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ABSTRACT

Most machine learning-based image segmentation models produce pixel-wise
confidence scores that represent the model’s predicted probability for each class
label at every pixel. While this information can be particularly valuable in high-
stakes domains such as medical imaging, these scores are heuristic in nature and
do not constitute rigorous quantitative uncertainty estimates. Conformal predic-
tion (CP) provides a principled framework for transforming heuristic confidence
scores into statistically valid uncertainty estimates. However, applying CP di-
rectly to image segmentation ignores the spatial correlations between pixels, a
fundamental characteristic of image data. This can result in overly conservative
and less interpretable uncertainty estimates. To address this, we propose CON-
SIGN (Conformal Segmentation Informed by Spatial Groupings via Decomposi-
tion), a CP-based method that incorporates spatial correlations to improve uncer-
tainty quantification in image segmentation. Our method generates meaningful
prediction sets that come with user-specified, high-probability error guarantees.
It is compatible with any pre-trained segmentation model capable of generating
multiple sample outputs. We evaluate CONSIGN against two CP baselines across
three medical imaging datasets and two COCO dataset subsets, using three dif-
ferent pre-trained segmentation models. Results demonstrate that accounting for
spatial structure significantly improves performance across multiple metrics and
enhances the quality of uncertainty estimates.

1 INTRODUCTION

In many real-world applications, predictive machine learning models are increasingly used to sup-
port critical decision-making processes. However, these models often operate under various sources
of uncertainty, including noisy data and limited observations. As a result, it is essential not only
to generate accurate predictions, but also to assess the reliability of these predictions. Uncertainty
quantification (UQ) provides a systematic framework for evaluating and communicating the degree
of confidence in model outputs, see |Abdar et al.| (2021)) for a recent review. Specifically, as deep
learning models increasingly dominate segmentation tasks due to their high accuracy, it becomes
equally important to assess the confidence of these predictions through UQ.

Several UQ approaches have been proposed in recent years, including Bayesian and ensemble
methods, see |Abdar et al. (2021); |Huang et al.| (2024); Lambert et al.| (2024) for detailed reviews.
One type, Bayesian methods, includes Monte Carlo dropout techniques (Gal & Ghahramani, 2016;
Kendall & Gal,[2017). These methods enable uncertainty estimation by applying dropout at test time
and sampling multiple forward passes to approximate a posterior distribution. The second category
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of UQ methods consists of Deep Ensemble Networks (Lakshminarayanan et al.|, [2017; Mehrtash
et al.,2020). Ensemble methods estimate uncertainty by combining predictions from multiple in-
dependently trained models, capturing diverse hypotheses. |[Kohl et al,| (2018), instead, proposed
a different architecture that combines a U-Net (Ronneberger et al., |2015) with a Variational Au-
toencoder (VAE) (Kingma et al., 2019). Along the same line, (Baumgartner et al., 2019) proposed
PhiSeg, and (Monteiro et al., [2020) introduced the Stochastic Segmentation Network.

A common limitation of the above-discussed methods is that they do not provide statistical guaran-
tees regarding the reliability or coverage of their predicted uncertainty. In other words, while these
approaches may produce plausible predictions of uncertainty, there is no statistical guarantee that
the predicted uncertainty actually matches the true uncertainty associated with the model and the
data distribution. Conformal Prediction (CP) (Le1 & Wasserman, 2014; |Papadopoulos et al., 2002;
Vovk et al.,|2005)) is a statistical approach to uncertainty quantification that has recently seen a surge
of interest within the machine learning community. Essentially, CP provides a principled way to
transform informal or heuristic uncertainty measures into rigorous ones (Angelopoulos et al.,[2023)).

The general workflow of CP can be outlined as follows: First, we need a fixed pre-trained model
f that has been trained on a dataset D;,.q;,,. Usually, the model is required to have some heuristic
notion of uncertainty that should be made rigorous. Next, the pre-trained model is evaluated and
adapted on the basis of a calibration dataset D.;, in order to obtain a calibrated notion of uncertainty
with coverage guarantees. Finally, the calibrated model can be evaluated on a new test dataset D;.
for which the desired coverage guarantees hold. The main assumption for the latter to hold is that
the calibration and test datasets are exchangeable, which is true, for instance, if they are independent
and identically distributed (i.7.d). We are interested in a conformal prediction approach that outputs
for each test image Xy.q¢, a set of predictions C(X;.s; ), with some pre-defined guarantees regarding
the accuracy of those predictions. In particular, we want to leverage a specific area of CP, Conformal
Risk Control (CRC), which provide guarantees of the form

E{K(C(Xtest)ayéest)} S 0[, (l)

where £ is any bounded loss function that shrinks as C grows and « is an user-defined parameter such
that 1 — « is the desired confidence. In particular, during the calibration step we produce prediction
sets Cy(+), where the parameter A encodes the level of conservativeness: the higher the A the larger

the prediction sets. We are interested in finding the best parameter X\ that guarantees equation
Given a calibration set {(X;, Y;)}?_,, the guarantee can be achieved by the choice

;\:inf{)\:R(A)Sa—B;a}, 2)

where B is the maximum of the loss function and R()\) = LS L UCA(X;),Y;) is the empirical

risk. The definition of C(-) is crucial, and the quality of the algorithm heavily depends on it. In
standard segmentation approaches, prediction sets are defined as

CA(XY ={l: f(X"), >1-)X}, Xe[o,1], 3)

meaning that each pixel instead of being a singleton (the argmax of the softmax probabilities
f(X*)) is a set containing all the labels that have a softmax score greater then the threshold 1 — A.

Recent works have extended basic conformal prediction methods to quantify uncertainty in image
segmentation tasks. [Wundram et al.| (2024) apply pixel-wise CP to different segmentation models
and evaluate the performance for binary segmentation tasks, while in Mossina et al.|(2024) they ex-
tended CRC to address the multi-class segmentation challenge by constructing pixel-wise prediction
sets of the form defined in equation 3| [Blot et al.| (2025) instead, extended CRC towards group con-
ditional risk control, again in a pixel-wise setting. |Wieslander et al.|(2020) were among the first to
introduce pixel-wise CP in medical imaging, while Davenport|(2024) extended the approach by mak-
ing the nonconformity score dependent on the distance to the mask boundaries. |Brunekreef et al.
(2024) tried to overcome pixel-wise CP approaches introducing a method where non-conformity
scores are aggregated over similar image regions. The method, however, relies on a custom cali-
bration strategy that depends heavily on the characteristics of the data and task. Teng et al.| (2023)
proposed a feature-based CP using deep network representations, which, however, leads to a need
of model internal information that might not be available. A recent contribution from Bereska et al.
(2025)) adapts prediction sets based on proximity to critical vascular structures in medical imaging.
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[Mossina & Friedrich|(2025)) introduced a novel approach based on morphological operations, which,
however, is currently limited to binary segmentation. Finally, (2025)) introduced SACP, a
spatial-aware CP method where the scores are aggregated across neighborhood pixels.

In summary, most prior works, in particular those who are generically applicable to pre-trained
segmentation models, construct the set-valued predictions C(-) only for each pixel separately, disre-
garding spatial correlations within the image. Since the coverage guarantee still holds by the design
of the conformal prediction method, this leads to an unnecessarily large size of the set-valued pre-
diction; i.e., the set of possible labels for different pixel regions is larger than it would need to be,
given the spatial dependence of pixels.

In this work, we address this issue by developing Conformal Segmentation Informed by Spatial
Groupings via Decomposition (CONSIGN), a method to leverage spatial correlation for improved
conformal prediction sets. Building upon techniques that exploit Singular Value Decomposition
(SVD) to extract principal directions of uncertainty, as presented in Belhasin et al.| (2023); Nehme
for image restoration, we propose a method that transforms any segmentation model
capable of generating sample predictions — such as those using dropout, Bayesian modeling, or en-
sembles — into one that produces spatially-aware set predictions with formal coverage guarantees.
To achieve this, we defined novel spatially-aware prediction sets and developed a corresponding cal-
ibration strategy tailored to their unique characteristics. Most notably, due to the fine-range property
of segmentation, our method can provide rigorous uncertainty bounds while only relying on a rather
low number of principle directions. To showcase the versatility of our method, we apply it to a range
of pre-trained models. As we show via numerical experiments, the fact that our approach acknowl-
edges spatial correlations in the segmentation masks, allows us to produce much tighter and more
meaningful set-valued predictions compared to a direct pixel-wise approach that does not account
for spatial correlations, see Figure ] for an example.

CONSIGN Pixel-Wise |

Image

Bl 0 Background w1 Bird 2Cat mmm 3 Cow 4 Dog B 5 Horse 6 Person 7 Sheep

Figure 1: Images sampled from the prediction set C* of CONSIGN, and from the pixel-wise one
CPW. The pixel-wise method treats each pixel independently, disregarding correlation between
pixels and including inconsistent predictions in the prediction set C”". In contrast, our method
samples masks by sampling different weights for the principal components extracted via the SVD
approach, which captures spatial and contextual dependencies. This results in more realistic and
coherent segmentations, as seen in the smooth transition between the sheep and cow in our method’s
results.

2 METHODS

2.1 PROBLEM DEFINITION

We want to develop a method that provides meaningful statistically valid guarantees for predictions
of segmentation models that take into account spatial correlations. That is, instead of having a model
f trained on {(X;, ;) }*r, which outputs a single prediction f(X;c.t), we want a set of predictions
Ca(Xiest) such that equation equation |1) holds. The set of predictions depends on a parameter

A that is calibrated using a calibration set {(X;,Y;)}Nes!, disjoint from the training one. In our
case, X € RW*HXC are images while Y € {1,..., L} are the corresponding segmentations.
Moreover, we consider models f : RW*HxC _, RWXHXL \which take in input an image and give

as output softmax probabilities for L labels.
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Our method consists of two main components: The construction of a spatially-aware Set and the
Calibration. In the first step, we identify the uncertain regions and create a new basis of vectors
{w;} K, that characterizes these areas. Those vectors are the key component for the construction

of our prediction set Cy. In the calibration step, we find the best parameter A and corresponding
prediction set C5 C {1,..., L} *# that satisfies equation m

2.2 CONSTRUCTION OF SPATIALLY-AWARE SET

We want to leverage the correlation between pixels to provide more meaningful and precise uncer-
tainty regions. In particular, we are interested in constructing a set C,(+) that contains predictions
whose uncertain pixels change jointly, following a meaningful structure, rather than independently.
To this end, principal component analysis (PCA) provides a framework for capturing and repre-
senting these joint variations in uncertainty. For our purpose, a PCA approach can make use of
the different samples obtained from a pre-trained model f to gain insights into both the location of
the uncertain regions and the correlation between pixels within those regions. This information is
crucial for enhancing the interpretability of the model.

This concept of extracting uncertainty regions using principal components is one of the strengths of
our model and has shown its effectiveness in previous works on image regression such as [Belhasin
et al.|(2023));Nehme et al.| (2023).

First, we identify the uncertain regions using a pre-trained model f. For this, our method
does not require any particular model f, as long as the model can be used to generate samples

S1,...,8N, € RWHL that correspond to heuristic uncertainties likeA softmax scores. Following the
main idea of |Belhasin et al.| (2023), we construct a sample matrix S(X) = [81,...,8y.], compute
its mean and extract the uncertain regions through an SVD (Golub & Reinsch, |1971) as
1 .
u(X) = ﬁzény S—p(X)-15, =UzvV". 4)
S n=1

Note that here, as detailed below, it is sufficient to use a reduced SVD and only compute the first
K < min{WHL, N,} singular values, with K € {2,5} in our experiments. Each column uj, €
RWHL of U/ is a basis vector for the space of samples, aligned with the directions of maximum
variance in the data. Building on this interpretation, to construct our prediction set, we first compute
quantiles of the coefficients of the basis vectors ug, k = 1,..., K, over the N, samples via

ar, = Qg ({(ug, 8, — w(X)N)}2), b = Qg ({{ur, 80 — (X)) }02))- ®)

Here Q, () is the a—quantile and (-,-) the scalar product. Then, we define bounds for the basis
coefficients as

b b — b b —
_ap+ k_)\zk,k k a;c’Bk:ak;;- k+>\2k,k kQCLk

The derivation of equation [6]is heuristic and is designed to obtain symmetric bounds around the em-
pirical quantile midpoint that scale linearly with A. The weighting by ¥, ; (the k-th singular value)
creates wider bounds for principal components with higher variance (larger Xy 1), allowing more
flexibility where the model shows more uncertainty. The parameter A\ will either shrink or enlarge
the bounds, and it will be calibrated in the calibration step in order to fulfill equation equation[I] Let
Y = P(o) represent the predicted labels for an element & € RV L with P beeing the argmax
applied along the label dimension of the reshaped element o € R"Y *#*LWith this, we define the
prediction set

(6)

K K
Cim(X) = {Y t3e e X [A4(X), By(X)] Y = P(u(X) +3 ckuk(X))} .
- k=1

Note that this set contains the predictions such that there exists a score vector & € R #Z whose de-

viation from the mean can be expressed as linear combination of the first K basis vectors uy, ..., ug
with coefficients ¢, inside of the bounds defined in equation [6] A big advantage of our approach
here is that, as we will see in the experiments, meaningful prediction sets of this form can already
be obtained with K € {2,5}. This significantly reduces the computational load compared to a full
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basis representation with X = W H L, and is also a major difference to the regression approach of
Belhasin et al.[(2023): Since our method includes a nonlinear quantization-type step P(o ), map-
ping softmax outputs o to discrete predicted labels Y, we can enforce the coefficients of most of
the basis vectors U 41,..., U gz to be zero and still be able to reconstruct the ground truth for
some combination of coefficients cg. In other words, even with a truncated PCA the prediction set
will generally include the ground truth provided that A is large enough (with pathological excep-
tions, which we discuss in the next section). In contrast, in the regression approach of Belhasin
et al.[(2023)), the authors need to introduce a special procedure to achieve coverage guarantees also
for a truncated PCA. Independent of this, we still allow for a user-defined accuracy rate 5 in our
prediction set as folloWS' We say that two predictions Y7 and Y coincide for a label-wise accuracy
' i

rate of 3 and write Y7 = Y2 if L ZL Z”g? H(Yllj\yl) =0
parameter that control the desired accuracy and 1,7 are pixel coordinates. Notably, we adapt the
standard accuracy rate from regression to enforce a label-wise accuracy rate, thereby avoiding a bias
towards more frequent labels. Using this, we now define the final prediction set and relative loss
function as

> [3, where 3 is a second user-defined

K
C;(x) = {Y e e X [A(X), X)) Y £ P(n(x) + chukoo)} )
- k=1

which is a bounded loss function that shrinks as ) increases. Here, and trough all the paper, I¢(x)(Y")
refers to the indicator function of set C(X), i.e. equal to 1 if Y € C(X), 0 otherwise.

2.3 CALIBRATION

Having defined the A-dependent prediction set C(X) as in equation 7, we can in theory use the
standard calibration procedure of |Angelopoulos et al.|(2024) to obtain a coverage of the form

]E[Z(C;k\(Xtest%Y;est)] =P [Kest ¢ C;(Xtest)] <a. (9)

This standard calibration procedure iterates trough the calibration set, evaluates the empirical loss
R(\) = LS L 0(C3(X,),Y;) and checks if R\ < a— =9 (B = 1 in our case). If the
empirical loss is above this threshold, the procedure is repeated with an increased A. Otherwise,
X = Al is calibrated and the desired coverage for a new test point can be guaranteed. For example,
if @ = 0.1, and n = 100, the procedure searches for A such that more than 90.9% of the calibration
points (X;, Y;) satisfy Y; € CJ; (X;). In practice, however, we need to adapt this procedure, as the
rather involved form of our prediction set does not allow us to easily check if Y € C§(X). In fact,
exhaustively checking all possible values of c is computationally infeasible. To address this, we
formulate and numerically solve a constrained minimization problem such as

K
c* = arg mlnE(Y P(p(X)+ z cpug)), B= X[Ap(X), Bp(X)] (10)
k=1

S YU =1AP(o)7 =1)
L(Y,P(o -7 Z S Tvo =) (11)

If the numerical solution ¢* € B satisfies ¥ 2 P(u(X)+ 8 re1 Crug(X)), then we can guarantee
that Y € C}(X). However, due to the numerical nature of the optimization process, which is
described in Algorithm 2] global optimality cannot be guaranteed. In practice, this means that even
if a suitable c exists within the current bounds, the solver may fail to find it, possibly leading to
an unnecessary increase in \. Despite this, the statistical guarantee of the overall algorithm is not
compromised. Even when ) is increased beyond what is strictly necessary, the method will still
output a valid \ that guarantees equation @ The only consequence is that the resulting bounds on
c may be more conservative. Moreover, since previously accepted c¢ remain valid under expanded
bounds, and additional segmentations Y may be in C} (X)) as the bound increases, the loss equation
is guaranteed to be non-increasing. A summary of the resulting procedure is sketched in Algorithm
[l and the following lemma (which is a direct consequence of [Angelopoulos et al.| (2024 Theorem
1) and proven in Appendix [A) provides the resulting coverage guarantees for this algorithm.




Published as a conference paper at ICLR 2026

Lemma 1. If Algorithm |I| terminates with A\ < oo, and if the (X1,Y1),...(X,,Y,) used in this
algorithm are exchangeable with (X es, Yiest), then

]P) |:}/fest S C; (Xtesl):| 2 1 — Q.

2.3.1 TERMINATION OF THE ALGORITHM

As mentioned in Section[2.2] there may be pathological cases—such as zero or poorly aligned entries
in the principal directions ug—in which our method cannot converge even as A — oo. This behavior
is actually desirable, as it prevents the method from silently producing prediction sets that fail to
satisfy the intended coverage guarantees. In practice, we impose a maximum value of A and stop the
algorithm if it reaches A4, so that the user is explicitly informed when no useful or informative
prediction set can be obtained for the chosen parameters « and 3.

Algorithm 1 Calibration algorithm for CONSIGN
Input: a, 3, dX, {(X;,Y;) Yt Output: A

i=1
1: pre-compute:{(p(X;), 5%, U?, X))} Neat £1(ak, bi)HE 3 Nest a5 in equation@ equation
2: A+ 0; RHI;I%@
3: while R > a — =2 do

4: fori(—lto%z;l\Zdo S o

5. (Ag, Br) « (gt — xzj B, At x| P ) > for each k
6 B« X1 [Ay, By]

7 c* < approx_solver(arg mineeg L£(Y;, P(p(X;) + Zszl cxut))) b usinge.g. Alg.
8: o — u(Xi) + Y5, el

9 it ¥; £ P(0) then T « T|J{i}

L R

1 iR < o — §72 then A < Aelse A < A+ d)

3 EXPERIMENTS

We proved that our method creates prediction sets containing the ground truth with user-defined
guarantees. Now we validate the method numerically, showing its performances through differ-
ent experiments and metrics. In particular, we are interested in showing that our method provides
prediction sets with lower uncertainty volume compared to the pixel-wise baseline defined in |An-
gelopoulos et al.|(2020), and the spatial-aware method SACP used in |Liu et al.| (2025). We define
the uncertainty volume as the number of predictions in a prediction set Cy. With equal theoretical
guarantees, we aim for the method that has a lower volume. In the next section, we quantify the
volume and show that our method reliably produces a smaller estimate.

3.1 DATASETS AND BASELINES

We are interested in applying our method to different datasets and pre-trained models f, to show
its effectiveness regardless of the setting. We use three medical datasets (M&Ms-2Campello et al.
(2021); Martin-Isla et al.| (2023), MS-CMR19Gao et al.| (2023); (Wu & Zhuang| (2022); Zhuang
(2018)), LIDCArmato III et al.| (2015)), and two subsets of the COCO dataset [Lin et al.| (2014).
For each dataset we use a different model f, in order to show flexibility of our approach also with
respect to the segmentation model. For the two cardiac datasets M&Ms-2 and MS-CMR19, we
produce samples through a U-Net [Ronneberger et al.| (2015) trained with dropout. For the LIDC
dataset, we employ the method proposed by |Kohl et al.|(2018])), which intrinsically contains a way of
generating different samples. Finally, for the subsets of the COCO dataset, we employ a ensemble
networks strategy based on DeepLabV3+|Chen et al.| (2017} 2018)) and generate different samples
using different backbones. See Appendix |B|for further details on datasets and pre-trained models.
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As pixel-wise (PW) baseline, we use RAPS (Angelopoulos et al.,|[2020), a CP method that forms pre-
diction sets by including labels until the cumulative softmax sum plus a regularization term exceeds
A. Let 7 be a permutation of indices such that f(X") 1) > -+ > f(X")r(z), then

l
TEW(X) = {n(1),...,n(k)}, k = min {z {1, L} Y F(XY )y + (1) > A

m=1
(12)
The term (1) is defined as 6 - (o(l) — kyeq)™ where 6 and k., are hyperparameter, while o(l) is
the ranking of / among the label based on the probabilities 7. See Appendix D] for details. Based on

this, a pixel-wise prediction set Cf\D W= and a relaxed version with 3 accuracy CPW are defined as

CPW=(X) = {Y Vi, j Y e TPW(X”)}, CPW(x) = {Y LIV e (x) v 2 f/}.

13)
For comparison with spatial-aware approaches, we employ SACP (Liu et al., 2025])), where the pixel-
wise cumulative sums of softmax - used to construct the prediction sets - are aggregated over local
neighborhoods. Similarly to RAPS, 754¢F is defined as the set of labels whose cumulative scores
plus regularization, after aggregation over local neighborhoods, exceed \. Given 734¢F we can
define the corresponding CfACP “andC f ACP asin equation See Appendi for further details.
The baselines calibration algorithms have a similar structure as Algorithm [I| only that the loss

function is given as Z(CfW/SACP (X),Y)=1-1,rw/sacer (x) (Y) and that one can directly check
A

if a ground-truth is contained in the prediction set. See Algorithm 3] for details.

3.2 SAMPLING AND METRICS

In order to quantitatively compare our approach to the baselines, we want to compute the volume of
the prediction sets, which in this case is given as the number of different segmented images contained
in this set. Since the definition and value of the accuracy rate (3 is the same for both methods, we
focus on the volume of the prediction sets C*~ (X ), C54°P~(X) and "~ (X). For the pixel-wise

method, this volume is given explicitly as [CTW~(X)| = H%fl |TFW(X?)|, and analogously for
SACP. For C*~(X), however, we can only estimate this volume using sampling, and in order to
have a fair comparison, we use the same estimates for both methods. Recall that the sampling from
our method means sampling coefficients ¢ € 3 and generating the resulting segmentations as in
equation while for the baselines, it means to sample independently for each pixel (7, j) possible

labels contained in 77W (X%) and T54CP (X7). Using this sampling, define
VX)) ={Vl VW) = {3l and YHOP(X) = (YL,

to be samples sets from C*~ (X)), CPW~(X), C¥4¢F~(X), respectively, for a given test point X .
We evaluate our method and the baselines across three different metrics: Chao estimator (Chao,
1984), Sample-based Estimated Coverage (sEC) and correlation. The first metric is taken from the
species richness estimation problem, which tries to estimate the true number of species based on
sample data. In our setting, we aim to estimate the number of unique segmentations contained in
a prediction set. The estimator provides a lower bound for the true number of segmentation and is
defined as )
New)i=$1 + 1,

2f2
where S is the number of unique samples, f; is the number of vectors sampled exactly once and
f2 is the number of vectors sampled exactly twice. The number of unique segmentations can grow
rapidly. Therefore, we evaluate the estimator and study its behavior for different sample sizes S.
The second metric, tries to estimate the volume of uncertainty through the empirical coverage. The

empirical coverage EC = Ntl - Zi\’:tist Ie, x,)(Y3), should be, on average, greater or equal than
1 — a. However, while we can evaluate the empirical coverage for the baselines methods, we can
only estimate it for our method since we do not know the best coefficient c. Therefore, we introduce

the Sample-based Estimated Coverage as

Ntcst

sEC(Y) = Ntlest > min (1, Sy, 2 Y))

i=1 Y,ey
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This metric should converge to 1 — « for an increasing number of random samples, and a faster
convergence suggests that the corresponding set occupies a lower-dimensional subspace. The last
metric is the averaged Pearson correlation

$) = 55— 2 e (i)l

i j>i

which can be useful to quantify how much different random segmentation are correlated. A strong
internal correlation also indicates that the samples are confined to a lower-dimensional manifold. In
contrast, the near-independence of samples suggests a higher intrinsic dimensionality. See Appendix
for further details on the metrics.

3.3 RESULTS

We compare the baselines with our CONSIGN approach using two different numbers of principal
components, specifically K = 2 and K = 5. We evaluate the metrics across five random calibra-
tion/test splits, and we use different combinations of parameters « and S depending on the datasets
and the pre-trained model. For safety-critical applications, like medical imaging, smaller values of
o (e.g a = 0.05) are preferred to enforce stricter confidence requirements. In contrast, exploratory
analyses can tolerate larger a (e.g @ = 0.3). The parameter 3 controls the acceptable pixel-wise
accuracy: medical datasets with fine, small-scale structures benefit from higher 5 (e.g 8 > 0.8).
Whereas segmenting large, distinct objects may allow lower 5 while still achieving reliable UQ.
Moreover, optimal choices of a and [ also depend on the capability of the pre-trained model:
stronger models permit more liberal choices, yielding smaller prediction sets without sacrificing
reliability, whereas weaker models require more conservative settings. In the following figures, er-
ror bars will refer to the standard deviation across the five random splits and will depict £1 standard
deviation.

In Figure 2] we present the Chao estimator for various sample sizes. The estimator for CONSIGN is
consistently bounded by the baselines estimators, indicating a smaller volume of uncertainty. In the
LIDC experiment, the difference between the methods is maximized, with several orders of mag-
nitude separating the estimators. In contrast, during the COCO experiments, the high uncertainty
results in our method also producing a high Chao estimator. In the case of K = 5, the model has
access to more principal components, which gives the coefficients c greater flexibility. The higher
degree of freedom leads to a wider range of possible predictions and a higher estimated value of
Nen. Moreover, CONSIGN’s performance depends on the sample quality from the pre-trained
model. With the probabilistic U-net, which is designed to produce meaningful samples, results
improve by orders of magnitude, but using dropout for sampling leads to less pronounced gains
over baselines. In Figure [3] we show the behavior of the sEC. CONSIGN, owing to its spatial

—A— CONSIGN;  —V— CONSIGNs ©- PW (RAPS) —m— SACP

MnM?2 mscmrl9 LIDC COCO animals COCO vehicles
a=0.1B8=09 a=0.05=08 a=02B8=08 a=025=08 a=03B=0.7

S 107 107 107 107 107
3
E 108 106 10° 108 106
F=Al 105 108 105 105
LU 500 10 10t 10 10
(@]
M 103 103 10° 103 103
6 ) 10?
10 102 102 102
10!
0 10000 O 10000 O 10000 O 10000 O 10000
# samples

Figure 2: Nog (V*), Nog(YEW) and Ne g (YSACP). Larger values indicate larger prediction set

awareness, outperforms RAPS and SACP by achieving empirical coverage with fewer samples. In
the COCO-vehicle experiment, even a small sample of ten predictions meets the user-defined cov-
erage requirement, indicating greater efficiency and precision in capturing relevant segmentations.
Finally, in Figure 4] we compare the correlation between predictions sampled from Y*, YS4¢F
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Figure 3: sEC(Y*), sEC(YTW) and sEC(YSACT). Values close to 1 —« indicate better coverage
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and YFW . By using a linear combination of principal components to construct predictions, we en-
hance the consistency of our predictions in correlated regions, resulting in higher correlation among
them. Moreover, CONSIGN exhibits a monotonic increase in correlation between samples, indicat-
ing consistency in capturing spatial structure. In contrast, the baselines show a decreasing trend in
correlation, suggesting that the samples become nearly independent and fail to reflect any coherent
shared structure. It can also visually observed that the accounting of spatial correlations, as done in
CONSIGN, leads to a more meaningful set of possible segmentations: In Figure [5] we show how
our method smoothly transitions between classes, jointly modifying regions that are uncertain and
highly correlated. While the visualizations of pixel-wise samples may appear unrealistic, this be-
havior is expected, as pixel-wise prediction sets contain all combinatorial label configurations rather
than structured samples.

In general, we can observe that the results for SACP are comparable to the pixel-wise ones. Aggre-
gating softmax scores across pixels is mainly a post-processing step; however, a similar aggregation
happens implicitly during the training of models f. Relying solely on this additional step does
not effectively capture the true spatial correlations and results in a method that is comparable to a
pixel-wise approach. In contrast, our method explicitly identifies correlated regions, outperforming
the baselines across all metrics, proving an advantage in reducing the volume of uncertainty while
providing consistent and qualitatively superior predictions.

—&— CONSIGN,  -¥— CONSIGNs  -@- PW (RAPS)  —@— SACP

MnM2 mscmrl9 LIDC COCO animals COCO vehicles
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Figure 4: p(V*), p(YFW) and p(YSACT). Larger values indicate greater spatial correlation

4 CONCLUSIONS AND LIMITATIONS

We developed a method that transforms heuristic and overconfident softmax scores into predictions
backed by user-defined statistical guarantees. We exploit SVD techniques from previous approaches,
such as [Belhasin et al.| (2023)); Nehme et al.| (2023), to introduce a new spatially-aware conformal
prediction approach for image segmentation. Our approach stands out for three main reasons: First,
we harness the power of spatial correlation to significantly improve segmentation quality while
minimizing uncertainty. This results in a robust tool that allows users to sample insightful predictions
with solid statistical assurances. Second, our method is easily applicable to any segmentation model
that offers samples of predictions. Finally, by exploiting the classification nature of our setting and
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Figure 5: Qualitative comparison between samples from V* (K = 5), YW and Y54¢F,

the non-linear projection P(-), we were able to reformulate the theory of Belhasin et al.|(2023) in a
way that yields more interpretable and practically meaningful bounds.

Currently, main limitations of our method are as follows: As with any (standard) conformal-
prediction based method, the guarantees hold true under exchangeability assumptions on the data.
Distribution-shifts or out-of distribution data are currently not addressed by our method. Extensions
of conformal prediction in this direct exist, see e.g. [Gibbs & Candes| (2021)), and a future goal is
to extend our method in this direction. A second limitation of our method is the implicit form of
the prediction set C;f\(X ), which increases the computational cost, see Appendix [D|for details, and

makes it numerically challenging to evaluate if a given candidate segmentation is in C}‘\(X ) or not.

Nevertheless, we believe that this is not a major issue, since the online generation and sampling from
the prediction set, which is the main application of our method, is still comparably fast.
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REPRODUCIBILITY STATEMENT

In Appendix [A|we give the main proof of our method.

The calibration algorithm for CONSIGN is described in Algorithm[T] while the calibration algorithm
of the p ilxel wise method and SACP are described in[3] The optimization algorithm is described in

Table while Tables |3 I I prov1de the calibrated A for all the experiments.

In Appendix [B] we describe the datasets, providing training/calibration/test splitting and references
to download the datasets, which are all publicly available. We provide external links for the pre-
trained models, and we discuss the implementation of the U-Net. Finally in Appendix [D]we discuss
the hyper-parameters and hardware specifics.

Moreover, consistent with ICLR guidelines, we plan to share an anonymous repository with review-
ers and ACs during the discussion phase, and will make the code public upon acceptance. The code
is available at https://github.com/onurbbruno/CONSIGNL
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A PROOF OF LEMMA [T

Proof. This is a direct consequence of (Angelopoulos et al., 2024, Theorem 1): It is clear that the
loss A — Lx y(A) :=1—-I(Y € C\(X)) is non-increasing for all (X,Y"). Further, with a finite A
as provided by our algorithm, it is clear that

. ) 1 "
oo >A> A\ = 1nf{/\ : e (;Lth()\)‘Fl) ga}.

By (Angelopoulos et al.,|2024, Theorem 1) and monotonicity of L we hence obtain

P [Yies ¢ O3 (Xiew)] = B [Lxo e ()] E [LxevAD)] <0

B DATASETS AND PRE-TRAINED MODELS

B.1 DATA ACKNOWLEDGMENT

The authors acknowledge the National Cancer Institute and the Foundation for the National Institutes
of Health, and their critical role in the creation of the free publicly available LIDC/IDRI Database
used in this study.

B.2 DATASETS

The M&Ms-2 dataseﬂ Campello et al.[(2021); [Martin-Isla et al.[(2023) comprises 360 patients with
various pathologies affecting the right and left ventricles, as well as healthy subjects. For each
patient, the dataset provides cardiac MRI images along with annotations for the left and right ven-
tricles and the left ventricular myocardium. It includes both short-axis and long-axis MRI images;
however, our experiments utilized only the short-axis images. We adhered to the predefined training
and test splits. The training set was used for model training, while the original test set was further
divided into two subsets: a calibration set and a reduced test set. The reduced test set included only
a portion of the original test, i.e. the first 900 MRIs.

The MS-CMR19 datasetE] Gao et al.[(2023);Wu & Zhuang|(2022)); Zhuang| (2018)) is another cardiac
dataset, but it includes different modalities. This variation introduces greater uncertainty in the
predictions. The dataset features 45 patients and contains cardiac MR images taken from the short-
axis view. In this instance, we also utilize pre-defined splits, extracting the calibration set from the
original test set.

The third medical datasetﬂ LIDCArmato III et al.| (2015) (Licence CC BY 3.0) contains lungs CT
images with the corresponding segmentations obtained across over 1000 patients. Two labels are
annotated, namely background and cancer.

We created two separate datasets from the COCO dataset|Lin et al.|(2014). Specifically, we selected
images that feature either animals or humans to form the COCO-animals dataset, and images that
contain vehicles or humans to create the COCO-vehicles dataset. The COCO-animals dataset in-
cludes the following labels: background, cat, dog, sheep, cow, horse, bird, and human. In contrast,
the COCO-vehicles dataset contains these labels: background, train, bus, bicycle, airplane, car, boat,
and human. All images from both datasets have been used for calibration and testing, as we utilized
a pre-trained model for this setup.

In Table (1| we provide the details regarding the datasets used in the experiment section.

"https://www.ub.edu/mnms-2/
*https://zmiclab.github.io/zxh/0/mscmrseg 19/
3https://www.cancerimagingarchive.net/collection/lidc-idri/
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Table 1: Summary of datasets

Dataset Calibration Images Test Images L  Sampling Strategy
M&Ms-2 500 179 4 Monte Carlo dropout
MS-CMR19 500 98 4 Monte Carlo dropout
LIDC 700 809 2 Probabilistic U-Net
COCO an. 275 39 8  Ensemble Networks
COCO veh. 275 46 8  Ensemble Networks

B.3 PRE-TRAINED MODELS

For the two cardiac datasets we used a simple U-Net|Ronneberger et al.|(2015) trained with dropout.
The architecture consists of an encoder-decoder structure with skip connections between corre-
sponding levels to preserve spatial context. The encoder comprises a series of block modules, each
with two convolutional layers followed by ReLU activations, batch normalization, and dropout for
regularization. Feature maps are progressively downsampled using max pooling, doubling the num-
ber of channels at each depth. The decoder utilizes bilinear upsampling and 1x1 convolutions to
reduce channel dimensions. At each stage of the decoder, the feature maps are concatenated with
corresponding encoder outputs via skip connections to recover spatial resolution. The final output is
produced through a 1x1 convolution to map to the desired number of segmentation labels. The U-
Net model was trained using a learning rate of 3 - 10~4, optimized via Adam Kingma & Bal(2017).
The encoder network utilized an initial number of 48 filters, which doubled at each layer up to a
fixed depth of 5. Input MRI scans were cropped to a spatial resolution of 128 x 128 pixels, with
each pixel representing 1.375 mm in real-world space. Only MRIs with non-zero ground truth are
used. A batch size of 2 was used , and the model was trained for 1500 epochs. A dropout rate of 0.4
was applied within encoder and decoder blocks (except at the final level of the encoder).

For the LIDC experiment we used a pytorch re-implementation of the probabilistic U-Net E] Kohl
et al.|(2018). We trained the model with hyperparameters and splitting provided in the code. Both
the original codeE] and the re-implementation are published under the Apache License Version 2.0.

Finally, for the COCO experiments we rely on an ensemble networks strategy based on DeepLabV3+
Chen et al.| (2018; 2017). To generate different segmentation samples we used six different
models with different backbones’f DeepLabV3-MobileNet, DeepLabV3-ResNet50, DeepLabV3-
ResNet101, DeepLabV3Plus-MobileNet, DeepLabV3Plus-ResNet50, DeepLabV3Plus-ResNet101.
The code is published under the MIT License.

B.4 BASELINE METHODS

As described in the main text, the SACP method aggregate the score of neighborhood pixels. Let 7
be a permutation of indices such that (X)) > -+ > f(X"7)r (1), then

l
S(Xija l) = Z f(Xij)Tr(m) + 7"(1),
m=1

Ssacp(X9,0) = (1—w) - S(XT, 1) + o S S(X7,1),
NG A,

TSACP(XU) = {n(1),...,w(k)}, k=min {l € {1,...,L} : Ssacp(X"7,1) > A}.

The hyper-parameter w is the weight that regulate the strength of the aggregation, while N (X %) is
a set that includes the neighborhood pixels. The dimension of this set can be also tuned, selecting
how many pixels to consider for the aggregation. Then we can define the corresponding prediction
sets

CFACP=(X) = {2 Wi, j Y e THACP(x )}, ¢§AP(X) = {v: 3F eV (X) Y £V

*https://github.com/stefanknegt/Probabilistic-Unet-Pytorch
Shttps://github.com/SimonKohl/probabilistic_unet
Shttps://github.com/VainF/DeepLabV3Plus-Pytorch
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In|Liu et al|(2025) they introduce an iterative score aggregation operator V as

V(X 0) = (1—w) Vet (X7, 1) 4+ o 3 Ve (X1,
N 22

where Vy = S. In our experiments, we keep the iterations equal to 1, since the over-smoothing of
the scores lead to worst results.

C METRIC DETAILS

The Chao estimator is a commonly used non-parametric method in ecology and other fields for
estimating the true species richness, or the total number of species, in a community based on sample
data. This method addresses the challenge of unobserved species that may not be detected due to
limited sampling efforts (Chao| (1984). It has been proven that the Chao estimator asymptotically
converges to a lower bound of the true species richness as the sample size increases, i.e., as the
number of observed individuals S — oo, the estimator converges to a consistent lower bound of the
total number of species. The Chao estimator is not defined if fo = 0. In that case the following
bias-corrected estimator needs to be used

filfi—1)
2(fo+1)°

The Pearson correlation p; ; between two vectors y;, y; € R™ is computed using the standard
formula

NCH =51 +

Zr]:[ 1(yzn yl)(yjn YJ)

\/Zn 1Win = i) \/Zn (U — 997

In order to seed up the computations, the Chao estimator and correlation have been computed con-
sidering only the non-constant pixels over the samples. It is clear that the results are equivalent to
computing the metric considering the whole segmentation.

pij (¥i:¥j)

D IMPLEMENTATION DETAILS AND COMPUTATIONAL EXPENSES

We perform each experiment using a GPU NVIDIA A100-SXM4-40GB. For the optimization of
the coefficient c we utilize an Adam optimizer with learning rate equal to 1 for the medical datasets
and 10 for the COCO datasets. For every experiment in Section [3| we used d\ = 0.01 for both
CONSIGN and the baselines. For the implementation of RAPS we chose 6 = 0.05 and k,.; = 2 "
where L is the number of labels. For the SACP we chose a neighborhood weight w = 0.3 and a
neighborhood size of 7x7. The hyper-parameters were selected based on optimal performance.

The algorithm to numerically solve the optimization problem is described in Algorithm[2] while the
pixel-wise/SACP calibration algorithm is described in Algorithm 3]

Algorithm 2 Optimization algorithm approx_solver
Input: Y, pu(X), {w. } |, Ir, B, T
Output: c*
optimizer < Adam(c, Ir)
for epoch <+ 1toT" do
o ¢ p(X) + 5T ey
loss < L(Y,P(c)) > with £ as in equation[11]
c <—Adam.step()
c < projg(c)
c*+c

A A S ey

In Table [2, we compare the computational times of CONSIGN and the pixel-wise method. Notice
that the computational time of SACP is equivalent to the pixel-wise one. The offline time is measured
in minutes and considers an average calibration step for one calibration/test split. The online time
is measured in seconds and refers to the sampling of S segmentation from the prediction set. The
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Algorithm 3 Calibration algorithm for pixel-wise RAPS and SACP
Input: o, 5, dX, {(X;,Y)} 5!
Output: Z\
I: A0 R+ 1; 2«0

2: WhileR>oz—le;0:d0

3: fori < 1to J\szal\Ido
4: construct label set 77W/SACP (X, as in equation|[12]
5: ifY; € C/I\DW/SACP(Xi) then > with C/I\DW/SACP(Xi) as in equation|13fequation
6: T+ TU{i}
. > |Z]
7 Re1- N
8: if RAS o — Nmo; then
9: A A
10: else
11: A= A+dA
Table 2: Comparison of offline and online times for CONSIGN and pixel-wise
Method Offline (min) Online S =1(s) Online S = 103 (s) Online S = 10? (s)
CONSIGN ~5—15 ~ 0.026 — 0.040 ~04-3 ~ 4 —40
PW (RAPS) ~01-1 ~02-0.5 ~04-2 ~3—15

offline time is higher due to the SVD, but mostly due to the numerical solution of the minimization
problem. However, the most important metric is the online time. Our method demonstrates faster
online processing times for smaller sample sizes S. This is because we sample a vector in ¢ € R¥
instead of selecting a possible label for each pixel in the label set 7", When we sample a large
number of segmentations, the reconstruction process becomes more expensive, resulting in higher
computational times. Nevertheless, our method maintains competitive efficiency overall, remaining
fast even with larger sample sizes. The online computational time during the online phase includes
Singular Value Decomposition (SVD), which adds only a constant time of approximately 2 — 20 ms
per image.

E ADDITIONAL EXPERIMENTS

In Figures [6H7HSHOH10H1 IH12H13H14H15| we show additional quantitative and qualitative result of our
method. In Tables IHI we provide the calibrated A for the experiments of Section |3| and further
experiments.

—A— CONSIGN;  —V— CONSIGNs ©- PW (RAPS) —m— SACP

MnM2 mscmrl9 LIDC COCO animals COCO vehicles
a=0.05B=0.85 a=0.18=085 a=0.05=0.75 a=0.158=07 a=0.38=0.75

—

O 107 107 107 107 107
)

E 108 108 10° 108 106
'ﬁ 10 10 10° 10 10°
Wos 100 10 10* 104
(@]

S 103 10° 103 10%
O 10 10? 102 102 10?

0 10000 O 10000 O 10000 O 10000 O 10000
# samples

Figure 6: Nog (V*), Nog (YPW) and Ne g (YSACP) for different experiments and principal com-
ponents K
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Table 3: Calibrated \ across different experiments and splits for CONSIGN

Dataset (o, B, K) AFold1 A\Fold2 A\Fold3 \Fold4 )\ Fold5

M&Ms-2 (0.1,0.9,2) 0.060 0.090 0.070 0.070 0.090
0.1,0.9, 5) 0.050 0.070 0.070 0.060 0.070

(0.05, 0.85, 2) 0.250 0.270 0.230 0.260 0.320

(0.05, 0.85,5) 0.150 0.160 0.120 0.100 0.240

(0.25, 0.95, 2) 0.700 0.500 0.700 0.600 0.800

(0.25,0.95, 5) 0.250 0.250 0.300 0.250 0.250

(0.05, 0.9, 2) 1.800 4.200 1.800 1.900 3.300

(0.05, 0.9, 5) 0.700 1.000 0.700 0.700 1.000

MS-CMR19 (0.1, 0.85, 2) 0.060 0.060 0.030 0.060 0.080
(0.1, 0.85,5) 0.050 0.050 0.030 0.050 0.050
(0.05,0.8,2) 0.080 0.080 0.040 0.110 0.100
(0.05,0.8,5) 0.060 0.060 0.030 0.060 0.080
(0.15,0.9, 2) 0.200 0.250 0.150 0.350 0.200
(0.15,0.9, 5) 0.120 0.140 0.080 0.140 0.100
0.2,0.9,2) 0.080 0.100 0.060 0.080 0.070
0.2,0.9,5) 0.060 0.060 0.050 0.060 0.060

LIDC 0.2,0.8,2) 0.010 0.020 0.020 0.010 0.020
0.2,0.8,5) 0.010 0.020 0.020 0.010 0.020

(0.05, 0.75, 2) 0.020 0.020 0.020 0.020 0.020

(0.05,0.75,5) 0.020 0.020 0.020 0.020 0.020

(0.05, 0.85, 2) 0.050 0.040 0.050 0.050 0.050

(0.05, 0.85,5) 0.050 0.040 0.050 0.050 0.050

(0.1,0.9,2) 0.050 0.060 0.050 0.050 0.060

0.1,0.9, 5) 0.050 0.040 0.050 0.050 0.050

COCOan.  (0.25,0.8,2) 0030  0.030 0.030 0.040 0.040
(0.25,0.8,5)  0.020  0.020 0.020 0.020 0.030
(0.15,0.7,2)  0.060  0.060 0.070 0.060 0.180
(0.15,0.7,5)  0.040  0.040 0.050 0.040 0.050
0.2,0.75,2)  0.020  0.040 0.040 0.040 0.080
0.2,0.75,5)  0.010  0.020 0.020 0.020 0.030
(0.2,0.7,2) 0.01 0.01 0.01 0.01 0.02
(0.2,0.7, 5) 0.01 0.01 0.01 0.01 0.01

COCO veh. (0.3,0.7,2) 0.110 0.030 0.060 0.060 0.030
0.3,0.7,5) 0.060 0.020 0.030 0.030 0.020

(0.3,0.75, 2) 0.330 0.300 0.300 0.300 0.300

(0.3,0.75, 5) 0.120 0.100 0.110 0.110 0.100

(0.25,0.7,2) 0.500 0.300 0.300 0.300 0.300

(0.25,0.7,5) 0.150 0.100 0.100 0.150 0.100

(0.35,0.75, 2) 0.100 0.050 0.050 0.100 0.050

(0.35,0.75,5) 0.060 0.030 0.030 0.040 0.020
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Table 4: Calibrated A across different experiments and splits for pixel-wise (RAPS) method
Dataset (a,)  AFoldl AFold2 \Fold3 A\Fold4 \Fold5

M&Ms-2 (0.1, 0.9) 0.610 0.710 0.630 0.640 0.690
(0.05, 0.85) 0.850 0.860 0.850 0.860 0.910
(0.25, 0.95) 0.630 0.640 0.630 0.620 0.630
(0.05, 0.9) 0.930 0.930 0.920 0.930 0.960

MS-CMR19 (0.1, 0.85) 0.670 0.690 0.600 0.670 0.690
(0.05, 0.8) 0.790 0.790 0.680 0.790 0.790
(0.15,0.9) 0.750 0.750 0.710 0.760 0.740
0.2,0.9) 0.650 0.660 0.640 0.670 0.660

LIDC (0.2,0.8) 0.690 0.690 0.690 0.690 0.690
(0.05, 0.75) 0.830 0.810 0.810 0.810 0.820

(0.05, 0.85) 0.900 0.900 0.900 0.900 0.900

(0.1, 0.9 0.900 0.900 0.890 0.900 0.900

COCO an. (0.25, 0.8) 0.560 0.560 0.570 0.590 0.610
(0.15,0.7) 0.710 0.710 0.710 0.710 0.720
(0.2, 0.75) 0.590 0.610 0.620 0.620 0.670
(0.2,0.7) 0.520 0.510 0.540 0.540 0.580

COCO veh. (0.3,0.7) 0.710 0.670 0.680 0.680 0.640
(0.3, 0.75) 0.810 0.750 0.760 0.780 0.740
(0.25,0.7) 0.820 0.800 0.800 0.800 0.800
(0.35, 0.75) 0.700 0.660 0.680 0.680 0.620

Table 5: Calibrated X across different experiments and splits for SACP method
Dataset (o, B) AFold1 )\Fold2 \Fold3 )\Fold4 ) Fold5

M&Ms-2 (0.1, 0.9) 0.580 0.680 0.600 0.620 0.670
(0.05, 0.85) 0.820 0.850 0.820 0.820 0.870
(0.25, 0.95) 0.600 0.610 0.610 0.600 0.600
(0.05, 0.9) 0.870 0.890 0.880 0.880 0.920

MS-CMR19 (0.1, 0.85) 0.660 0.660 0.600 0.660 0.660
(0.05, 0.8) 0.770 0.770 0.680 0.770 0.770
(0.15,0.9) 0.710 0.720 0.670 0.720 0.710
(0.2,0.9) 0.630 0.640 0.610 0.650 0.630

LIDC (0.2,0.8) 0.710 0.720 0.720 0.710 0.720
(0.05, 0.75) 0.830 0.820 0.820 0.820 0.840

(0.05, 0.85) 0.900 0.900 0.890 0.900 0.900

(0.1,0.9) 0.890 0.890 0.890 0.890 0.890

COCO an. (0.25, 0.8) 0.560 0.560 0.570 0.590 0.610
(0.15,0.7) 0.710 0.710 0.710 0.710 0.730
(0.2, 0.75) 0.590 0.600 0.630 0.630 0.670
(0.2,0.7) 0.520 0.510 0.540 0.540 0.590

COCO veh. (0.3,0.7) 0.710 0.670 0.680 0.680 0.640
(0.3, 0.75) 0.810 0.750 0.760 0.780 0.750
(0.25,0.7) 0.820 0.800 0.800 0.800 0.800
(0.35,0.75)  0.700 0.660 0.680 0.680 0.620
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Figure 7: Nog (V*), Nog(YPW) and Ne g (VSACP) for different experiments and principal com-
ponents K
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Figure 8: Nog (V*), Nog (YPW) and Ne g (VSACP) for different experiments and principal com-
ponents K

F MISCELLANEOUS

In Figure[T6] we show how CONSIGN can perform well even where the uncertainty is concentrated
in small-scale details.

Finally, Figure [T7]illustrates the relationship between the model predictions and the principal com-
ponents derived from their SVD. For each experimental setting (as defined in Figure[5), we show the
segmentation outputs of the pre-trained model f, along with the corresponding first four principal
vectors uy € R¥*W extracted from the label-0 channel. Recall that uj, € REXHXW,
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Figure 9: sEC(Y*), sEC(YTW) and sEC(YS4CP) for different experiments and principal com-

ponents K
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Figure 10: sEC(Y*), sEC(YTW) and sEC (VAT for different experiments and principal com-

ponents K
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Figure 11: sEC(YV*), sEC(YTW) and sEC (YSACP) for different experiments and principal com-

ponents K
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Figure 12: p(V*), p(¥FW) and p(Y34¢) for different experiments and principal components K
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Figure 13: p(V*), p(YFW) and p(Y34CP) for different experiments and principal components K
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Figure 14: p(V*), p(YFW) and p(Y34CF) for different experiments and principal components K
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Figure 15: Qualitative comparison between samples from }* (K = 5), YW and YSACP,
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Figure 16: Samples from Y* (K = 5) showing that CONSIGN is able to capture uncertainty also
for small regions.
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Figure 17: Example segmentation predictions produced by the pre-trained model f, and the corre-
sponding first four principal vectors u?, u9, u, u of the label-0 channel obtained from the SVD
analysis. Each row corresponds to one of the experimental settings shown in Figure[j]
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