel attack method en-
ables an attacker to discern whether a concept,
defined as a set of semantically akin token se-
quences, was part of the training data. Examples
of such semantically linked concepts include
"John Doe has leukemia" and "John Doe is un-
dergoing chemotherapy." The proposed SMIA
aims to capture a broader spectrum of data mem-
orization incidents compared to traditional MIA,
by determining whether the LLM was trained
on any data encompassing the targeted concept.

3.1 SMIA Design

For the SMIA, we assume that the adversary has
grey-box access to the target LLM, denoted as
T (.), which is trained on an unknown dataset
Dtrain. The adversary can obtain loss values or
log probabilities for any input text from this
model, denoted as ℓ(., T), but lacks additional
information such as model weights or gradients. The cornerstone of our SMIA is the distinguishable
behavior modification exhibited by the target model when presented with semantic variants of member
and non-member data points.

As illustrated in Figure 2, consider a 2-dimensional semantic space populated by data points. Members
and non-members are represented by green circles and red circles, respectively. By generating
semantic neighbors for both member and non-member data points (shown as green and red diamonds,
respectively), we measure the semantic distance between targeted data points and their neighbors,
denoted as dmi and dni . Subsequently, we observe the target model’s response to these data points by
assessing the differences in loss values (y-axis for log probability of that text under the taregt LLM
data distribution), thereby training the SMIA to classify data points as members or non-members
based on these observed patterns.

3

3.2 SMIA Pipeline

The SMIA consists of two primary components: initially, the adversary trains a neural network model
A(.) on a dataset gathered for this purpose, and subsequently uses this trained model for inference.
The training and inference processes are detailed in Algorithms 1 and 2, respectively.

During the training phase, the adversary collects two distinct datasets: Dtr-m (member dataset) and
Dtr-n (non-member dataset). Dtr-m comprises texts known to be part of the training dataset of the
target model T (.), while Dtr-n includes texts confirmed to be unseen by the target model during
training. The adversary utilizes these datasets to develop a membership inference model capable
of distinguishing between members (∈ Dtr-m) and non-members (∈ Dtr-n). For instance, Wikipedia
articles or any publicly available data collected before a specified cutoff date are commonly part of
many known datasets. Data collected after this cutoff date can be reliably assumed to be absent from
the training datasets.

Algorithm 1 Our Proposed Semantic Membership Inference Attack: training
Input: dataset of members for training Dtr-m, dataset of non-members for training Dtr-n, masking
model for neighbor generation N(.), Embedding model E(.), Target model T (.), Number of neigh-
bors n, Number of perturbations k, number of SMIA training epochs R, SMIA learning rate r, SMIA
batch size B, loss function ℓ(., .)
Output: SMIA Model A(. , . , Dtr-m, Dtr-n)

1: Dm
masked, D

n
masked ← MASK(Dtr-m, n, k),MASK(Dtr-n, n, k) ▷ Masking

2: D̃m, D̃n ← N(Dm
masked), N(Dn

masked) ▷ Neighbor generation
3: Φm,Φn, Φ̃m, Φ̃n ← E(Dtr-m), E(Dtr-n), E(D̃m), E(D̃n) ▷ Embedding
4: Lm, Ln, L̃m, L̃n ← ℓ(Dtr-m, T), ℓ(Dtr-n, T), ℓ(D̃

m, T), ℓ(D̃n, T) ▷ Target model loss
5: Initialize A(.)
6: for e in R do
7: for batch do
8: for i = 1 to B/2 do
9: Bm ← (Φm

batch,i − Φ̃m
batch,i, L

m
batch,i − L̃m

batch,i, 1) ▷ Member half of the batch
10: end for
11: for i = 1 to B/2 do
12: Bn ← (Φn

batch,i − Φ̃n
batch,i, L

n
batch,i − L̃n

batch,i, 0) ▷ Non-Member half of the batch
13: end for
14: update A({Bm, Bn}, r) ▷ Update parameters of SMIA network
15: end for
16: end for
17: return A(. , . , Dtr-m, Dtr-n)

The SMIA training procedure, shown in Algorithm 1, involves four key stages:

i) Neighbour generation (Algorithm 1 lines 1-2): The initial phase of SMIA involves generating a
dataset of neighbours for both the member dataset (Dtr-m) and the non-member dataset (Dtr-n). The
creation of a neighbour entails making changes to a data item that preserve most of its semantics
and grammar, thereby ensuring that these neighbours are semantically closed to the original sample
and should be assigned a highly similar likelihood under any textual probability distribution, as
similar to [5, 15]. Specifically, Algorithm 1 line 1 describes the creation of masked versions of
Dm

masked and Dn
masked by randomly replacing k words within each text item n times. Following this,

in line 2, a Neighbour generator model N(x, L,K)—a masking model—is employed to refill these
masked positions, generating datasets D̃m and D̃n for members and non-members, respectively. We
utilize the T5 model [14] in our experiments to perform these replacements, aiming to produce n
semantically close variants of each data point.

ii) Calculate semantic embedding of the data points (Algorithm 1 line 3): The subsequent step
involves computing semantic embeddings for both the original data points and their neighbours. As
per Algorithm 1 line 3, we obtain the embedding vectors Φm ← E(Dtr-m) and Φn ← E(Dtr-n) for the
member and non-member data points, respectively. Additionally, we calculate Φ̃m ← E(D̃m) and
Φ̃n ← E(D̃n) for their respective neighbours. These vectors represent each data point’s position in a

4

semantic space encompassing all possible inputs. Our experiments leverage the Cohere Embedding
V3 model [16], which provides embeddings with 1024 dimensions, to capture these semantic features.

iii) Monitor the behaviour of the target model for different inputs (Algorithm 1 line 4): The
third stage entails monitoring the target model’s response across data items in the four datasets. Here,
we calculate the loss values: Lm ← ℓ(Dtr-m, T) for the member samples, Ln ← ℓ(Dtr-n, T) for
the non-member samples, and similarly L̃m ← ℓ(D̃m, T) and L̃n ← ℓ(D̃n, T) for their respective
neighbours. This step is crucial for understanding how the model’s behavior varies between members
and non-members under semantically equivalent perturbations.

iv) Train an attack model (Algorithm 1 lines 5-16): The final phase of training involves developing
a binary neural network capable of distinguishing between members and non-members by detecting
patterns of semantic and behavioral changes induced by the perturbations. We initiate this by
randomly initializing the attack model A(.), then training it to discern differences between the
semantic embeddings and loss values for each data point and its neighbours. The input features for
A include the differences in semantic vectors Φm

i − Φ̃m
i and the changes in loss values Lm

i − L̃m
i

for each sample i. Each sample is labeled ’1’ for members and ’0’ for non-members, with each
training batch consisting of an equal mix of both, as suggested in prior research [25]. The model is
trained over R epochs using a learning rate r, culminating in a trained binary classifier that effectively
distinguishes between members and non-members based on the observed data. We prvoide our SMIA
training cost in Appendix B.

Algorithm 2 Our Proposed Semantic Membership Inference Attack: inference
Input: Test input x, Trained SMIA Model A(. , . , Dtr-m, Dtr-n) on dataset of members for training
Dtr-m and dataset of non-members for training Dtr-n, masking model for neighbor generation N(.),
Embedding model E(.), Target model T (.), Number of neighbors in inference ninf, Number of
perturbations k, decision threshold ϵ, loss function ℓ

1: xmasked ← MASK(x, ninf, k) ▷ Masking
2: x̃← N(xmasked) ▷ Neighbor generation
3: ϕ, ϕ̃← E(x), E(x̃) ▷ Embedding
4: L, L̃← ℓ(x, T), ℓ(x̃, T) ▷ Target model loss
5: µ← 1

n

∑
i∈[b] A(ϕ− ϕ̃i, L− L̃i) ▷ Average of SMIA scores

6: if µ > ϵ then
7: return True ▷ Member
8: else
9: return False ▷ Non-Member

10: end if

SMIA Inference: Upon completing the training of the model A(.), it can be employed to assess
whether a given input text x was part of the target model T (.)’s training dataset. Algorithm 2 details
the inference procedure, which mirrors the training process. Initially, ninf neighbours for x are
generated using the mask model (lines 1-2). Subsequently, we compute both the semantic embedding
vectors and the loss values for x and its neighbours x̃ (lines 3-4). These computed differences are
then fed into the attack model A(ϕ− ϕ̃j , L− L̃j), which evaluates each neighbour j. The final SMIA
score for x is determined by averaging the scores from all ninf neighbours (line 5), and this score is
compared against a predefined threshold ϵ to ascertain membership or non-membership (line 6).

4 Experiment Setup

In this section, we describe the models and datasets used in our experiments. Due to space constraints,
we have organized additional information into appendices. We provide the details of the architecture
for SMIA model in Appendix D.1, cost estimation of SMIA to Appendix B, privacy metrics used in
our analysis in Appendix D.2, the hyperparameters for training the SMIA model in Appendix D.4,
the baselines in Appendix A, and the computational resources utilized in Appendix D.5.

5

4.1 Models

Target Models: In our experiments, we evaluate our proposed SMIA across a diverse set of language
models to assess its effectiveness and robustness. We utilize three categories of target models: (1)
Pythia Model Suite: This category includes the largest models with 12B, 6.9B, and 2.7B parameters
from the Pythia model suite [26], trained on the Pile dataset [27]. (2) Pythia-Deduped: It consists of
models with the same parameterization (12B, 6.9B, and 2.7B) but trained on a deduplicated version
of the Pile dataset. This variation allows us to analyze the impact of dataset deduplication on the
effectiveness of MIAs. (3) GPT-Neo Family: To test the generality of our approach across different
architectures, we include models from the GPT-NEO family [28], specifically the 2.7B and 1.3B
parameter models, also trained on the Pile dataset.

Models Used in SMIA: The SMIA framework incorporates three critical components: (1) Masking
Model: We employ T5 with 3B parameters [14] for generating perturbed versions of the texts, where
random words are replaced to maintain semantic consistency. (2) Semantic Embedding Model: The
Cohere Embedding V3 model [16] is utilized to produce a 1024-dimensional semantic embedding
vector for each text, enabling us to capture nuanced semantic variations. (3) Binary Neural Network
Classifier: For the SMIA model, we utilize a relatively simple neural network (details shown in
Table 6) with 1.2M parameters, which is trained to distinguish between member and non-member
data points. In Appendix D.4, we discuss the hyperparameters that we use in our experiments for this
model.

4.2 Datasets

To evaluate the effectiveness of the SMIA, we need to collect three datasets: training dataset
Dtr = {Dtr-m, Dtr-n}, validation dataset Dval = {Dval-m, Dval-n}, and test dataset Dte = {Dte-m, Dte-n}.
Each dataset comprises a member and a non-member split. We employ the training dataset for model
training, the validation dataset for tuning the hyperparameters, and the test dataset for evaluating the
model performance based on various metrics.

Wikipedia Training and Validation: We selected a total of 14,000 samples from Wikipedia, verified
as parts of the training or test split of the Pile dataset [27]. This includes 7,000 member samples from
the training split of the Wikipedia portion of Pile and 7,000 non-member samples from the test split.
Samples were selected to have a minimum of 130 words and were truncated to a maximum of 150
words. Consistent with prior studies [27, 29], we prepended article titles to the text of each article,
separated by a "\n \n". The split for these samples assigns 6,000 from each category to the training
dataset (Dtr) and 1,000 from each to the validation dataset (Dval). In Appendix B, we provide the
cost estimation for preparing this dataset for our training. For example for Wikipedia training part,
calculating the embedding vectors from Cohere model costs around $32.

Wikipedia Test: For the test member dataset (Dte-m), we similarly sourced 1,000 samples from
the training portion of Pile. Selecting an appropriate non-member dataset (Dte-n) for testing is
crucial, as differences in data distribution between member and non-member samples can falsely
influence the perceived success of membership inference. Prior research [29] indicates that non-
member samples drawn from post-training publications or different sections of the Pile test dataset
show varied overlap in linguistic features such as n-grams, which can affect inference results. To
address this, we established two non-member test datasets: the first, referred to as Wikipedia Test
(WT = {Dte-m, D

PileTest
te-n }), includes samples from Wikipedia pages before March 2020 that are part

of the Pile test dataset. The second, called Wikipedia Cutoff (WC = {Dte-m, D
CutOff
te-n }), consists of

1,000 samples from Wikipedia pages published after August 2023, ensuring they were not part of the
Pile training dataset.

5 Experiments

In this section, we present the experimental results of our SMIA and compare its performance to
other MIAs in both verbatim and modified settings. Due to space constraints, we defer the TPR
of attacks at low FPR to Appendix C.1, the effect of deduplication in the Pythia model family to
Appendix C.2, analysis of SMIA’s performance with varying numbers of neighbors during inference
to Appendix C.3, the effect of training size on SMIA’s performance to Appendix C.4, and, the

6

histogram of similarities between generated neighbors and their original texts in both member and
non-member training datasets to Appendix C.5.

5.1 Evaluation in Verbatim Setting

Our initial set of experiments aims to classify members and non-members without any modifications
to the data, meaning that the members (Dte-m) in the test dataset are verbatim entries from the training
dataset of the models. This evaluation setting is consistent with prior works [30, 11, 12, 5, 13].
Table 1 presents the AUC-ROC metric for various baseline methods and our proposed SMIA approach
across different trained models and two distinct test datasets of Wikipedia (Refer to Appendix C.2
for evaluation results on deduplicated models). Additionally, Table 3 in Appendix C.1 provides
the True Positive Rate (TPR) at low False Positive Rates (FPR) for these methods. The results
demonstrate that SMIA significantly outperforms existing methods. For instance, on Pythia-12B
and WT = {Dte-m, D

PileTest
te-n } test dataset (i.e., when non-members are sampled from the same data

distribution as members), SMIA achieves an AUC-ROC of 67.39% with TPRs of 3.8% and 10.4% at
2% and 5% FPR, respectively. In contrast, the LOSS method [30] yields an AUC-ROC of 54.94%
and TPRs of 2.1% and 5.8% at the same FPR thresholds. The Ref attack [11], which utilizes Pythia
1.4B to determine the complexity of test data points on a reference model trained on the same data
distribution (a challenging assumption in real-world scenarios), achieves an AUC-ROC of 58.90%
with TPRs of 2% and 8.2% at 2% and 5% FPR. Furthermore, Min-K [12] and Min-K++ [13] show
better AUC-ROC compared to the LOSS attack, achieving 56.66% and 57.67% for K = 20%.

Why SMIA Outperforms Other MIAs: SMIA delivers superior performance for two key reasons:
Firstly, it incorporates the semantics of the input text into the analysis, unlike the baseline methods
that solely rely on the target model’s behavior (e.g., log probability) for their membership score
calculations. Secondly, SMIA utilizes a neural network trained specifically to distinguish between
members and non-members, offering a more dynamic and effective approach compared to the static
statistical methods used by previous MIAs.

Table 1: AUC-ROC performance metrics for various MIAs, including our SMIA, evaluated on
different trained models (Pythia and GPT-Neo) using the Wikipedia. The table compares results for
verbatim member data Dte-m entries against non-member datasets DPileTest

te-n and DCutOff
te-n .

Pythia-12B Pythia-6.9B Pythia-2.7B GPT-Neo2.7B GPT-Neo1.3B
Method WT WC WT WC WT WC WT WC WT WC

LOSS [30] 54.94 67.56 54.23 65.95 53.14 63.99 53.32 63.34 52.98 62.10
Ref [11]

(Pythia 70M)
52.73 58.29 51.71 56.42 49.92 53.74 50.07 53.86 49.70 52.91

Ref
(Pythia 1.4B)

58.90 67.44 57.01 63.79 51.39 56.06 52.27 56.80 50.03 50.98

Zlib [11] 54.33 66.56 53.61 64.98 52.54 63.01 52.70 62.59 52.42 61.38
Nei [5] 55.83 72.06 55.17 70.78 53.87 69.13 53.51 68.34 53.08 67.36

Min-K [12]
(K = 10%)

56.96 76.05 56.00 73.96 54.05 71.21 53.72 70.53 53.32 68.40

Min-K
(K = 20%)

56.66 73.90 55.65 71.95 53.86 69.26 53.66 68.68 53.36 66.82

Min-K
(K = 30%)

56.17 72.18 55.23 70.32 53.67 67.84 53.59 67.26 53.33 65.54

Min-K++ [13]
(K = 10%)

56.83 78.47 54.77 76.17 52.37 72.38 51.73 72.93 51.57 69.87

Min-K++
(K = 20%)

57.67 79.34 55.62 76.77 53.28 72.82 52.82 73.07 52.02 70.13

Min-K++
(K = 30%)

57.76 78.96 55.81 76.21 53.62 72.27 53.21 72.46 52.41 69.52

Our SMIA 67.39 93.35 64.63 92.11 60.65 89.97 59.71 89.59 58.92 87.43

Importance of non-member dataset: In the other test dataset (WC = {Dte-m, D
CutOff
te-n }), where

non-members are derived from Wikipedia pages published after August 2023, we observe a substantial

7

improvement in SMIA performance, consistent with findings from other studies [29]. For example,
SMIA achieves an AUC-ROC of 67.39% and 93.35% for Pythia-12B on WT and WC, respectively.
In terms of TPR at low FPR for the same model, SMIA achieves 3.8% and 10.4% for 2% and
5% FPR with the WT dataset, while achieving 46.2% and 66.0% for 2% and 5% FPR with the
WC dataset. This increase is also observed in other attack methods. For instance, Min-K++ (with
K = 10%) attains 54.77% AUC-ROC for the WT dataset and 76.17% for the WC dataset. The
underlying reason for this is that the member dataset (Dte-m) has a higher n-gram overlap with the
WT non-member dataset compared to the WC non-member dataset. A high n-gram overlap between
members and non-members implies that substrings of non-members may have been seen during
training, complicating the distinction between members and non-members [29].

Larger models memorize more: Another observation from Table 1 and Table 3 is that larger
models exhibit greater memorization, consistent with findings from previous studies [29, 2, 7]. For
instance, for the WT (WC) test datasets, SMIA achieves AUC-ROC scores of 67.39% (93.35%),
64.63% (92.11%), and 60.65% (89.97%) for Pythia 12B, 6.9B, and 2.7B, respectively. Similarly,
SMIA achieves 59.71% (89.59%) and 58.92% (87.43%) on GPT-Neo 2.7B and 1.3B, respectively,
for the WT (WC) test datasets.

5.2 Evaluation in Modified Settings

Existing MIAs against LLMs typically assess the membership status of texts that exist verbatim in
the training data. However, in practical scenarios, member data might undergo slight modifications.
An important application of MIAs is identifying the use of copyrighted content in training datasets.
For instance, in the legal case involving the New York Times and OpenAI, the outputs of ChatGPT
were found to be very similar to NYTimes articles, with only minor changes such as the addition or
deletion of a single word [20]. This section explores the capability of SMIA to detect memberships
even after such slight modifications.

To evaluate SMIA and other MIAs under these conditions, we generated three new test member
datasets from our existing test member dataset (Dte-m) as follows (Figure 5 provides examples for
each modification): Duplication: A random word in each member data point is duplicated. Deletion:
A random word in each member data point is deleted. Addition: A mask placement is randomly
added in each member data point, and the T5 model is used to fill the mask position, with only the
first word of the T5 replacement being used. We just consider one word modification beacuse more
than one word modification reuslts in a drastic drop of performance for all attacks.

Table 2 presents the AUC-ROC performance results of different MIAs and our SMIA under these
slightly modified test member datasets. The table includes the best AUC-ROC values for Min-K and
Min-K++ across different values of K. The results indicate that for the WT non-member dataset,
when a word is duplicated or added from the T5 output, the Ref attack outperforms SMIA. For
instance, with Pythia-12B, the Ref attack achieves AUC-ROC scores of 57.88% and 57.95% after
word duplication and addition from the T5 output, respectively, whereas SMIA achieves scores
of 55.13% and 54.19% for the same settings. It is important to note that the Reference model is
Pythia-1.4B, which shares the same architecture and training dataset (Pile) but with fewer parameters,
a scenario that is less feasible in real-world applications. However, when a word is deleted, SMIA
retains much of its efficacy, achieving an AUC-ROC of 62.47% compared to 58.25% for the Ref
attack on the WT non-member dataset. This indicates that SMIA is more sensitive to additions than
deletions.

In scenarios involving the WC non-member dataset, where non-members exhibit lower n-gram
overlap with members, SMIA consistently outperforms other MIAs. For example, SMIA achieves
AUC-ROC scores of 89.36% and 92.67% for word addition and deletion, respectively, while the Ref
attack scores 66.50% and 66.84% for these modified member datasets.

Another key observation is that Min-K++ exhibits a greater decline in AUC-ROC than Min-K
following modifications. For instance, on Pythia-12B with the WC non-member dataset, Min-K++
AUC-ROC drops from 76.05% (no modification) to 69.07% (duplication), 70.81% (addition), and
69.87% (deletion). Conversely, Min-K AUC-ROC decreases from 76.05% (no modification) to
69.46% (duplication), 71.10% (addition), and 70.48% (deletion). This increased sensitivity of Min-
K++ to modifications is due to its reliance on the average and variance of all vocabulary probabilities
to normalize its scores, making it more susceptible to changes in these probabilities, thereby degrading
performance.

8

Table 2: Performance of various MIAs including our SMIA under different modification scenarios of
the test member dataset (Dm

te). The table compares AUC-ROC scores when test members undergo
word duplication, deletion, or addition using the T5 model. The results highlight the robustness of
SMIA, especially against deletions and when non-members have lower n-gram overlap with members.

Pythia-12B Pythia-6.9B
Method Modification WT WC WT WC

Duplication

Loss 52.07 64.60 51.41 63.04
Ref 57.88 66.48 55.94 62.72
Zlib 51.87 63.99 51.23 62.44
Nei 51.71 68.13 51.09 66.87

Mink 51.93 69.46 51.10 67.45
Mink++ 46.37 69.07 44.94 66.46

Our SMIA 55.13 90.53 52.68 88.80

Addition

Loss 52.36 64.90 51.70 63.33
Ref 57.95 66.55 56.05 62.84
Zlib 52.31 64.47 51.65 62.93
Nei 51.55 67.80 50.94 66.61

Mink 52.60 71.10 51.75 69.02
Mink++ 48.23 70.81 46.60 68.15

Our SMIA 54.19 89.36 51.97 87.69

Deletion

Loss 51.83 64.28 51.19 62.74
Ref 58.25 66.84 56.61 63.40
Zlib 50.58 62.44 49.90 60.89
Nei 54.55 70.65 53.99 69.50

Mink 52.07 70.48 51.24 68.36
Mink++ 47.46 69.87 46.04 67.30

Our SMIA 62.47 92.67 60.39 91.37

6 Conclusion and Future Works

In this paper, we introduced the Semantic Membership Inference Attack (SMIA), which leverages the
semantics of input texts and their perturbations to train a neural network for distinguishing members
from non-members. We evaluated SMIA in two primary settings: (1) where the test member dataset
exists verbatim in the training dataset of the target model, and (2) where the test member dataset is
slightly modified through the addition, duplication, or deletion of a single word.

For future work, we plan to evaluate SMIA in settings where the test member dataset consists of
paraphrases of the original member data points, with minimal semantic distance between them. This
will help us demonstrate that more advanced models tend to memorize the semantics of their training
data rather than their exact wording.

Additionally, we aim to apply SMIA to measure unintended multi-hop reasoning. In multi-hop
reasoning [31], a model could connect two parts of the training data through indirect inferences,
potentially disclosing private information. We intend to assess how much the target model reveals
about its training data through multi-hop reasoning using our SMIA approach.

Another direction is to utilize SMIA to show that anonymization is insufficient. SMIA can reveal the
limitations of traditional data redaction techniques, illustrating how anonymization falls short when
an adversary can cross-reference (i.e., use supplementary information from another source) to deduce
sensitive information, such as a person’s medical condition.

Finally, we plan to use SMIA to measure hallucination [32–34] in LLMs. We hypothesize that the
issues of hallucination and memorization may be interconnected in interesting ways. Intuitively, the
more an LLM memorizes its training data, the less likely it is to hallucinate text that contradicts
the memorized data. SMIA can provide a metric for assessing the likelihood of text output being a
result of the model’s accurate memorization (direct or multi-hop) versus hallucination. This metric is
particularly valuable as it measures the extent to which an output is derived from the model’s intrinsic
semantic beliefs, shaped by its training data.

9

References
[1] N. Carlini, M. Jagielski, C. Zhang, N. Papernot, A. Terzis, and F. Tramer, “The privacy onion

effect: Memorization is relative,” Advances in Neural Information Processing Systems, vol. 35,
pp. 13 263–13 276, 2022.

[2] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F. Tramer, and C. Zhang, “Quantifying memoriza-
tion across neural language models,” arXiv preprint arXiv:2202.07646, 2022.

[3] A. Jagannatha, B. P. S. Rawat, and H. Yu, “Membership inference attack susceptibility of
clinical language models,” arXiv preprint arXiv:2104.08305, 2021.

[4] E. Lehman, S. Jain, K. Pichotta, Y. Goldberg, and B. C. Wallace, “Does bert pretrained on
clinical notes reveal sensitive data?” arXiv preprint arXiv:2104.07762, 2021.

[5] J. Mattern, F. Mireshghallah, Z. Jin, B. Schölkopf, M. Sachan, and T. Berg-Kirkpatrick, “Mem-
bership inference attacks against language models via neighbourhood comparison,” arXiv
preprint arXiv:2305.18462, 2023.

[6] F. Mireshghallah, K. Goyal, A. Uniyal, T. Berg-Kirkpatrick, and R. Shokri, “Quantifying
privacy risks of masked language models using membership inference attacks,” arXiv preprint
arXiv:2203.03929, 2022.

[7] M. Nasr, N. Carlini, J. Hayase, M. Jagielski, A. F. Cooper, D. Ippolito, C. A. Choquette-Choo,
E. Wallace, F. Tramèr, and K. Lee, “Scalable extraction of training data from (production)
language models,” arXiv preprint arXiv:2311.17035, 2023.

[8] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in 2017 IEEE symposium on security and privacy (SP). IEEE,
2017, pp. 3–18.

[9] C. Zhang, D. Ippolito, K. Lee, M. Jagielski, F. Tramèr, and N. Carlini, “Counterfactual mem-
orization in neural language models,” Advances in Neural Information Processing Systems,
vol. 36, pp. 39 321–39 362, 2023.

[10] D. Ippolito, F. Tramèr, M. Nasr, C. Zhang, M. Jagielski, K. Lee, C. A. Choquette-Choo, and
N. Carlini, “Preventing verbatim memorization in language models gives a false sense of
privacy,” arXiv preprint arXiv:2210.17546, 2022.

[11] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson et al., “Extracting training data from large language models,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2633–2650.

[12] W. Shi, A. Ajith, M. Xia, Y. Huang, D. Liu, T. Blevins, D. Chen, and L. Zettlemoyer, “Detecting
pretraining data from large language models,” arXiv preprint arXiv:2310.16789, 2023.

[13] J. Zhang, J. Sun, E. Yeats, Y. Ouyang, M. Kuo, J. Zhang, H. Yang, and H. Li, “Min-k%++:
Improved baseline for detecting pre-training data from large language models,” arXiv preprint
arXiv:2404.02936, 2024.

[14] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu,
“Exploring the limits of transfer learning with a unified text-to-text transformer,” Journal of
machine learning research, vol. 21, no. 140, pp. 1–67, 2020.

[15] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn, “Detectgpt: Zero-shot machine-
generated text detection using probability curvature,” in International Conference on Machine
Learning. PMLR, 2023, pp. 24 950–24 962.

[16] Cohere, “Cohere embedding model,” 2024. [Online]. Available: https://cohere.ai/

[17] R. Eldan and M. Russinovich, “Who’s harry potter? approximate unlearning in llms,” arXiv
preprint arXiv:2310.02238, 2023.

10

https://cohere.ai/

[18] P. Voigt and A. Von dem Bussche, “The eu general data protection regulation (gdpr),” A Practical
Guide, 1st Ed., Cham: Springer International Publishing, vol. 10, no. 3152676, pp. 10–5555,
2017.

[19] S. L. Pardau, “The california consumer privacy act: Towards a european-style privacy regime in
the united states,” J. Tech. L. & Pol’y, vol. 23, p. 68, 2018.

[20] M. M. Grynbaum and R. Mac, “The times sues openai and microsoft over a.i. use of
copyrighted work,” 2023. [Online]. Available: https://www.nytimes.com/2023/12/27/business/
media/new-york-times-open-ai-microsoft-lawsuit.html

[21] J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le,
“Finetuned language models are zero-shot learners,” arXiv preprint arXiv:2109.01652, 2021.

[22] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W.
Chung, C. Sutton, S. Gehrmann et al., “Palm: Scaling language modeling with pathways,”
Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[23] A. Lowy, Z. Li, J. Liu, T. Koike-Akino, K. Parsons, and Y. Wang, “Why does differential privacy
with large epsilon defend against practical membership inference attacks?” arXiv preprint
arXiv:2402.09540, 2024.

[24] D. Bernau, P.-W. Grassal, J. Robl, and F. Kerschbaum, “Assessing differentially private deep
learning with membership inference,” arXiv preprint arXiv:1912.11328, 2019.

[25] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning,” in
2019 IEEE symposium on security and privacy (SP). IEEE, 2019, pp. 739–753.

[26] S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan,
S. Purohit, U. S. Prashanth, E. Raff et al., “Pythia: A suite for analyzing large language models
across training and scaling,” in International Conference on Machine Learning. PMLR, 2023,
pp. 2397–2430.

[27] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He, A. Thite,
N. Nabeshima et al., “The pile: An 800gb dataset of diverse text for language modeling,” arXiv
preprint arXiv:2101.00027, 2020.

[28] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “Gpt-neo: Large scale autoregressive
language modeling with mesh-tensorflow,” If you use this software, please cite it using these
metadata, vol. 58, p. 2, 2021.

[29] M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettlemoyer, Y. Tsvetkov, Y. Choi,
D. Evans, and H. Hajishirzi, “Do membership inference attacks work on large language models?”
arXiv preprint arXiv:2402.07841, 2024.

[30] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning: Analyzing
the connection to overfitting,” in 2018 IEEE 31st computer security foundations symposium
(CSF). IEEE, 2018, pp. 268–282.

[31] S. Yang, E. Gribovskaya, N. Kassner, M. Geva, and S. Riedel, “Do large language models
latently perform multi-hop reasoning?” arXiv preprint arXiv:2402.16837, 2024.

[32] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P. Fung,
“Survey of hallucination in natural language generation,” ACM Computing Surveys, vol. 55,
no. 12, pp. 1–38, 2023.

[33] S. Zheng, J. Huang, and K. C.-C. Chang, “Why does chatgpt fall short in answering questions
faithfully?” arXiv preprint arXiv:2304.10513, 2023.

[34] A. Agrawal, L. Mackey, and A. T. Kalai, “Do language models know when they’re hallucinating
references?” arXiv preprint arXiv:2305.18248, 2023.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional
transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

11

https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html
https://www.nytimes.com/2023/12/27/business/media/new-york-times-open-ai-microsoft-lawsuit.html

A Existing MIAs against LLMs

As mentioned in Section 2, MIAs assign a membership score A(x, T) to a given text input x and a
trained model T (.). This score represents the likelihood that the text was part of the dataset on which
T (.) was trained. A threshold ϵ is then applied to this score to classify the text as a member if it is
higher than ϵ, and a non-member if it is lower. In this section, we provide the description of existing
MIAs against LLMS.

LOSS [30]: The LOSS method utilizes the loss value of model T (.) for the given text x as the
membership score; a lower loss suggests that the text was seen during training, so A(x, T) = ℓ(T, x).

Ref [11]: Calculating membership scores based solely on loss values often results in high false
negative rates. To improve this, a difficulty calibration method can be employed to account for the
intrinsic complexity of x. For example, repetitive or common phrases typically yield low loss values.
One method of calibrating this input complexity is by using another LLM, Ref(.), assumed to be
trained on a similar data distribution. The membership score is then defined as the difference in loss
values between the target and reference models, A(x, T) = ℓ(x, T)− ℓ(x,Ref). Follwoing recent
works [12, 13], we use smaller reference models, Pythia 1.4B and Pythia 70M, which are trained on
the same dataset (Pile) and share a similar architecture with the Pythia target models.

Zlib [11]: Another method to calibrate the difficulty of a sample is by using its zlib compression
size, where more complex sentences have higher compression sizes. The membership score is then
calculated by normalizing the loss value by the zlib compression size, A(x, T) = ℓ(x,T)

zlib(x) .

Nei [5, 15]: This method perturbs the given text to calibrate its difficulty without the need for
a reference model. Neighbors are created by masking random words and replacing them using
a masking model like BERT [35] or T5 [14]. If a model has seen a text during training, its loss
value will generally be lower than the average of its neighbors. The membership score is the
difference between the loss value of the original text and the average loss of its neighbors, A(x, T) =
ℓ(x, T) − 1

n

∑
i∈[n] ℓ(x̂i, T), where in our experiments for each sample n = 25 neighbors are

generated using a T5 model with 3B parameters.

Min-K [12]: This attack hypothesizes that non-member samples often have more tokens assigned
lower likelihoods. It first calculates the likelihood of each token as Min-K%token(xt) = log p(xt|x<t),
for each token xt given the prefix x<t. The membership score is then calculated by averaging over
the lowest K% of tokens with lower likelihood, A(x, T) = 1

|min-k%|
∑

xi∈min−k% Min-K%token(xt).

Min-K++ [13]: This method improves on Min-K by utilizing the insight that maximum likelihood
training optimizes the Hessian trace of likelihood over the training data. It calculates a normalized
score for each token xt given the prefix x<t as Min-K%++token(xt) =

log p(xt|x<t)−µx<t

σx<t
, where

µx<t is the mean log probability of the next token across the vocabulary, and σx<t is the standard
deviation. The membership score is then aggregated by averaging the scores of the lowest K% tokens,
A(x, T) = 1

|min-k%++|
∑

xi∈min−k% Min-K%++token(xt).

B SMIA Cost Estimation

The cost estimation for deploying the SMIA involves several computational and resource consid-
erations. Primarily, the cost is associated with generating neighbours, calculating embeddings, and
evaluating loss values for the target model T (.).

For each of the datasets, Dtr-m (members) and Dtr-n (non-members), consisting of β data samples each,
we generate n neighbours per data item. Consequently, this results in a total of 2× n× β neighbour
generations. Assuming each operation has a fixed cost, with cN for generating a neighbour, cT for
computing a loss value, and cE for calculating an embedding, the total cost for the feature collection
phase can be approximated as: 2× (n× β +1)× (cN + cE + cT). In this estimation, the training of
the neural network model A(.) is considered negligible due to its relatively small size (few million
parameters) and its architecture, which primarily consists of fully connected layers. Additionally, the
costs associated with cT and cN are not significant in this context as they are incurred only during the
inference phase. Thus, the predominant cost factor is cE , the cost of embedding calculations.

12

In practical terms, for our experimental setup (Section 4.2) using the Wikipedia dataset as an example,
we prepared a training set comprising 6,000 members and 6,000 non-members. With each data item
generating n = 25 neighbours, the total number of data items requiring embedding calculations
becomes: 6, 000 + 6, 000 + 150, 000 + 150, 000 = 312, 000 Each of these data items, on average,
consists of 1052 characters (variable due to replacements made by the neighbour generation model),
leading to a total of 312, 000× 1052 = 328, 224, 000 characters processed. These transactions are
sent to the Cohere Embedding V3 model [16] for embedding generation. The cost of processing
these embeddings is measured in thousands of units. Hence, the total estimated cost for embedding
processing is approximately: 32, 822× $0.001 = $32.82.

C Missing Results

C.1 TPR for low FPR

Table 3 shows the TPR at 2%, 5% and 10% FPR for different baselines and our proposed SMIA by
targeting different models using Wikipedia dataset.

C.2 Effect of Deduplication

Table 4 shows the AUC-ROC metric comparing different MIAs and our SMIA for deduped pythia
models using Wikipedia dataset.

C.3 Effecft of Number of Neighbours

Table 5 presents the performance of our SMIA when varying the number of neighbors used dur-
ing inference. The results indicate that a larger number of neighbors generally improves SMIA’s
performance. However, we have chosen to use 25 neighbors in our experiments, as increasing this
number further leads to additional computational demands without a corresponding improvement in
performance.

C.4 Effect of Size of Training Dataset

Figure 3 illustrates the effect of using larger training datasets on the validation loss of the SMIA
over 20 epochs. This figure displays the performance of the SMIA model on a validation dataset
consisting of 1,000 members and 1,000 non-members, which are existing in the original Wikipedia
portion of the Pile dataset (train and validation splits). In our experiments, we tested four different
training sizes: 1,000 members + 1,000 non-members, 2,000 members + 2,000 non-members, 4,000
members + 4,000 non-members, and 6,000 members + 6,000 non-members. The results indicate
that larger training datasets generally yield lower validation losses for the SMIA model. However,
larger datasets require more computational effort as each member and non-member sample needs
n neighbors generated, followed by the calculation of embedding vectors and loss values for each
neighbor. Due to computational resource limitations, we use a training size of 6,000 members +
6,000 non-members for all our experiments.

C.5 Similarity Scores of Neighbours

Figure 4 shows histogram of the similarity scores between members, non-members, and their 25
generated neighbors. These similarity scores are calculated using cosine similarity between the
embedding vector of the original text and the embedding vectors of the neighbors. The dataset
comprises 6,000 members and 6,000 non-members, resulting in 150,000 neighbors for each group.
The histogram reveals that while most neighbors exhibit high similarity, there is a range of variability.
Notably, even neighbors with lower similarity scores, such as around 70%, provide valuable data for
training our SMIA. This diversity enables SMIA to more effectively distinguish membership under
varying degrees of textual context changes.

13

Table 3: True Positive Rate (TPR) at 2%, 5% and 10% False Positive Rate (FPR) for various MIAs,
including our SMIA, across different trained models (Pythia and GPT-Neo) using the Wikipedia
dataset.

Pythia-12B Pythia-6.9B Pythia-2.7B GPT-Neo2.7B GPT-Neo1.3B
Method FPR WT WC WT WC WT WC WT WC WT WC

LOSS [30]
2% 2.1 12.2 2.6 11.9 3.1 9.4 2.8 9.2 2.2 8.7
5% 5.8 22.8 5.5 20.3 5.6 19.9 5.6 19.8 5.6 19.2
10% 11.1 32.1 10.9 29.8 10.2 28.6 10.0 27.6 9.8 25.6

Ref [11]
(Pythia 70M) 2% 1.1 5.3 1.7 4.7 2.1 4.3 1.7 4.4 1.6 3.0

5% 6.7 8.7 6.2 9.1 6.4 8.4 5.8 9.0 5.6 7.8
10% 11.7 18.3 12.0 16.1 11.1 14.8 11.9 13.9 12.3 13.3

Ref
(Pythia 1.4B) 2% 2.0 5.7 2.1 6.3 2.8 4.1 2.3 2.7 1.7 0.7

5% 8.2 13.1 7.3 10.2 5.9 7.2 5.3 5.3 4.2 2.7
10% 16.5 21.3 14.7 17.7 10.7 13.7 11.4 10.8 10.0 8.2

Zlib [11] 2% 2.2 12.0 2.1 10.5 1.9 9.2 2.1 10.0 2.0 9.9
5% 5.5 22.7 5.9 22.4 5.2 19.8 6.0 18.7 5.9 16.1
10% 10.4 33.5 10.2 30.5 9.1 29.2 10.0 28.1 9.9 28.3

Nei [5] 2% 1.3 11.2 1.4 9.3 1.7 9.0 1.5 10.1 2.1 8.9
5% 4.3 19.2 4.5 18.9 5.2 18.8 5.3 18.2 5.5 16.1
10% 10.4 32.0 10.5 29.9 10.0 27.6 10.4 27.4 11.0 28.3

Min-K [12]
(K = 10%) 2% 1.8 17.9 1.9 18.3 1.9 14.1 1.6 15.9 1.4 14.2

5% 5.6 28.9 6.0 26.0 6.7 23.9 5.7 22.4 6.5 20.0
10% 13.3 41.7 13.7 36.7 12.3 33.8 13.2 31.7 11.6 28.9

Min-K
(K = 20%) 2% 1.8 14.7 2.1 16.7 2.7 14.1 2.4 14.3 2.0 13.9

5% 5.6 27.0 5.4 25.9 5.8 23.6 5.7 23.3 5.9 21.9
10% 12.7 38.3 12.6 36.5 12.0 31.9 12.4 32.2 11.4 28.4

Min-K
(K = 30%) 2% 2.1 14.2 2.5 14.6 2.8 12.1 2.5 12.1 2.1 11.0

5% 5.8 28.4 5.5 25.3 5.5 22.2 5.5 22.3 5.4 19.7
10% 12.6 37.7 12.5 33.2 12.4 32.9 12.1 30.6 11.3 28.5

Min-K++ [13]
(K = 10%) 2% 3.0 19.4 2.2 13.6 2.5 12.4 2.8 12.3 2.2 10.0

5% 6.1 29.6 6.8 26.0 6.6 23.9 5.3 22.0 5.2 19.1
10% 12.6 40.6 12.6 40.4 11.9 32.2 10.2 33.2 11.4 28.3

Min-K++
(K = 20%) 2% 2.8 21.2 2.0 17.4 2.3 16.7 2.7 12.9 2.0 11.7

5% 5.5 30.5 6.0 27.7 5.6 23.7 6.5 24.1 5.3 20.1
10% 12.2 43.7 12.0 38.7 12.2 34.8 10.2 34.0 10.9 29.6

Min-K++
(K = 30%) 2% 2.7 20.9 2.0 17.7 2.2 16.9 2.7 12.8 2.1 11.3

5% 5.4 31.4 5.8 27.5 5.7 24.8 6.4 24.6 4.7 20.2
10% 12.2 43.9 12.5 38.3 11.5 35.4 10.5 34.4 11.3 30.5

Our SMIA 2% 3.8 46.2 3.1 41.6 2.4 35.1 1.8 32.9 2.8 25.2
5% 10.4 66.0 8.3 60.2 6.8 52.5 6.3 49.8 7.2 45.4
10% 20.6 79.3 18.1 75.4 15.0 67.6 14.4 67.9 14.9 60.5

D More Details about Experiment Setup

D.1 SMIA Model Architecture

Table 6 shows the SMIA architecture with its layer sizes that we used in our experiments.

D.2 Metrics

In our experiments, we employ following privacy metrics to evaluate the performance of our attacks:

(1) Attack ROC curves: The Receiver Operating Characteristic (ROC) curve illustrates the trade-off
between the True Positive Rate (TPR) and the False Positive Rate (FPR) for the attacks. The FPR

14

Table 4: AUC-ROC performance metrics for various MIAs, including our SMIA, across different
trained deduped Pythia models using the Wikipedia dataset.

Pythia-12B-Deduped Pythia-6.9B-Deduped Pythia-2.7B-Deduped
Method WT WC WT WC WT WC

LOSS [30] 53.39 65.19 53.08 61.58 52.78 62.93
Ref [11]

(Pythia 70M) 50.24 54.85 49.71 53.89 48.92 51.90

Ref
(Pythia 1.4B) 51.62 56.99 50.32 54.70 47.40 47.09

Zlib [11] 52.81 64.31 52.55 63.64 52.23 62.08
Nei [5] 53.93 69.93 53.63 69.17 53.07 68.16

Min-K [12]
(K = 10%) 54.40 72.91 53.71 71.40 53.62 69.39

Min-K
(K = 20%) 54.25 70.83 53.77 69.80 53.41 67.95

Min-K
(K = 30%) 54.0 69.30 53.59 68.24 53.17 66.50

Min-K++ [13]
(K = 10%)

52.84 74.48 52.13 72.92 51.32 69.90

Min-K++
(K = 20%) 53.66 75.19 53.01 73.28 51.95 70.19

Min-K++
(K = 30%) 54.00 74.62 53.28 72.74 52.11 69.49

Our SMIA 61.15 90.72 60.01 88.43 58.49 84.39

Table 5: AUC-ROC performance metrics of SMIA when different number of neighbors used in
inference.

Pythia-12B Pythia-6.9B GPT-Neo-2.7B
Method ninf WT WC WT WC WT WC

SMIA

1 55.26 61.01 53.84 60.23 51.92 58.58
2 58.48 70.60 56.41 68.82 53.26 66.18
5 61.27 78.06 59.08 76.48 57.17 74.63
15 65.63 87.15 62.62 85.46 58.86 82.60
25 67.39 93.35 63.64 92.11 59.71 89.59

measures the proportion of non-member samples that are incorrectly classified as members, while the
TPR represents the proportion of member samples that are correctly identified as members. We report
the Area Under the ROC Curve (AUC-ROC) as an aggregate metric to assess the overall success of
the attacks. AU-ROC is a threshold-independent metric, and it shows the probability that a positive
instance (member) has higher score than a negative instance (non-member).

(2) Attack TPR at low FPR: This metric is crucial for determining the effectiveness of an attack at
confidently identifying members of the training dataset without falsely classifying non-members as
members. We focus on low FPR thresholds, specifically 2%, 5%, and 10%. For instance, the TPR at
an FPR of 2% is calculated by setting the detection threshold so that only 2% of non-member samples
are predicted as members.

D.3 Example of Modified text

In Section 5, we introduce a modified evaluation setting where the member dataset undergoes various
alterations. Figure 5 illustrates an example of a Wikipedia member sample undergoing different
modifications: (a) shows the original sample, (b) shows a neighbor of the original created by replacing
some words with outputs from a masking model, (c) shows modified sample by deleting a random
word, (d) shows the modified sample by duplicating one word, and (e) shows the modified sample
after adding one word using a T5 model.

15

Figure 3: Effect of different training size on the validation loss of SMIA for 20 epochs.

(a) Members training data (b) Non-members training data

Figure 4: Similarity scores of generated neighbors for our training datasets for member and non-
member

D.4 SMIA Hyperparameters

To construct our neighbor datasets, we generate n = 25 neighbors for each data point. Table 6 details
the architecture of the SMIA model used across all experiments. We employ the Adam optimizer to
train the network on our training data over 20 epochs. The batch size is set to 4, meaning each batch
contains neighbors of 2 members and 2 non-members, totaling 50 neighbors for members and 50
neighbors for non-members, thus including 100 neighbors per batch. For regular experiments, we use
a learning rate of 5× 10−6. However, for modified evaluations, which include duplication, addition,
and deletion scenarios, we adjust the learning rate to 1× 10−6. In all of our experiments, we report
the AUC-ROC or TPR of the epoch that results in lowest loss on validation dataset.

D.5 Compute Resources

For the majority of our experiments, we utilize a single H100 GPU with one core. It is important
to note that we do not train or fine-tune any LLMs during our experiments; we operate in inference
mode using pre-trained models such as the T5 masking model and various models from the Pythia

16

Table 6: SMIA architecture with layer sizes
Name Layers Details

Loss Component 1 Fully Connected
FC(1,512)

Dropout (0.2)
ReLU activation

Embedding Component 1 Fully Connected
FC(1024,512)
Dropout (0.2)

ReLU activation

Attack Encoding 6 Fully Connected

FC(1024, 512), FC(512, 256),
FC(256, 128), FC(128, 64),

FC(64, 32) , FC(32, 1)
Dropout (0.2)

ReLU activation
Sigmoid

(a) Input sample (Original - with no modifiation)

(b) Neighbor sample by substituting random words with a masking model
output

(c) Deletion modification by removing a random word

(d) Duplication modification by duplicating a random word

(e) Addition modification by adding the first word of a masking model for a
random mask token

Figure 5: An example for input sample and different modifications.

family. Generating n = 25 neighbors for a dataset of 1,000 texts required approximately 16 hours of
compute time. For the task of calculating embedding vectors, we employed the Cohere Embedding
V3 model, which is provided as a cloud service. The computation of loss values for the target model
was also minimal, taking only a few minutes for the a dataset of 1,000 examples. Finally, training the
SMIA model was notably rapid, owing to its relatively small size of only a few million parameters.
The entire training process, after having all the input features for training data, was completed in less
than 10 minutes over 20 epochs.

17

	Introduction
	Background
	Our Proposed SMIA
	SMIA Design
	SMIA Pipeline

	Experiment Setup
	Models
	Datasets

	Experiments
	Evaluation in Verbatim Setting
	Evaluation in Modified Settings

	Conclusion and Future Works
	Existing MIAs against LLMs
	SMIA Cost Estimation
	Missing Results
	TPR for low FPR
	Effect of Deduplication
	Effecft of Number of Neighbours
	Effect of Size of Training Dataset
	Similarity Scores of Neighbours

	More Details about Experiment Setup
	SMIA Model Architecture
	Metrics
	Example of Modified text
	SMIA Hyperparameters
	Compute Resources

