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Abstract

Group robustness has become a major concern
in machine learning (ML) as conventional train-
ing paradigms were found to produce high error
on minority groups. Without explicit group an-
notations, proposed solutions rely on heuristics
that aim to identify and then amplify the minority
samples during training. In our work, we first
uncover a critical shortcoming of these heuris-
tics: an inability to distinguish legitimate minor-
ity samples from poison samples in the training
set. By amplifying poison samples as well, group
robustness methods inadvertently boost the suc-
cess rate of an adversary—e.g., from 0% without
amplification to over 97% with it. Moreover, scru-
tinizing recent poisoning defenses both in cen-
tralized and federated learning, we observe that
they rely on similar heuristics to identify which
samples should be eliminated as poisons. In con-
sequence, minority samples are eliminated along
with poisons, which damages group robustness—
e.g., from 55% without the removal of the minor-
ity samples to 41% with it. Finally, as they pursue
opposing goals using similar heuristics, our at-
tempts to conciliate group robustness and poison-
ing defenses come up short. We hope our work
highlights how benchmark-driven ML scholarship
can obscure the tensions between different met-
rics, potentially leading to harmful consequences.

1. Introduction
As ML finds adaptations in many fields with diverse priori-
ties, new metrics of success, aside from prediction perfor-
mance (e.g., accuracy), have come into play. For example,
in security-critical applications, robustness to adversarial ex-
amples (Chen et al., 2021) or poisoning attacks (Steinhardt
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et al., 2017); or, in demographically-sensitive applications,
fairness (Hashimoto et al., 2018) or group robustness (Liu
et al., 2021) are popular metrics the ML community aims
to improve. The sheer number of such metrics has led to a
paradigm where researchers demonstrate progress on bench-
marks often designed with a single metric in mind.

Recent work has exposed previously unknown trade-offs
between some of these metrics, e.g., between privacy and
fairness (Bagdasaryan et al., 2019) or between robustness
and privacy (Song et al., 2019). As applications in practice
require balancing various, often mission-critical, metrics,
such unknown trade-offs might have catastrophic conse-
quences. This makes the research into studying the intersec-
tion of multiple metrics to identify tensions and interactions
particularly crucial. With this motivation, in a systematical
quantitative study, our work uncovers an inherent tension
between approaches designed for two critical metrics: group
robustness methods and poisoning defenses.

Group robustness has become a concern as standard train-
ing via empirical risk minimization (ERM) has been shown
to perform well on an average sample but poorly on sam-
ples belonging to under-represented, minority groups (Tat-
man, 2017). Effective solutions, such as minority upsam-
pling (Byrd & Lipton, 2019), are not always feasible as
the explicit group annotations they rely on are often not
available due to privacy, e.g., demographic annotations, or
financial concerns, e.g., large-scale data sets. To this end,
research has proposed heuristics for identifying the minor-
ity training samples as a proxy for annotations (Liu et al.,
2021). A common observation behind these heuristics is
that minority samples are often difficult to learn and the
model cannot achieve low training error on them. The can-
didates identified as minority samples are then amplified
during training, e.g., through upsampling, which is shown
to improve group robustness significantly.

First, we expose a vulnerability: when the training set con-
tains poison samples, group robustness heuristics cannot
distinguish legitimate minority samples from them. Poison
samples are injected by an attacker to teach the model an
undesirable behavior, e.g., a backdoor (Saha et al., 2020).
As a result, two recent group robustness methods (Sohoni
et al., 2020; Liu et al., 2021) end up assisting the attacker
by encouraging low error on poison samples along with mi-



Like Oil and Water: Group Robustness and Poisoning Defenses Don’t Mix

nority samples—attacker achieves 15− 97% higher success
rate due to amplification. Aiming to understand this vulner-
ability, we observe that poison samples can be as difficult to
learn as minority samples, especially in a realistic attack that
can inject only a few samples. This suggests that any group
robustness method that relies on difficulty-based heuristics
might carry a similar vulnerability.

Second, on the other side of the coin, we show that poison-
ing defenses hurt group robustness when the training set
contains legitimate minority samples. In particular, we focus
on recent sanitization-based defenses in centralized (Yang
et al., 2022) and federated learning (Panda et al., 2022) set-
tings. As it is challenging to detect poisons reliably (Shan
et al., 2022), these methods pursue a simpler goal by relying
on heuristics to identify outliers. Such heuristics are empiri-
cally shown to eliminate poisons without hurting the overall
accuracy. However, due to providing distinct learning sig-
nals during training, we observe that minority samples are
often inadvertently identified (and eliminated) as outliers.
This poses a trade-off for the defender: the more poisons
are eliminated (lower attack success), the more minority
samples will be eliminated as well (lower group robustness).
In consequence, the accuracy on the minority group drops
by up to 15% after applying an effective defense.

Finally, we make (unsuccessful) attempts to mitigate these
tensions by applying poisoning defenses and group robust-
ness methods in tandem. When aiming for low attack suc-
cess, the defense removes enough minority samples to ren-
der group robustness methods ineffective. When aiming for
high group robustness, the defense ignores enough poison
samples that are still amplified by group robustness, which
leads to high attack success. Ultimately, this implies an un-
intended alignment between defensive and group robustness
heuristics. We hope to encourage future work to develop
heuristics that conciliate these two critical success metrics.

In summary, we make the following contributions: (i)
We find that group robustness methods fail to distinguish
minority groups from poisons, leading to the risk of ampli-
fying the attacks (Section 3); (ii) We show that poisoning
defenses fail to distinguish poisons from under-represented
groups and lead to the risk of lowering group robustness
(Section 4); (iii) We demonstrate that combining group ro-
bustness with poisoning defenses is challenging and cannot
mitigate these tensions (Appendix A.4).

2. Preliminaries
2.1. Related Work

Group Robustness Methods. Group robustness focuses
on training models that obtain good performance on each
pre-defined group in the data set. Approaches to group ro-
bustness fall into two broad categories. The approaches pro-

posed by Sagawa et al. (2019); Byrd & Lipton (2019); Cao
et al. (2019) rely on explicit group annotations during train-
ing. For example, group distributionally robust optimization
(group DRO) (Sagawa et al., 2019) directly minimizes the
worst-group error on the training set. The second set of
approaches focuses on a more realistic scenario where an-
notations are not available during training (Liu et al., 2021;
Nam et al., 2020; Sohoni et al., 2020; Namkoong & Duchi,
2017). Our work focuses on a promising type of approach
within this set that essentially aims to obtain pseudo group
labels by deploying various heuristics (Liu et al., 2021).

Poisoning Attacks. In a poisoning attack, the adversary in-
jects a set of malicious samples into the victim’s training set.
The poisons are designed to induce certain vulnerabilities in
the victim model. In dirty-label attacks, the adversary fully
controls how the injected sample is crafted and labeled (Gu
et al., 2017). In clean-label attacks, however, they can only
make minor changes to existing training samples without
changing their ground truth label (Suciu et al., 2018). In
terms of the attacker’s goal, indiscriminate attacks hurt the
model’s overall accuracy (Koh et al., 2022), targeted attacks
cause misclassifications on specific samples (Shafahi et al.,
2018), and backdoor attacks teach the model to misclas-
sify any sample that contains a trigger pattern (Gu et al.,
2017). In our work, we use a range of poisoning attacks
to demonstrate a limitation of group robustness methods in
distinguishing legitimate samples from poisons.

Poisoning Defenses. Based on their core assumptions, poi-
soning defenses can be split into three. (i) First category
corresponds to the assumption that poisons are difficult to
be learned and this includes data sanitization defenses that
detect anomalies and outliers in the training set (Steinhardt
et al., 2017; Chen et al., 2019; Yang et al., 2022). Note
that these are popular strategies against poisoning attacks,
because of their low computational overhead and minimal
impact on accuracy. In this work, we focus on defenses from
this category and show that they lead to the problem we iden-
tify as they end up eliminating difficult-to-learn minority
samples as poisons. (ii) Defenses from the second category
assume that poisons are easy to be learned, making them
suitable against strong adversaries (Li et al., 2021). (iii)
Third category corresponds to the assumption that poisons
follow a different distribution from clean samples. State-
of-the-art defenses (Pan et al., 2023; Qi et al., 2023) use a
small base set of clean samples to separate the clean train-
ing points from the poisons. We discuss the limitations
and challenges of using defenses from the second and third
categories in Appendix A.5.

2.2. Formal Setup

In Appendix A.1, we provide additional details about our
setup and hyper-parameters.
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Datasets. We consider two popular data sets: Waterbirds
(Sagawa et al., 2019) and CelebA (Liu et al., 2015). Wa-
terbirds contains 4, 795 training images of “land-bird” and
“water-bird” classes, on either land or water backgrounds.
CelebA contains of 162, 770 training images of faces, either
male or female, and the task proposed in (Sagawa et al.,
2019) is to classify them as “blond” or “not blond”. In
our experiments in Section 4, we randomly sample 10%
of CelebA to save computation. We refer to the lowest-
represented group (water-birds on land and blond males) as
LRG-1; and the highest-represented groups (land-birds on
land and water-birds on water or blond females, non-blond
females and non-blond males) as HRG. Additionally, Water-
birds contains a second under-represented group (land-birds
on water), which we refer to as LRG-2.

Models. Following prior work (Liu et al., 2021), we
consider standard ResNet architectures (He et al., 2016),
starting from ImageNet-pretrained weights. In our main
manuscript, we show results on ResNet-18, then we include
additional results on ResNet-50 as well as for the scenario
when models are trained from scratch in Appendix A.2.

Group Robustness Methods. We consider two popular
techniques from recent work: Just Train Twice (JTT) (Liu
et al., 2021) and GEORGE (Sohoni et al., 2020). Both meth-
ods have two main phases: (i) identification uses heuris-
tics to identify pseudo group annotations for training sam-
ples; and (ii) amplification uses these annotations to am-
plify under-represented groups. In (i), JTT trains a heav-
ily regularized model via ERM and identifies the training
samples this model misclassifies as belonging to an under-
represented group. In (ii), it simply upsamples these samples
to train a second model that achieves higher group robust-
ness. On the other hand, in (i), GEORGE trains a standard
model via ERM, clusters its latent representations on the
training samples, and treats the cluster labels as pseudo
group annotations. In (ii), it applies group DRO (Sagawa
et al., 2019) on these groups, which ends up amplifying the
samples in smaller clusters as under-represented groups.

Poisoning Attacks. We consider (i) a dirty-label backdoor
(DLBD) attack that inserts samples containing a trigger with
a wrong label; (ii) a sub-population attack (SA) that targets
a specific group indiscriminately (Jagielski et al., 2021);
and (iii) Gradient Matching (GM) (Geiping et al., 2020), a
state-of-the-art clean-label targeted poisoning attack.

Similar to prior work, we consider that 1% of the training
set is poisoned for DLBD and GM, and 2% for SA. We
also consider other poison percentages in Appendix A.2.
For GM, we select the base samples (i.e., the clean training
samples the attack modifies into poisons) from LRG-1. For
DLBD and SA, we select them from HRG and label them
into the same class as LRG-1. For GM, we select 5 target
samples from the class that does not contain LRG-1 and

launch the attack to force the model to classify them as the
class that contains LRG-1. We also consider a setting with
100 target samples and show the results in Appendix A.2.

Poisoning Defenses. In our centralized training experi-
ments, we consider EPIc (Yang et al., 2022), a state-of-
the-art technique that iteratively (i) identifies the training
samples isolated in gradient space as outliers, and (ii) elim-
inates them as potential poisons during training. Addi-
tionally, we also consider STRIP (Gao et al., 2019), a
run-time backdoor detection defense, and include the re-
sults in Appendix A.3. In our federated learning experi-
ments, we consider several robust aggregation mechanisms
and poisoning defenses, including coordinate median up-
date (Yin et al., 2018), Trimmed Mean (Yin et al., 2018),
and SparseFed (Panda et al., 2022). These techniques aim
to sanitize the updates sent by clients and prevent the model
from learning outliers.

2.3. Relevant Metrics

We perform each experiment 3 times and report the average
and the standard deviation of its results.

Accuracy Metrics. We report two metrics (as percentages)
for the prediction performance of a model. First, we report
the standard test accuracy (denoted as ACC) measured over
the entire test set. ACC is dominated by HRG as it does not
consider the group labels. To report the group robustness of
a model, we measure the Worst-Group Accuracy (denoted
as WGA). For WGA, we use the ground truth annotations
to measure the accuracy on each group (i.e., the percentage
of the correctly classified samples from each group). We
then report the lowest accuracy among all groups as WGA.

Identification Success Metrics. Group robustness methods
ideally identify and amplify only the samples in legitimate
minority groups, whereas the other groups (including poi-
sons) remain untouched. To report how close we are to
the ideal, we measure the Identification-Factor (denoted as
IDNF) of each ground truth group individually. IDNF mea-
sures what percentage of samples in the group end up being
amplified. A small gap between IDNF on poisons and IDNF
on LRG indicates a failure scenario.

Attack Success Metrics. In all attacks, we report Attack
Success Rate (denoted as ASR) as a percentage. The actual
measurement of ASR depends on the attack. For DLBD,
we measure the percentage of test samples that are correctly
classified in the absence of the trigger, but misclassified in
its presence; for GM, the percentage of the misclassified
target samples, and for SA, the accuracy drop on the target
group of the attack over a non-poisoned model.

Defense Success Metrics. An ideal defense only eliminates
poisons and reduces the ASR, leaving ACC and WGA intact.
For EPIc, we measure the Elimination-Factor (denoted as
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ELMF) as the percentage of training samples removed from
each individual ground truth group. A large gap between
ELMF on LRG and ELMF on HRG indicates disparate
impact. For the federated learning defenses (that operate on
client updates, not on training samples), we report the drop
in WGA and ACC over an undefended model.

3. Limitations of Group Robustness Methods
In this section, we show that heuristics deployed by group ro-
bustness methods identify the poisons as under-represented
and amplify them. We also study the implications of this
limitation regarding the ASR of poisoning attacks.

3.1. Group Robustness Heuristics Identify Poisons

We start by examining which samples are identified by group
robustness methods. For JTT, these are the samples misclas-
sified in the first phase, and, for GEORGE, the samples in
the smallest cluster. In Table 1, we present the IDNFs on
each group (LRG-1, LRG-2, and HRG) for each method.
We do not consider LRG-2 for GEORGE because it creates
clusters for each class individually and our poisons are only
in the same class as LRG-1. In all experiments, the smallest
cluster ends up in the same class as LRG-1, which indicates
that GEORGE is working as intended.

Across the board, we see that poisons and LRG-1 samples
have the highest IDNF—between 93.4% and 100%) Most
notably, in many cases, the IDNF on poisons is up to 5%
higher than the IDNF on LRG-1. This suggests that group
robustness methods are more likely to amplify poisons than
legitimate under-represented samples. For Waterbirds, there
is an expected gap between the IDNFs on LRG-1 and LRG-
2 as LRG-2 contains over 3× more samples than LRG-1,
which makes it less difficult to learn. Finally, in all settings,
the IDNF on HRG is much lower than the rest—at most
12.5% in the case of GEORGE on Waterbirds.

We also experiment with letting GEORGE automatically
adjust the number of clusters for each class by maximizing
the silhouette score, as done by Sohoni et al. (2020). This
still ends up creating a small cluster that mostly contains the
poisons and LRG-1, meaning that it has failed to distinguish
between under-represented groups and poisons.

Takeaways. The heuristics used by group robustness meth-
ods achieve a high recall in identifying LRG, however, their
precision is significantly reduced in the presence of poi-
sons. These heuristics often identify most poisons as LRG—
between 98.2% and 100%—which even exceeds the recall
on the legitimate LRG. Overall, this supports our claim that
current group robustness methods are limited in distinguish-
ing between under-represented groups and poisons.

3.2. Group Robustness Methods Amplify Poisons

After finding that group robustness methods identify poisons
as an under-represented group, in this section, we study how
this impacts poisoning attacks and their success. To this end,
we consider three evaluation settings. In the standard case,
we apply the group robustness method as-is. In the ideal and
worst cases, we intervene in the method to prevent it from
amplifying any poison or to force it to amplify all poisons,
respectively. These interventions aim to isolate the impact
of amplifying poisons on the attack success rate (ASR). We
implement these interventions by manually removing all
poisons from (ideal) or placing all poisons into (worst) the
set of samples identified by group robustness methods.

We present the results in Table 2, across different attacks,
methods, and datasets. We first note that the ASR gap be-
tween the worst case and the standard case is often minimal.
This highlights that the boost the attacker gains due to the
shortcomings of group robustness heuristics is as significant
as it can get. The large gap between (6.7% − 97.4%) the
standard and ideal cases shows an opportunity for better
heuristics. We believe the larger amplification in the case
of CelebA stems from the fact that this is a more complex
data set with more variability and samples, which makes it
easier for poisoning. Note that most of the models maintain
a relatively high WGA (at least 74.1%), which shows that
group robustness methods are working as intended, but still
worse than the case without any poisoning (86.7% as in Liu
et al. (2021)). The only exception to this is the case of SA,
where the WGA drops to 60.9%. However, this is expected
as the goal of this attack is to hurt the accuracy on a specific
group. Finally, the models tend to maintain a fairly high
standard ACC, except against SA as it is an indiscriminate
attack, which provides a sanity check to our results.

Additionally, in Appendix A.2, we study the impact of
the hyper-parameters (early stopping for the identification
model and upsampling factor) and consider more settings
(different amount of poisoned samples, more targets for GM
attack and using a larger model, as well as training the mod-
els from scratch). We observe that the results are consistent
with our previous findings.

Takeaways. Due to identifying poisons as an under-
represented group, group robustness methods end up di-
rectly or indirectly amplifying them. We show that this
leads to a boost in the success rate of poisoning attacks, and,
generally, this boost is almost as high as it could have been.

4. Poisoning Defenses Have Disparate Impact
After establishing how group robustness methods amplify
poisons, in this section, we investigate whether poisoning
defenses have any undesirable impact on under-represented
samples and group robustness.
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Table 1. The Identification-Factors (IDNFs) of group robustness methods on different groups of samples in the training set. We highlight
the alarming cases where the poison samples are more amplified than the lowest-represented group.

METHOD DATASET ATTACK POISONS LRG-1 LRG-2 HRG

JTT WATERBIRDS DLBD 98.5 ± 1.2% 94.6± 1.4% 36.9± 1.8% 5.0± 0.3%
JTT WATERBIRDS SA 98.2 ± 0.6% 94.6± 1.7% 38.7± 3.1% 4.8± 0.3%
JTT WATERBIRDS GM 100.0 ± 0.0% 96.2± 6.4% 35.3± 1.9% 5.4± 0.3%
JTT CELEBA DLBD 99.9 ± 0.0% 96.7± 0.2% N/A 9.8± 0.5%

GEORGE WATERBIRDS DLBD 98.5 ± 1.2% 93.4± 1.0% − 12.5± 1.2%

Table 2. Evaluating the impact of amplification in group robustness methods on worst group accuracy (WGA), attack success rate (ASR),
and test accuracy (ACC). We highlight when there is a small gap in ASR between the worst and standard cases as this indicates that a
method has given an advantage to the adversary.

METHOD DATASET ATTACK CASE WGA ASR ACC

WORST 76.9± 3.5% 20.9 ± 7.9% 86.4± 1.2%
JTT WATERBIRDS DLBD STANDARD 78.0± 4.1% 20.4 ± 5.9% 86.7± 1.2%

IDEAL 81.4± 0.9% 0.5 ± 0.3% 91.0± 0.4%
WORST 60.9± 4.5% 24.0 ± 3.3% 70.9± 2.3%

JTT WATERBIRDS SA STANDARD 61.6± 6.8% 31.4 ± 6.0% 66.0± 3.8%
IDEAL 82.3± 1.5% 0.8 ± 1.3% 90.8± 0.3%

WORST 76.1± 3.2% 20.0 ± 0.0% 89.9± 1.0%
JTT WATERBIRDS GM STANDARD 76.1± 3.2% 20.0 ± 0.0% 89.9± 1.0%

IDEAL 75.9± 0.8% 13.3 ± 11.5% 91.3± 0.1%
WORST 79.7± 0.9% 97.7 ± 0.1% 82.9± 0.8%

JTT CELEBA DLBD STANDARD 79.3± 0.2% 97.7 ± 0.1% 82.6± 0.2%
IDEAL 79.2± 1.1% 0.3 ± 0.0% 83.6± 1.4%

WORST 74.1± 1.7% 16.5 ± 2.9% 76.4± 3.4%
GEORGE WATERBIRDS DLBD STANDARD 77.3± 2.5% 15.8 ± 3.9% 79.4± 1.6%

IDEAL 79.3± 2.1% 0.4 ± 0.0% 93.1± 1.4%

4.1. Poisoning Defenses Eliminate Minority Samples

We start our investigation by studying the impact of EPIc
on under-represented samples. In Figure 1, we show the
Elimination-Factor (ELMF) of EPIc in four different set-
tings. We observe that generally the poisons and LRG-1
samples are eliminated at a similar rate (the two curves are
close to each other, across the board). On the other hand, the
ELMF on HRG samples is always significantly less. Inter-
estingly, ELMF on LRG-2 samples from Waterbirds is less
than the poisons and LRG-1 samples and more than HRG
samples. A large (reaching almost 100%) ELMF on poisons
shows that EPIc is indeed an effective poisoning defense.
However, by eliminating most poisons, EPIc also eliminates
most LRG-1 samples as well. This suggests that legitimate
under-represented samples are strong outliers from the per-
spective of EPIc, which demonstrates a disparate impact.

4.2. Poisoning Defenses Reduce Group Robustness

Here, we study the effect of EPIc on group robustness
by considering three scenarios. In ideal and worst-case
scenarios, we make interventions on EPIc to never elimi-
nate any under-represented sample or to eliminate under-

represented samples as early as possible, respectively. In
standard EPIc, we make no intervention and apply the de-
fense as-is. Through interventions, we hope to isolate the
impact of EPIc on minority samples. For each scenario, we
report WGA to measure group robustness.

We present the results in Table 3. First, we observe that
in different datasets and attacks, EPIc reduces the WGA
by 3.2% − 14.3%. The most damage happens on CelebA
data set as, we believe, it is more complex than Waterbirds.
Overall, the ASR is low, indicating that EPIc works properly,
with one exception for the GM attack, where the ASR is
13.3% for all three scenarios. In all cases, ACC is high,
relatively close to ACC reported in prior work (Liu et al.,
2021). We see a significant gap in WGA after applying EPIc
and applying group robustness methods (in Table 2), almost
up to 40%. This is expected as EPIc does not make any
attempts to preserve group robustness. In Appendix A.4, we
make an effort towards applying poisoning defenses while
preserving group robustness.

Additionally, we study the impact that robust aggregation
mechanisms and poisoning defenses have on the under-
represented groups in Federated Learning, as well as more
settings including different amounts of poisoned samples.
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Figure 1. The elimination disparity between the under-represented (LRG) and over-represented (HRG) groups against EPIc. The x-axes
show the iterations of EPIc, and y-axes show the Elimination-Factor (ELMF) for each group. From left to right, the first three plots are for
DLBD, SA, GM attacks on Waterbirds and the last one is for DLBD on CelebA.

Table 3. The impact of EPIc on group robustness, measured by the Worst-Group Accuracy (WGA).

DATASET ATTACK CASE WGA ASR ACC

IDEAL 59.0 ± 2.5% 0.1± 0.1% 95.5± 0.1%
WATERBIRDS DLBD STANDARD 55.8 ± 6.0% 0.1± 0.0% 95.0± 0.1%

WORST 50.7 ± 6.9% 0.1± 0.0% 94.3± 0.8%
IDEAL 59.1 ± 3.0% −0.3± 1.8% 94.6± 0.4%

WATERBIRDS SA STANDARD 55.3 ± 3.2% 0.2± 1.7% 94.2± 0.4%
WORST 48.1 ± 7.3% −0.1± 2.3% 93.9± 0.3%
IDEAL 50.2 ± 2.0% 13.3± 11.5% 95.8± 0.3%

WATERBIRDS GM STANDARD 43.5 ± 7.8% 13.3± 11.5% 94.6± 0.5%
WORST 44.3 ± 8.3% 13.3± 11.5% 94.6± 0.4%
IDEAL 54.8 ± 3.2% 0.3± 0.2% 93.9± 0.0%

CELEBA* DLBD STANDARD 40.5 ± 4.5% 0.1± 0.0% 94.0± 0.1%
WORST 34.8 ± 1.1% 0.0± 0.0% 93.7± 0.3%

We show the results in Appendix A.3 and observe that they
are consistent with our previous findings.

Takeaways. Poisoning defenses either aim to identify and
remove the outliers or make it more difficult for the model to
learn poisons (e.g., in Federated Learning). They, however,
also end up making minority groups more difficult to learn
as well, which hurts the group robustness of the trained
model. This shows that, despite the common practice, ACC
can be over-optimistic in gauging the impact of a poisoning
defense in the presence of under-represented groups.

5. Conclusions
In this work, we demonstrate a significant tension involving
two critical metrics studied in the ML community: group
robustness and poisoning resilience. The objective of group
robustness methods is to amplify minority groups in the
training set and create more equitable models. Our find-
ings reveal that the samples injected by poisoning attacks
consistently mislead these methods into amplifying them,
resulting in an undesirable boost to the adversary. On the
other hand, poisoning defenses aim to prevent attacks by re-

moving problematic samples from the training set. However,
these defenses remove legitimate under-represented samples
as well, hence compromising the model’s equity. After mak-
ing unsuccessful attempts at mitigating these tensions, by
combining different methods, we wish to emphasize the
pressing need for the ML community to focus on the devel-
opment of new methods that tackle the inherent challenges
posed by poisoning attacks and group robustness.
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A. Supplementary Material
A.1. Additional details on the experimental setup

For the models trained with JTT on Waterbirds, unless differently specified, we use SGD with momentum with a factor
of 0.9 as the optimizer, a batch size of 128, learning rate of 1e − 5 and weight decay of 1.0. We stop the identification
model after 60 epochs, use an upsampling factor of 100, train the final model up to 100 epochs and choose the model that
has the best WGA on the validation dataset, then report the results on the test dataset. In case of CelebA, we use the same
hyper-parameters as for Waterbirds, with a few exceptions: weight decay of 0.1, early stopping for the identification model
after 1 epoch and we use an upsampling factor of 50. Also, we train the final model up to 5 epochs and consider the same
procedure to choose the best model as above. We build our experiments on top of the official code from 1.

For the models trained with GEORGE, we use a similar optimizer, batch size, learning rate, weight decay as in the Waterbirds
case from above. For clustering we let the model find the optimal number of clusters (up to 10) for each class based on
Silhouette criterion as in Sohoni et al. (2020). We train the final model up to 300 epochs and use the official code from 2

For DLBD, the trigger is a 25x25 white square placed 1 pixel away from the bottom-right corner of the poisoned samples.

For SA, we consider FeatureMatch and Label Flipping to create poisoned samples as in prior work (Jagielski et al., 2021).

For GM, we use the multi-target version of the attack, an epsilon of 16 and 8 restarts. To build the poisoned samples, we
rely on the official code from 3.

For EPIc, in case of Waterbirds, we consider SGD with momentum with a factor of 0.9 as the optimizer, a batch size of 128,
learning rate of 1e− 2 and weight decay of 1e− 4. We train the models up to 40 epochs and consider the same selection
criterion for the model based on WGA on the validation set as above. In the case of CelebA, we change the learning rate to
1e− 3 and we train the models up to 10 epochs. We build our experiments on top of the official code from 4.

For the federated learning experiments, we built the implementation on top of the code from here 5. We consider a total of
100 users and 10% of them are chosen at each round. We use SGD with momentum with a factor of 0.9 as the optimizer, a
local batch size of 128 and learning rate of 1e− 2. Also, we train each local model for 10 epochs at each round. In case of
the non-IID setting, we consider that only 10% of the users have samples from the under-represented groups.

For the federated learning defenses, in the case of Trimmed Mean, we remove the lowest and highest two values for each
coordinate in the update and in the case of SparseFed we use a value of 400, 000 for the number of parameters that we keep
at each step which is equivalent to keeping less than 5% of the parameters. We consider a momentum factor of ρ = 0.9 as in
prior work (Panda et al., 2022) or not using momentum (ρ = 0) in our experiments.

A.2. More results on Limitations of the Group Robustness Methods.

Impact of the Hyper-parameters. Here, we study how the hyper-parameters of JTT impact our findings from Section 2.
We consider two hyper-parameters: early stopping for the model in the first phase used to identify LRG; and the upsampling
factor for the samples identified samples. Our previous experiments use the original hyper-parameters, i.e., early stopping
is set to 60 epochs, and upsampling factor is set to 100×. However, due to the introduction of poisoning, these hyper-
parameters might not be optimal anymore. To this end, we search for new hyper-parameters in a grid (early stopping
∈ {40, 80, 100, 200} and upsampling factors ∈ {20, 50, 150} against DLDB attack on Waterbirds.

We present the results in Tables 4 and 5. We observe that the results are consistent with our previous findings: ASRs are
very close between the standard and the worst cases (i.e., high amplification), while both WGA and ACC are still relatively
high with the exceptions when early stopping is set to 40 and when the upsampling factor is set to 150. In these cases, the
WGAs are only 65.3% and 64.6%, respectively. For the former, we believe that it could be due to how earlier stopping
makes identification less selective (lower precision) and ends up upsampling HRG as well. Also, the ASR is higher by more
than 15% compared to the other early stopping values. For the latter, we believe that it is because the amplified samples
appear too often during training compared to the non-amplified ones. Also, surprisingly, using smaller upsampling factors of

1https://github.com/anniesch/jtt
2https://github.com/HazyResearch/hidden-stratification
3https://github.com/JonasGeiping/poisoning-gradient-matching
4https://github.com/YuYang0901/EPIC
5https://github.com/AshwinRJ/Federated-Learning-PyTorch
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Table 4. Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack success rate (ASR) and test accuracy
(ACC) when considering several early stopping epochs for the identification model.

EARLY STOPPING CASE WGA ASR ACC

WORST 65.4± 9.4% 46.3 ± 30.6% 83.3± 4.4%
40 STANDARD 65.3± 9.3% 45.7 ± 31.5% 83.2± 4.3%

IDEAL 76.8± 3.2% 0.4 ± 0.1% 91.5± 0.5%
WORST 76.9± 3.5% 20.9 ± 7.9% 86.4± 1.2%

60 STANDARD 78.0± 4.1% 20.4 ± 5.9% 86.7± 1.2%
IDEAL 81.4± 0.9% 0.5 ± 0.3% 91.0± 0.4%

WORST 80.3± 2.5% 18.7 ± 5.9% 87.3± 0.8%
80 STANDARD 80.9± 2.8% 17.7 ± 5.5% 87.6± 1.0%

IDEAL 82.2± 2.4% 0.5 ± 0.1% 91.3± 0.5%
WORST 81.8± 2.0% 19.7 ± 8.9% 87.6± 1.2%

100 STANDARD 82.0± 2.1% 23.4 ± 8.7% 87.2± 0.9%
IDEAL 83.3± 0.9% 0.9 ± 0.1% 91.0± 0.4%

WORST 83.5± 2.4% 27.8 ± 9.5% 87.9± 1.7%
200 STANDARD 83.1± 2.1% 29.5 ± 8.5% 87.5± 1.3%

IDEAL 84.5± 1.5% 0.7 ± 0.1% 90.0± 1.7%

Table 5. Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack success rate (ASR) and test accuracy
(ACC) when considering several upsampling factors.

UPSAMPLING FACTOR CASE WGA ASR ACC

WORST 71.9± 4.0% 69.5 ± 9.1% 91.4± 0.6%
20 STANDARD 72.3± 4.5% 66.6 ± 10.0% 91.5± 0.6%

IDEAL 74.9± 2.3% 1.3 ± 0.3% 93.0± 0.3%
WORST 79.7± 1.8% 33.1 ± 3.5% 91.4± 0.5%

50 STANDARD 79.6± 1.9% 28.8 ± 6.6% 91.9± 0.6%
IDEAL 79.5± 1.0% 0.9 ± 0.4% 92.6± 0.4%

WORST 76.9± 3.5% 20.9 ± 7.9% 86.4± 1.2%
100 STANDARD 78.0± 4.1% 20.4 ± 5.9% 86.7± 1.2%

IDEAL 81.4± 0.9% 0.5 ± 0.3% 91.0± 0.4%
WORST 65.7± 10.9% 29.2 ± 29.5% 74.1± 3.7%

150 STANDARD 64.6± 9.9% 29.4 ± 34.4% 73.2± 3.8%
IDEAL 73.0± 13.2% 0.7 ± 0.1% 84.3± 7.1%

50× or 20× instead of 100× makes the attack even more powerful by 8.4% and 46.2% respectively, in terms of ASR.

Additional Settings. For completeness, in this section, we analyze several other scenarios on Waterbirds data set, including
using different poisons percentages, different numbers of targets for the GM attack, and different model architectures. In
Table 6, we consider JTT and GEORGE with the DLBD attack using several poison percentages in the range 0.4%− 2%.
The results are consistent with our previous findings. Additionally, we observe that an attacker who could introduce 2%
poisoned samples, generally obtains a higher ASR (of 52.5%− 59.8%). In Table 7, we compare the results in two settings
for the GM attack: (i) when the attack has 5 targeted samples (same as our previous experiments) and (ii) when the attack has
100 targeted samples. The results show that, in the case of 100 targets, the amplification is as high as it could be. The only
distinction from the case with 5 targets is an overall lower ASR, but this is expected as the attack becomes more difficult as it
targets more samples. Finally, we also consider a larger architecture, ResNet-50, instead of ResNet-18, for the DLBD attack
and several scenarios, including training the models from scratch. Our results in Table 8 are generally consistent, however,
the ASR is significantly higher against ResNet-50. We believe the additional learning capacity of ResNet-50 over ResNet-18
facilitates the attack. Also, we observe that training the models from scratch and tuning them for high group robustness
(WGA) damages the overall accuracy (ACC) significantly. This challenge explains the prior practice of using pre-trained
models as they can alleviate this trade-off to some extent. To conclude, our extensive experiments show that the limitation of
group robustness methods is consistent across different settings, suggesting that this might be an inherent vulnerability.
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Table 6. Evaluating the impact of amplification in group robustness methods on worst group accuracy (WGA), attack success rate (ASR)
and test accuracy (ACC) when considering several poison percentages for the DLBD attack.

POISONS METHOD CASE WGA ASR ACC

WORST 78.7± 2.0% 4.8 ± 0.7% 89.3± 1.2%
0.4% JTT STANDARD 78.6± 2.0% 3.5 ± 1.7% 89.1± 1.0%

IDEAL 81.1± 1.9% 0.3 ± 0.1% 91.4± 0.3%
WORST 80.6± 2.7% 8.7 ± 1.4% 89.4± 1.2%

0.6% JTT STANDARD 79.3± 1.7% 9.6 ± 1.8% 89.0± 0.8%
IDEAL 81.2± 2.0% 0.5 ± 0.1% 91.6± 0.5%

WORST 78.5± 3.4% 15.8 ± 4.4% 87.8± 1.2%
0.8% JTT STANDARD 78.0± 3.0% 16.8 ± 5.4% 87.7± 1.2%

IDEAL 81.2± 1.5% 0.5 ± 0.1% 91.0± 0.6%
WORST 76.9± 3.5% 20.9 ± 7.9% 86.4± 1.2%

1% JTT STANDARD 78.0± 4.1% 20.4 ± 5.9% 86.7± 1.2%
IDEAL 81.4± 0.9% 0.5 ± 0.3% 91.0± 0.4%

WORST 64.7± 7.4% 56.6 ± 41.9% 69.8± 5.6%
2% JTT STANDARD 62.0± 9.8% 59.8 ± 45.9% 66.0± 9.6%

IDEAL 82.5± 1.6% 0.6 ± 0.3% 91.1± 0.2%
WORST 74.1± 1.7% 16.5 ± 2.9% 76.4± 3.4%

1% GEORGE STANDARD 77.3± 2.5% 15.8 ± 3.9% 79.4± 1.6%
IDEAL 79.3± 2.1% 0.4 ± 0.0% 93.1± 1.4%

WORST 74.3± 5.4% 56.1 ± 13.6% 78.0± 9.0%
2% GEORGE STANDARD 74.5± 5.2% 52.5 ± 7.1% 77.6± 8.5%

IDEAL 80.2± 0.4% 0.7 ± 0.1% 92.4± 0.9%

Table 7. Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack success rate (ASR) and test accuracy
(ACC) when considering different targets for the GM attack.

TARGETS CASE WGA ASR ACC

5 WORST 76.1± 3.2% 20.0 ± 0.0% 89.9± 1.0%
5 STANDARD 76.1± 3.2% 20.0 ± 0.0% 89.9± 1.0%
5 IDEAL 75.9± 0.8% 13.3 ± 11.5% 91.3± 0.1%

100 WORST 75.4± 2.3% 8.6 ± 0.5% 88.6± 0.9%
100 STANDARD 75.8± 2.2% 8.6 ± 0.5% 88.8± 1.0%
100 IDEAL 75.6± 0.5% 5.6 ± 0.5% 91.1± 0.6%

Table 8. Evaluating the impact of amplification in JTT on worst group accuracy (WGA), attack success rate (ASR) and test accuracy
(ACC) when considering a different architecture (ResNet-50). Note that ES denotes early stopping for the identification model.

SETTING ES CASE WGA ASR ACC

WORST 72.4± 2.1% 70.6 ± 13.8% 76.2± 1.3%
PRE-TRAINED 60 STANDARD 72.4± 2.1% 70.6 ± 13.8% 76.2± 1.3%

IDEAL 85.1± 1.4% 0.9 ± 0.3% 90.2± 1.0%
WORST 83.4± 2.1% 58.0 ± 23.7% 86.5± 2.5%

PRE-TRAINED 200 STANDARD 83.5± 1.9% 56.5 ± 21.2% 86.7± 2.1%
IDEAL 84.7± 1.5% 0.5 ± 0.5% 90.8± 2.6%

WORST 39.5± 7.8% 53.7 ± 9.7% 59.0± 9.8%
FROM SCRATCH 200 STANDARD 41.0± 8.5% 34.5 ± 26.4% 64.0± 8.3%

IDEAL 37.8± 6.9% 5.8 ± 4.6% 61.0± 12.9%
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Table 9. The impact of poisoning defenses in federated learning on group robustness.

METHOD IID? WGA DROP ACC DROP

MEDIAN YES 23.7± 7.3% −0.2± 0.3%
TRIMMED MEAN YES 45.7± 8.8% 10.6± 3.5%

SPARSEFED (ρ = 0) YES 45.4± 27.7% 11.0± 17.7%
SPARSEFED (ρ = 0.9) YES 42.7± 24.3% 19.0± 14.6%
SPARSEFED (ρ = 0.9) NO 55.1± 21.6% 12.3± 16.3%

Table 10. The impact of EPIc on group robustness, when considering the DLBD attack and several poison percentages.

POISONS CASE WGA ASR ACC

IDEAL 61.2 ± 2.1% 0.1± 0.0% 95.4± 0.5%
0.5% STANDARD 57.6 ± 4.9% 0.1± 0.0% 95.0± 0.6%

WORST 52.0 ± 8.1% 0.1± 0.0% 94.4± 0.5%
IDEAL 59.0 ± 2.5% 0.1± 0.1% 95.5± 0.1%

1% STANDARD 55.8 ± 6.0% 0.1± 0.0% 95.0± 0.1%
WORST 50.7 ± 6.9% 0.1± 0.0% 94.3± 0.8%
IDEAL 57.3 ± 2.5% 0.3± 0.3% 94.5± 0.6%

2% STANDARD 57.0 ± 0.4% 0.5± 0.4% 94.5± 0.4%
WORST 48.6 ± 7.6% 0.2± 0.0% 93.8± 0.1%

A.3. More results on the Limitations of the Poisoning Defenses.

Federated Learning Scenarios. To demonstrate that the limitation of EPIc we identified (in Section 4) is consistent in other
defenses, we also run experiments on federated learning, where robust aggregation mechanisms are widely studied. In this
scenario, the defense does not sanitize the training set but sanitizes the updates sent by each client to prevent poisoning. We
consider FedAvg (McMahan et al., 2017) as an un-defended baseline and study the drop in WGA and ACC relative to it. We
included more details about the experimental setup in Appendix A.1. In Table 9, we observe that the defenses we consider
cause significantly more drop in WGA than in ACC, over the baseline. This exposes that all these methods, while attempting
to fight against poisoning, end up having a disparate impact on the model’s accuracy on under-represented groups.

More Settings. In Table 10, we study the impact of EPIc when there are 0.5% or 2% poisons for the DLBD attack, instead
of 1%. We observe that EPIc drops the WGA by 0.3%− 3.6%, while maintaining a low ASR and high ACC. Also, aligning
with our previous results, we observe that the overall WGA is low compared to the values obtained when considering a
group robustness method. Overall, these results are consistent with our main claims.

Run-time defenses. Additionally, we ran experiments using STRIP (Gao et al., 2019), a run-time backdoor detection
mechanism. The main assumption of this method is that a backdoored model’s outputs will have lower entropy on perturbed
backdoored samples compared to perturbed clean samples. In Table 11, we show the means and standard deviations for the
output entropy values on different types of samples when they are perturbed (we use the first model from Table 2 in the
standard case). The results suggest that STRIP cannot accurately separate clean samples from the poisons by thresholding
the entropy values. We believe the strong regularization needed for the models to achieve group robustness (Liu et al., 2021;
Sagawa et al., 2019) contributes to the limitation of such defenses as the model will not produce very confident outputs,
leading to generally high entropy values on all types of inputs.

Table 11. Entropy of a model’s output on perturbed samples from Waterbirds under DLBD attack.

HRG LRG-1 LRG-2 POISONS

OUTPUT ENTROPY 0.93± 0.03 0.92± 0.04 0.91± 0.03 0.93± 0.03
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Table 12. Applying EPIc and JTT together to combine poison resilience with group robustness.

EPIC WGA ASR ACC

NO 78.0± 4.1% 20.4± 5.9% 86.7± 1.2%
STOP = 3 76.5± 3.8% 14.8± 4.0% 91.9± 0.3%
STOP = 5 73.4± 7.4% 6.7± 1.7% 82.8± 7.3%
STOP = 7 42.3± 6.6% 0.9± 0.6% 93.4± 0.2%

IDEAL 81.4± 0.9% 0.5± 0.3% 91.0± 0.4%

A.4. Combining Group Robustness Methods and Poisoning Defenses

In this section, we study the feasibility of achieving both high group robustness and poisoning resilience by combining the
current state-of-the-art methods.

We first apply EPIc to identify potential poisons in the training set. Then, when we apply JTT, we intervene so that it
does not amplify the potential poisons found in its first phase (i.e., we remove them from JTT’s upsampling set). We have
considered the following two baselines in our pipeline: an ideal EPIc that identifies only the poisons and not using EPIc
that we would want to improve upon. Because EPIc removes samples iteratively, we considered three stopping epochs for
the removal process, so that we have control over how many samples EPIc identifies as poisons. As shown in Figure 1,
stopping EPIc sooner leads to a lower percentage of samples from LRG that are removed, but also a lower amount of poisons.
Whereas, stopping EPIc later increases both of these rates.

For the rest of this section, we consider Waterbirds dataset and DLBD attack. We present further details on the experimental
setup, including the hyper-parameters used in Appendix A.1.

First of all, as shown in Table 12, not using EPIc at all results in a WGA relatively close to the WGA that could be obtained
if none of the poisons were amplified (Ideal EPIc). However, the ASR is still high if we do not use EPIc to identify potential
poisons. We evaluate three possible stopping epochs for EPIc and measure the effects on WGA and ASR as a function of
EPIC’s stopping epoch. With a higher stopping epoch (i.e., more samples are identified as poisons), the ASR decreases,
however, the WGA also decreases. For example, to mitigate the attack and obtain below 1% ASR, we need to sacrifice over
35% WGA—significant damage to group robustness. Also, in ideal EPIc (only poisons are eliminated), we could obtain
both high WGA (over 80%) and low ASR (lower than 1%). Moreover, note that for all the models, the ACC stays relatively
high (over 80%), though, lower than the settings without any poisoning (e.g., 93.3% in (Liu et al., 2021)). This further
shows how ACC can be misleading to judge the side effects of a poisoning defense.

In conclusion, we have attempted to combine EPIc and JTT, in hopes of achieving both high poisoning resilience and group
robustness, but this task is not trivial. Both legitimate under-represented samples and poison samples in realistic attacks can
be difficult-to-learn and without making specific assumptions, (e.g., poisons contain detectable artifacts), it might be difficult
to distinguish them. Using EPIc (which makes no such assumptions) to identify potential poisons and use that information
as an intervention into JTT is not enough to mitigate the trade-off between WGA and ASR.

A.5. Discussion and Future Work

In this work, we have focused only on defenses from the first category in Section 2.1 (that consider poisons as difficult to
learn). We have exposed their vulnerability and the potentially harmful consequences of these defenses. We believe that
defenses from the second category (that consider poisons as easy to learn), would not lead to these problems. However, it is
important to note that, poisons will not be easy to learn in realistic attacks where adversaries can only inject a limited number
of poisons, violating the assumption. As a result, defenses from this category would be ineffective against such attacks and,
therefore, group robustness methods would still inadvertently offer a needed boost to the weaker adversary. Finally, for
the third category of defenses (poisons are different from clean samples), the state-of-the-art defenses (Pan et al., 2023; Qi
et al., 2023) use a small base set (10-1000 samples) to model the distribution of clean samples and identify the training
points most distinct from this distribution as poisons. These base sets are often assumed to follow the same distribution
as the clean training set, which makes them unlikely to contain sufficiently many minority samples. We hypothesize that
this will cause such defenses to still eliminate clean minority samples as poisons and hurt the WGA. However, it might
be possible to avoid this problem by providing such defenses with carefully curated base sets that are balanced (in terms
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of groups) and free from poisons. In this case, instead of mistakenly penalizing difficult clean samples as poisons, they
can isolate the real poisons from a more inclusive clean distribution captured by the base set. However, research suggests
that making a base set poison-free (Zeng et al., 2022) or collecting enough labeled minority samples that capture their
distribution properly (Lokhande et al., 2022) might be challenging in practice. We believe addressing these challenges is a
promising avenue for future work to conciliate between group robustness and poisoning resilience.


